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Introduction

The Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-9) was held
on 4 June 2015 following the NAACL HLT 2015 conference in Denver, Colorado. Like the first eight
SSST workshops in 2007, 2008, 2009, 2010, 2011, 2012, 2013 and 2014, it aimed to bring together
researchers from different communities working in the rapidly growing field of structured statistical
models of natural language translation.

This year’s SSST featured an award for best paper to advance statistical MT using lexical semantics
and deep language processing. The €500 prize was sponsored by the European Union QTLeap
project (http://qtleap.eu, FP7-ICT-2013.4.1-610516), which aims to research and deliver an articulated
methodology for machine translation that explores deep language engineering approaches in view of
breaking the way to translations of higher quality.

We selected 13 papers and extended abstracts for this year’s workshop, many of which reflect statistical
machine translation’s movement toward not only tree-structured and syntactic models incorporating
stochastic synchronous/transduction grammars, but also increasingly semantic models and the closely
linked issues of deep syntax and shallow semantics, vector space representations to support these
approaches, and semantic evaluation methodologies.

Thanks are due once again to our authors and our Program Committee for making the ninth SSST
workshop another success.

Dekai Wu, Marine Carpuat, Eneko Agirre and Nora Aranberri
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Harmonizing word alignments and syntactic structures for extracting
phrasal translation equivalents

Dun Deng, Nianwen Xue and Shiman Guo
Computer Science Department
Brandeis University
415 South Street, Waltham, MA 02453
ddeng@brandeis.edu, xuen@brandeis.edu, shim@brandeis.edu

Abstract

Accurate identification of phrasal translation
equivalents is critical to both phrase-based
and syntax-based machine translation systems.
We show that the extraction of many phrasal
translation equivalents is made impossible by
word alignments done without taking syntactic
structures into consideration. To address the
problem, we propose a new annotation scheme
where word alignment and the alignment of
non-terminal nodes (i.e., phrases) are done si-
multaneously to avoid conflicts between word
alignments and syntactic structures. Relying
on this new alignment approach, we construct
a Hierarchically Aligned Chinese-English Par-
allel Treebank (HACEPT), and show that all
phrasal translation equivalents can be automat-
ically extracted based on the phrase alignments
in HACEPT.

1 Introduction

During the past two decades since the emergence
of the statistical paradigm of Machine Translation
(MT) (Brown et al., 1993), the field of Statistical Ma-
chine Translation (SMT) has attained consensus on
the need for structural mappings between languages
in MT. Accurately identifying structural mappings
(i.e., phrasal translation equivalents) is critical to the
performance of both phrase-based systems (Koehn,
Och, and Marcu, 2003; Och and Ney, 2004) and
syntax-based systems (Chiang, 2005; Chiang, 2007;
Galley et al., 2004). The fact is that phrasal transla-
tion equivalents are identified based on word align-
ments, so how word alignments are done directly af-
fects the identification of phrasal translation equiv-

alents. As reported by (Zhu, Li, and Xiao, 2015),
even one spurious word alignment can prevent some
desirable phrasal translation equivalents from being
extracted. The unfortunate fact is that spurious word
alignments abound in current word-aligned parallel
texts used for extracting phrasal translation equiva-
lents. This is because the word alignments in these
parallel texts, whether they are induced in an unsu-
pervised manner such as that described by (Och and
Ney, 2003) or manually annotated based on exist-
ing word alignment standards such as (Li, Ge, and
Strassel, 2009) and (Melamed, 1998), are generally
done as an independent task without taking syntac-
tic structures into consideration. As a result, con-
flicts between word alignments and syntactic struc-
tures are inevitable, and when such a conflict arises,
the extraction of desirable phrasal translation equiv-
alents will be impossible.

To address this shortcoming, we designed a hi-
erarchical alignment scheme in which word-level
alignment (namely alignment of terminal nodes) and
phrase-level alignments (namely alignment of non-
terminals) are done simultaneously in a coordinated
manner so that conflicts between word alignments
and syntactic structures are avoided. Based on this
alignment scheme, we constructed a Hierarchically
Aligned Chinese-English Parallel Treebank (HA-
CEPT) which currently has 9,897 sentence pairs. We
show that this hierarchically aligned corpus provides
a new way to extract hierarchical translation rules
and can be used as a training corpus to learn this type
of alignments.

The rest of the paper is organized like this: Section
2 shows how phrasal translation equivalents can be

Proceedings of SSST-9, Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 1-9,
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made impossible to extract by word alignments done
without considering syntactic structures. To avoid
the problem, Section 3 introduces our new alignment
scheme and how HACEPT is constructed using the
scheme. Section 4 shows how hierarchical transla-
tion rules can be extracted from the phrase align-
ments in HACEPT. We also provide statistics about
two important aspects of the rules, namely the dis-
tributions of terminal and non-terminal nodes in the
rules and the number of terminal nodes contained in
a single rule. Section 5 discusses some work in the
literature that are related to what is discussed in this
paper. Section 6 concludes the paper and points out
furture work to do.

2 Spurious word alignments impede the
extraction of phrase pairs

Spurious word alignments arise in any word align-
ment practice where the alignment is done as an inde-
pendent task without taking sysntactic structures into
consideration, regardless of whether the alignment is
automatically generated by utilizing a word aligner
such as the GIZA++ toolkit (Och and Ney, 2003) or
manually annotated using alignment standards such
as (L1, Ge, and Strassel, 2009) and (Melamed, 1998).
(Zhu, Li, and Xiao, 2015) has described how a spuri-
ous word alignment in automatically generated word
alignments prevents some phrasal translation equiv-
alents from being extracted. In this section, we will
show how spurious word alignments in human anno-
tated word alignments make the extraction of phrasal
translation equivalents impossible.

Consider the following example quoted from (Li,
Ge, and Strassel, 2009), where the relevant word
alignment in each sentence/phrase pair is highlighted
by underlining. Note that the word alignments are
done without taking syntactic structures into consid-
eration, as can be told from the fact that all the under-
lined aligned multi-word strings do not correspond
to a constituent in a Penn TreeBank (Marcus, San-
torini, and Marcinkiewicz, 1993) or Chinese Tree-
Bank (Xue et al., 2005) parse tree.

la. He is visiting Beijing <> #& iE 37 19 Jb 7%
1b. He has gone to Beijing <> # % &t ® 7

lc. to quickly and efficiently solve the problem <>
WIR A R A

1d. Results can be obtained by doing experiments
< BB TR 4R

le. We fully agree with the Chinese position that
there is only one China in the world <> &A1 ©
ERETHG LY, R ERHT —AF

Just like the spurious word alignment discussed
by (Zhu, Li, and Xiao, 2015), the underlined word
alignment in each of the sentence/phrase pair above
makes it impossible to extract at least one diserable
phrasal translation equivalent. For each of the sen-
tence/phrase pair in (1), (2) lists the phrasal transla-
tion equivalents that cannot be extracted due to the
word alignment done in that pair:

2a. visiting Beijing <> 7 9] bR

2b. gone to Beijing <> & Jt X%

2c¢. solve the problem <> /% & 5] A

2d. doing experiments <> % 5% ¥

2e. the Chinese position <> ¥ 7 #) .3

The reason why the phrasal translation equivalents
in (2) cannot be extracted is because a word in a
phrase on one side is aligned to a word that is not
part of the corresponding phrase on the other side.
Take (2¢) for instance. The Chinese verb f# i#%/solve
in the phrase f## & ¥]4 is aligned to both solve and
to in (1c), which is not part of the phrase solve the
problem. As a result, the phrase pair in (2c¢) cannot
be obtained.

It is not desirable that legitimate phrase pairs such
as those in (2) cannot be extracted. To fix the prob-
lem, Section 3 proposes a new alignment scheme.

3 Hierarchical alignment and the creation
of HACEPT

Hierarchical alignment is a new alignment scheme
where both terminal nodes (words) and non-terminal
nodes (linguistic phrases) between parallel parse
trees are aligned in a coordinated way so that con-
flicts in the form of redundancies and incompatabili-
ties between word alignments and syntatic structures
are avoided. We use this scheme to construct HA-

) CEPT with the goal of providing the field of MT with



a resource that has human annotated tree-structured
mappings for MT training purposes.

The word alignment done in HACEPT differs
from the common practice of word alignment in the
field (Melamed, 1998; Li, Ge, and Strassel, 2009) in
that the requirement that every word in a sentence
pair needs to be word-aligned is relaxed. On the
word level, we only align words that have an equiv-
alent in terms of lexical meaning and grammatical
function. For those words that do not have a trans-
lation counterpart, we leave them unaligned at word
level and instead the appropriate phrases in which
they appear. This strategy makes sure that both
redundancies and incompatibilities between word
alignments and syntactic structures are avoided. In
addition, artificial ambiguities are also eliminated.
These points will be illustrated in the discussion of
the concrete example in Figure 1 below.

We take the Chinese-English portion of the Paral-
lel Aligned Treebank (PAT) described in (Li et al.,
2012) for annotation. Our data have three batches:
one batch is weblogs, one batch is postings from on-
line discussion forums and one batch is news wire.
The English sentences in the data set are annotated
based on the original Penn TreeBank (PTB) annota-
tion stylebook (Bies et al., 1995) as well as its exten-
sions (Warner et al., 2004), while the Chinese sen-
tences in the data set are annotated based on the Chi-
nese TreeBank (CTB) annotation guidelines (Xue
and Xia, 1998) and its extensions ZhangandXuel2.
The PAT has no phrase alignments and the word
alignments in it are done under the requirement that
all the words in a sentence should be aligned.

Next we discuss our annotation procedure in de-
tail. Our annotators are presented with sentence pairs
that come with parallel parse trees. The task of the
annotator is to decide, first on the word level and then
on the phrase level, if a word or phrase needs to be
aligned at all, and if so, to which word or phrase it
should be aligned. The decisions about word align-
ment and phrase alignment are not independent, and
must obey well-formedness constraints as outlined
in (Tinsley et al., 2007):

a. A non-terminal node can only be aligned once.

b. if Node n. is aligned to Node n., then the de-
scendants of n. can only be aligned to descen-
dants of n.

c. if Node n. is aligned to Node n., then the an-
cestors of n. can only be aligned to ancestors of
Ne.

This means that once a word alignment is in place,
it puts constraints on phrase alignments. A pair of
non-terminal nodes (n., ne) cannot be aligned if a
word that is a descendant of n. is aligned to a word
that is not a descendant of n, on the word level.

Let us use the concrete example in Figure 1 to
illustrate the annotation process, which is guided
by a set of detailed annotation guidelines. On the
word level, only those words that are connected with
a dashed line are aligned since they have equiva-
lents. Note that the Chinese prenominal modification
marker #J and the existential verb 7 /have, and the
English determiner the, the relative pronoun who, the
preposition of, the expletive subject if, the copular
verb is, the infinitive marker to and the conjunction
word both are all left unaligned on the word level.
Aligning these words will generate artificial ambigu-
ous cases and create both redundancies and incom-
patibilities between word alignments and parse trees.

For instance, if #J is to be word-aligned, it could
be glued to the preceding verb % ¥ 4k and the
whole string will be aligned to harp. Note that "%
¢ 4k and harp are both unambiguous and form
a one-to-one correspondence. With the word align-
ment between k% 4k 49 and harp, we make the
unambiguous harp correspond to both " " 14k and
e AR 49 (and possibly more strings), thus cre-
ating a spurious ambiguity. Also note that the string
9 4K 49 does not form a constituent in the Chi-
nese parse tree, so the word alignment is incompat-
ible with the syntactic structure of the sentence. By
leaving #J unaligned, we avoid both the spurious
ambiguity and the incompatibility.

As for redundancies, consider the English deter-
miner the, which has no translation counterpart in
the Chinese sentence. If the is to be word-aligned, it
could be attached to the noun people and the whole
string the people will be aligned to AA7. This will
create a redundancy, since the English parse tree al-
ready groups the and people together to form an NP,
and therefore there is no need to repeat this infor-
mation on the word level by attaching the to people,
especially when the word alignment also generates a

3 spurious ambiguity for A4, which unambiguously



means people but is aligned to the people.

With word alignments in place, next the annotator
needs to perform phrase alignments. Note that word
alignments place restrictions on phrase alignments.
For instance, VP.y cannot be a possible alignment
for VP,;, because i %, a descendant of VP, is
aligned to often, which is not a descendant of VP, .
For a phrase that does have a possible alignment,
the annotator needs to decide whether the possible
phrase alignment can be actually made. This is a
challenging task since, for a given phrase, there usu-
ally are more than one candidate from which a single
alignment needs to be picked. For instance, for the
English ADJP, there are in total two possible phrase
alignments, namely VP, and VP_.7, both of which
obey the well-formedness constraints. Since a non-
terminal node is not allowed to be aligned to multi-
ple non-terminal nodes on the other side, the anno-
tator needs to choose one among all the candidates.
This highlights the point that the alignment of non-
terminal nodes cannot be deterministically inferred
from the alignment of terminal nodes. This is espe-
cially true given our approach where some terminal
nodes are left unaligned on the word level. For in-
stance, the reason why VP_7 is a possible alignment
for ADJP is because the word 7 is left unaligned.
If & were aligned with, say, is, VP.; could not be
aligned with ADJP since is is not a descendant of
ADJP and aligning the two nodes will violate Con-
straint b.

While Constraints » and ¢ can be enforced au-
tomatically given the word alignments, the deci-
sions regarding the alignment of non-terminal nodes
which satisfy Constraint a are based on linguistic
considerations. One key consideration is to de-
termine which non-terminal nodes encapsulate the
grammatical relations signaled by the unaligned
words so that the alignment of the non-terminal
nodes will effectively capture the unaligned words
in their syntactic context. When identifying non-
terminal nodes to align, we follow two seemingly
conflicting general principles:

* Phrase alignment should not sever key depen-
dencies involving the grammatical relation sig-
naled by an unaligned word.

* Phrase alignment should be minimal, in the
sense that the phrase alignment should contain

only the elements involved in the grammatical
relation, and nothing more.

The first principle ensures that the grammatical re-
lation is properly encapsulated in the aligned non-
terminal nodes. For example in Figure 1, if we attach
the English preposition on to tolls and aligning them
to i@ 47 %, we would fail to capture the lexical de-
pendency between harp and on. Aligning VP.s with
VP2 captures the dependency.

The first principle in and of itself is insufficient
to produce desired alignment. Taken to the ex-
treme, it can be trivially satisfied by aligning the two
root nodes of the sentence pair. We also need the
alignment to be minimal, in the sense that aligned
non-terminal nodes should contain only the elements
involved in the grammatical relation, and nothing
more. These two requirements used in conjunction
ensure that a unique phrase alignment can be found
for each unaligned word. The phrase alignments in
Figure 1 which are indicated by blue dotted lines, all
satisfy these two principles.

Following the principles and the procedure intro-
duced above, we constructued HACEPT,! which has
9,897 sentence pairs. In the next section, we show
how the alignments in HACEPT can help to extract
translation rules.

4 Extracting hierarchical translation rules
in HACEPT

Hierarchical translation rules can be automatically
extracted from the phrase alignments in HACEPT.
Take a pair of aligned non-terminal nodes (n., n.),
a translation rule based on the alignment between n,
and n. can be extracted like this: Check each of the
immediate daughter nodes of both n. and n.. For
any of the daughter nodes that is aligned, stop look-
ing down into the node and keep the phrase cate-
gory label of the node as a variable the rule. For
each daughter node that is not aligned, recursively
traverse its children until either an aligned node is
found, in which case its phrase category label will
be kept as a variable in the rule, or a terminal node is

' As of the writing of this paper, we are in the process of doing
adjudication on the double annotation done to create HACEPT.
We look forward to finishing adjudication soon and releasing the
resouce to the public.
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reached, in which case the word is included as part
of the translation rule.

To illustrate the rule extraction process specified
above, let us take the phrase alignment between NP
and NP, in Figure 1 for instance. The search starts
top-down from the two root nodes. On the Chinese
side, NP,y has two immediate daughter nodes: CP
and NP.;. NP, is aligned, so we stop looking in-
side the node and just keep the phrase category label
of the node as part of the rule. CP is not aligned, so
we keep checking its two immediate daughter nodes:
VP and DEC. VP, is aligned and will not be fur-
ther checked. DEC is not aligned and dominates
the terminal node #J, which will be kept in the rule.
Since DEC is the last node inside NPy and a terminal
node is reached, the search on the Chinese side ends.
The same procedure will simultaneously take place
on the English side, and when the search is done, we
will get the translation rule in (3) below:

(3) NP,y < NP,:
VP 9 NP.; <> NP, who VP2

Note that the rule contains both terminals (%9 and
who) and non-terminals represented by phrase cate-
gory labels.

The rule in (3) illustrates one type of rule, namely
the rules containing both terminal and non-terminal
nodes. There are also rules with only terminal nodes
and rules with only non-terminal nodes. Figure 1 has
quite a few examples for the former and an example
is given below:

(4) NP, < NP,o:
BATH <> tolls

The rule above contains only terminals. Figure 1
does not contain an example for rules with only non-
terminals, but such rules do exist and here is a com-
mon example:

(5) IP < S:
NPsubj VPpred <> NPsubj VPpred

The rule above illustrates parallel sentences whose
subjects and predicates are both aligned.

Table 1 provides the statistics of the distribution
of the three types of rules in HACEPT.

Rule types No. Percentage
with only terminals 52379 50.46
with only non-terminals | 2621 2.53
with both 48796 4701
Total 103796 100

Table 1: Rule distribution

Given the importance of hierarchical translation
rules for M T, a natural question to ask about the hier-
archical translation rules extracted from HACEPT is
this: are these rules usable? The most crucial factor
deciding the usability of a rule is its length in terms
of the number of terminal nodes it contains. If a rule
contains too many terminal nodes, it cannot be easily
used for MT purposes. Table 2 provides the statis-
tics about the number of terminal node (TN) in the
extracted rules:

TN Rule | Percentage | Cumulative

0 6974 6.72 6.72

1 4017 3.87 10.59
2 30829 29.70 40.29
3 18780 17.09 58.38
4 12897 12.43 70.81
5 9387 9.04 79.85
6 6079 5.86 85.71
7 4404 4.24 89.95

More than 7 | 10429 10.05 1

Table 2: Rule length

As shown by the table, 89.95 percent of the rules
contain 7 or less than 7 terminal nodes. There are
still 10 percent of the rules that contain more than 7
terminal nodes.

One primary reason that increases the number of
terminal nodes in a rule is how the parse trees are de-
signed. To be specific, some parts of the parse trees
are designed to be flat, presumably for the sake of
increasing treebank annotation throughput, but this
makes some otherwise legitimate phrase alignments
inaccessible unless we change the underlying parse
trees. When a phrase alignment cannot be made,
some terminal nodes will be left out to appear in the
rule. This is illustrated by Figure 1.

On the Chinese side, there is a node, namely VP,
which dominates the predicate part of the sentence.



On the English side, the predicate part of the English
sentence is splitinto ADVP and VP,, and there is no
single node dominating these two nodes. As a result,
VP has no phrase alignment. Suppose a node VP,
is created that includes ADVP and VP,; as its imme-
diate daughters, VP.y and VP, could be aligned. (7)
below is the rule based on the alignment between the
two sentences in Figure 1, and (8) is the rule based on
the alignment between the two sentences if a node is
created for the predicate of the English sentence and
aligned to VPg.

(6) IPy & Sy

NP,y ADVP R 4rig IP; <> NP, ADVP have
no idea of S

(7) 1Py & Sy
NP,y VP g <> NP,y VP
(VP,o = ADVP VP,)

Note that the rule in (6) has 6 terminal nodes in
total whereas the rule in (7) has none. This is a
good example to illustrate the fact that a flat struc-
ture makes some legitimate phrase alignment impos-
sible and as a result increases the number of terminal
nodes in a rule.

There is another place in Figure 1 that has the same
problem. Note that the Chinese VP,y has three im-
mediate daughter nodes: ADVP, ADVP, and VP,;.
This structure is flat and can become deeper if an in-
termediate node is created to dominate the second
ADVP and VP,.;. This node can then combine with
the first ADVP to form VP.y. Note that this inter-
mediate node will serve as the phrase alignment of
VP,.1, which cannot be unaligned in the figure. With
the phrase alignment between VP.; and the hypo-
thetical intermediate node (call it VP.g), the number
of terminal nodes in (6) will be reduced to zero even
without the creation of VP, in (7). The new rule
looks like this:

(8) 1Py & Sp
NP, ADVP VP <> NP,y ADVP VP,

(VP9 = ADVP VP,)

In the near future, we plan to binarize the flat struc-
tures as illustrated above to create some intermediate
nodes, which can be aligned and reduce the number
of terminal nodes in existing rules.

5 Related work

To address the problem caused by spurious word
alignments, there has been research done to improve
word alignment quality by incorporating syntactic
information into word alignments (May and Knight,
2007; Fossum, Knight, and Abney, 2008). An-
other research direction has been explored to con-
duct syntactic alignment between parse trees (Tins-
ley et al., 2007; Pauls et al., 2010; Sun, Zhang, and
Tan, 2010b; Sun, Zhang, and Tan, 2010a), and im-
plements syntactic rule extraction based on syntactic
alignment instead of word alignment. Our work re-
ported in Section 3 can be viewed as a combination
of these two lines of research.

There has also been reasearch done to automati-
cally obtain phrasal translation equivalents (Ambati
and Lavie, 2008; Hanneman, Burroughs, and Lavie,
2011; Lavie, Parlikar, and Ambati, 2008; Zhu, Li,
and Xiao, 2015). This line of research is different
from our work in two respects:

First, word alignment as the foundation of phrase-
pair extraction is done differently in the two ap-
proaches. Automatic extraction of phrase pairs uses
automatically generated word alignments, where
there are lots of spurious word alignments, which, as
pointed out by (Zhu, Li, and Xiao, 2015), are harmful
to rule extraction and affect translation quality. By
contrast, HACEPT is free of spurious word align-
ments. As already mentioned in Section 3, all the
word alignments in HACEPT are compatible with
the syntactic structures and will not block any legit-
imate phrase alignment.

Second, phrase alignment is inferred from word
alignment in automatic approaches. As reported by
(Ambati and Lavie, 2008), in places where language-
particular function words such as English auxiliary
verbs that exist in one language but not the other are
involved, there are usually more than one candiate in
the language that has the function words for a phrase
in the language that does not have a counterpart of
the function words. Automatic inference cannot al-
ways make the right decision in such situations. We



have strict standards for choosing the correct phrase
alignment in such cases and as a result, HACEPT
can function as a training corpus for automatic ap-
proaches.

6 Conclusion

In this paper, we report a resource we have con-
structed with a novel alignment scheme. The cor-
pus contains both word and phrase alignments and
can help extract hierarchical translation rules and
train syntax-based MT models. The next step is, of
course, to do MT experiments with this resource to
see if it indeed helps to improve system performance.
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Abstract

The quality of statistical machine trans-
lation performed with phrase based ap-
proaches can be increased by permuting
the words in the source sentences in an
order which resembles that of the target
language. We propose a class of recur-
rent neural models which exploit source-
side dependency syntax features to re-
order the words into a target-like order.
We evaluate these models on the German-
to-English language pair, showing signif-
icant improvements over a phrase-based
Moses baseline, obtaining a quality simi-
lar or superior to that of hand-coded syn-
tactical reordering rules.

1 Introduction

Statistical machine translation is typically per-
formed using phrase-based systems (Koehn et
al., 2007). These systems can usually produce
accurate local reordering but they have difficul-
ties dealing with the long-distance reordering
that tends to occur between certain language
pairs (Birch et al., 2008).

The quality of phrase-based machine transla-
tion can be improved by reordering the words
in each sentence of source-side of the paral-
lel training corpus in a “target-like” order and
then applying the same transformation as a
pre-processing step to input strings during ex-
ecution.

When the source-side sentences can be ac-
curately parsed, pre-reordering can be per-
formed using hand-coded rules. This approach
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has been successfully applied to German-to-
English (Collins et al., 2005) and other lan-
guages. The main issue with it is that these
rules must be designed for each specific lan-
guage pair, which requires considerable lin-
guistic expertise.

Fully statistical approaches, on the other
hand, learn the reordering relation from word
alignments. Some of them learn reordering
rules on the constituency (Dyer and Resnik,
2010) (Khalilov and Fonollosa, 2011) or projec-
tive dependency (Genzel, 2010), (Lerner and
Petrov, 2013) parse trees of source sentences.
The permutations that these methods can learn
can be generally non-local (i.e. high distance)
on the sentences but local (parent-child or
sibling-sibling swaps) on the parse trees. More-
over, constituency or projective dependency
trees may not be the ideal way of represent-
ing the syntax of non-analytic languages, which
could be better described using non-projective
dependency trees (Bosco and Lombardo, 2004).
Other methods, based on recasting reorder-
ing as a combinatorial optimization problem
(Tromble and Eisner, 2009), (Visweswariah et
al., 2011), can learn to generate in principle ar-
bitrary permutations, but they can only make
use of minimal syntactic information (part-of-
speech tags) and therefore can’t exploit the po-
tentially valuable structural syntactic informa-
tion provided by a parser.

In this work we propose a class of reorder-
ing models which attempt to close this gap by
exploiting rich dependency syntax features and

Proceedings of SSST-9, Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 10-20,
Denver, Colorado, June 4, 2015. (©2015 Association for Computational Linguistics



at the same time being able to process non-
projective dependency parse trees and generate
permutations which may be non-local both on
the sentences and on the parse trees.

We represent these problems as sequence pre-
diction machine learning tasks, which we ad-
dress using recurrent neural networks.

We applied our model to reorder German
sentences into an English-like word order as
a pre-processing step for phrase-based ma-
chine translation, obtaining significant im-
provements over the unreordered baseline sys-
tem and quality comparable to the hand-coded
rules introduced by Collins et al. (2005).

2 Reordering as a walk on a
dependency tree

In order to describe the non-local reorder-
ing phenomena that can occur between lan-
guage pairs such as German-to-English, we
introduce a reordering framework similar to
(Miceli Barone and Attardi, 2013), based on a
graph walk of the dependency parse tree of the
source sentence. This framework doesn’t re-
strict the parse tree to be projective, and allows
the generation of arbitrary permutations.

Let f = (f1, fo, - -- ,fo) be a source sentence,
annotated by a rooted dependency parse tree:
Vi€l,...,Lg,hj = PARENT(j)

We define a walker process that walks from

word to word across the edges of the parse tree,
and at each steps optionally emits the current
word, with the constraint that each word must
be eventually emitted exactly once.
Therefore, the final string of emitted words f’
is a permutation of the original sentence f, and
any permutation can be generated by a suitable
walk on the parse tree.

2.1 Reordering automaton

We formalize the walker process as a non-
deterministic finite-state automaton.

The state v of the automaton is the tuple v =
(j,E,a) whereje1,..., Ly is the current vertex
(word index), E is the set of emitted vertices, a
is the last action taken by the automaton.

The initial state is: ©(0) = (rootf, {},null)
where root; is the root vertex of the parse tree.
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At each step t, the automaton chooses one of
the following actions:

e EMIT: emit the word f; at the current ver-
tex j. This action is enabled only if the cur-
rent vertex has not been already emitted:

j¢E

(1)
(,E,a) "7 (j, EU {j}, EMIT)

e UP: move to the parent of the current ver-
tex. Enabled if there is a parent and we did
not just come down from it:

hj # null,a # DOWN;
(i, E,a) 2 (hj, E,up;)

(2)

e DOWN;j: move to the child j* of the cur-
rent vertex. Enabled if the subtree s(j’)
rooted at j’ contains vertices that have not
been already emitted and if we did not just
come up from it:

I’l]‘/ :j,(l 7& LIP]/,Elk S S(j/) ck % E
. DOWN:. ( )
U, E,a)

— " (7/,E, DOWN;)
The execution continues until all the vertices
have been emitted.

We define the sequence of states of the walker
automaton during one run as an execution 0 €
GEN(f). An execution also uniquely specifies
the sequence of actions performed by the au-
tomation.

The preconditions make sure that all execu-
tion of the automaton always end generating
a permutation of the source sentence. Further-
more, no cycles are possible: progress is made
at every step, and it is not possible to enter in
an execution that later turns out to be invalid.
Every permutation of the source sentence can
be generated by some execution. In fact, each
permutation f’ can be generated by exactly one
execution, which we denote as 7(f”).

We can split the execution ¢(f’) into a se-
quence of L ¢ emission fragments 3;(f'), each end-
ing with an EMIT action.

The first fragment has zero or more DOWN;, ac-
tions followed by one EMIT action, while each




other fragment has a non-empty sequence of
UP and DOWN,, actions (always zero or more
UPs followed by zero or more DOWN:Ss) fol-
lowed by one EMIT action.

Finally, we define an action in an execution
as forced if it was the only action enabled at the
step where it occurred.

2.2 Application

Suppose we perform reordering using a typical
syntax-based system which processes source-
side projective dependency parse trees and is
limited to swaps between pair of vertices which
are either in a parent-child relation or in a sib-
ling relation. In such execution the UP actions
are always forced, since the “walker” process
never leaves a subtree before all its vertices
have been emitted.

Suppose instead that we could perform re-
ordering according to an “oracle”. The execu-
tions of our automaton corresponding to these
permutations will in general contain unforced
UP actions. We define these actions, and the
execution fragments that exhibit them, as non-
tree-local.

In practice we don’t have access to a re-
ordering “oracle”, but for sentences pairs in
a parallel corpus we can compute heuristic
“pseudo-oracle” reference permutations of the
source sentences from word-alignments.

Following (Al-Onaizan and Papineni, 2006),
(Tromble and Eisner, 2009), (Visweswariah et
al., 2011), (Navratil et al., 2012), we gener-
ate word alignments in both the source-to-
target and the target-to-source directions us-
ing IBM model 4 as implemented in GIZA++
(Och et al., 1999) and then we combine them
into a symmetrical word alignment using the
”grow-diag-final-and” heuristic implemented
in Moses (Koehn et al., 2007).

Given the symmetric word-aligned corpus,
we assign to each source-side word an integer
index corresponding to the position of the left-
most target-side word it is aligned to (attach-
ing unaligned words to the following aligned
word) and finally we perform a stable sort of
source-side words according to this index.
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2.3 Reordering example

Consider the segment of a German sentence
shown in fig. 1. The English-reordered segment
“die Wiahrungsreserven anfangs lediglich di-
enen sollten zur Verteidigung” corresponds to
the English: “the reserve assets were origi-
nally intended to provide protection”.

In order to compose this segment from the
original German, the reordering automaton de-
scribed in our framework must perform a com-
plex sequence of moves on the parse tree:

e Starting from “sollten”, de-
scend to “dienen”, descent to
"Wihrungsreserven” and finally
to “die”. Emit it, then go up to
”"Wihrungsreserven”, emit it and go up to
“dienen” and up again to “sollten”. Note
that the last UP is unforced since “"dienen”
has not been emitted at that point and has
also unemitted children. This unforced

action indicates non-tree-local reordering.

e Go down to ”anfangs”. Note that the
in the parse tree edge crosses another
edge, indicating non-projectivity. Emit
"anfangs” and go up (forced) back to
”sollten”.

e Go down to ”“dienen”, down to "zur”,
down to ”lediglich” and emit it. Go
up (forced) to “zur”, up (unforced) to

“dienen”, emit it, go up (unforced) to

”sollten”, emit it. Go down to “dienen”,

down to ”“zur” emit it, go down to

”Verteidigung” and emit it.

Correct reordering of this segment would be
difficult both for a phrase-based system (since
the words are further apart than both the typ-
ical maximum distortion distance and maxi-
mum phrase length) and for a syntax-based
system (due to the presence of non-projectivity
and non-tree-locality).

3 Recurrent Neural Network reordering
models

Given the reordering framework described
above, we could try to directly predict the ex-
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Figure 1: Section of the dependency parse tree of a German sentence.

ecutions as Miceli Barone and Attardi (2013)
attempted with their version of the frame-
work. However, the executions of a given sen-
tence can have widely different lengths, which
could make incremental inexact decoding such
as beam search difficult due to the need to
prune over partial hypotheses that have differ-
ent numbers of emitted words.

Therefore, we decided to investigate a dif-
ferent class of models which have the property
that state transition happen only in correspon-
dence with word emission. This enables us to
leverage the technology of incremental language
models.

Using language models for reordering is not
something new (Feng et al., 2010), (Durrani
et al., 2011), (Bisazza and Federico, 2013), but
instead of using a more or less standard n-
gram language model, we are going to base our
model on recurrent neural network language mod-
els (Mikolov et al., 2010).

Neural networks allow easy incorporation of
multiple types of features and can be trained
more specifically on the types of sequences that
will occur during decoding, hence they can
avoid wasting model space to represent the
probabilities of non-permutations.

3.1 Base RNN-RM

Let f = (f1, f2,-- .,fo) be a source sentence.
We model the reordering system as a determin-
istic single hidden layer recurrent neural net-
work:

o(t) = (W - x(t) + OREC .o(t — 1))  (4)

where x(t) € R" is a feature vector associated
to the f-th word in a permutation f/, v(0) =
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Vinit, ®1) and OREC are parameters' and 7(-) is
the hyperbolic tangent function.

If we know the first t — 1 words of the per-
mutation f’ in order to compute the probability
distribution of the t-th word we do the follow-

mg:

e Iteratively compute the state v(t — 1) from
the feature vectors x(1),...,x(t —1).

e For the all the indices of the words that
haven’t occurred in the permutation so far
j€J(t) = ([1,Lf] —i;-1.), compute a score
hiy = ho(v(t —1),%0(j)), where x,(-) is the
feature vector of the candidate target word.

e Normalize the scores using the logistic
softmax function: P(L; = j|f,i;_1.,t) =
exp(h]-,t)
Liei exp(hj’,t) )

The scoring function h,(v(t — 1),x,(j)) ap-
plies a feed-forward hidden layer to the fea-
ture inputs x,(j), and then takes a weighed in-
ner product between the activation of this layer
and the state v(t — 1). The result is then lin-
early combined to an additional feature equal
to the logarithm of the remaining words in the
permutation (Lf — t),? and to a bias feature:

hie =< 1(@ - x,(j)), 0% ©0(t — 1) >
+0®) - log(Ls —t) + o)
where h;; = ho(v(t —1),x0(j)).

)

lwe don’t use a bias feature since it is redundant when
the layer has input features encoded with the “one-hot”
encoding

Zsince we are then passing this score to a softmax of
variable size (L¢ —t), this feature helps the model to keep
the score already approximately scaled.



We can compute the probability of an entire
permutation f’ just by multiplying the proba-
bilities for each word: P(f'|f) = P(I = i|f) =

L 7 -
til P(I; = 1| f, 1)

3.1.1 Training

Given a training set of pairs of sentences
and reference permutations, the training prob-
lem is defined as finding the set of parame-
ters 6 = (vjnir, OV, 02, OREC, @(0) g(e) g(bias))
which minimize the per-word empirical cross-
entropy of the model w.r.t. the reference per-
mutations in the training set. Gradients can
be efficiently computed using backpropagation
through time (BPTT).

In practice we used the following training ar-

chitecture:
Stochastic gradient descent, with each train-
ing pair (f,f’) considered as a single mini-
batch for updating purposes. Gradients com-
puted using the automatic differentiation facil-
ities of Theano (Bergstra et al., 2010) (which im-
plements a generalized BPTT). No truncation
is used. L2-regularization 3. Learning rates
dynamically adjusted per scalar parameter us-
ing the AdaDelta heuristic (Zeiler, 2012). Gradi-
ent clipping heuristic to prevent the “exploding
gradient” problem (Graves, 2013). Early stop-
ping w.r.t. a validation set to prevent overfit-
ting. Uniform random initialization for param-
eters other than the recurrent parameter ma-
trix OREC, Random initialization with echo state
property for OREC, with contraction coefficient
o = 0.99 (Jaeger, 2001), (Gallicchio and Micheli,
2011).

Training time complexity is O(LJ%) per sen-
tence, which could be reduced to O(L¢) using
truncated BTTP at the expense of update accu-
racy and hence convergence speed. Space com-
plexity is O(Ly) per sentence.

3.1.2 Decoding

In order to use the RNN-RM model for pre-
reordering we need to compute the most likely

31 = 10~% on the recurrent matrix, A = 10~° on the
final layer, per minibatch.
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*
permutation f’ of the source sentence f:

*
f'= argmax P(f'|f) ©)
f'€GEN(f)
Solving this problem to the global optimum is
computationally hard?*, hence we solve it to a
local optimum using a beam search strategy.

We generate the permutation incrementally
from left to right. Starting from an initial state
consisting of an empty string and the initial
state vector v;,;;, at each step we generate all
possible successor states and retain the B-most
probable of them (histogram pruning), accord-
ing to the probability of the entire prefix of per-
mutation they represent.

Since RNN state vectors do not decompose in

a meaningful way, we don’t use any hypothesis
recombination.
At step t there are Ly — t possible successor
states, and the process always takes exactly L
steps®, therefore time complexity is O(B - szf)
and space complexity is O(B).

3.1.3 Features

We use two different feature configurations:
unlexicalized and lexicalized.

In the unlexicalized configuration, the state
transition input feature function x(j) is com-
posed by the following features, all encoded us-
ing the “one-hot” encoding scheme:

e Unigram: POS(j), DEPREL(j), POS(j) *
DEPREL(j). Left, right and parent un-
igram: POS(k), DEPREL(k), POS(k)
DEPREL(k), where k is the index of re-
spectively the word at the left (in the orig-
inal sentence), at the right and the depen-
dency parent of word j. Unique tags are
used for padding.

e Pair features: POS(j) * POS(k), POS(j) *
DEPREL(k), =~ DEPREL(j) * POS(k),
DEPREL(j) * DEPREL(k), for k defined
as above.

4NP-hard for at least certain choices of features and pa-
rameters
5actually, L = 1, since the last choice is forced



e Triple features POS(j) * POS(left;) *
POS(right;), ~ POS(j) * POS(left;) =
POS(parent;), POS(j) x POS(right;) *
POS(parent;).

e Bigram:  POS(j) = POS(k), POS(j)
DEPREL(k), DEPREL(j) « POS(k) where
k is the previous emitted word in the
permutation.

e Topological features: three binary features
which indicate whether word j and the
previously emitted word are in a parent-
child, child-parent or sibling-sibling rela-
tion, respectively.

The target word feature function x,(j) is the
same as x(j) except that each feature is also con-
joined with a quantized signed distance® be-
tween word j and the previous emitted word.
Feature value combinations that appear less
than 100 times in the training set are replaced
by a distinguished “rare” tag.

The lexicalized configuration is equivalent to
the unlexicalized one except that x(j) and x,(j)
also have the surface form of word j (not con-
joined with the signed distance).

3.2 Fragment RNN-RM

The Base RNN-RM described in the previous
section includes dependency information, but
not the full information of reordering frag-
ments as defined by our automaton model (sec.
2). In order to determine whether this rich
information is relevant to machine translation
pre-reordering, we propose an extension, de-
noted as Fragment RNN-RM, which includes re-
ordering fragment features, at expense of a sig-
nificant increase of time complexity.

We consider a hierarchical recurrent neural net-
work. At top level, this is defined as the previ-
ous RNN. However, the x(j) and x,(j) vectors,
in addition to the feature vectors described as
above now contain also the final states of an-
other recurrent neural network.

This internal RNN has a separate clock and a

®values greater than 5 and smaller than 10 are quan-

tized as 5, values greater or equal to 10 are quantized as
10. Negative values are treated similarly.
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separate state vector. For each step t of the
top-level RNN which transitions between word
f'(t—1) and f’(t), the internal RNN is reinitial-
ized to its own initial state and performs mul-
tiple internal steps, one for each action in the
fragment of the execution that the walker au-
tomaton must perform to walk between words
f'(t —1) and f'(t) in the dependency parse
(with a special shortcut of length one if they are
adjacent in f with monotonic relative order).

The state transition of the inner RNN is de-
fined as:

0,(t) = T(OM) - x,(£,) + OREC . v, (£, — 1)) (7)

where x,(t,) is the feature function for the word
traversed at inner time ¢, in the execution frag-
ment. ,(0) = /", @) and @"kc are parame-
ters.

Evaluation and decoding are performed es-
sentially in the same was as in Base RNN-
RM, except that the time complexity is now
O(L?) since the length of execution fragments
is O(L f)

Training is also essentially performed in the
same way, though gradient computation is
much more involved since gradients propagate
from the top-level RNN to the inner RNN. In
our implementation we just used the automatic
differentiation facilities of Theano.

3.2.1 Features

The unlexicalized features for the inner RNN
input vector x,(t,) depend on the current word
in the execution fragment (at index t;), the
previous one and the action label: UP, DOWN
or RIGHT (shortcut). EMIT actions are not
included as they always implicitly occur at the
end of each fragment.

Specifically the features, encoded with the
“one-hot” encoding are: A % POS(t,) *
POS(t, — 1), A x POS(t,) x DEPREL(t, — 1),
A * DEPREL(t,) * POS(t, — 1), A =
DEPREL(t,) * DEPREL(t, — 1).

These features are also conjoined with the
quantized signed distance (in the original
sentence) between each pair of words.

The lexicalized features just include the surface
form of each visited word at t,.



3.3 Base GRU-RM

We also propose a variant of the Base RNN-RM
where the standard recurrent hidden layer is re-
placed by a Gated Recurrent Unit layer, recently
proposed by Cho et al. (2014) for machine trans-
lation applications.
The Base GRU-RM is defined as the Base RNN-
RM of sec. 3.1, except that the recurrence rela-
tion 4 is replaced by fig. 2

Features are the same of unlexicalized Base
RNN-RM (we experienced difficulties training
the Base GRU-RM with lexicalized features).
Training is also performed in the same way ex-
cept that we found more beneficial to conver-
gence speed to optimize using Adam (Kingma
and Ba, 2014) 7 rather than AdaDelta.
In principle we could also extend the Fragment
RNN-RM into a Fragment GRU-RM, but we
did not investigate that model in this work.

4 Experiments

We performed German-to-English  pre-
reordering experiments with Base RNN-RM
(both unlexicalized and lexicalized), Fragment
RNN-RM and Base GRU-RM .

4.1 Setup

The baseline phrase-based system was trained
on the German-to-English corpus included in
Europarl v7 (Koehn, 2005). We randomly split
it in a 1,881,531 sentence pairs training set, a
2,000 sentence pairs development set (used for
tuning) and a 2,000 sentence pairs test set. The
English language model was trained on the
English side of the parallel corpus augmented
with a corpus of sentences from AP News, for
a total of 22,891,001 sentences.

The baseline system is phrase-based Moses
in a default configuration with maximum
distortion distance equal to 6 and lexicalized
reordering enabled. Maximum phrase size is
equal to 7.

The language
IRSTLM/KenLM.
The pseudo-oracle system was trained on

model is a 5-gram

7with learning rate 2 - 107> and all the other hyperpa-
rameters equal to the default values in the article.
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the training and tuning corpus obtained by
permuting the German source side using
the heuristic described in section 2.2 and is
otherwise equal to the baseline system.

In addition to the test set extracted from Eu-
roparl, we also used a 2,525 sentence pairs test
set ("news2009”) a 3,000 sentence pairs “chal-
lenge” set used for the WMT 2013 translation
task ("news2013”).

We also trained a Moses system with pre-

reordering performed by Collins et al. (2005)
rules, implemented by Howlett and Dras
(2011).
Constituency parsing for Collins et al. (2005)
rules was performed with the Berkeley parser
(Petrov et al., 2006), while non-projective de-
pendency parsing for our models was per-
formed with the DeSR transition-based parser
(Attardi, 2006).

For our experiments, we extract approxi-
mately 300,000 sentence pairs from the Moses
training set based on a heuristic confidence
measure of word-alignment quality (Huang,
2009), (Navratil et al., 2012). We randomly re-
moved 2,000 sentences from this filtered dataset
to form a validation set for early stopping, the
rest were used for training the pre-reordering
models.

4.2 Results

The hidden state size s of the RNNs was set
to 100 while it was set to 30 for the GRU
model, validation was performed every 2,000
training examples. After 50 consecutive vali-
dation rounds without improvement, training
was stopped and the set of training parame-
ters that resulted in the lowest validation cross-
entropy were saved.
Training took approximately 1.5 days for the
unlexicalized Base RNN-RM, 2.5 days for the
lexicalized Base RNN-RM and for the unlexi-
calized Base GRU-RM and 5 days for the unlex-
icalized Fragment RNN-RM on a 24-core ma-
chine without GPU (CPU load never rose to
more than 400%).

Decoding was performed with a beam size
of 4. Decoding the whole corpus took about
1.0-1.2 days for all the models except Fragment



01 . x(t) + OREC . o(t — 1))

rst

ol . x(t) + @555 co(t—1))

Figure 2: GRU recurrence equations. v,s(t) and v,,,4(t) are the activation vectors of the “reset”
and “update” gates, respectively, and 77(-) is the logistic sigmoid function.

Reordering BLEU | improvement
none 62.10

unlex. Base RNN-RM 64.03 +1.93
lex. Base RNN-RM 63.99 +1.89
unlex. Fragment RNN-RM | 64.43 +2.33
unlex. Base GRU-RM 64.78 +2.68

Figure 3: "Monolingual” reordering scores (upstream system output vs. “oracle”-permuted Ger-

man) on the Europarl test set. All improvement

RNN-RM for which it took about 3 days.

Effects on monolingual reordering score are
shown in fig. 3, effects on translation quality
are shown in fig. 4.

4.3 Discussion and analysis

All our models significantly improve over the
phrase-based baseline, performing as well as or
almost as well as (Collins et al., 2005), which is
an interesting result since our models doesn’t
require any specific linguistic expertise.

Surprisingly, the lexicalized version of Base
RNN-RM performed worse than the unlexical-
ized one. This goes contrary to expectation as
neural language models are usually lexicalized
and in fact often use nothing but lexical fea-
tures.

The unlexicalized Fragment RNN-RM was
quite accurate but very expensive both during
training and decoding, thus it may not be prac-
tical.

The unlexicalized Base GRU-RM performed
very well, especially on the Europarl dataset
(where all the scores are much higher than the
other datasets) and it never performed signif-
icantly worse than the unlexicalized Fragment
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s are significant at 1% level.

RNN-RM which is much slower.

We also performed exploratory experiments
with different feature sets (such as lexical-only
features) but we couldn’t obtain a good train-
ing error. Larger network sizes should increase
model capacity and may possibly enable train-
ing on simpler feature sets.

5 Conclusions

We presented a class of statistical syntax-based
pre-reordering systems for machine transla-
tion.

Our systems processes source sentences parsed
with non-projective dependency parsers and
permutes them into a target-like word order,
suitable for translation by an appropriately
trained downstream phrase-based system.

The models we proposed are completely
trained with machine learning approaches and
is, in principle, capable of generating arbitrary
permutations, without the hard constraints
that are commonly present in other statistical
syntax-based pre-reordering methods.
Practical constraints depend on the choice of
features and are therefore quite flexible, allow-
ing a trade-off between accuracy and speed.

In our experiments with the RNN-RM and



Test set system BLEU | improvement
Europarl | baseline 33.00

Europarl | “oracle” 41.80 +8.80
Europarl | Collins 33.52 +0.52
Europarl | unlex. Base RNN-RM 33.41 +0.41
Europarl | lex. Base RNN-RM 33.38 +0.38
Europarl | unlex. Fragment RNN-RM | 33.54 +0.54
Europarl | unlex. Base GRU-RM 34.15 +1.15
news2013 | baseline 18.80

news2013 | Collins NA NA
news2013 | unlex. Base RNN-RM 19.19 +0.39
news2013 | lex. Base RNN-RM 19.01 +0.21
news2013 | unlex. Fragment RNN-RM | 19.27 +0.47
news2013 | unlex. Base GRU-RM 19.28 +0.48
news2009 | baseline 18.09

news2009 | Collins 18.74 +0.65
news2009 | unlex. Base RNN-RM 18.50 +0.41
news2009 | lex. Base RNN-RM 18.44 +0.35
news2009 | unlex. Fragment RNN-RM | 18.60 +0.51
news2009 | unlex. Base GRU-RM 18.58 +0.49

Figure 4: RNN-RM translation scores. All improvements are significant at 1% level.

GRU-RM models we managed to achieve trans-
lation quality improvements comparable to
those of the best hand-coded pre-reordering

rules.
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Abstract

Statistical Machine Translation systems show
considerably worse performance in translating
negative sentences than positive ones (Fan-
cellu and Webber, 2014; Wetzel and Bond,
2012). Various techniques have addressed the
problem of translating negation, but their un-
derlying assumptions have never been vali-
dated by a proper error analysis. A related
paper (Fancellu and Webber, 2015) reports on
a manual error analysis of the kinds of errors
involved in translating negation. The present
paper presents ongoing work to discover their
causes by considering which, if any, are in-
duction, search or model errors. We show that
standard oracle decoding techniques provide
little help due to the locality of negation scope
and their reliance on a single reference. We
are working to address these weaknesses using
a chart analysis based on oracle hypotheses,
guided by the negation elements contained in a
source span and by how these elements are ex-
pected to be translated at each decoding step.
Preliminary results show chart analysis is able
to give a more in-depth analysis of the above
errors and better explains the results of the
manual analysis.

1 Introduction

In recent years there has been increasing interest in
improving the quality of SMT systems over a wide
range of linguistic phenomena, including corefer-
ence resolution (Hardmeier et al., 2014) and modal-
ity (Baker et al., 2012). Negation, however, is
a problem that has still not been researched thor-
oughly (section 2).
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Our previous study (Fancellu and Webber, 2015)
takes a first step towards understanding why nega-
tion is a problem in SMT, through manual analysis
of the kinds of errors involved in its translation. Our
error analysis employs a small set of standard string-
based operations, applying them to the semantic el-
ements involved in the meaning of negation (section
3).

The current paper describes our current work on
understanding the causes of these errors. Focussing
on the distinction between induction, search and
model errors, we point out the challenges in trying to
use existing techniques to quantify these three types
of errors in the context of translating negation.

Previous work on ascribing errors to induction,
search, or model has taken an approach using ora-
cle decoding, i.e. forcing the decoder to reconstruct
the reference sentence as a proxy to analyse its po-
tentiality. We show however that this technique does
not suit well semantic phenomena with local scope
(such as negation), given that a conclusion drawn on
the reconstruction of an entire sentence might refer
to spans not related to these. Moreover, as in pre-
vious work, we stress once again the limitation of
using a single reference to compute the oracle (sec-
tion 4.1)

To overcome these problems, we propose the use
of an oracle hypothesis, instead of an oracle sen-
tence, that relies uniquely on the negation elements
contained in the source span and how these are ex-
pected to be translated in the target hypothesis at a
given time during decoding (section 4.2).

Sections 5 and 6 report results of the analysis
on a Chinese-to-English Hierarchical Phrase Based

Proceedings of SSST-9, Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 21-29,
Denver, Colorado, June 4, 2015. (©2015 Association for Computational Linguistics



Model (Chiang, 2007). We show that even if it pos-
sible to detect the presence of model errors through
the use of an oracle sentence, computing an ora-
cle hypotheses at each step during decoding offers
a more robust, in-depth analysis around the problem
of translating negation and helps explaining the er-
rors observed during the manual analysis.

2 Previous Work

While recent years have seen work on automatically
detecting negation in monolingual texts (Chowdhury
and Mahbub, 2012; Read et al., 2012), SMT has
mainly considered it a side problem. For this reason,
no actual analysis on the type of errors involved in
translating negation or their causes has been specif-
ically carried out. The standard approach has been
to formulate a hypothesis about what can go wrong
when translating negation, modify the SMT system
in a way aimed at reducing the number of times
that happens, and then assume that any increase
in BLEU score - the standard automatic evaluation
metric used in SMT - confirms the initial hypothe-
sis. Collins et al. (2005) and Li et al. (2009) consid-
ers negation, along with other linguistic phenomena,
as a problem of structural mismatch between source
and target; Wetzel and Bond (2012) considers it in-
stead as a problem of training data sparsity; finally
Baker et al. (2012) and Fancellu and Webber (2014)
considers it as a model problem, where the system
needs enhancement with respect to the semantics of
negation.

Only a few efforts have tried to investigate errors
occurring during decoding. Automatic evaluation
metrics are in fact only informative about the qual-
ity of the output, but not about the decoding process
that produces the output. As such, the most relevant
related work are two studies on the main categories
of errors during decoding (Auli et al., 2009; Wis-
niewski and Yvon, 2013). Both works use the ref-
erence sentence as a proxy to generate an oracle hy-
pothesis but they differ in the technique they use and
in the problem they are interesting analysing. Auli
et al. (2009) targets induction errors — i.e. cases
where a good translation is absent from the search
space — by forcing the decoder to generate the ref-
erence sentence with varying translation options (for
each source span) and distortion limits. If when in-
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creasing the number of target translations considered
for each span, the number of references that is pos-
sible to fully generate also increases, an induction
error has occurred. Results on a French-to-English
PBSMT validates this hypothesis.

Wisniewski and Yvon (2013) considers instead
oracle decoding as a proxy to distinguish search vs.
model errors. If the oracle translation has a model
score higher than the 1-best system output, a search
error has occurred, since the system could not out-
put the hypothesis with the highest probability; in
contrast, a model error has occurred when the scor-
ing function is unable to rank translations correctly.
Here, the oracle translation is generated via ILP by
maximising the unigram recall between oracle and
reference translation, resembling the work of Ger-
mann et al. (2001) on optimal decoding in word-
based models. In both Auli et al. (2009) and Wis-
niewski and Yvon (2013), almost all the errors dur-
ing decoding are model errors.

A shortcoming of both methods is that neither can
generate more than 35% of the references in the test
set, by virtue of taking only one particular reference
as the oracle, despite there usually being many ways
that a source sentence can be translated.

3 Manual Error Analysis

This section briefly summarises the key points of
the manual error analysis described in (Fancellu and
Webber, 2015), since they also underpin the auto-
mated analysis described in section 4. The manual
error analysis makes two assumptions:

e the semantic structure of negation can be an-
notated in a similar way across different lan-
guages, because the essentials of negation are
language-independent.

e for analytic languages like English and Chi-
nese, a set of string-based operations (deletion,
insertion and reordering) can be used to assess
translation errors in the semantics of negation.

Both assumptions involve first of all reducing a
rather abstract semantic phenomenon into elements
tangible at string-level. Following Blanco and
Moldoval (2011), Morante and Blanco (2012) and
Fancellu and Webber (2014), we decompose nega-



tion into its three main components, described be-
low, and use them as the target of our analysis.

e Cue, i.e. the word or multi-words unit inher-
ently expressing negation (e.g. ‘He is not wash-
ing his clothes’)

e Event, i.e. the lexical event the cue directly
refers to (e.g. ‘He is not washing his clothes)

e Scope, i.e. all the elements whose falsity would
prove the statement to be true (e.g. ‘He is not
washing his clothes’); the event is taken to be
part of the scope, since its falsity influences
the truth value of negation. In the error anal-
ysis however, we exclude the event from the
scope (since it is already considered per se)
and further decompose the scope, to isolate
the semantic fillers in its boundaries (He, his
clothes), here taken to be Propbank-like seman-
tic roles.

Given that we are combining standard, widely used
error categories and language-independent seman-
tic elements, we expect the annotation process and
the error analysis to be robust and applicable to lan-
guages other than English and Chinese.

Results show an in-depth analysis of negation-
related errors, where we are able to discern clearly
which operations affect which elements and to what
extent. We found the cue the element the least prone
to translation errors with only four cases of it being
deleted during translation. We also found reordering
to be the most frequent error category especially for
the fillers, given that the SMT system does not pos-
sess explicit knowledge of semantic frames and its
boundaries.

By making use of the decoding trace, contain-
ing the rules used to build the 1-best hypothesis, we
could also inspect the causes of deletion and inser-
tion. We found that almost all deletion and insertion
errors are caused by a wrong rule application that
translates a Chinese source span containing nega-
tion into an English hypothesis that does not or vice
versa. OOV items seem not to constitute a problem
when translating negation. This is important espe-
cially in the case of the cue, whose absence means
that the whole negation instance is lost. Given that
all the cues in the test set have been seen during
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training, we also know the system has the ability to
potentially reproduce negation on the target side.

4 Automatic Error Analysis

The manual error analysis can only get us as far
as analysing the 1-best hypothesis and its building
blocks. No explicit information on the causes of
these errors can be recovered from the decoding
trace only. To address this problem, we introduce
two different techniques to analyse and distinguish
different kinds of errors occurring at decoding time.

First however, we give a more formal definition of
the three main categories of decoding-related errors
as follows, where e and p(e) are the optimal trans-
lation the decoder can produce, along with its prob-
ability while é and p(é) stand for the 1-best output
and its probability.

e Search error: ¢ # é and p(e) > p(é); the 1-best
output is not the most probable output, given
the model. Search errors are a consequence of
the impossibility of exploring the entire search
space, where more probable hypothesis may
have been pruned.

e Model error: ¢ # é and p(e) < p(é); the
model scores a semantically sub-optimal trans-
lation higher than the optimal one. This is be-
cause the scoring function lacks relevant fea-
tures or the features present have not been prop-
erly weighted.

e Induction error: e cannot be generated be-
cause its components (phrases or rules) are ab-
sent from the search space.

4.1 Constrained Decoding

The first technique involves forcing the decoder to
reproduce reference sentences if they contain nega-
tion. It reflects the assumption that if the system is
able to reconstruct such oracles, it is potentially able
to translate negation correctly.

We use the constrained decoding feature included
in Moses (Koehn et al., 2007) to this purpose. In
its basic implementation, constrained decoding as-
sesses the degree of overlap between hypothesis and
reference sentence; given a source span, the feature



function assigns a score to each of the target hypoth-
esis as follows:

1 ifdhe H,ANheE R,
if Ahe HyANheR,

SconstrDec = {
—00

where & is a phrase in the hypothesis phrase set H),
and R, is the set of reference phrases.

Constrained decoding can potentially reveal in-
duction errors and distinguish between search and
model errors. Following Auli et al. (2009), we try
to increase the translation option limit parameter
which determines how many target translations are
considered for each source span; if larger values
lead to the system being able to decode more ref-
erences, induction errors are occurring. Using the
same heuristics as Wisniewski and Yvon (2013), we
can also distinguish between search error vs. model
errors by checking whether the oracle has a total
model score higher than the previous 1-best output
or vice versa.

We also take into consideration the interaction be-
tween induction and search errors. A bigger search
space would be needed in order to consider more
target hypotheses per source span during decoding.
Thus we experiment by combining different trans-
lation option limits and cube pruning pop limits,
where the latter limits the number of hypotheses that
can be inserted in each cell’s stack, which in turn in-
fluences the size of the search space.

There is however a potential pitfall when applying
these heuristics to the analysis of negation-related
errors. Chances are in fact that negation does not
scope over the entire reference sentence, as exempli-
fied in (1), where only the first portion of the source
and the last portion in the reference contain an in-
stance of negation.

(1) Src: jindnjiangi mou

Jinan military region some
bu banshi gongkai shi
department business make public make
[rédidn]scope bilcye reevent
hot spots not hot
Ref:  [Hotspots]scope NOteye hOteyent due
to transparent business procedures in Jinan
military region

Given that negation can be (and usually is) a se-
mantic phenomenon with a local scope, if the de-
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coder fails to reproduce (1), one cannot simply con-
clude that negation-related elements cannot be re-
produced. Moreover, because the oracle translation
may involve elements outside the scope of negation,
constrained decoding does not permit one to draw
any conclusion about the kind of error that has oc-
curred in the case of negation.

In order to overcome this problem, we try to iso-
late the elements of negation in both source and ref-
erence and run constrained decoding on those por-
tions only. However, doing so demands we assume
that negation is represented similarly in both source
and the reference sentences. This is however not dif-
ferent from the general problem around oracle de-
coding, i.e. considering one reference sentence as
the only ground truth. Constrained decoding is in
fact an alignment problem, where we try to max-
imise the presence of reference segments in decod-
ing, giving the source spans. If the reference spans
are only paraphrases of the source spans, not direct
translations, it is unlikely that the system will be able
to reconstruct the oracle. Negation is not an excep-
tion, given the many ways that the same negation in-
stance can be paraphrased. This is exemplified in (2)
where the event is rendered in Chinese as an adjecti-
val predicate (/ixidng — ‘ideal’) while it is translated
non-literally in the reference sentence as a nominal
predicate (‘what it should be’).

(2) Src: [...] [rénmen de jingshén  jiankang
[...] people of psychology health
hén]scope Dicye lixidngeyent [.--]
very not ideal [...]
Ref- [...] [people’s
cal health is]scope NOteye
what it should be.yent [...]

psychologi-
[at  alllscope

4.2 Chart Analysis

Constrained decoding demands the obviously false
assumption that there is only one correct translation
of a given source sentence. It also provides no alter-
native to assuming that conclusions formulated from
those few references the system is able to recon-
struct, also apply to the rest of the negated instances.
Finally and most importantly, it is hard to explain
the results obtained from the manual error analysis
by simply reconstructing an oracle sentence and if
it is really a case of model errors, there is no way



to know which model component (i.e. score) is the
most responsible for a bad ranking of the hypothesis
translations.

The approach we sketch out in this section tries to
abstract from having a single reference and relies in-
stead of what is expected to be translated at a given
time during decoding. The end goal here is to com-
pute oracle hypotheses, instead of oracle sentences.

We start by formulating four main expectations
when translating instances of negation:

1. The cue has to be present
2. The event has to be correctly translated
3. The cue has to be attached to the correct event

4. The fillers have to be included in the right
scope and connected to the right event in such
way that they take the same (or an equivalent)
semantic role to the one they had in the source.

Expectations (1) and (2) are related to the presence
of a given element and allows us to analyse those
instances of deletions observed in the manual er-
ror analysis; in (3) and (4), we investigate instead
whether negation elements are grouped under the
correct scope, therefore focusing on reordering er-
rors.

If we know at what time during decoding we are
translating a negation element, we can make use of
these expectations; if a source sentence of length [
contains a negation element in a span S = sj,...5,
where 0 < n < m < [ and given that cells in the de-
coding chart are indexed by the span they cover in
the source, we expect that in cell [i-j], where i < n
< m < j, the target hypotheses must contain a pro-
jection of this element and the two must be aligned.

Given these two assumptions, a comparison
with constrained decoding is quite straight-forward.
Meeting these expectations is the same as computing
an oracle, but instead of doing it at sentence level,
we do that at a hypothesis level (hence the name or-
acle hypothesis), that is, for each covered span in the
source (here taken to be a cell in the chart).

The scores for each hypothesis in the cell provide
detailed information about the presence of model er-
rors; since we expect hypotheses that satisfy the four
expectations above to be scored (and ranked) higher
than those which do not, we can not only calculate

25

the number of times this is not the case, but we can
only see how low in the rankings a good translation
is and which features cause this failure. By varying
the translation options limit and the cube pruning
pop limit parameter, we can also investigate whether
these expectations are not met because of search and
induction errors. Even if the search space is so vast
that it is practically impossible to explore it all, we
assume that with a large upper bound of hypotheses
per stack, we are able to capture all relevant errors,
and if any are not captured, they can be attributed to
the “long tail” of rare occurrences.

The main two challenges at this point are to know
(a) which elements in the source are negation ele-
ments and (b) whether they are translated correctly
in the target hypothesis. In the case of (a) we use the
manual annotation presented in (Fancellu and Web-
ber, 2015). Future work will try to automate the pro-
cess.

Challenge (b) requires a way to compute those
expectations on the target (English) side. In or-
der to detect the presence of a cue, we build a list
of English negation cues from the training data us-
ing the exact same heuristics and training data as
Chowdhury and Mahbub (2012) and check whether
a given hypothesis contains a cue from this list. In
order to deal with those cases of lexical negation
where cues in the source are rendered as part of the
meaning of a word in the target (e.g. zh: butong
— en: ‘different’), we extract a mapping between
Chinese cues and these words covertly expressing
negation from the manually aligned GALE Chinese-
English Word Alignment and Tagging Training data
(Li et al., 2012).

In order to recognise the presence of a correct
event, it is possible to check whether the hypothesis
contains a good translation of the source using bilin-
gual dictionaries (e.g. CCEDIT') and enriching the
results through synonyms (e.g. WordNet) and para-
phrases databases (e.g. PPDB (Ganitkevitch et al.,
2013)).

To ensure that the cue refers to the right event, we
use the Stanford dependency parse (Manning, 2008)
and apply it to each of the target (English) hypothe-
sis in the cell’s stack to check whether a subordinate-
head relation is established between the two. Given

"http://www.mdbg.net/chindict/chindict.php?page=cedict



that the Stanford parser does not build a neg rela-
tionship from each negation cue to its head event,
we just check more in general whether the cue is in
a subordinate relationship with the event.

Finally, we use the dependency parse to verify
that the fillers are correctly connected to negated
event. This is a problem that needs more considera-
tion and is therefore left for future work. The correct
rendering of the fillers in the negation scope is in fact
related to the more general open-problem of preserv-
ing predicate-argument structure during translation.

We are also exploring a second approach where
we detect these elements on the English side by gen-
erating as many paraphrases as possible from the ref-
erence sentences using the same approach of (Zhao
et al., 2009) and the PPDB database. We then ex-
tract cues, events and fillers from these paraphrases
automatically and check whether they are present in
the chart hypotheses and they correctly relate to each
other.

5 System

We carried out the error analysis on the output of
the Chinese-to-English hierarchical phrase based
system submitted by the University of Edinburgh
for the NIST12 MT evaluation campaign. The
system was trained on ~2.1 millions length-filtered
segments in the news domain, with 44678806
tokens on the source and 50452704 on the target,
with MGIZA++ (Gao and Vogel, 2008) used for
alignment. The Chinese side of the training and the
test set were segmented using the LDCWordSeg-
menter. The system was tuned using MERT (Och,
2003) on the NISTO6 set.

The automatic error analysis was carried out on
a sub-set of 54 segments the NIST MTOS test set?,
each containing at least an instance of negation
on the source side. Although small, this set was
considered to be representative given that it clearly
shows a pattern in the errors involved in translation
negation.

This sub-set containing only negative sentences was ex-
tracted during the manual evaluation. Out of 1357 segments
in the NIST MTOS set, we randomly picked 250 segments and
annotate all instances of negation whether present
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Figure 1: Number of reachable oracle negation instances
plotted against the translation option limit (tol) for each
of the five cube pruning pop limit (cpl).

6 Results

In this section we present the results related to the
two methods introduced in sect. 4.

As shown in Figure 1, given the default settings
of our decoder (fol: 20; cpl: 1000), we were able
to generate only 13 out of 54 references in the test
set (24%). Increasing the translation options limit
to 100 leads only to a slight improvement and an
upper bound of 16 reachable references (29%). We
also did not see any noteworthy interaction between
translation option limit and cube pruning pop limit
(where cpl values of 500 and 1000 track the graph
for a ¢pl of 5000); if there is no need for a large
number of hypotheses to be considered during de-
coding to reconstruct the reference, there is also no
need for a bigger search space.

Finally, comparison of the total model score of the
oracle hypothesis vs. the 1-best output shows that in
all cases the score of latter is higher than the former.
We can conclude that for the references the system
was able to reconstruct, model errors are a major
cause of failure whilst induction and search errors
are not. However, the number of references the sys-
tem was able to fully reconstruct is very low, which
makes it hard to draw final conclusions from con-
strained decoding alone, including any connection
between these results and our manual error analy-
sis. We present here preliminary results for the chart



analysis approach. We focus on detecting an oracle
hypothesis that contain a right translation of the cue
(therefore satisfying only expectation 1 in sect. 5.2).

Our first goal is to identify those cases where the
cue is absent in the final cell, since deletion was the
only type of error that involved the cue. However,
in general, we want to have a measure of how strong
our model is when translating the negation cue. A
good model should in fact always be able to cor-
rectly translate a cue whether present in the source
span.

We found that there are a total of 14948 cells for
the whole test set where a translation of the cue is ex-
pected (i.e. the source contains a cue in the span the
cell covers), for an average of ~277 cells per sen-
tence. We found that in 8311 of those cells (~57%),
a projection of the cue is absent, four of which are
final, meaning that the cue is absent from four of the
hypothesis translations output by the system. How-
ever, a per sentence distribution of the cells where
the cue is expected but absent (Figure 2) shows that
there is at least one cell in a chart containing the
correct cue. Conversely, in no chart is the cue is
completely absent. This means that in all cases the
cue was reproduced at same point but in some, it
failed to propagate to the final cell. This shows that
chart analysis is useful to explain those cases of cue-
related errors found in the manual analysis. We can
conclude that the system is always potentially able to
translate the cue. Given that there is no shortage of
rules to translate the cue with default parameters, we
can also conclude that, for the negation element here
considered, no induction error has occurred. This
conclusion is more solid than the one drawn from
the constrained decoding approach, since it is based
on the analysis of the decoding process for the entire
test set.

We also found that in each cell an hypothesis con-
taining the right translation of the cue is, on aver-
age, ranked highly (2.79, where O represents the 1-
best hypothesis). Out of the 1100 cases where the
1-best hypothesis and the cue-translation oracle hy-
pothesis are not the same, the times the scores of the
former are higher than the latter are: 275 for LM
score (25%), 730 for the indirect translation prob-
ability (66%), 718 for the indirect lexical probabil-
ity (65.2%), 525 for the direct translation probabil-
ity (47.7%) and 435 for the direct lexical probability
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Figure 2: Distribution of cells per sentence not containing
the expected cue.

(39.5%). Chart analysis can show us which features
are the most responsible for model errors. We found
out that the translation model holds the main respon-
sibility for incorrectly ranking hypotheses contain-
ing the correct cue projection. Again, this useful
form of analysis could not have been carried out us-
ing constrained decoding alone.

Finally, we are left to consider the impact of
search errors in translating the negation cue. We
first check whether these are involved in the four
cases in which the cue is absent from the system’s
output translation, by testing with larger cube prun-
ing pop limit and translation options limit values.
Results shows that even by considering large val-
ues (of 10000 and 1000 respectively), no cue trans-
lations was found in the final cell of the chart for
those sentences where deletion occurs. Enlarging
the search space does not lead to any more cue trans-
lations making it to the final cell of the chart, high-
lighting the fact that translation of cue does not in-
volve search errors.

7 Conclusion

In the present paper, we presented ongoing work on
analysing the causes of the errors involved in trans-
lating negation, targeting three main categories: in-
duction, search and model errors.

Following previous work, we applied an ora-
cle decoding-based technique to detect those errors



by forcing the decoder the generate the reference
sentence. Conclusions drawn from the references
the decoder could reconstruct show that translat-
ing negation primarily involve model errors. How-
ever, the technique has two important limitations:
(a) drawing conclusion from the reachability of an
entire reference sentence is not informative when
analysing semantic phenomena that usually have a
local scope, such as negation; (b) the oracle is taken
to be one reference sentence, while there are usu-
ally many ways to translate a sentence correctly and
therefore (c) the results obtained applies to only part
of the test set and cannot be taken to represent the
entire data; (d) being able to generate an oracle does
not give any in-depth insight on the each decoding
step which is detrimental if we have to explain the
results from the manual analysis.

Given these shortcomings, we sketch out an anal-
ysis that is able to compute partial oracle hypothe-
ses, given the negation elements contained in a
source span and four main expectations related to
how negation elements should be translated at a
given time during decoding. Preliminary results on
cue translation show that the system can potentially
translate all the cues in all the test sentences. No
induction or search errors were found meaning that
model errors are the only category of errors occurred
in translating the negation cue. Moreover, a compar-
ison between 1-best and oracle hypotheses show that
the translation model scores are the main responsi-
ble for bad ranking. In general, it was shown that
our method is able to give a more in-depth analy-
sis of the process of translating negation at decoding
time.

8 Future Work

In the present work, we have only presented the gen-
eral idea around considering oracle hypotheses in-
stead of oracle sentences, along with some prelim-
inary results. Further work is however necessary to
complete the analysis of the other two elements of
negation — event and fillers.

It is worth remembering several factors can im-
pact the kind of errors found in translation. Hier-
archical phrase-based models are in fact non-purely
syntax driven methods that are able to deal with high
levels of reordering. That however also means that
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(a) there is no concept of constituent boundaries and
(b) when reordering is performed incorrectly there
is a high degree of element scrambling. We there-
fore accept that system-related proprieties might in-
fluence the presence of one error class over another
and it will therefore be useful to conduct the same
analysis on different models. In the same way, dif-
ferent languages will also display different problems
and it is therefore necessary to consider the choice of
language pair as another variable that can influence
the result of such analysis.
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Abstract

This paper argues in favor of a linguistically-
informed error classification for SMT to iden-
tify system weaknesses and map them to pos-
sible syntactic, semantic and structural fixes.
We propose a scheme which includes both
linguistic-oriented error categories as well
as SMT-oriented edit errors, and evaluate
an English-Spanish system and an English
Basque system developed for a Q&A scenario
in the IT domain. The classification, in our
use-scenario, reveals great potential for fixes
from lexical semantics techniques involving
entity handling for IT-related names and user
interface strings, word sense disambiguation
for terminology, as well as argument structure
for prepositions and syntactic parsing for var-
ious levels of reordering.

1 Introduction

Once we build a baseline SMT system, we run an
evaluation to check its performance and guide im-
provement. Given the nature of statistical systems
and their learning process, linguistic-oriented error
analysis has been considered unfit for their evalua-
tion. Even when it is identified that a particular lin-
guistic feature is incorrectly handled, it is not clear
how to specifically address it during training if we
resort to common generic, non-deterministic tech-
niques. However, when syntax, semantics and struc-
ture (SSS) come into play, error analysis regains rel-
evance, as it can pinpoint specific aspects that can be
addressed through the more targeted techniques they
have brought to MT development.
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Based on two baseline SMT systems, one for the
English-Spanish pair and one for English-Basque,
we present a methodology and classification for er-
ror analysis, a description of the results and a map-
ping to possible fixes using SSS techniques.

2 Error classification schemes

Different classification schemes have been proposed
in the last years to categorize machine translation er-
rors. Starting in the 90s, the LISA QA model was
adopted by good part of the industry.! This model
included a list of “objective” error types, graded by
their severity and pre-assigned penalty points. The
SAE J2450 standard, from the automotive service,
also became popular.? What became clear from
these first efforts was that no one-fits-all evaluation
scheme is possible for MT. Each player within the
translation workflow, from developers to vendors
and clients, has its own needs and the information
they expect from the evaluations is different.

After LISA ceased operations, two major ef-
forts emerged: TAUS presented its Dynamic Quality
Framework (DQF) 3 and the QTLaunchPad project
developed the Multidimensional Quality Metrics
(MQM).* The DQF tackles quality evaluation by
identifying the objective of each evaluation and by
offering a bundle of tools to satisfy each need.
Specifically, they offer productivity testing based
on post-editing effort, adequacy and fluency tests,

'The Localization Industry Standards Association termi-
nated activities in 2011. No official reference is now available.

2SAE J2450: http://www.sae.org/standardsdev/j2450p1.htm

SDQF: https://evaluate.taus.net

*MQM: http://www.qt21.eu/mgm-definition

Proceedings of SSST-9, Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 30-38,
Denver, Colorado, June 4, 2015. (©2015 Association for Computational Linguistics



translation comparisons and error classification. The
error scheme, proposed after a thorough exami-
nation of industry practices, covers four main ar-
eas, namely, Accuracy, Language, Terminology and
Style, with limited subcategories. With a strong in-
dustrial view, it focuses on establishing return-on-
investment and on benchmarking performance to al-
low for informed decisions, rather than providing a
detailed development-oriented error analysis.

The MQM is a framework that can be used to de-
fine metrics in order to assign a level of quality to a
text. Each evaluation must identify the relevant cat-
egories for its goals and customize the metric. MQM
Core is a hierarchy of 22 issues, at different levels of
granularity. If we consider Accuracy and Fluency,
the two top-level categories that best focus on intra-
textual diagnosis, subcategories branch out and get
more detailed, although they remain at a relatively
general level. Authors claim that considerably more
detailed subclasses might be necessary to diagnose
MT problems and the framework allows for user-
defined extensions, even if this is not encouraged.

The MQM puts together three different dimen-
sions of error classification. The two top-level cat-
egories, Accuracy and Fluency, can be seen as the
effect the errors have on a translated text. The con-
cepts in the lower-levels include concepts of yet an-
other two dimensions. Some of the subcategories re-
fer to actual errors systems make, such as mistrans-
lation or grammar, whereas others refer to the way in
which these errors are rendered, namely, omission,
addition and incorrect. When trying out the scheme
to perform our evaluation, we saw that the distinc-
tion between fluency and accuracy might, to some
extent, be useful when prioritizing fixes. However,
we found difficulty in assigning an error to a specific
subclass, as overlaps between dimensions occurred
constantly. For example, grammar is placed under
fluency but we could argue that an incorrect tense
might lead to a significant change in meaning, and
therefore, result in an accuracy issue. Similarly, one
could claim that the rendering possibilities are true
for almost, if not all, types of errors, rather than a
category of their own. For example, Addition is a
direct subclass of Accuracy, even if it is possible to
find extra function words in a translation. Also, we
strongly felt that some subclasses were too broad to
be meaningful to decide on a targeted SSS solution.
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Among schemes that have emerged from research
groups, Vilar et al. (2006) presented one of the first
to focus on identifying errors made by statistical sys-
tems. Probably motivated by the fact that these sys-
tems are not controlled by linguistic rules and are not
deterministic in this respect, the top-level categories
proposed were Missing words, Word order, Incor-
rect words, Unknown words and Punctuation, that
is, types of edits unrelated to linguistic reasoning.
The lower categories are slightly more linguistic but
they remain on SMT parameters such as local/long
range, stems and forms. While Word order and Un-
known words point to specific efforts for improve-
ment, the Incorrect words category is broad and re-
quires, as the authors suggest, further customization
depending on the language pair at hand. Again, this
classification lacks the linguistic detail we aimed to
collect for linguistically-oriented fixes.

2.1 Classification schemes: our approach

Given our goal and the nature of our systems, we
opted for a general linguistic classification with an
additional dimension to cover the edit type of each
error: missing, additional or incorrect (Figure 1).
Once a linguistic error is identified, it is classified
based on the edit-type dimension. We established
six top-level linguistic categories, which are further
detailed in subclasses. These subclasses are not
static but rather they can be omitted or extended
during evaluation to suit errors found in texts. The
linguistic depth and the clear division between di-
mensions overcomes the lack of detail of the DQF
model and the overlaps that emerged in the MQM
model, while incorporating the SMT-oriented edits
proposed by Vilar et al. (2006).

We worked with a two-to-four-level scheme to
gather as much detail as possible about the errors
found. We describe the six main categories below.

N
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Figure 1: Proposed bidimensional error scheme.



. Lexis

This category includes incorrect choices for
general vocabulary and terminology, as well as
longer set phrases, idioms or expressions.

. Morphosyntax

This category includes morphological and syn-
tactic errors. We fused both categories as these
types of errors are often so intertwined that it is
difficult to opt for one category over the other.
Moreover, the classification is proposed as a
tool to easily summarize and assimilate system
error information and the exact top-level classi-
fication of the items should not have an impact
on research decisions. This should be guided
by their fixing requirements and possibilities.

. Verbs

A separate category was defined for verb
phrases because of their complexity. Whereas
English verb phrases carry lexical, aspectual,
tense, modality and voice information, Span-
ish verb phrases also have subject information,
and in the case of Basque, information about
objects is also included. The high variability
of conjugated verbs and auxiliaries poses great
difficulty for statistical systems. We divided
this category into subgroups based on the in-
formation mentioned above.

. Order

Again, this is a dedicated category due to the
impact order has on the overall comprehensibil-
ity of the translations and because it is a prop-
erty that can be addressed specifically in statis-
tical systems. We distinguished several levels:
sentence, clause and phrase. Also, we identify
whether the issues involve orderings of units of
the same level or, unit-specific issues, which
can be internal orderings or splits.

. Punctuation

This category includes punctuation and ortho-
graphic issues such as punctuation marks, cap-
italization and orthotactic constrains (ortho-
graphic rules governing lemma-affix gluing).

. Untranslated

We added a category for source words that are
left in the original language.
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3 The systems

3.1 English-Spanish

The English-Spanish system is a standard phrase-
based system built on Moses (Koehn, et al. 2007).
It uses basic tokenization and a pattern excluding
URLS, truecasing and language model interpolation.
It has been trained on bilingual corpora including
Europarl, United Nations, News Commentary and
Common Crawl (~355 million words). The mono-
lingual corpora used to learn the language model in-
clude the Spanish texts of Europarl, News Commen-
tary and News Crawl (~60 million words). For tun-
ing, a set of 1,000 in-domain interactions (question-
answer pairs) were made available. The original in-
teractions are in English and they were translated
into Spanish by human translators.

The system was evaluated on a test-set similar to
that used for tuning: a second batch of 1,000 in-
domain interactions. The English-Spanish system
obtains a BLEU score of 45.86.

3.2 English-Basque

The English-Basque system is also a standard
phrase-based system built on Moses. It uses basic
tokenization, lemmatization and lowercasing. Stan-
ford CoreNLP (Manning et al., 2014) is used for En-
glish analysis and Eustagger (Alegria et al., 2002)
for Basque. It uses a 5-gram language model. To
better address the agglutinative nature of Basque,
the word alignments were obtained over the lemmas,
and were then projected to the original word forms
to complete the training process.

The system was trained on translation mem-
ory (TM) data containing academic books, soft-
ware manuals and user interface strings (~12 mil-
lion words), and web-crawled data (~1.5 million
words) made available by Elhuyar.’> For the lan-
guage model, the Basque text of the parallel data and
the Basque text of Spanish-Basque TMs of admin-
istrative text made available by Elhuyar (~7.4 mil-
lion sentences) was used. Again, a set of 1,000 in-
domain interactions were used for tuning after man-
ually translating the original text into Basque.

The system was evaluated on a second test-set
of 1,000 in-domain interactions, obtaining a BLEU
score of 20.24.

SElhuyar: https://www.elhuyar.eus/en



Error category | Examples
lexis Click run where it says vulnerabilities.
Pulse correr donde dice vulnerabilidades. (run=sport)
morphosyntax Yes, you can share files and folders with one or more users on MEO Cloud.
Si, puede compartir archivos y carpetas con uno o mas usuarios sobre MEO Cloud. (on=about)
verb Connect your computer to the ZON HUB via Ethernet cable.
Conectar su ordenador a la HUB af a travs de cable Ethernet. (to connect)
ordering Tap “Import” to copy your Android browser favorites.
Toca "Importar” para copiar su navegador de Android favoritos. (~your favorites Android browser)
. If I buy a computer abroad, will it work in Portugal
punctuation Si compro un ordenador en el extranjero, funcionard en Portugal ? (missing ;)
untranslated Then click on the yellow disc with a green tick.
Then haga clic en el disco de color amarillo con una marca verde.

Table 1: Examples of errors per top-level category for the English-Spanish pair.

4 Error analysis results °

4.1 Error analysis for the English-Spanish pair

We randomly selected 100 interventions (questions
or answers) included in the use-scenario test set.
Overall, out of 137 sentences (each intervention
might consist of several sentences) 30 sentences
were found to be correct, and the remaining 107 in-
clude 169 errors, at least 3 errors per intervention.

Lexical errors account for 31% of the total mis-
takes (see examples for top-level categories in Table
1). Around half emerge from the translation of user
interface (UI) strings. Although it was not possible
to identify whether the translations matched the fi-
nal software version text exactly, in some cases the
translations are clearly awkward. Problems are most
relevant in multi-word strings, which are not trans-
lated as a unit, resulting in partial translations and
inadequate capitalization. The translations of soft-
ware and brand names display a similar behavior.
These proper names tend to stay the same across lan-
guages, but the system does not always treat them
this way. Adding to this, multiword names often get
part of the name translated.

Issues with general vocabulary and terminology
(we will consider terminology words that acquire a
specialized meaning in our domain or words that are
specific to our domain) are also present. Whereas
some inadequate translations do not have a clear ori-
gin, a good number of them clearly emerge from in-
correct word sense disambiguation.

Morphosyntactic errors account for about 29% of
the total errors. Although they are very widespread
across the different subcategories, we find that

SFor a complete classification see appendices A and B.
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prepositions, subordinate markers and POS errors
are the most recurrent cases.

The Verbs category accounts for 18% of the er-
rors. Although a number of verbs lack the cor-
rect agreement or use an inadequate tense or voice,
the most recurrent error seems to come from the
mode. This is typical of instructional texts, where
orders, given with the infinitive form in English can
be translated as imperatives or infinitives. This is
usually a stylistic decision but one that needs to be
consistent across the documentation and, in particu-
lar, within the sentence or paragraph.

A number of order issues have been identified
(11%), which mainly involve the composition of
multiword noun phrases. We found 7 cases where
a noun phrase was split and 7 cases where the el-
ements were incorrectly ordered despite staying in
close proximity.

Punctuation errors (6%) and untranslated words
(5%) are low. The former include cases of incorrect
capitalization and use of question-initial marks. The
latter involve function and content words.

4.2 Error analysis for the English-Basque pair

We again performed a random selection of 100 inter-
ventions. Based on overall counts, 6 out of 140 sen-
tences were correct and the remaining 134 included
393 errors, at least 7 errors per intervention.
Lexical errors account for around 23% of the total
(Table 2). Despite a number of errors due to incor-
rect word sense disambiguation, most errors emerge
from UI strings and software/brand name transla-
tions. Capitalization errors in these units were in-
cluded in this subcategory (36 cases).
Morphosyntactical errors account for over 39%



Bai posible da, besterik gabe, arrastatu pertsonaren profila hainbat nahia zirkulu. (missing postposition for circles-zirkulu)

Aplikazioa erabil dezakezu IPP podcast Player aurkitu duzu Google erreproduzitu. (The app you can use IPP podcast Player...)

Error category | Examples
lexis Go to WhatsApp > "Menu Button” > Status”.

Joan menu botoia WhatsApp > " ” > ” egoera . (unrecognized user interface path)
morphosyntax Yes it is possible, simply by dragging the profile of the person concerned to the various circles.
verb Choose a standard status or personalize one.

Egoera estandar bat edo pertsonalizatu bat. (missing verb choose)
ordering You can use the app iPP Podcast Player you find on Google Play.

unctuation How can I change the language to of Mega to Portuguese?
P Nola aldatu hizkuntza of Mega, portugesa? (additional comma)
untranslated How much space do I have for free on Mega?

Zenbat leku ditut doan on Mega?

Table 2: Examples of errors per top-level category for the English-Basque pair.

of the total errors. Most, around 64%, concern the
translation of prepositions and subordinate conjunc-
tions. In Basque, prepositions are translated into
postpositions that are attached to the last word of
the phrase (the nucleus) and the same happens with
subordinate markers, attached to the last word of the
subordinate clause. It is worth noting the high num-
ber of missing elements in this subcategory, 90 cases
recorded out of 149 (10 cases out of 49 for Spanish).

Verbs show a considerable number of errors
(18%), specially if we take into account that 21 main
verbs, which display the lexical meaning and the as-
pect, and 23 auxiliaries, which display tense, mode
and paradigm, are missing. Out of the verb phrases
that are constructed, the aspect, the paradigm and
agreements generate errors.

Order errors account for 14% of the total errors.
The sequencing of noun phrase elements stands out
as the main source of errors, whether within the
phrase or because splits occurred. The positioning
of relative clauses with respect to their heads also
emerged as a problematic area with 11 occurrences.

Punctuation (4%) and untranslated words (1%)
are low, the most salient being missing commas.

4.3 Fixing possibilities with syntax, semantics
and structure

From the error analysis of the English-Spanish and
English-Basque systems we see that errors emerge
from two main sources, use-scenario-specific fea-
tures and language pair-specific features.

The text-type and domain of the translations has
an impact on the difficulties the system encounters.
In the case we present, we work on a question-
and-answer (Q&A) scenario in the information tech-
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nology (IT) domain. The texts, therefore, mainly
consist of instructions and descriptions, and include
a high degree of terminology, brand and software
names, as well as Ul strings. And our systems have
difficulty in dealing with them.

Lexical semantics, and in particular, (cross-
lingual) named-entity recognition (NER) and trans-
lation techniques could greatly benefit our applica-
tion scenario. Following the implementation of NER
in MT by Li et al. (2013), Li et al. (2012) and sim-
ilar, it would be possible to train a NER system to
identify IT names. We could possibly create a sepa-
rate category for the disambiguation process (NED)
if we envisage to treat them in a specific way. For
example, we may decide that NEs classified as I7-
name should be left in English, or that they should be
looked up in Wikipedia following techniques such
as Mihalcea and Csomai’s (2007) and Agirre et al.’s
(2015) to find an equivalent entry in the target lan-
guage, and as a result, its translation. Maybe we
could opt for dynamic searches in multilingual web-
sites of specific brands or the use of pre-compiled
dictionaries from these resources.

The NER system could be expanded to include
Uls. Cues to identify them could be anchors like
icon, tab and dialog box, and phrases such as where
it says, and > sequences. The systems had diffi-
culty in identifying Uls and often provided trans-
lations that differ significantly from the strings we
are used to seeing in software graphics. Uls usually
have a fixed translation - often given by the product-
maker - and they must be treated as proper nouns in
the sense that they are usually capitalized (first word
only if multiword) and do not accept articles. We
could chose to identify them and translate them us-



ing a specialized dictionary or even let the MT sys-
tem output a candidate which considers the restric-
tions just mentioned.

Sense disambiguation, whether for general words
or terms, has also been identified as a category worth
addressing. Word sense disambiguation techniques
along the line of Carpuat et al. (2013), for example,
could help. They propose a technique to identify un-
known senses to the system, most probably because
they are domain-specific senses not covered by the
training corpus. Once marked, we could divert them
and translate them using a specialised resource.

Out of the language pair-specific errors, the most
glaring are Basque postpositional renderings of En-
glish prepositions. Predicate-argument structures
and semantic roles, as suggested by the work of
Liu and Gildea (2010) and Kawahara and Kurohashi
(2010), are a way to improve the incorrect render-
ings and to force missing postpositions. Resources
such as the Basque Verb Index (BVI) (Estarrona
et al., forthcoming), which includes Basque verb
subcategorization based on PropBank and VerbNet,
with syntactic renderings assigned to each argument
and mappings to WordNet for crosslingual informa-
tion, can be a starting point in this task.

Order errors have shown three types of issues: (i)
phrases or chunks ordered incorrectly; (ii) phrases
split along the sentence; and (iii) phrasal elements
kept local but with incorrect phrase-internal order.
For the first case, semantics has proposed the use of
argument structure to learn reordering patterns (Wu
et al., 2011). For cases ii and iii, syntax would have
to come into play. Firstly, we need to provide the
MT with phrase boundary information so that con-
tiguous phrases are not mixed. Secondly, phrase-
internal reordering patterns or restrictions need to
apply. Yeniterzi and Oflazer (2010), for example,
encode a variety of local and non-local syntactic
structures of the source side as complex structural
tags and include this information as additional fac-
tors during training. Also, working on POS, Popovié¢
and Ney (2006) propose source-side local reordering
patterns for Spanish-English and, working on syn-
tactic parse-level, Wang et al. (2007) propose re-
ordering patterns to address systematic differences
(Chinese-English). Xiong et al. (2010) go beyond
syntax and propose translation zones as unit bound-
aries, improving constituent-based approaches.
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We finally focus on the generation of verb
phrases, particularly relevant for the English-Basque
pair, where verbs tend to go missing, but also to
remedy incorrect verbal features in both pairs. The
sparsity due to the complexity and morphological
variety of Spanish and, even more so, Basque verb
phrases is most probably the main reason for their
incorrect handling. This leads us to proposing the
generalization of features, such as lemmatization of
verbs, while suggesting a parallel transfer of source
verb features to final postprocessing, for instance.
Work on verbal transfer has not received attention
so far, unless integrated within argument structure
techniques, such as the work of Xiong et al. (2012).

5 Conclusions

We proposed a dynamic, extensible linguistically-
informed error classification for SMT which in-
cludes six top-level linguistic error categories with
further subclasses, and a second dimension for SMT-
oriented edits covering additions, omissions and in-
correct words. This addresses the lack of linguistic
detail and flexibility of metrics such as the DQF, and
integrates the SMT-oriented errors proposed by Vi-
lar et al. (2006) avoiding overlaps found in MQM.

We evaluated an English-Spanish and an English-
Basque system developed for a Q&A scenario in
the IT domain. The classification revealed issues
strongly related to the domain and more general lan-
guage pair-specific errors. We identified terminol-
ogy and UI strings as the main issue for the lexi-
cal category. The morphosyntactic category showed
more diverging issues. The most striking was the
weak handling of English prepositions, and in par-
ticular, the poor generation of Basque postposi-
tions, governing English prepositions and subordi-
nate markers. The complexity of target-side verbs
also took its toll on system performance with incor-
rect features for Spanish and an alarming number of
missing main verbs and auxiliaries for Basque. As
expected, ordering errors occurred at all levels, in-
ternal and external. Punctuation and Untranslated
showed a low number of errors.

The exercise served to link the potential relevance
of syntax, semantics and structure to fix language-
specific SMT errors and the suitability of lexical se-
mantics for [T-domain terminology and UI strings.
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A Error classification scheme and results for the English-Spanish pair

Main category Subcategory 1 Subcategory 2 Incorrect  Missing  Additional
lexical choice 2 (53)
Vocabulary sense 6
Lexis (53) Terminology lexical choice 4
sense 6
software brand names 8
Ul issues 27
POS 9 (@3 (10) ®)
preposition 7 1 3
noun 1 2
adjective agreement 2
. other 3
determiner
agreement 1
article 2
other 1
pronoun gender 1
Morphosyntax (49) formal vs informal 3
interrogative pronoun 3
. other 1
attribute
agreement 1
coordinator 1
relative marker 1 2
subordinate markers completive marker 2
purpose marker 1
coreference agreement 1
verb phrase 2 (206) “)
subject agreement 1 2
tense 2 1
other 1
Verbs (30) mode .disagreeme.:nt . 7
infinite vs imperative | 9
voice passive 3
auxiliary 2
noun phrase - internal 9 (19
split noun phrase 7
Order (19) sglit prepoSitional phrase 1
verb-adverb 2
capitalization uppercase 4 (€)) 5) (1)
Punctuation (10) accent 1
question mark 4 1
Untranslated (8) 8 ®)
Total (169) 141 \ 19 \ 9
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B Error classification scheme and results for the English-Basque pair

Main category Subcategory 1 Subcategory 2 Incorrect  Missing  Additional
lexical choice 3 (93)
Vocabulary sense 3
Lexis (93) Terminology sense 4
software brand names 28
Ul issues 55
POS 11 (5D (90) D
preposition 23 43 2
other 1
foun agreement 3
adjective 2 2 1
determiner 1 1
article 5 1
adverb 5
pronoun 1
interrogative pronoun 1 7 1
negation (verbs) 1 2
Morphosyntax (154)  coordinator 1
coordinated subclause 5 4
superlative structure 2
relative marker 11
relative marker 3 1
completive marker 3
subordinate markers purpose marker 1 4 2
reason marker 1
temporal marker 1
conditional marker 1
verb phrase 4 (19 “45) | 2 2)
main verb 21
auxiliary verb 23
subject agreement 3
Verbs (70) direct object agreement 2
tense 1
aspect 5
auxiliary 4 1
paradigm 4
constituent-level 2 (55
noun phrase - internal 19
Order (55) split noun phrase 7
split prepositional phrase 3
clause-level 1
clause internal 2
clause split 1
head-relative clause 11
contiguous sentences merged 9
Punctuation (16) capitalization 2 (@)) (11) (D)
comma 2 11
EOS 1
Untranslated (5) 5 (@)
Total (393) \ 233 \ 135 25
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Abstract

Lexical false friends (FF) are the phenomena
where words that look the same, do not have
the same meaning or lexical usage. FF im-
pose several challenges to statistical machine
translation. We present a methodology which
exploits word context modeling as well as in-
formation provided by word alignments for
identifying false friends and choosing the right
sense for them in the context. We show that
our approach enhances SMT lexical choice
for false friends across language variants. We
demonstrate that our approach reduces word
error rate (WER) and position independent er-
ror rate (PER) for Egyptian-English SMT by
0.6% and 0.1% compared to the baseline.

1 Introduction

False friends (FF), aka faux amis, are words in two
or more language variants that are orthographically
and/or phonetically similar but do not convey the
same meaning (Brown and Allan, 2010). FF sense
divergence is one of the main sources of perfor-
mance degradation in statistical machine translation
(SMT) systems. These words are frequently ob-
served when the underlying distribution of the test
set is different from that of the train data. In other
words, the sense of a particular word in the in-
put sentence varies from all observed senses of that
word in the train data. Thus, SMT may choose the
target language translation which is considered in-
appropriate based on the context.

Standard form of a language has different infor-
mal spoken varieties which are known as dialects.
For instance, standard form of Arabic has different
dialects (Habash, 2010). These dialects typically
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share a set of cognates that could bear the same
meaning in both varieties or only be shared homo-
graphs but serve as false friend. The usage of di-
alects in textual social media and communication
channels is rapidly increasing. On the other hand,
usually there is not enough dialectal parallel data to
train the translation model and build stand alone ma-
chine translation systems for dialects. However, the
standard official forms of language usually have a
wealth of resources and tools that can be adapted to
dialects of that language.

The main goal of this paper is to enhance dialectal
SMT performance without any in-domain training
data. We move towards this goal by performing a
pre-processing phase which includes, 1) identifying
false friends in the input sentence and, 2) replacing
them with an appropriate equivalent from standard
language which bears the same meaning. By doing
this, we benefit from availability of standard parallel
data to choose a more accurate target translation for
the false friends.

We aim to identify false friends without any la-
beled training data. We then try to choose equiva-
lents from the standard language for the identified
false friends. We exploit a classifier for identify-
ing false friends and designing a word sense dis-
ambiguator for finding the best equivalent from the
standard language. We employ unsupervised word
alignment from parallel text and a taxonomy-based
semantic similarity measure (Wu and Palmer, 1994)
to automatically acquire training data for the FF
identifier. Our word sense disambiguator benefits
from unsupervised word clusters to model the con-
text. We obtain word clusters from a large mono-
lingual text in the standard language. Training the
model only involves counting the coocurrences of

Proceedings of SSST-9, Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 39-48,
Denver, Colorado, June 4, 2015. (©2015 Association for Computational Linguistics



each word with word clusters for different context
definitions. During decoding (disambiguation), for
a word in a sentence, we estimate the likelihood for
each equivalent of that word given word clusters in
its surrounding context.

We evaluate our method on Egyptian (EGY) to
English (EN) SMT using a translation model trained
on Modern Standard Arabic (MSA). We show that
our approach improves EGY-to-EN SMT lexical
choice and reachs 0.6% and 0.1% reduction in word
error rate (WER) and position-independent error
(PER) (Tillmann et al., 1997) over the baseline re-
spectively. In summary, the main contributions of
this paper are: 1) designing a FF identifier with a su-
pervised classifier trained on automatically acquired
labeled data, 2) designing a disambiguator for re-
placing FF with their equivalent standard form and
3) improving the SMT lexical choice on dialectal
data without using any in-domain parallel data to
train SMT model.

The remainder of this paper is organized as fol-
lows: We give a literature overview in §2. We then
detail our approach in §3 . We present t experiments
in §4 and discuss the results in §5. We finally make
conclusions in §6.

2 Related Work

There have been several studies for identifying false
friends which benefit from parallel data to measure
semantic similarity of words (Frunza and Inkpen,
2006; Nakov et al., 2009; Inkpen et al., 2005; Kon-
drak, 2001; Mitkov et al., 2007). Some other stud-
ies such as (Nakov et al., 2007; Schulz et al., 2004,
Nakov et al., 2009; Mulloni et al., 2007) exploit dis-
tributional semantics to identify false friends. These
methods hypothesize that words occurring in similar
contexts tend to be semantically similar. Methods
leveraging this idea usually use vector space models
to show the local context of the target word. Con-
text can be modeled either with a window of a cer-
tain size around the target word e.g. (Nakov et al.,
2009) and (Schulz et al., 2004) or words in a par-
ticular syntactic relationships with the target word
e.g. (Mulloni et al., 2007).

The most comparable work to our false friend
identification approach is the work done by Mitkov
et al. (2007) which uses both distributional seman-
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tic evidences extracted from monolingual data and
bilingual hints obtained from comparable corpora.
They eventually use this information as features in a
false friend classifier and reach up to 20% and 37%
improvement over the baseline precision and recall
respectively. Our false friend identification method
is different from the mentioned studies in the sense
that we generate a supervised classifier from fully
unsupervised labeled data. Unlike previous work
that solely focus on the identification task, our model
leverages both identification and disambiguation.

From the sense disambiguation perspective, there
have been several attempts to integrate word sense
disambiguation (WSD) systems into the SMT
framework in recent years. The main goal of these
studies is to improve the target translation for an am-
biguous word in the source sentence. Most stud-
ies in this area incorporate supervised WSD sys-
tems which exploit labeled training data. As an in-
stance, Carpuat and Wu (Carpuat and Wu, 2005)
integrate a supervised WSD model trained on the
Senseval-3 Chinese lexical sample task data into a
standard Chinese-English phrase-based SMT model
with two methodologies: First, at the decode time,
they limit set of translation candidates for an am-
biguous word to the set of translations mapped to
the sense predicted by the WSD model. Second,
they replace the translations chosen by SMT with
the translation predicted by WSD system. Never-
theless, they show none of these methods improves
baseline BLEU score (Papineni et al., 2002). Vick-
rey et al (2005) formulate the task of using WSD
for SMT as word translation task. They use par-
allel data to train their WSD model. They showed
that they improve accuracy in both word translation
and blank-filling tasks. However, they did not incor-
porate their word translation setup in an end-to-end
SMT system.

Carpuat and Wu (2007) transformed the problem
into a phrase sense disambiguation task by incorpo-
rating state-of-the-art WSD features for selecting a
target phrase out of all aligned phrases as the possi-
ble senses. Chan et al (2007) also embedded state-
of-the-art WSD system into SMT by adding more
features into the SMT model. They showed that they
improve Baseline BLEU score using their WSD-
based model.

Yang and Kirchhoff (2012) use an unsupervised



WSD to improve SMT final performance. Similar to
previous studies, they add the WSD acquired feature
to the SMT model. They could improve the BLEU
score by 0.3% compared to the baseline.

All the mentioned studies aim to enhance SMT
by identifying the appropriate target translation for
a source word in a given context. Our approach is
different from previous work in two aspects: First,
we try to improve SMT lexical choice by identify-
ing false friends and replacing them with the most
adequate equivalent from standard language. Un-
like previous work, all these steps are done on a
given input sentence and we can see them as a pre-
processing phase, thereby, there is no need to change
the SMT model. Second, our approach does not as-
sume that the in-domain parallel data is available.
Hence, it is not constrained by the domain and can
be extended to any other language variants.

The main difference between this approach and
our previous work as described in (Aminian et al.,
2014) lies in the fact that we try to improve SMT lex-
ical choice by enhancing FF translation. Rather than
blindly replacing all dialectal words with their stan-
dard equivalent as we did in (Aminian et al., 2014),
here we try to automatically identify FF as one of the
important sources of translation degradation across
language variants and leverage knowledge acquired
from monolingual standard data to predict the best
equivalent for FF based on the context.

3 Approach

We describe our model in this section. We use two
modules in our model: 1) a FF identifier (henceforth
PARL) and, 2) a disambiguator (henceforth WC).
PARL is based on a supervised classifier. The training
data for PARL is automatically obtained from parallel
data. wc is based on the likelihood of each standard
equivalent given the contextual information. In all
of our definitions, we use DA and ST to refer to a di-
alectal and standard language, respectively.

3.1 PARL Classifier

We first give some basic definitions about the setup.
Parallel text D is a set of aligned sentences & =
{81,82, ...,SN} and 8’ = {Si,Sé, 78]/\7} in the
source and target languages respectively. We assume
&’ to be English (EN) in our experiments. S contains
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both ST and DA sentences. Each training instance is
shown with a tuple (k,i,y) i
1 <i < |Slandy € Y. Y refers to the set of
labels {FF, NFF}. We represent the ith word in the
kth sentence as wy; and its features as ¢(k,4) € R?
where d is the size of feature vector. Given the set
of training tuples (k, 7, y), a classification algorithm
is used to train the model. We use Averaged Percep-
tron (Freund and Schapire, 1999) as our classifier
with the following features: word form for the cur-
rent word and part of speech tag for the previous,
current and next words.

Automatic Label Estimation We use a dialect
identification tool to define a function L£(k,1%), that
identifies the dialect for wy; out of two possibilities:
DA and ST. We do word alignment on D using an un-
supervised alignment algorithm. We define Ay; to
be the English word aligned to wy,;. Accordingly, we
define E;JT as the set of all English words aligned to
the source word w for the cases where w is identified
as ST. E;T can be written as:

EST ={Ve € EN|3j,h Ajj = e, wjy = w,
L(j,h) =ST} (1)

To reduce noise in the automatically acquired
word alignments, we just consider aligned word
pairs with frequency more than 5. For each wyg;
where L(k,i) is equal to DA, we have to decide
whether the word is FF or not. We define a function
F(wy;, Ag;) that returns true if we decide to label
wy; as FF and false otherwise (Eq. 2).

F(wgi, Agi) = true < Sim(Ag, Eig) <9 (2

where ¢ is a manually defined threshold and Sim
is defined in Eq. 3:

Sim(e, F)

Z Y eree dzst(e e') 3)

" Z

where Cg partitions F into non-overlapping clus-
ters. Each ¢ € Cg contains a cluster of words in
E with similar meaning. The clusters are obtained
from using the distance measure (Wu and Palmer,
1994) in Eq. 4.
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dist(e,e’) = A0 +de)

“)

where s, . 1s a maximally specific superclass of e
and ¢’ in WordNet (Miller, 1995) and d is the depth
of the node in the WordNet taxonomy.

In short, Eq. 3 computes a weighted average sim-
ilarity between various ST senses of the target word
and its DA sense in the sentence k. The intuition be-
hind this setting is as follows: for a particular word
that is identified as DA in a sentence, we measure
similarity of its aligned English word to the set of
all English words aligned to ST occurrences of the
same word (E;7). If this similarity is less than a
threshold J, we label that word as FF. We set ¢ to
0.5 in our experiments.

3.2 WC Classifier

We now describe our disambiguation model. We
use a large amount of monolingual data D’ as a
set of sentences S = {S1,S2,...,Syp} in the ST
form. We perform unsupervised word clustering on
D' to obtain word cluster assignments for each word.
We then use word clusters to build our disambigua-
tion model. The model comprises five parameters:
P_s(clw), P-i(clw), P+1(cJw) and Pia(c|w) for
all ¢ € {1,2,..., K} where K refers to the num-
ber of clusters, in addition to the word probabil-
ity P(w). Hence, context parameters are Pr(c|w)
for 7 € {—2,—1,41,+42} in which ¢ specifies
cluster of the word which is placed in the offset 7
for the word w. Pr(c|w) is estimated using max-
imum likelihood estimation with additive smooth-
ing. The smoothing parameter is set to 0.1 in our
experiments. To avoid sparsity, we assume that all
previous contexts are the same and analogously all
next contexts are also the same. In other words, we
tie P_o(c|lw) and P_1(c|w) into one parameter and
P5(c|w) and Pj(c|w) into another distinct parame-
ter.

Let Q(w) be the list of ST equivalents for the DA
word w. We choose the most probable candidate w*
using Eq. 5 by having 7 € {2, —1,1,2}.

weN

w* = argmax log P(w) + Z log P-(cr|lw) (5)
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The intuition behind this model is as follows: if a
particular DA word in a sentence is identified as FF,
we want to replace it by one of its ST equivalents. If
an alternative word is more likely to appear in that
context compared to other possible equivalents, we
expect our model to select that as the replacement.
Since we train word clusters on ST data, the model
tends to assign more weight on words that fit better
to ST contexts.

4 Experimental Setup

Data Sets To train PARL classifier, we use parallel
data Djysr which is a collection of MSA and EGY
texts created from multiple LDC catalogs.! The
data comprises 29M MSA and 5M DA tokenized
words from multiple genres including newswire,
broadcast news, broadcast conversations, and we-
blogs. To train the disambiguator, we use the Ara-
bic Gigaword 4 (Graff and Cieri, 2003) contain-
ing 848M tokenized MSA words. To train the
model described in § 3.2, we exclude punctuation
as well as clitics from the target word local con-
text. These words usually do not provide much in-
formation about the target word and will increase
model sparsity. All data sets used in our experi-
ments have undergone the following preprocessing
steps: all Arabic data is Alef/Ya normalized and to-
kenized using MADAMIRA v1. (Pasha et al., 2014)
according to Arabic Treebank (ATB) tokenization
scheme (Maamouri et al., 2004). We used Tree Tag-
ger (Schmid, 1994) to tokenize English data.

Tools We use GIZA++ (Och and Ney, 2003) for
word alignment. We obtain word clusters from
word2vec (Mikolov et al., 2013) K-means word
clustering tool. We use the continuous bag of word
model to build word vectors of size 200 using a word
window of size 8 for both left and right. The number
of negative samples for logistic regression is set to
25 and threshold used for sub-sampling of frequent
words is set to 10~° in the model with 15 iterations.
We also use full softmax to obtain the probability
distribution.

We use AIDA (Elfardy and Diab, 2013) as the di-
alect identification tool. AIDA also provides a list of
MSA equivalents for identified DA words in context.

41 LDC catalogs including data prepared for GALE and
BOLT projects.



BLEU METEOR TER WER PER
BASELINE1 20.6 275 659 692 453
BASELINE2  20.1 272 683 716 46.6
BASELINE3 21.3 2800 652 686 44.6
PARL 20.7 27.1 67.5 69.6 455
WC,or 20.9 277 654 68.7 448
PARL+WC 21.0 2777 662 685 453
PARL+WC,., 213 279 655 68.0 445

Table 1:

Evaluation results (BLEU, METEOR (Banerjee and Lavie, 2005), TER (Snover et al., 2006),

WER, PER) on the Bolt-arz test set compared to the baselines.

SMT System We use Moses decoder (Koehn et
al., 2007) to build a standard phrase-based SMT
system. Feature weights are tuned to maximize
BLEU score on the tuning set using Minimum Er-
ror Rate Training (MERT) (Och, 2003) algorithm.
Final results are reported by averaging over three
tuning sessions with random initialization. Signif-
icant test is also performed to make sure that gains
in the results are statistically significant. We use the
implementation of Clark et al. (2011) to compute
the p-value via approximate randomization algo-
rithms. Since AIDA generates MSA equivalents in
the lemma form, we use a factored translation model
with lemma and POS factors. We use GIZA++ (Och
and Ney, 2003) to word align the parallel corpus.
We use SRILM (Stolcke and others, 2002) to build
5-gram language models with modified Kneser-Ney
smoothing (Kneser and Ney, 1995). Our language
modeling data consists of three data sets: a) The En-
glish Gigaword 5 (Graff and Cieri, 2003); b) The
English side of the BOLT Phase 1 parallel data; and,
c) different LDC English corpora collected from dis-
cussion forums.?.

The translation model is trained using the MSA
part of Dy with 29M words. Therefore, any im-
provement in translating DA words on the test set is
gained by our false friend identification and disam-
biguation approach. Our test set comprises 16K tok-
enized EGY words and is acquired by selecting 1065
sentences from LDC2012E30 (BOLT-arz-test). The
tuning set contains 1547 sentences obtained from
multiple LDC catalogs® and comprises 20k tokens.

2L DC2012E04,
LDC2012E54
SLDC2012E15, LDC2012E19, LDC2012E55

LDC2012E16, LDC2012E21,
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5 Results and Discussion

The main goal of this work is to improve the trans-
lation chosen by SMT for a false friend based on its
surrounding context. The final SMT performance
is affected by two factors: First, the accuracy of
false friend identifier and disambiguator. Second,
the quality of predefined candidates generated by
AIDA (FF are then replaced by one of these can-
didates chosen by WC ).

In order to accurately evaluate the quality of our
identification and disambiguation process, we de-
sign three different baselines. As the first baseline,
we randomly tag EGY words which have been ob-
served as MSA in the train data as false friend. False
friends then are replaced by a randomly selected
sense from respective candidates list (BASELINEL1).
As the second baseline, we follow the setup intro-
duced in (Aminian et al., 2014). In this baseline,
all EGY words that meet mentioned criteria, are re-
placed with one randomly selected sense from the
list of candidates (BASELINE2). As the third baseline,
we use the results of the raw baseline without any re-
placement (BASELINE3). The first two baselines can
be used to evaluate the accuracy of FF identifier and
disambiguator modules. The last baseline evaluates
the overall effectiveness of the approach to enhance
EGY-EN SMT which depends on both factors men-
tioned before.

The first three rows of Table 1 show BASELINEL,
BASELINE2 and BASELINE3 results on our test set.
PARL in the fourth row demonstrates the setup
that only parallel data is exploited to identify false
friends. The identified DA word is then replaced by
a randomly selected MSA sense from the candidate



Ref. i will tell you a story , and you judge whose fault it is .
Baseline Tb AnA H+ AHky 1+ HDrp +k mwqf w+ tqwly myn Ally gITAn
Replacement tmAm AnA H+ AHky 1+ HDrp +k mwqf w+ tqwly myn Ally gITAn

Baseline Trans.

ok , 1 am going to talk to you and say who was wrong .

Replacement Trans.

i will talk to you stand and say who was wrong .

Table 2: Example of correct FF identification and replacement with non-improving BLEU score.

list. Similarly, WC.,, shows the setup where WC is
directly used to identify and replace false friends.
In this setup, original EGY word is manually added
to the list of MSA candidates generated by AIDA.
Thus, WC module selects the most adequate candi-
date based on the context from the list containing
both MSA equivalents and original EGY word. In
other words, WC simultaneously performs FF identi-
fication and sense disambiguation. PARL+WC refers
to the system that uses PARL to identify FF and then
WC to disambiguate them. It is to be emphasized
that in this setup, WC chooses the most appropriate
MSA equivalent of each false friend only from the
list of candidates generated by AIDA. We also define
PARL+WC.,, in which WC.,,, is used as a FF identifier
as well as disambiguator (similar to the second setup
above). In fact, we prevent mistakes from PARL by
using WC as an identifier as well. This setup replaces
a word by its MSA equivalent only if both PARL and
WC identify it as FF.

As shown in Table 1, all replacement experiments
outperform BASELINEI and BASELINE2 in terms of
BLEU score. PARL improves BASELINE! and BASE-
LINE2 BLEU scores by 0.1% absolute (0.5% rela-
tive) and 0.6% absolute (3% relative) receptively.
This implies that our FF identifier achieves more ac-
curate FF predictions compared to random and blind
predictions.

Using WC,,, for FF identification and disam-
biguation shows a noticeable improvement over the
case that we just use PARL for identification (in terms
of BLEU, WER and PER). This shows that contex-
tual similarity plays a more important role compared
to the information extracted from parallel data to
train a FF identification model. PARL is also too sen-
sitive to errors in the word alignment. So noise in
the alignment will lead to incorrect prediction and
thereby, inadequate replacement.

As expected, combining PARL and WC for FF
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identification and replacement (PARL+WC) outper-
forms the individual decisions made by each mod-
ule solely. This setup benefits from evidences pro-
vided by both modules for FF identification and
sense disambiguation. Eventually, the last setup
PARL+WC,,, leads to 0.3% absolute (1.4% relative)
BLEU improvement over PARL+WC. It also outper-
forms PARL+WC in terms of other SMT evaluation
metrics such as METEOR, TER, WER and PER.
For example, it achieves 0.7%, 0.5% and 0.8% re-
duction in TER, WER and PER respectively com-
pared to PARL+WC. In the last setup, we just replace
words which both PARL and WC commonly identify
them as FF. In other words, WC refines some of the
PARL mistakes and avoids it from replacing words
which are mistakenly identified as FF by PARL . It
is worth noting that significant tests show that all
gains in the BLEU, METEOR and TER over BASE-
LINE2 and BASELINE3 are statistically significant at
the 95% level.

Our best performing setup, PARL+WC.,,, reduces
BASELINE3 WER and PER by the noticeable amount
of 0.6% and 0.1% respectively. This indicates that
our approach has the power to enhance SMT lexical
choice and select more accurate target translations
for the false friends. However, our method does not
outperform BASELINE3 BLEU score. Our analysis
shows that the main reason for this phenomenon is
that the SMT translation table does not contain ade-
quate bilingual phrase pairs for some of the replaced
MSA equivalents (suggested by AIDA). Thus, de-
coder can not generate coherent phrases while trans-
lating these words. As an example, consider the sen-
tence shown in Table 2. Word ‘7)’ in the baseline
sentence means all right, very well or ok in EGY
while it means medicine when used as MSA. Our
FF identifier has correctly identified this word as a
FF. The disambiguator module also has adequately
replaced word ‘Tb’ with the MSA word ‘tmAm’



which means ok. However, this replacement does
not yield to a better translation for this word. This
happens because word ‘tmAm’ has not been ob-
served as an interjection in our SMT phrase table.
Thus, SMT decoder is not able to find a good trans-
lation for this word.

BASELINEI BASELINE2 BASELINE3 ‘
PARL 37.7/38.5 41.5/40.3 34.7/44.2
PARL+WC 38.7/32.8 45.5/36.4 34.0/35.2
PARL+WC.., 40.5/32.2 46.4/36.3 35.7/35.1
Table 3: Percentage of BLEU-enhanced sen-

tences/percentage of BLEU-degraded sentences for
different replacement approaches compared to each
baseline separately.

We conducted another analysis to closely assess
the impact of our disambiguator module (WC ) in
improving target sentences BLEU score. We ran
our replacement setups on the proportion of Bolt-
arz sentences which contain at least one FF. FF are
predicted by PARL module. We ended up getting a
set with 796 sentences. Table 3 shows the percent-
age of BLEU-enhanced and BLEU-degraded sen-
tences in this set for each setup compared to the
baselines separately. The setup which exploits WC,
for FF identification and disambiguation is excluded
from this comparison as it does not use PARL for FF
identification. As the percentages in Table 3 indi-
cate, PARL+WC noticeably increases (decreases) per-
centage of BLEU-enhanced (BLEU-degraded) sen-
tences compared to PARL setup with respect to BASE-
LINEI and BASELINE2. As shown before (Table 1),
the last setup PARL+WC,,, did not improve BASE-
LINE3 BLEU score. However, results in Table 3
show that this setup increases percentage of BLEU-
enhanced sentences compared to PARL+WC and PARL
with respect to BASELINE3 significantly. Comparing
percentages of BLEU degraded sentences for men-
tioned setups gives the same results.

Table 4 shows some translation examples with
and without any replacement. The replacement is
done using our best-performing setup PARL+WCe,,
on Bolt-arz test set. The first four examples demon-
strate cases that FF (shown in bold) are correctly
identified and replaced with a proper MSA equiv-
alent. For instance, the word ‘zy’ in the first exam-
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ple means uniform or clothing in MSA and such as
or like in EGY. Thus, replacing the word ‘zy’ with
MSA word ‘mv]l’ which means like yields to better
translation and thereby, improves BLEU score.

In the second example, word ‘nsyb’ which means
forget in this context is replaced with MSA equiva-
lent ‘trk’ that means leave or forget. As the result,
decoder has translated phrase ‘trk +nA mn AlAxt-
IAf” into a longer phrase let us from the difference
instead of generating an incoherent translation such
as baseline.

Word ‘wHcp’ in the third example is not a pure
EGY word. However, it conveys a meaning different
from its observed senses in the phrase table. Hence,
baseline incorrectly translates this word to difficult
while the replaced setup generate the correct trans-
lation bad for the replaced MSA equivalent ‘syC’.
Hence, as shown, our approach has improved SMT
lexical choice significantly in this example.

Word ‘cwf’ in the fourth example is also correctly
identified as a FF according to context. This word is
used as noun in MSA with meanings look and ap-
pearance while it is used as a command verb (or-
der someone to look) in EGY. As we can see, our
disambiguator module has adequately replaced this
word with the verb ‘rAy’ which means to look at
or to see. As the result, the decoder has translated
this word into the word see in the English sentence
which leads to higher BLEU score compared to the
baseline translation.

Word ‘Erkp’ in the fifth example has English
equivalent battle in EGY and fest in MSA context.
Similar to the previous example, baseline selects
the incorrect translation testing. While our replace-
ment setup substitues this word with MSA equiva-
lent ‘mErkp’ which means battle and thereby, im-
proves the translation.

Sixth instance in Table 2 demonstrates the exam-
ple where our FF identifier has incorrectly identified
word ‘HAjp’ (need in this context) as FF. This word
is then replaced by the word ‘Amr’ (order) which
does not convey the original word meaning accord-
ing to context. Hence, the decoder is not able to find
a proper translation for the replaced word in the con-
text.



Ref. not private , i mean like buses and the metro and trains ... etc .
Baseline mc mlkyp xASp yEny AqSd zy AlAtwbys w+ Almtrw w+ AlqTAr . . . Alx
Replacement mc mlkyp xASp yEny AqSd mvl AlAtwbys w+ Almtrw w+ AlqTAr . . . Alx

Baseline Trans.

privately , i mean , i mean , i do not like the bus and subway train , etc .

Replacement Trans.

not privately , i mean , i mean , such as the bus and subway train , etc .

Ref. let us forget about our differences and unite .
Baseline nsyb +nA mn AlAxtIAf w+ ntwHd
Replacement trk +nA mn AlAxtIAf w+ ntwHd

Baseline Trans.

we disagree and suffering from

Replacement Trans.

let us from the difference and unify

Ref. and those who said that the girls ... indeed , i heard very bad words , why ?
Baseline w+ Ally yqwl AlbnAt . . . b+ jd smEt AlIfAZ wHcp qwy lyh kdh
Replacement w+ Ally yqwl AlbnAt . . . b+ jd smEt AlIfAZ syC qwy lyh kdh

Baseline Trans.

and to say ... very very difficult . that is why i heard

Replacement Trans.

and to say ... seriously , i heard a strong bad , why ?

Ref. at least three parties ; check them and read about them in detail
Baseline Ely AlAql three AHzAb cwf +hm w+ AqrA +hm b+ Emq
Replacement Ely AlAql three AHzAb rAy +hm w+ AqrA +hm b+ Emq

Baseline Trans.

at least three of the depth of them and with them .

Replacement Trans.

at least three parties see them and bagqir them in depth

it is waiting for disagreement between the salafis and the liberals ,

Ref. . . ..

¢ which engages them in a new battle of nonsense speech similar to
Baseline yntZr An yxtlf Alslfywn mE AllybrAlyyn f+ ydxIwA fy Erkp Ely +k jdydp mn gbyl rmy
Replacement yntZr An yxtlf Alslfywn mE AllybrAlyyn f+ ydxIwA fy mErkp Ely +k jdydp mn gbyl rmy

Baseline Trans.

it is expected that the salafis disagrees with liberals , in testing on your new prior to throw

Replacement Trans.

waiting for the salafis disagrees with liberals , in the battle for your new prior to throw

Ref. also eradication of poverty and need is very important , toqua
Baseline w+ kmAn AlqDAC Ely Alfqr w+ HAjp mhm jdA yA+ tqy
Replacement w+ kmAn AlqgDAC Ely Alfqr w+ Amr kbyr jdA yA+ tqy

Baseline Trans.

and also the eradication of poverty and need is very important ,

Replacement Trans.

and also the eradication of poverty and a very large ,

Table 4: Translation examples with and without replacement drawn from Bolt-arz test

6 Conclusion and Future Work

We presented a new approach for improving cross-
language SMT performance without any in-domain
training data by identifying false friends and replac-
ing them with a semantically similar equivalent from
the standard language. We show that our approach
improves lexical choice in EGY-EN SMT system
trained only on MSA data. We demonstrate a fully
unsupervised approach for false friend identifica-
tion and disambiguation using evidences extracted
from parallel and monolingual data. We showed
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that our best-performing setup reduces the baseline
WER and PER by the noticeable amount of 0.6%
and 0.1% respectively. One interesting line to ex-
pand this study is exploring an automatic way to
generate the list of possible equivalents for FF in-
stead of using a predefined inventory of senses. One
idea is benefiting from continues word vectors and
their similarity to extract possible word senses for a
particular FF from available monolingual corpus.
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Abstract

We present an initial experiment in integrat-
ing a disambiguation step in MT evaluation.
We show that accounting for sense distinctions
helps METEOR establish better sense corre-
spondences and improves its correlation with
human judgments of translation quality.

1 Introduction

Synonym and paraphrase support are useful means
for capturing lexical variation in Machine Trans-
lation evaluation. In the METEOR metric (Baner-
jee and Lavie, 2005), some level of abstraction
from the surface forms of words is achieved through
the “stem” and “synonymy” modules which map
words with the same stem or belonging to the
same WordNet synset (Fellbaum, 1998). METEOR-
NEXT (Denkowski and Lavie, 2010) extends se-
mantic mapping to languages other than English
and to longer text segments, using the paraphrase
tables constructed by the pivor method (Bannard
and Callison-Burch, 2005). Although both met-
rics yield improvements regarding correlation with
human judgments of translation quality compared
to the standard METEOR configuration for English,
they integrate semantic information in a rather sim-
plistic way: matching is performed without disam-
biguation, which means that all the variants avail-
able for a particular text fragment are treated as se-
mantically equivalent. This is however not always
the case, as synonyms found in different WordNet
synsets correspond to different senses. Similarly,
paraphrase sets obtained by the pivot method of-
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ten group phrases describing different senses (Apid-
ianaki et al., 2014). In these cases, a word sense dis-
ambiguation (WSD) step would help to identify the
correct synset or subset of paraphrases for a word
or phrase in context and avoid erroneous matchings
between text segments carrying different senses. We
present an initial experiment on the integration of
a disambiguation step in the METEOR metric and
show how it helps increase correlation with human
judgments of translation quality.

2 Disambiguation in METEOR

We apply the metric to translations of news texts
from the five languages involved in the WMT14
Metrics Shared Task (Machacek and Bojar, 2014)
(French, Hindi, German, Czech, Russian) into En-
glish. We disambiguate the English references — dif-
ferent for each language pair — using the Babelfy
tool (Moro et al., 2014), which performs graph-
based WSD by exploiting the structure of the mul-
tilingual network BabelNet (Navigli and Ponzetto,
2012). The assigned annotations are multilingual
synsets grouping word and phrase variants in differ-
ent languages coming from various sources (Word-
Net, Wikipedia, etc.) and carrying the same sense.
We use the WordNet literals found in the sense se-
lected by Babelfy to filter the WordNet synonym sets
used in METEOR and prevent METEOR from con-
sidering erroneous matchings as correct.! As a re-
sult, only the synonyms found in the proposed Ba-
belNet synset are kept and considered as correct by
METEOR, while synonyms corresponding to other

'In future work, we intend to apply the same filtering to
paraphrases in different languages.
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WordMet: behave, acquit, bear, deport, conduct, comport,

carry, impart, transmit, convey, channel

Babelfy: transport, carry (synset id: 00084554v)

Reference

Hypothesis

WordNet: voice, sound, vocalize, vocalise

Babelfy: voice (synset id: 00080185n)

We are carrying out research into voice and gait recognition.

We are conducting research on sound recognition.

Figure 1: Good and erroneous matchings made by the synonymy module and WSD.

senses are discarded. METEOR is a tunable metric
able to assign a weight to each of its modules in or-
der to better correlate with human judgments. Since
METEOR needs to perform a costly grid-search on 8
parameters, we did not re-optimize the weights due
to time constraints. Considering this, the following
experiments are made in a suboptimal configuration
as we can expect a re-optimization to take the impact
of the disambiguation into account more efficiently.

3 Results

In Table 1, we present the results obtained for four
different configurations: METEOR with WordNet
synonym support vs METEOR with WSD, with and
without paraphrasing. The scores correspond to
segment-level Kentall 7 correlations of the metric
with human judgments of translation quality. When
the paraphrase module is activated, WSD slightly im-
proves the correlation of the metric to human judg-
ments in all languages except for Czech. Never-
theless, it is worth noting that this would improve
METEOR’s ranking in the results of the WMT14
shared task for French-English, which would then
be ranked 4th, instead of 7th, among 18 participants.

When the WSD prediction is correct, it permits to
avoid erroneous matchings between synonyms cor-
responding to different WordNet senses. In the ex-
ample given in Figure 1, the synonymy module cre-
ates a wrong mapping between sound and voice. As
sound is not contained in the BabelNet synset se-
lected by the WSD component, this avoids establish-
ing an erroneous match. Given, however, that WSD
does not always succeed, the paraphrase module
manages to find correspondences in cases of wrong
disambiguation choices. This is the case illustrated
by the first annotation in Figure 1 where the synset
proposed by the WSD tool describes the “transport”
sense. This wrong WSD prediction establishes no
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METEOR configuration fr-en de-en hi-en cs-en ru-en
J var METEOR 406 334 420 282 329
WPA METEOR-WSD 410 335 422 278 331
METEOR 400 326 401 271 313

w/o par.

METEOR-WSD 403 321 396 .263 312

Table 1: Segment-level Kendall’s 7 correlations be-
tween METEOR and the official human judgments of the
WMT14 metrics shared task.

match but the paraphrase module that operates af-
ter WSD, manages to map carrying and conducting.
When the paraphrase module is deactivated, the cor-
relation of METEOR-WSD is lower than that of the
basic METEOR configuration. Although the disam-
biguation discards erroneous matchings made by the
synonymy module, there is no means to correct er-
roneous disambiguation choices without the para-
phrases.

4 Conclusion and Perspectives

Our results demonstrate the beneficial impact of dis-
ambiguation in MT evaluation. Accounting for sense
distinctions helps METEOR establish better qual-
ity correspondences between hypotheses and human
references. In future work, we intend to experiment
with other WSD methods such as the alignment-
based method recently proposed by Apidianaki and
Gong (2015). Moreover, we plan to integrate a WSD
step in evaluation for languages other than English.
We expect to observe substantial improvements in
languages where the synonymy module is unavail-
able and where the quality of pivot paraphrases is
lower than in English. We also plan to conduct ex-
periments using METEOR-WSD for tuning a Statis-
tical Machine Translation system and expect to ob-
serve improvements in translation quality compared
to the same system tuned with METEOR without
WSD.
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Abstract

Translation of named-entities (NEs) is an is-
sue in SMT. In this paper we analyze the er-
rors when translating NEs with a SMT sys-
tem from English to Spanish. We train on
Europarl and test on News Commentary, fo-
cusing on entities correctly recognized by an
automatic NE recognition system. The auto-
matic systems translate around 85% NEs cor-
rectly, leaving a small margin for improving
performance. In addition, we implement a
purpose-build NE translator and integrate it in
the SMT system, yielding a small but signifi-
cant improvement in BLEU score. Our anal-
ysis shows that, contrary to similar systems
translating from Chinese to English, there was
no improvement in NE translation, prompting
further work.

1 Introduction

Name-Aware SMT focuses on improving named-
entity (NE) translation. The most basic approach
is to add a devoted named-entity translation lexicon
to the training data. Pal et al. (2010) report good
results using this method. Another common solu-
tion is to replace NEs with special tags and translate
them in a postedition step. For instance, Okuma et
al. (2008) propose substituting source names with
high frequency names before applying SMT. In a
more sophisticated setting, Li et al. (2013) use hier-
archical SMT (HSMT) to integrate a specialized NE
translation system, showing relevant improvements
in overall translation quality and, particularly, in NE
translation when translating from Chinese to En-
glish. In this paper we replicate their system and an-
alyze how NEs are translated when translating from
English to Spanish. There is also related work on
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including transliteration modules (Hermjakob et al.,
2008).

2 Analysis of NE translation in SMT

In order to better understand how traditional SMT
systems perform when translating NE from English
to Spanish, we carried out a manual analysis over
525 sentences that were randomly taken from the
news-test2011 test set as given in the shared task
of the NAACL 2012 workshop on SMT, which we
used as our development set. We noted that, in some
cases, both Spanish and English text seemed to be
actual translations from a third language.

We first run the ixa-pipe-nerc Named-Entity
Recognition and Classification (NERC) system
(Agerri et al., 2014) in these sentences, and man-
ually assessed the correctness of each of the 536
NEs that it recognized, as shown in Table 1. We
then identified how each of the correctly recognized
NEs was translated in the reference translations. We
discovered that 1.61% of them were missing in the
translations, 3.63% were not translated correctly,
and another 2.82% had a meaningful but indirect
translation (e.g. a country name translated as a de-
monym). This means that, even in the human trans-
lation, only 91.94% of the NEs had a correct NE
translation in the reference translation.

We then checked the performance of a HSMT sys-
tem trained on Europarl v7 using Moses (Koehn et
al., 2007). Table 2 shows the amount of correctly
translated NEs for this system, according to their
class and number of occurrences in the training cor-
pus. The results suggest that our baseline system
performs relatively well for this task (86% overall),
and that the errors are concentrated on NEs with zero
or one occurrences (approx. 77% accuracy), with
very good performance for NEs occurring more than
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Correct Wron
Person Location Organization Misc. J
123 (22.95%) | 184 (34.33%) | 132 (24.63%) | 57 (10.63%) | 40 (7.46%)

Table 1: Distribution of NEs in the development set

Person Location Organization Misc. Total
0 occurrence 92/104 (88.46%) 40/51 (78.43%) 45/71 (63.38%) 5/10 (50%) 182/236 (77.12%)
1 occurrence 2/2 (100%) 6/7 (85.71%) 5/8 (62.5%) 1/1 (100%) 14/18 (77.78%)
>1 occurrences 17/17 (100%) 125/126 (99.21%)  49/53 (92.45%)  38/46 (82.61%) | 229/242 (94.63%)
Total 111/123 (90.24%)  171/184 (92.93%) 99/132 (75%) 44/57 (77.19%) | 425/496 (85.69%)

Table 2: NE translation accuracy in the development set for the baseline HSMT system.

Baseline HSMT

NE enhanced HSMT

BLEU score

31.01

31.21

NE translation accuracy

414 (87.34%)

415 (87.55%)

Table 3: NE translation accuracy and BLEU score in the test set

once. We analyzed the errors and found that 28.17%
of them corresponded to untranslated NEs, whereas
another 23.94% were caused by proper nouns that
were translated as common nouns even though they
should have been kept unchanged.

In conclusion, we can say that, compared to
Chinese-English (Li et al., 2013), the room of im-
provement is very small (roughly 15% vs. 30%),
and focused on OOV and hapax legomena NEs.

3 NE-enhanced HSMT system

Our approach for improving NE translation in SMT
is based on the framework proposed by Li et al.
(2013). We train a HSMT system with Moses,
adapting the training phase to treat each NE class
as a non-terminal. Given our analysis (cf. Sec-
tion 2), NE occurring more than once are left for
the HSMT to handle. In the case of NEs with zero
or one occurrences, we use a specialized module to
generate additional translations that are added to the
phrase table on the fly. This module merges the re-
sults of several independent techniques to translate
NEs: an automatically extracted dictionary, a human
dictionary, Wikipedia, leaving the NE unchanged,
a special treatment for title + person structures, a
RBMT engine and an SMT system specialized on
NE. Each translation technique is given an indepen-
dent weight, and the system is tuned to optimize
these weights.

We used news-test2012 as our test set and took
525 random sentences to measure NE translation ac-
curacy and the full test set to calculate the BLEU
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score. Table 3 shows the results obtained by this
system in comparison with the baseline system (cf.
Section 2). Our results show a small but statistically
significant improvement of 0.2 BLEU points, but no
improvement in terms of NE translation accuracy.
Note that 7.17% of the NEs were translated differ-
ently. We are currently studying the reasons of the
improvement in BLEU.

4 Conclusions and future work

In this paper we have analyzed the performance of
an English to Spanish HSMT system, concluding
that there is a small margin for improvement for
NE translation. We detected that a non-negligible
percentage is not translated as a correct NE in the
reference translation. In addition, we replicated a
successful HSMT system incorporating a NE trans-
lation module (Li et al., 2013). Our NE-enhanced
HSMT system achieves a significantly better BLEU
score, but manual analysis shows that the perfor-
mance is the same in terms of NE-translation accu-
racy. The presentation will include more details and
examples of our analysis.

Our results show that when train and test data
come from similar domains, the translation of NEs
from English to Spanish performs quite well. We
would like to explore out-of-domain settings.
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Introduction The translation of prepositions is a
difficult task for machine translation; a preposition
must convey the source-side meaning and also meet
target-side constraints. In our approach, we move the
selection of prepositions out of the translation system
into a post-processing component. During transla-
tion, we use an abstract representation of prepositions
as a place-holder that serves as a basis for the gen-
eration of prepositions in the post-processing step:
all subcategorized elements of a verb are considered
and allotted to their respective functions — as PPs
with an overt preposition or as NPs with an “empty”
preposition, e.g. to call for sth. — () etw. erfordern.
The language model and the translation rules often
fail to correctly model subcategorization in standard
SMT systems because verbs and their subcategorized
elements are often not adjacent.

We use a morphology-aware SMT system which
first translates into a lemmatized representation with
a component to generate fully inflected forms in a
second step, see Toutanova et al. (2008) and Fraser et
al. (2012). The inflection step requires the modeling
of the grammatical case of noun phrases, which corre-
sponds to determining the syntactic function. Weller
et al. (2013) describe modeling case in SMT; we ex-
tend their setup to cover the prediction of prepositions
in both PP and NPs (i.e., the “empty” preposition).
The presented work is similar to that of Agirre et al.
(2009), but is applied to a fully statistical MT system.
A detailed presentation of our work including a full
literature survey can be found in Weller et al. (2015).

Methodology To build the translation model, we
use an abstract target-language representation in
which nouns, adjectives and articles are lemmatized,
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and prepositions are substituted with place-holders.
Additionally, “empty” place-holder prepositions are
inserted at the beginning of noun phrases. To obtain
a symmetric data structure, “empty”’ place-holders
are also added to source-side NPs. When generat-
ing surface forms for the translation output, a phrase
with a place-holder preposition can be realized as a
noun phrase (empty preposition) or as a prepositional
phrase by generating the preposition’s surface form.

Figure 1 illustrates the process: for the English
input with the extra null-prepositions (column 1),
the SMT system outputs a lemmatized representa-
tion with place-holder prepositions (column 2). In a
first step, prepositions and case for the SMT output
are predicted (column 3). Then, the three remaining
inflection-relevant morphological features number,
gender and strong/weak are predicted on “regular”
sentences without place-holders, given the preposi-
tions from the previous step (column 4). In the last
step, fully inflected forms are produced based on
features and lemmas (column 5).

Abstract Representation and Prediction Features
Initial experiments showed that replacing preposi-
tions by simple place-holders decreases the transla-
tion quality. As an extension to the basic approach
with plain place-holders, we thus experiment with en-
riching the place-holders such that they contain more
relevant information and represent the content of a
preposition while still being in an abstract form. For
example, the representation can be enriched by an-
notating the place-holder with the grammatical case
of the preposition it represents: for overt preposi-
tions, case is often an indicator of the content (e.g.
direction/location), whereas for NPs, case indicates
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input lemmatized SMT output prep morph. feat. inflected gloss

0 — || PREP 0-Acc | -

what welch<PWAT> Acc Acc.Fem.Sg. Wk welche which

role Rolle<+NN><Fem><Sg> Acc Acc.Fem.Sg. Wk Rolle role

0 — || PrEP (-Nom | -

the die<+ART><Def> Nom Nom.Masc.Sg.St der the

giant riesig<ADJ> Nom Nom.Masc.Sg.Wk | riesige giant

planet Planet<+NN><Masc><Sg> Nom Nom.Masc.Sg.Wk | Planet planet

has gespielt<VVPP> - - gespielt played
played hat<VAFIN> - - hat has

in — || PREP bei-Dat | — bei for

the die<+ART><Def> Dat Dat.Fem.Sg.St der the
development || Entwicklung<+NN><Fem><Sg> Dat Dat.Fem.Sg. Wk Entwicklung development
of — || PREP 0-Gen | -

the die<+ART><Def> Gen Gen.Neut.Sg.St des of-the

solar system || Sonnensystem<+NN><Neut><Sg> | Gen Gen.Neut.Sg. Wk Sonnensystems || solar system

Figure 1: Overview of the morphology-aware translation system: prediction of prepositions, morphological features

and generation of inflected forms.

the syntactic function. Other variants contain infor-
mation of the governing verb/noun, and whether the
represented preposition is functional.

For the prediction of prepositions, we combine
the following feature types into a linear-chain CRF:
target-side context (lemmas, POS-tags), source-side
context (the aligned phrase), projected source-side in-
formation (relevant target-side words obtained based
on source-side parses) and target-side subcategoriza-
tional preferences (distributional subcategorization
information). These features address both functional
and content-bearing prepositions, but do not require
an explicit distinction between the two categories.

Experiments and Discussion We compare the ap-
proach of generating prepositions on the target-side
with a morphology-aware SMT system with no spe-
cial treatment for prepositions. When using “plain”
place-holders, there is a considerable drop in BLEU
(16.81) in comparison to the baseline (17.38). The an-
notation of case on the place-holders, the best of the
abstract representation variants, leads to an improve-
ment (17.23), but still does not surpass the baseline.
Additionally, we assess the translation accuracy of
prepositions. To allow for an automatic evaluation,
we restrict the evaluation to cases where the relevant
parts, namely the governing verb and the noun gov-
erned by the preposition, are the same in reference
and MT output. While there is a minor improvement
over the baseline, the difference is very small.

Our approach aims at assigning subcategorized
elements to their respective functions and to inflect
them accordingly which allows to handle structural
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German cases: Acc-Accusative, Nom-Nominative, Dat-Dative, Gen-Genitive.

differences in source and target language. While the
systems fail to improve over the baseline, our ex-
periments show that a meaningful representation of
place-holders during translation is a key factor. In
particular, the annotation of case helps, which can be
considered as a “light” semantic annotation. Thus,
the addition of more semantically motivated informa-
tion might lead to a more meaningful representation
and remains an interesting idea for future work.
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Abstract

We describe a N-best reranking model
based on features that combine source-
side dependency syntactical information
and segmentation and alignment in-
formation.  Specifically, we consider
segmentation-aware  “phrase  depen-
dency” features.

1 Introduction

Dependency features have been used in the
past for both direct translation and reranking
(Gimpel and Smith, 2013), usually in a string-
to-tree or a tree-to-tree configuration. These
approaches generally require the decoder to
be specifically designed to produce suitable
dependency structures on its output, or to
use a specialized target-side parser capable of
parsing potentially ungrammatical and unid-
iomatic sentences.

Instead, we investigated a tree-to-string N-
best reranking model suitable for use with a
standard phrase-based decoder and a standard
source-side dependency parser.

2 Source phrase dependency model

Dependency relations in a conventional depen-
dency tree are syntactical relations between in-
dividual words. A phrase-based decoder, in-
stead, operates in terms of phrase-pairs.

Each N-best candidate translation e; of a
source sentence f is defined by its derivation,
which describes how f has been segmented
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into source phrases, how these source phrases
have been reorederd and for each source phrase
which corresponding target phrase has been
chosen.

In our model, we focus on the quality of
phrase segmentation and reordering.

Segmentation features The source phrases
produced by the segmentation performed by
the decoder do not necessarily correspond to
subtrees in the dependency parse tree (or for-
est) g5 of the sentence. And if the dependency
parse is not projective, subtrees do not neces-
sarily correspond to contiguous phrases in any
possible segmentation.

We propose a set of multiple features which

operate at source phrase level, inspired by the
concept of phrase dependency relations of Gimpel
and Smith (2013):
Given a source phrase f; in a derivation,
we define the set of its parent phrases
PARENTS(f;) as the set of other phrases in
the same derivation which contain at least
one word that is a parent of some word in
fi. We also define the sets of left parents
PARENTS/(f;), right parents PARENTSR(f;),
left children CHILDRENL(f;) and right chil-
dren CHILDRENR(f;). Note that only word
dependency relations that cross the phrase
boundaries are relevant to the definition of
these phrase dependency relations.

We propose the following segmentation

phrase feature functions:
No parents PARENTS(fj) = @, no left par-
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ents PARENTS.(f;) = @, no right par-
ents PARENTSg(f;) = @, one-sided par-
ents PARENTS(f;) = @V PARENTS(f;) =
@. Unambiguous (no more than one) par-
ents |[PARENTS(f;)|] < 1, Unambiguous
left parents |[PARENTS (f;)] < 1, Unam-
biguous right parents [PARENTSL(f;)| < 1.
Unique parent |[PARENTS(f;)| = 1. No
children CHILDREN(f;) = @, no left chil-
dren CHILDRENL(fj) = @, no right children
CHILDRENR(f;) @, one-sided children
CHILDRENL(f;) = @ V CHILDRENg(f;) =
Q.

When phrase segmentation breaks the syn-
tactic structures these features should be able
to detect it, and the model will penalize (or per-
haps reward) different types of breakages us-
ing parameters automatically learned by tun-
ing, similarly to Cherry (2008) or Marton and
Resnik (2008).

.

Distortion features We consider pairs of
source phrases which are aligned to target
phrases that are contiguous in target order.

Let fj = (fa(i—1), fa(j)) be one of such pairs.

We define the following, mutually exclusive,
feature functions:
Unique parent-child PARENTS(f,;)) =
{fai—1)}- Unique child-parent
PARENTS(fa(]_l)) = {fa(])} Slbhngs with
unique parent Jj’ PARENTS(fy;y) =
PARENTS(f,(j_1)) = fj- None of the above.

We also define the inversion feature function
a(j — 1) > a(j) which is included both as an in-
dividual feature and in logical conjunction with
each of the feature functions defined above, re-
sulting in a total of nine boolean distortion fea-
ture functions.

These features detect reordering operations
which swap syntactic structures related by a
dependency relation between themselves or
with a shared parent structure, similarly to the
reordering operations in the synchronous depen-
dency insertion grammar of Ding and Palmer
(2005) or the syntactic coupling features of
Nikoulina and Dymetman (2008).
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Scoring model The feature functions defined
in the two previous paragraphs are combined
into a vector which is concatenated to the fea-
ture vector produced by the decoder and multi-
plied by a parameter vector 6 to obtain the final
reranking score for each candidate translation.
6 is trained using a standard machine trans-
lation tuning technique, namely K-best batch
MIRA (Cherry and Foster, 2012).

3 Experiments

Setup We tested our model in a Italian-to-
English 1000-best translation reranking task.

We trained the baseline phrase-based sys-
tem using a parallel corpus assembled from
Europarl v7 (Koehn, 2005), JRC-ACQUIS v2.2
(Steinberger et al., 2006) and additional bilin-
gual articles crawled from online newspaper
websites!, totaling 3,081,700 sentence pairs,
which were split into a 3,075,777 sp. phrase-
table training corpus, a 3,923 sp. tuning corpus,
and a 2,000 sp. test corpus.

We trained and tuned phrase-based Moses
(Koehn et al., 2007) using a ”sparse fea-
tures” configuration (the “word translation”
and “phrase translation” feature sets described
by Chiang et al. (2009)). We performed model
parameter tuning using k-best batch MIRA.
Non-projective dependency parse trees (actu-
ally, forests) for the Italian source sentences
have been computed using the transition-based
DeSR parser in tree revision configuration (At-
tardi and Ciaramita, 2007).

Significance was estimated using paired boot-
strap resampling (Koehn, 2004).

Results The results of these experiments are
shown in fig. 1.

We obtain a small but significant BLUE score
improvement.

We also performed other experiments with
slightly different feature function configura-
tions but we obtained lower scores, although
never lower than the baseline score of the de-
coder.

From a computational time point of view,
the reranker adds a negligible overhead the the

1Corriere.it and Asianews.it



Configuration BLEU-c BLEU
Moses + sparse feats. 29.02 29.82
Moses + sparse feats. + dep. feats. | 29.17 (+ 0.15) | 29.97 (+ 0.15)

Figure 1: Experimental results. BLEU and case-insensitive BLEU scores over a 2,000 sp. it-en test
corpus. Improvements are significant at the p j 0.05 significance level.

runtime of the decoder, even in our unopti-
mized Python implementation.

Conclusions and future work We identified a
set of syntactic dependency features which can
provide small but significant translation qual-
ity improvements when used in N-best rerank-
ing, at least on the Italian-to-English language
pair. We need to perform experiments on other
language pairs to determine whether this result
generalizes.

Spurious effects due to optimizer instability
that can’t be detected by our significance tests
might be present. More advanced statistical
tests such as Clark et al. (2011) should be per-
formed to increase the confidence in the valid-
ity of our result.

In addition to reranking, our feature func-
tions could also be used for decoding in a stan-
dard phrase-based or hierarchical translation
system without a significant increase of de-
coding complexity, since they decompose addi-
tively over phrases or pair of phrase adjacent in
target-order. Performing such experiment will
be a natural extension of our work.
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Abstract

Semantic knowledge has been adopted re-
cently for SMT preprocessing, decoding and
evaluation, in order to be able to compare sen-
tences based on their meaning rather than on
mere lexical and syntactic similarity. Little at-
tention has been paid to semantic knowledge
in the context of integrating fuzzy matches
from a translation memory with SMT. We
present work in progress which focuses on
semantics-based pretranslation before decod-
ing in SMT. This involves applying fuzzy
matching metrics based on lexical semantics
and semantic roles, aligning parse trees based
on semantic roles, and pretranslating matching
source sentence parts using aligned tree nodes.

1 Introduction

Semantic knowledge has been adopted recently for
SMT preprocessing, decoding and evaluation. Us-
ing such knowledge helps for comparing sentences
based on meaning rather than form, and for moving
away from the assumption of lexical and syntactic
similarity between source and target sentences. Lit-
tle attention has been paid to semantic knowledge in
the context of integrating fuzzy matches with SMT.
Fuzzy matching methods were originally designed
for translation memories, in which translators store
their translations. They are now also being used in
the context of SMT, for pretranslating parts of sen-
tences before or during decoding. These methods
pretranslate matching sentence parts through word
alignment, parse node alignment and phrase tables,
and use different degrees of linguistic knowledge.
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As far as we know, semantic knowledge has not
yet been applied for pretranslating sentence parts be-
fore decoding in SMT. Therefore, we would like to
present our work in progress, which investigates, on
the one hand, the use of semantic knowledge (lexi-
cal semantics and semantic roles) for improving the
usability of fuzzy matches, and, on the other hand,
the pretranslation of matching sentence parts using
parse nodes aligned through semantic role informa-
tion.

In Section 2, we provide background on fuzzy
matching and on semantic knowledge in SMT, in-
cluding our own previous research on fuzzy match-
ing and tree alignment. In Section 3, we pro-
vide the methodology we are currently devising for
semantics-based pretranslation. As this is work in
progress, results are not yet provided. However,
the discussion of our recent work on combination of
fuzzy matching metrics and on semantics-based tree
alignment will hint at the potential of using addi-
tional sources of linguistic information, such as lex-
ical semantics and semantic roles, for fuzzy match-
ing.

2 Background

The principle of fuzzy matching in a translation
memory can be applied to flat sequences or to trees,
and either be applied in a linguistically unaware
way or involve some degree of linguistic knowledge.
Fuzzy matching may be performed using classical
sequence comparison metrics like Levenshtein dis-
tance (Levenshtein, 1966) or other metrics specifi-
cally designed for fuzzy matching, like the ones of
Bloodgood and Strauss (2014). It may also be ap-
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plied using MT evaluation metrics like TER (Snover
et al., 2006) and Meteor (Denkowski and Lavie,
2014), which were originally designed to compare
MT output with one or more reference translations.
In this respect, it should be noted that fuzzy match-
ing is performed at the sub-segment level, as it deter-
mines matching parts, while MT evaluation is per-
formed on the segment level (Callison-Burch et al.,
2012). However, evaluating MT output at the sub-
segment level may also be helpful, for instance to
determine whether specific parts are translated better
than other ones. As for the quality of fuzzy matching
metrics, combined metrics appear to perform better
than individual ones. For instance, Vanallemeersch
and Vandeghinste (2015) combine linguistically un-
aware with syntactically oriented metrics using re-
gression trees.

In recent years, there has been increasing interest
in integrating fuzzy matches with SMT. An example
of a linguistically unaware approach is described by
Koehn and Senellart (2010), who pretranslate sen-
tences before decoding, using the word alignment
between the matching source sentence in the trans-
lation memory and its translation. Instead of using
the translation of matched parts for pretranslation,
the parts and their translation may also be used for
enriching a phrase table, as shown by Simard and Is-
abelle (2009). An example of a linguistically aware
integration approach is described by Zhechev and
van Genabith (2010), who pretranslate sentences us-
ing the node alignment between the parse trees of the
source and target sentences in the translation mem-
ory. He et al. (2011) apply linguistic knowledge on
matching parts during — instead of before — decod-
ing, for instance semantic knowledge.

As indicated above, pretranslation using fuzzy
matching involves word alignment or tree align-
ment. The latter may be based on syntactic infor-
mation in the trees, but may also involve seman-
tic roles (Vanallemeersch, 2012). Semantic roles
are increasingly being used in SMT, in various
ways. For instance, Aziz et al. (2011) and Liu and
Gildea (2010) annotate source sentences or parses
with semantic roles before training an SMT system,
while Wu and Fung (2009) compare the semantic
roles in the parse tree of a translation hypothesis
with the roles in the source parse tree. As regards
MT evaluation using semantic roles, metrics like
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MEANT (Lo and Wu, 2011) have been developed.

3 Methodology

Below, we explain the methodology we are currently
devising for semantic pretranslation. It consists of
two steps: a fuzzy matching step which makes use of
semantic knowledge (lexical semantics and seman-
tic roles), and a pretranslation step which detects
the translation of matching sentence parts through
semantics-based node alignment of source and tar-
get parse trees.

3.1 Semantics-based fuzzy matching

We apply MT evaluation metrics like Meteor and
MEANT to source sentences. Meteor allows for
matching using synonyms and paraphrases (lexi-
cal semantics), while MEANT focuses on semantic
roles. We apply a testing framework for applying
metrics to sentences in the source and target lan-
guage and comparing metrics (Vanallemeersch and
Vandeghinste, 2015). The framework takes a leave-
one-out approach: each source sentence in the trans-
lation memory is compared to all other source sen-
tences in the memory. Given some source sentence
X (with translation Y), we select the source sentence
X’ in the memory which has the highest match score
according to a metric, and compare its translation,
Y’, to Y, the desired translation. The comparison of
Y and Y’, like the comparison of source sentences,
takes place using some similarity metric like TER or
MEANT (which we refer to as the target language
metric).

We compare the performance of linguistically un-
aware fuzzy matching metrics and syntactically ori-
ented metrics on the one hand with semantically ori-
ented metrics on the other hand. When compar-
ing linguistically unaware to syntactically oriented
metrics using the above framework (Vanallemeer-
sch and Vandeghinste, 2015), we noted combined
metrics have a greater ability to predict the quality
of Y/, i.e. they are better at predicting how use-
ful the target language metric will consider Y’ for
translating X. Therefore, we expect that combining
a semantically oriented fuzzy matching metric with
other types of metrics will lead to better predictions
than using the metric in isolation. We also investi-
gate the relation between source language and target



language metrics (using the same metric in both lan-
guages may favour the source language metric over
other ones). Therefore, it may be interesting to make
use of human judgments of matches. However, as
human evaluation is labour-intensive, and the final
use of the matches lies in the integration with SMT,
it may be more interesting to focus attention to the
evaluation of the MT output produced after the pre-
translation step described in section 3.2.

We primarily focus on the language pair English-
Dutch. When applying Meteor and MEANT to
English sentences, we make use of resources such
as the set of English paraphrases in Meteor and
the syntactic-semantic parser of Johansson and
Nugues (2008), which assigns PropBank and Nom-
bank labels (Palmer et al., 2005; Meyers et al.,
2004). For Dutch, we make use of our seman-
tic role labeler described in section 3.2 and of a
Dutch paraphrase set created from English-Dutch
Moses phrase tables (Koehn et al., 2003) using the
parex tool (Denkowski and Lavie, 2010; Bannard
and Callison-Burch, 2005).

3.2 Semantics-based pretranslation

Applying tree alignment in order to link nodes be-
tween source and parse trees (Zhechev and van Gen-
abith, 2010) allows for making use of syntactic in-
formation during fuzzy matching. However, the se-
mantic load of a sentence may be expressed in dif-
ferent syntactic ways, leading to possibly different
syntactic structures in a source and parse tree. As
an example, a source sentence may contain an struc-
ture with an active verb and its translation a struc-
ture with a passive verb, leading the semantic load to
be identical, but the syntactic structure to be differ-
ent. Another example is a sentence pair in which an
English deverbal noun (say, judgment) corresponds
to a Dutch verb (beoordelen). Therefore, we per-
form tree alignment based on predicates and seman-
tic roles rather than syntactic information. To this
effect, we apply semantic role labelers to source and
target parses in the translation memory and align the
nodes of the resulting parses using a combination of
semantic information and lexical probabilities from
SMT.

A Dutch semantic role labeler trained on manu-
ally annotated data which is able to identify both
verbal and nominal predicates does not exist yet; the

63

labeler used in the SoNaR project (Schuurman et
al., 2010) only identifies verbal predicates. There-
fore, we apply crosslingual projection from English
source to Dutch target trees, parsed with Alpino (van
Noord, 2006), and train a semantic role labeler for
Dutch based on the target trees with projected infor-
mation (Vanallemeersch, 2012). This approach for
training a labeler does not require manual interven-
tion.

After applying a fuzzy matching metric to a
source sentence to be translated, we select the best
match in the translation memory, and apply a proce-
dure similar to the one of Zhechev and Van Gen-
abith (2010): we find out the translation of the
matching source parts by detecting the source nodes
overlapping with these parts and retrieving the to-
kens dominated by the aligned target nodes. In the
input to the SMT system, we mark up the source
parts with the target tokens, which allows the SMT
system to make use of the tokens during decod-
ing. We evaluate the SMT output produced using
semantics-based pretranslation through an MT eval-
uation metric such as MEANT, and compare the
SMT output to the one obtained with pretranslation
based on mere word alignment or on syntax-based
tree alignment.
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Abstract

Morphological segmentation is an effective
strategy for addressing difficulties caused by
morphological complexity. In this study, we
use an English-to-Arabic test bed to determine
what steps and components of a phrase-based
statistical machine translation pipeline benefit
the most from segmenting the target language.
We test several scenarios that differ primar-
ily in when desegmentation is applied, show-
ing that the most important criterion for suc-
cess in segmentation is to allow the system to
build target words from morphemes that span
phrase boundaries. We also investigate the
impact of segmented and unsegmented target
language models (LMs) on translation quality.
We show that an unsegmented LM is help-
ful according to BLEU score, but also leads
to a drop in the overall usage of composi-
tional morphology, bringing it to well below
the amount observed in human references.

1 Introduction

It is well known that morphological segmentation
can improve statistical machine translation (SMT).
By splitting relevant morphological affixes into in-
dependent tokens, segmentation has repeatedly been
shown to improve translation into or out of morpho-
logically complex languages. Segmentation as a pre-
processing step brings several benefits to translation:

e Correspondence with morphologically simple
languages, such as English is improved. In Fig-
ure 1, segmenting bsyArth allows one-to-one
links for “with”, “his” and “car”.
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arrived with new car

[ SX

A" b+ syArp  +h  Aljdydp

jA"  bsyArth  Aljdydp

Figure 1: An illustration of one-to-one correspondence
between Arabic morphemes and English words. Arabic
text is segmented using the PATB tokenization scheme,
and shown in Buckwalter transliteration.

e By building models over morphemes, rather
than words, data sparsity is reduced.

e By allowing morphemes with clear syntactic
roles to be translated independently, we in-
crease our expressive power by creating new
lexical translations. For example, using the
two phrase-pairs in Figure 1 results in a new
word after desegmentation (b+ syArp +h =
bsyArth), which might not have existed in the
training data.

However, there is also a price to be paid. While
morpheme-level models are more resistant to data
sparsity, they account for less context than word-
level models, make stronger independence assump-
tions, and they are less efficient statistically, in that
they devote probability mass to sequences contain-
ing illegal words. Furthermore, when segmentation
is applied to the target language, the process must be
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Denver, Colorado, June 4, 2015. (©2015 Association for Computational Linguistics



reversed at the end of the pipeline to present the out-
put in a readable format. This desegmentation step
complicates our pipeline, and can introduce errors.

Our work is inspired by two recent contributions
that attempt to combine the advantages of word- and
morpheme-based models. Luong et al. (2010) com-
bine word and morpheme views in a desegmented
phrase table, allowing morphemes to reduce spar-
sity while words expand context, and eliminating
the need for a separate desegmentation step. Their
word-boundary-aware morpheme-level phrase ex-
traction technique restricts phrase boundaries so that
no target phrase can begin with a suffix or end with
a prefix. This allows them to desegment each tar-
get phrase independently, enabling the use of both
word- and morpheme-level language models during
decoding. However, this phrase-table desegmenta-
tion approach lacks the expressive power that comes
from translating morphemes independently.

More recently, Salameh et al. (2014) propose
a lattice desegmentation approach, which comes
close to combining all the advantages of word and
morpheme views. By desegmenting a lattice that
compactly represents many translation options, and
rescoring it with a word-level language model, they
avoid restricting the phrase table. However, by de-
laying desegmentation until rescoring, the approach
loses Luong et al. (2010)’s advantage of full decoder
integration.

In this paper, we present an experimental study of
English-to-Arabic translation that is designed to bet-
ter understand the impact of various trade-offs when
translating into a morphologically segmented target
language, and to identify what aspects of segmenta-
tion are most beneficial to translation. The benefits
of segmentation can impact several components in
the SMT pipeline: the alignment model, the trans-
lation table, and the various language and transla-
tion models. Throughout this study, we investigate
the effect of varying the point in the SMT pipeline
where the segmentation is reversed. In addition,
we attempt to combine word- and morpheme-level
models within the decoder as much as possible.

Our experimental study provides three novel in-
sights. First, we present strong evidence indicating
that the ability to build target words across phrase
boundaries is the most important property of target
language segmentation. This implies that phrase ta-
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ble desegmentation, the only published desegmenta-
tion technique that has been fully integrated into de-
coding, gives up segmentation’s primary advantage.
Second, we draw a previously unobserved connec-
tion between the use of an unsegmented LM and the
decoder’s overall use of compositional morphology;
we show that although unsegmented LMs tend to in-
crease BLEU score, they also reduce the system’s
use of morphological affixes to well below that of a
human. Finally, we present the first direct compari-
son between phrase table desegmentation (Luong et
al., 2010) and lattice desegmentation (Salameh et al.,
2014).

2 Background

Our work builds on earlier studies of automatic mor-
phological segmentation and its impact on SMT.
There are many ways to segment syntactically rele-
vant affixes from stems. Supervised techniques may
either pass through an intermediate morphological
analysis (Habash et al., 2009), or directly segment
the character stream (Green and DeNero, 2012); re-
cent work on supervised Arabic segmentation fo-
cuses primarily on adaptation to dialects (Habash
et al., 2013; Monroe et al., 2014). There are also
a host of unsupervised techniques (Creutz and La-
gus, 2005; Lee et al., 2011; Sirts and Goldwater,
2013), which provide valuable language portability,
but which generally fall behind supervised methods
when labeled data is available.

There is a large body of work studying the best
form of segmentation when translating from a mor-
phologically complex source language (Sadat and
Habash, 2006; Stallard et al., 2012), where the seg-
mentation can be used as a simple preprocessing
step, or to create an input lattice (Dyer et al., 2008).
Recently, there has been a growing interest in seg-
mentation on the target side (Oflazer and Durgar
El-Kahlout, 2007), which introduces a question of
how to perform proper desegmentation (Badr et al.,
2008). El Kholy and Habash (2012) have conducted
a thorough exploration of the various segmentation
and desegmentation options for English to Arabic
translation, and we follow their work when design-
ing our test bed.



Method Unsegmented Alignment Phrase Table Omne-best  Lattice

Deseg. Deseg. Deseg. Deseg.
Desegment before: Never segment  Phrase extraction Decoding Evaluation Evaluation
Alignment model Word Morph Morph Morph Morph
Lexical weights Word Word Morph Morph Morph
Language model Word Word Word Morph Morph + Word
Tuning Word Word Word Morph Morph then Word
Flexible boundaries? | No No No Yes Yes

Table 1: Desegmentation scenarios and their effect on the components of a typical SMT system.

3 Methods

When translating into a segmented target language,
such as Arabic, the segmentation will need to even-
tually be reversed for the output to be readable. The
key insight driving our experiments is that by vary-
ing the point in the SMT pipeline where this reversal
occurs, we can alter which models are based on mor-
phemes and which are based on words, and thereby
determine which components most benefit from seg-
mentation. We assume a phrase-based SMT archi-
tecture similar to that of Moses (Koehn et al., 2007),
but most of our observations hold for hierarchical
and tree-based models. In all of our approaches,
we desegment using a mapping table that counts
the segmentations performed on the target side of
our training data. The table uses counts of word-
segmentation pairs to map each morpheme sequence
back to its most likely unsegmented word form. We
back off to manually crafted rules in cases where the
segmented form does not exist in the mapping ta-
ble (El Kholy and Habash, 2012).

Table 1 summarizes the effect of the desegmen-
tation point on the components of a typical SMT
system, indicating which components are built using
morphemes and which are built using words. Most
components should be familiar, but the last row in-
troduces flexible boundaries, a concept that will be
central to our study. This property of the phrase table
indicates whether phrases can have unattached af-
fixes at their left or right boundaries. Systems with-
out flexible boundaries cannot combine morphemes
across phrases to create translations that were not al-
ready seen in the parallel text; as such, this property
has a large impact on a system’s expressive power.

We describe our comparison systems in turn, each
corresponding to a column in Table 1. We also de-
scribe a segmented language model feature, which
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can be added to any system that uses a word-level
phrase table.

3.1 Baselines

We rely on two main baselines to evaluate what mat-
ters most in segmented models. An unsegmented
system leaves the Arabic target unsegmented and
uses an unsegmented language model. This model
suffers from data sparsity and poor English-Arabic
word correspondence. The decoder always outputs
morphologically correct Arabic words, as it does not
require a desegmentation step.

Meanwhile, one-best desegmentation segments
the Arabic target language before training begins,
and the decoder’s output is generated in segmented
form. As a post-processing step, the one-best out-
putis desegmented using a mapping table and deseg-
mentation rules. All of the component models used
during decoding are based on morphemes instead of
words. The segmented models are intended to help
alleviate data sparsity and improve token correspon-
dence. Unlike the unsegmented system, this system
requires a desegmentation step, which can produce
morphologically incorrect words.

3.2 Alignment Desegmentation

Our unsupervised alignment models (Brown et al.,
1993; Och and Ney, 2003) are sensitive both to poor
word-to-word correspondence and to data sparsity
issues. They are also at the very start of the SMT
pipeline; they impact nearly all other downstream
models. Therefore, it would be reasonable to sus-
pect that the primary benefit of segmentation could
come from improved word alignment. Alignment
desegmentation allows us to test this theory by de-
segmenting immediately after alignment.

More specifically, we segment the target side as
pre-processing. After word alignment, we replace



the segmented Arabic training data with its unseg-
mented form. Note that this desegmentation is per-
fect, as we can always refer to the original sen-
tence to resolve any ambiguities. This is accom-
panied by desegmenting alignment links by replac-
ing each morpheme index with the index of the un-
segmented word that now contains the morpheme.
As one would expect, this leads to an increase in
the number of one-to-many alignments. Training is
then resumed with these links and the unsegmented
target. Other than having its alignment model ben-
efit from segmentation, this system has the same
properties of an unsegmented system: all remain-
ing component models are based on words. Since
all morphemes are desegmented well before decod-
ing begins, it clearly cannot use flexible boundaries
to build new words.

3.3 Phrase Table Desegmentation

Our next desegmentation point is after phrase ex-
traction, resulting in a system where we segment the
text, align the morphemes, perform phrase extrac-
tion over morphemes, and then desegment the re-
sulting tables. Following Luong et al. (2010), we
first remove all phrases that have target sides with
flexible boundaries, which allows us to desegment
each remaining target phrase independently. The re-
sult is a desegmented phase table. Note that we leave
the various scores associated with each phrase-pair
unchanged.

This model is similar to alignment desegmenta-
tion described in the previous section in that all re-
maining components and operations are based on
words. However, there are two key differences.
First, the lexical weights of each phrase are calcu-
lated over morphemes rather than words. Second,
the phrase-length limit is applied at the morpheme
level rather than at the word level. We use this sce-
nario to test the utility of morpheme-level lexical
weights.

This system is related to, but not identical to the
work of Luong et al. (2010). Their system actu-
ally merges tables from an unsegmented model with
those from phrase table desegmentation; they inves-
tigate a number of methods to combine the scores
across tables. In addition, they incorporate both seg-
mented and unsegmented language models, which is
a difference that we address in the next section.
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3.4 Segmented LM Scoring in Desegmented
Models

Both alignment desegmentation and phrase table
desegmentation rely on an unsegmented language
model, as they naturally decode directly into a de-
segmented target language. We experiment with
augmenting both of these systems with an extra fea-
ture: a segmented language model. For each Arabic
target word, we add its segmented form to the phrase
table as an extra factor (Koehn and Hoang, 2007).
We insert this factor after phrase extraction, so it has
no impact on alignment or the calculation of transla-
tion model scores. The factor merely gives us access
to the segmented morphemes during decoding. The
decoder uses this factor to apply a segmented lan-
guage model during each hypothesis extension.

Although the segmented language model spans
a shorter context, its scores benefit from the re-
duced data sparsity that comes from modeling mor-
phemes. In particular, it can unveil whether at-
taching two hypotheses is grammatical. For ex-
ample, the unsegmented language model score for
the consecutive target phrases [kl m$AkInA] “all
our problems” [wxIAfAtnA] “and conflicts” is rel-
atively low. Scoring their segmented representation
[kl m$AKkl +nA] [w+ xIAfAt +nA] leads to a more
optimistic score, as the segmented language model
assesses the morpheme sequence using 4-grams and
trigrams, while the unsegmented model scores the
word sequence with unigrams and bigrams.

3.5 Lattice Desegmentation

We re-implement the Lattice Desegmentation tech-
nique proposed by Salameh et al. (2014), and place
it in Table 1 for reference. A system built entirely
over morphemes outputs a pruned lattice that com-
pactly represents its hypothesis space. This lattice
is then desegmented by composing it with a finite
state transducer that maps morpheme sequences into
words. By rescoring the desegmented lattice with
new features, the system benefits from having both
a segmented and desegmented view of the search
space. The added features include discontiguity fea-
tures, as well as an unsegmented language model.
The discontiguity features indicate whether a deseg-
mented word came from one contiguous morpheme
sequence, two discontiguous sequences, or more.



4 Experimental Setup

We train our English-to-Arabic system using 1.49
million sentence pairs drawn from the NIST 2012
training set, excluding the UN data. This train-
ing set contains about 40 million Arabic tokens be-
fore segmentation, and 47 million after segmenta-
tion. We tune on the NIST 2004 evaluation set
(1353 sentences) and evaluate on NIST 2005 (1056
sentences). We also report a second test, which
tunes on the NIST 2006 evaluation set (1664 sen-
tences) and evaluates on NIST 2008 (1360 sen-
tences) and 2009 (1313 sentences). NIST 2004 and
2005 datasets have sentences from newswire, while
NIST 2006/2008/2009 have sentences drawn from
newswire and the web. These evaluation sets are in-
tended for Arabic-to-English translation, and there-
fore have multiple English references. As we are
translating into Arabic, we select the first English
reference to use as our source text, and use the Ara-
bic source as our single reference translation.

4.1 Segmentation

For Arabic, morphological segmentation is per-
formed by MADA 3.2 (Habash et al., 2009), us-
ing the Penn Arabic Treebank (PATB) segmentation
scheme as recommended by El Kholy and Habash
(2012). For both segmented and unsegmented Ara-
bic, we further normalize the script by converting
different forms of Alif and Ya to bare Alif and dot-
less Ya. In order to generate the desegmentation
table, we analyze the MADA segmentations from
the Arabic side of the parallel training data to col-
lect mappings from morpheme sequences to surface
forms.

4.2 Systems

We align the parallel data with GIZA++ (Och et
al., 2003) and decode using Moses (Koehn et al.,
2007). The decoder’s log-linear model includes a
standard feature set. Four translation model features
encode phrase translation probabilities and lexical
weights in both directions. Seven distortion features
encode a standard distortion penalty as well as a
bidirectional lexicalized reordering model. A KN-
smoothed 5-gram language model is trained on the
target side of the parallel data with SRILM (Stol-
cke, 2002). Finally, we include word and phrase
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penalties. The decoder uses Moses’ default search
parameters, except that the maximum phrase length
is set to 8. The decoder’s log-linear model is tuned
with MERT (Och, 2003). Following Salameh et al.
(2014), the tuning of the re-ranking models for lat-
tice desegmentation is performed using a lattice vari-
ant of hope-fear MIRA (Cherry and Foster, 2012);
lattices are pruned to a density of 50 edges per word
before re-ranking. We evaluate our system using
BLEU (Papineni et al., 2002).

5 Results

Table 2 shows the results of our translation quality
experiments. In previous sections, we mentioned
several factors that might contribute to the quality
improvements found with segmented models. Be-
yond the raw ranking of systems, we can use the
commonalities and differences between these sys-
tems to draw some broad conclusions of what as-
pects of a segmented system are most important.

5.1 Decoder Integration

Lattice Desegmentation performs best overall,
which is not entirely surprising, as it has access to
all of the information present in the other systems.
Notably, it outperforms Phrase Table Desegmenta-
tion; this is the first time to our knowledge that the
two have been compared directly.

The main disadvantage of Lattice Deseg, which
is not present in Alignment and Phrase Table De-
seg, is the lack of decoder integration of its unseg-
mented view of the target; instead, it is handled by
re-ranking a lattice in post-processing. In fact, the
top two systems, Lattice Deseg and 1-Best Deseg,
are also the only two systems without access to un-
segmented information in the decoder. This suggests
that the benefits of decoder integration are not suffi-
cient to overcome the trade-offs currently demanded
by integration.

5.2 Flexible Boundaries

What is perhaps more surprising is that neither
Alignment Deseg nor Phrase Table Deseg are able
to match the 1-best Deseg scenario. With the ben-
efit of added segmented language models, both of
these systems have access to almost all 1-best De-
seg’s information and more, yet they fail to match



Model mt05 | mt08§ mt09
Unsegmented 328 | 150 19.0
Alignment Deseg. 334 | 154 191
with Segmented LM 337 | 154 194
Phrase Table Deseg. 334 | 155 193
with Segmented LM 336 | 156 197
1-best Deseg. 337 | 157 202
without flexible boundaries 329 | 154 194
Lattice Deseg. 343 | 164 205

Table 2: BLEU scores on on each of the methods described in section 3 . MTOS5 results are tuned using NIST MT04.
Results on NIST MT08 and MT09 datasets are tuned on MT06 dataset.

its translation quality in every test. What both sys-
tems lack with respect to 1-best Deseg is flexible
phrase boundaries, which allow the creation of new
translations across phrases. To confirm the impor-
tance of flexible boundaries, we created a new ver-
sion of 1-best Deseg by pruning all phrases with
flexible boundaries from the phrase table, and then
re-tuning. The resulting system loses 0.6 BLEU on
average, which is more than half of the 0.9 differ-
ence between Unsegmented and 1-best Deseg. We
conclude that flexible boundaries are one of the most
important aspects of a segmentation scenario.

5.3 Language Models

Both Align Deseg and Phrase Table Deseg show
consistent, albeit small, improvements from the
addition of a segmented LM. In order to assess
the importance of the unsegmented LM, we con-
sider 1-best Deseg without flexible boundaries, and
Phrase Table Deseg with Segmented LM. These
two systems have exactly the same output space, as
their respective phrase tables are constructed from
morpheme-level phrase extraction followed by prun-
ing flexible boundaries. Furthermore, both systems
use a segmented LM and lexical weights built over
morphemes. Their only differences are that Phrase
Table Deseg uses an unsegmented LM and unseg-
mented tuning, resulting in BLEU scores that are
higher by 0.4 on average. Similarly, a unsegmented
LM is one of the main differences between Lattice
Deseg and 1-best Deseg, with the others being un-
segmented tuning and discontiguity features. Al-
though we have not isolated the unsegmented LM
perfectly, these results indicate that it is valuable.
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5.4 Lexical Weights

The primary difference between Alignment De-
seg and Phrase Table Deseg is that the latter uses
morpheme-level lexical weights.! Without a seg-
mented LM, we see a 0.1 average BLEU advan-
tage for Phrase Table Deseg, increasing to 0.2 when
a segmented LM is included. Unfortunately, these
improvements are not consistent across test sets.
This suggests that there may be an advantage from
morpheme-based lexical weights, but it is certainly
not large.

6 Analysis

Our translation quality comparison indicates that
flexible boundaries are the most important property
of a target segmentation scenario, so we examined
them in greater detail. Phrase pairs with flexible
boundaries account for roughly 12% of phrases used
in the final output of our 1-Best Deseg system.

We performed a detailed analysis to see if the flex-
ible boundaries were used to produce novel words;
that is, words that were not seen in the target side of
the training data. Roughly 3% of the desegmented
types generated by the 1-best-desegmentation sys-
tem are novel. We randomly selected 40 novel words
from each test set to analyze manually. First, none
of these desegmented words appear in the refer-
ence, and therefore, they have no positive impact on
BLEU. Furthermore, 64 of the 120 selected words
violate the morphological rules of Arabic. Looking
instead at the novel words in the reference, only 115

IThe other difference is the calculation of the phrase length
limit, which favors Alignment Deseg, as its word-based limit
allows more phrases overall.



Model mt05 mt08 mt09
Reference 159% 18.1% 18.9%
Unsegmented 120% 12.2% 12.6%
Alignment Deseg. 11.6% 11.0% 11.8%

with Segmented LM 11.7% 11.2% 12.0%
Phrase Table Deseg. 11.3% 10.1% 11.2%

with Segmented LM 11.6% 10.5% 11.4%
1-best Deseg. 16.1% 182% 19.2%

without flexible boundaries 14.2% 14.7% 15.4%
Lattice Deseg. 10.0% 11.5% 12.2%

Table 3: Percentage of words in the SMT output that have non-identity morphological segmentations.

reference words could not be found in the Arabic
side of our training data. Of these, only 37 could be
could be constructed from morphemes found in our
training set. This means that there is only a small
number of opportunities to better match the refer-
ence by producing a novel word. Together, these
two pieces of analysis strongly suggest that the ad-
vantage of flexible boundaries comes from creating
new translation options for a given source sequence,
rather than from creating novel words.

We were able to compute statistics on flexible
boundaries for only two of our systems, because
the other three disallow them entirely. In order
to characterize all five systems, along with the hu-
man references, we measured overall affix usage
by counting decomposable words. Table 3 shows
the percentage of words in the Arabic translations
that have non-identity morphological segmentations
when processed by MADA. In terms of affix usage,
the 1-best Deseg method tracks the Reference very
closely, while all remaining scenarios show a sub-
stantial drop in usage of decomposable words. Most
surprisingly, Lattice Deseg is included in this group,
even though its BLEU scores are higher than 1-best
Deseg. Since 1-Best Deseg’s most prominent char-
acteristic is its lack of an unsegmented LM, this sug-
gests that unsegmented LMs may dramatically im-
pact affix usage. Note that flexible boundaries do
not (fully) account for the gap in affix usage, as the
1-best Deseg still has noticeably higher usage of de-
composable words, even with flexible boundaries re-
moved. This implies that Lattice Deseg and the var-
ious fully integrated desegmentations could be im-
proved by attempting to directly manipulate their us-
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age of decomposable words, perhaps through a spe-
cialized feature.

As a final piece of analysis, we also investigated
the impact of different n-gram orders for segmented
LMs. Most of the scenarios proposed here add an
unsegmented LM to a segmented system, and the
most obvious advantage of an unsegmented LM is
that it accounts for more context than a segmented
LM. However, this only holds if we force both LMs
to have the same n-gram order. To see if higher or-
der segmented LMs would improve translation, we
experimented with different n-gram orders for our 1-
best Deseg system. As we increased the segmented
n-gram order from 5 to §, we saw no improvement
over the 5-gram LM used throughout this paper.
In fact, BLEU score began to drop after n = 6.
This suggests that the advantage of adding an un-
segmented LM cannot be emulated by increasing the
order of the segmented LM.

7 Conclusion

We have presented an experimental study on trans-
lation into segmented target languages by creating
models that apply desegmentation at different points
in the translation pipeline. We have provided ev-
idence that access to phrases with flexible bound-
aries is a crucial property for a successful segmenta-
tion approach. We have also examined the impact
of unsegmented LMs, showing that although they
are helpful according to BLEU, they also hinder the
generation of morphologically-complex words. This
suggests that current methods could be improved by
attempting to increase their use of morphological af-
fixes.
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Abstract

We describe 2 improvements to Chinese-
English PropBank predicate-argument struc-
ture alignment. Taking advantage of the
recently expanded PropBank English nomi-
nal and adjective predicate annotation (Bo-
nial et al., 2014), we performed predicate-
argument alignments between both verb and
nominal/adjective predicates in Chinese and
English. Using our alignment system, this
increased the number of aligned predicate-
argument structures by 24.5% on the par-
allel Xinhua News corpus. We also im-
proved the PropBank alignment system using
expectation-maximization (EM) techniques.
By collecting Chinese-English predicate-to-
predicate and argument type-to-argument type
alignment probabilities and iteratively im-
proving the alignment output using these
probabilities on a large unannotated parallel
corpora, we improved the predicate alignment
performance by 1 F point when using all auto-
matic SRL and word alignment inputs.

1 Introduction

With the growing interest in building semantically-
driven machine translation (MT) systems/evaluation
metrics (Carpuat and Wu, 2007; Wu and Fung,
2009b; Wu and Fung, 2009a; Lo and Wu, 2011; Lo
et al., 2013; Ma, 2014), the need for a comprehen-
sive and high performing semantic alignment system
has become more pressing. While there are finer
grained representations such as FrameNet (Baker
et al., 1998) and Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), PropBank (Palmer
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arg type |Arg0 Argl Arg2 Arg3 Arg4d V
Arg0 | 1610 79 25 - - 9
Argl | 432 2665 128 11 - 142
Arg2 43 310 140 8 3 67
Arg3 2 14 21 7 - 4
Argi 1 37 9 3 6 4
v 25 28 22 1 3278

Table 1: Chinese argument type (column) to English ar-
gument type (row) alignment counts using gold SRL and
word alignment annotated Xinhua News data

et al., 2005) semantic representation has been popu-
lar in the MT community partly because of the avail-
ability of large quantity of annotated data in multiple
languages, enabling the development of accurate au-
tomatic semantic role labeling systems.

While the argument types defined in PropBank
were intended to be self-contained and independent
of the predicate or language, as Fung et al. (2007),
Choi et al. (2009), and our previous work (Wu and
Palmer, 2011) have demonstrated, assuming align-
ment between arguments of the same type is insuf-
ficient. Table 1 shows the alignment distribution of
the core argument types between Chinese and En-
glish. While ARGO and ARG1 alignments are rel-
atively deterministic, alignment involving ARG2-5
and adjunct argument types (not shown) are much
more varied. Part of this alignment variety is caused
by differences in argument annotation guidelines
between English and Chinese, but another part is
caused by verb predicates being nominalized in the
translation. Our previous work tried to address the
first issue by using aligned words in the argument
span (instead of the argument type) to align argu-

Proceedings of SSST-9, Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 74-82,
Denver, Colorado, June 4, 2015. (©2015 Association for Computational Linguistics



ments between English and Chinese. But since
we had only considered alignments between verb
predicates and their arguments, around 27% of the
time, verb predicates are aligned somewhat awk-
wardly. Another issue we had encountered is, since
we solely relied on word alignment input, the ap-
proach is not very reliable for aligning short argu-
ments (since a single word alignment error can be-
come critical).

In this work, we attempt to address both of
these issues. With the recently expanded Prop-
Bank English nominal and adjective predicate anno-
tation (Bonial et al., 2014), we are now able to per-
form predicate-argument alignments between both
verb and nominal/adjective predicates in Chinese
and English. With our alignment system, this in-
creased the number of aligned predicate-argument
structures by 24.5% on the parallel Xinhua News
corpus and allowed more semantically similar pred-
icates to be aligned, regardless of the syntactic form
of the predicates. We also propose an extension to
our predicate-argument alignment system by factor-
ing in predicate-to-predicate and argument type-to-
argument type alignment probabilities when making
alignment decisions. Combined with expectation-
maximization (EM) techniques that iteratively re-
fines these probabilities, we achieved an 1 F1 point
predicate alignment performance improvement us-
ing all automatic (SRL and word alignment) inputs.
More over, even though the alignment probabilities
were generated from automatic system inputs, in
some instances, we were able to improve alignment
performances using gold SRL inputs.

2 Related Work

Resnik (2004) was one of the earlier works propos-
ing semantic similarity (with a looser definition of
semantically similar/equivalent phrases) using tri-
angulation between parallel corpora. This was ex-
tended later by Madnani et al. (2008a; 2008b)).
Marecek (2009) proposed aligning tectogrammati-
cal trees, where only content (autosemantic) words
are nodes, in a parallel English/Czech corpus to
improve overall word alignment and thereby im-
prove machine translation. Pad6 and Lapata (2005;
2006) used word alignment and syntax based argu-
ment similarity to project English FrameNet seman-
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tic roles to German.

Fung et al. (2007) demonstrated that there is
poor semantic parallelism between Chinese-English
bilingual sentences.  Their technique for im-
proving Chinese-English predicate-argument map-
plng (ARGChinese,i = ARGEnglish,j) consists of
matching predicates with a bilingual lexicon, com-
puting cosine-similarity (based on lexical transla-
tion) of (only) core arguments and tuning on an
unannotated parallel corpus. Choi et al. (2009)
showed how to enhance Chinese-English verb align-
ments by exploring predicate-argument structure
alignment using parallel PropBanks. The system,
using GIZA++ word alignment, deduced alternate
verb alignments that showed improvement over pure
GIZA++ alignment.

Wu and Fung (2009b) was one of the first to
use parallel semantic roles to improve MT system
output. Given the outputs from Moses (Koehn et
al., 2007), a machine translation decoder, they re-
ordered the translations based on the best predicate-
argument alignment. The resulting system showed
a 0.5 point BLEU score improvement even though
the BLEU metric often discounts improvement in
semantic consistency of MT output. To address
this issue, Lo and Wu (2011) proposed MEANT, a
predicate-argument structure alignment based ma-
chine translation evaluation system that better cor-
relates with human MT judgment. Lo et al. (2013)
later showed that tuning an MT system against this
metric produced more robust translations. Similar
ideas on semantically coherent MT have been ex-
plored by Ma (2014), where the system attempts
to fuse multiple MT translations using predicate-
argument alignment metrics, though the results did
not show improvement with the BLEU metric.

More recently, Banarescu et al. (2013) have pro-
posed Abstract Meaning Representation (AMR) as
an alternative/intermediary representation for MT
that may improve the semantic coherency of the out-
put. While the project have only recently gained
more traction, an AMR-based MT would likely re-
quire aligning AMR concepts between the 2 trans-
lation languages. Since AMR is based to a large
degree on PropBank SRL, improving SRL align-
ment should transfer accordingly to improvements
in AMR alignments as well.



3 Aligning PropBank
Predicate-Arguments

Given a parallel sentence pair, we attempt to find the
corresponding PropBank predicate-argument align-
ments between the sentences as illustrated by fig-
ure 1.

3.1 Baseline approach

We first describe our baseline predicate-argument
alignment approach (Wu and Palmer, 2011): ar-
gument alignments are based on the proportion of
aligned words between them, predicate-argument
structure alignments are based on the alignment
quality of their arguments. We assume there can
be a many-to-many argument alignment but only a
one-to-one predicate-argument structure alignment
between the 2 languages.

Formally, we denote a; . and a; . as arguments in
Chinese and English respectively, A7 . and A, as
a set of mapped Chinese and English arguments re-
spectively, W; . as the words in argument a; ., and
mape(a;c) = Wi, as the word alignment function
that takes the source argument and produces a set
of words in the target language sentence. We define
precision as the fraction of aligned target words in
the mapped argument set:

[(Uiermape(aic)) N (UjesWie)l
|Uiermape(aic)|

Pre= ey

and recall as the fraction of source words in the
mapped argument set:

. W
Ry = w )
sz' |ch,
We then choose the Ay . that optimizes the F1-score
of P, and R,:

2 PI c’ R[ c
Ic arg mjax PLC T RI’C I,c ( )

Finally, to constrain both the source and target argu-
ment sets, we optimize:

2-Fr.-Fy
Arce,Aje = arg max ————>¢

I,J FI,c+FJ,e 7 ( )
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To measure similarity between a single pair of
source, target arguments, we define:

|mape(a; o) U W, |
_ ) 7,

Py =
’ Imape(aic)]
c je) U W’L c
R, = Imapda) Ul
‘mapc<a]78)|

While our work has demonstrated that this ap-
proach can produce better predicate alignments than
word alignment alone, it can also become confused
when there are multiple predicates in a sentence that
have shared words in their argument spans, espe-
cially when faced with word alignment errors. Fig-
ure 2 shows one such example: because the au-
tomatic word aligner erroneously aligned both H
%E/self-provide and #15%/construct to build (shown
with dotted lines), as well as missed the correct word
alignments of H % to Using its own, B% is in-
stead aligned to build, since they share more aligned
words amongst the arguments. However, since
the Chinese predicate % i%/construct often aligns
to build, and ARG1 in Chinese frequently maps to
ARG1 in English but rarely maps to ARGM-MNR, an
alignment framework that considers these likelihood
can potentially correct these types of misalignment.

3.2 Building a alignment probability model

To enhance our baseline approach, we first collect
alignment probabilities between a Chinese predicate
and its argument types and a English predicate and
its argument types. Specifically, we are interested in
the following:

p(pred;e|pred;.) : given a Chinese predicate in the
mapping, the probability of an English predi-
cate

p(ayclak,c, pred; ¢, pred;.) : given an aligned Chi-
nese & English predicate pair and the Chinese
argument type, the probability of an English ar-
gument type

In addition to producing a better alignment output,
these 2 probabilities (along with probabilities in the
English-to-Chinese alignment direction) may also
be used to compute the semantic similarity of a pair
of parallel sentences.
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Figure 1: Chinese predicate-arguments mapping example
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one place acrosscanal  big bridge

built

a large bridge spanning the canal
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Figure 2: Bad predicate-argument alignment (solid lines) caused by word alignment (dashed lines) error

3.2.1 Predicate-to-predicate mapping
probability

There are over 20,000 Chinese predicates and
over 10,000 English predicates (in OntoNotes 5.0
PropBank frame files). Even on a large cor-
pora, fregmap(predic,pred;.) will be low or
zero for many predicate pairs when producing
a probability estimate. We chose the Sim-
ple Good-Turing smoothing method (Gale, 1995)
to smooth the seen mapping frequency counts
and estimate the total unseen mapping probability

Zjefreqmap (pred;,c,pred; e)=0 p(predj,e |predi,0) :

3.2.2 Argument-to-argument mapping
probability

Since  fregmap(pred;e|pred;.) is  sparse,
fregmap(arelpred; ¢, pred; e, arc) will also be
sparse. We address this using absolute discount-
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ing (Chen and Goodman, 1996) to smooth

plarelar.c, pred;c, pred;e) =
max(freq(a;c|agc, pred; e, pred;.) — d,0)
> freq(arelag,c, pred; e, pred; )
+ (1= X) - Prackoff(ase)

with a few different back-off probability distribu-
tions:

(@) p(aielage, pred;c): given the Chinese predi-
cate and argument type, the probability of an
English argument type

(b) p(aie|ak.c,pred;e): given the English predicate
and Chinese argument type, the probability of an
English argument type

(c) p(ajelak,): given the Chinese argument type,
the probability of an English argument type

(a) and (b) can be further smoothed using (c), while
(c) can be computed directly from the frequency



count over a large corpus since there are less than
30 argument types for either Chinese or English. To
choose between (a) and (b) as the back-off proba-
bility distribution, we compute the cosine similarity
between (a), (¢) and (b), (c) and choose the smaller
of the 2 (i.e., choose the more specific distribution
that’s less similar (more informative) to the base dis-
tribution).

3.3 Probabilistic alignment

With the probability model described previously, we
attempted to improve predicate-argument alignment
by integrating the model with the alignment algo-
rithm. Because the model is computed using auto-
matic system output, we wanted to ensure the align-
ment algorithm does not overly rely on it. Therefore
we modify equation 5 to:

Pl =(1— 6+ - w(ae|ake, pred;c,pred;e)) Py
Ry =(1 — B+ B - w(agclaie, pred;c, pred;e)) Ry
(6)

where 0 < 8 < 1 and

w(a) = <)
Zk plax) - plax)

so that the expected value of w(ay), E(w(ag)) = 1.
If P/, > 1or R}, > 1, wechange P, = 1, R}, =
1. We also update equation 3 to take into account
predicate-to-predicate mapping likelihood:

(N

Fi:c =1 —a+a-wpredjc|pred;c))F;.

(8)
Fj{,e = (1 —a+a- - wpred;c|pred;e))Fje

We choose o and ( (through grid-search) to
maximize the sum of the alignment score of all
the predicate-argument pairs in the corpus. This
is analogous to the maximization step of the ex-
pectation—-maximization (EM) algorithm. In our
case, the expectation step is computing the predi-
cate/argument alignment probabilities.

4 Experiment

4.1 Setup

We used a portion of OntoNotes Release 5.0' (with
additional nominal/adjective predicates) that has

'LDC2013T19
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Chinese-English word alignment annotation? as the
basis for evaluating semantic alignment. This com-
poses around 2000 Xinhua News and 3000 broad-
cast conversation (CCTV and Phoenix) sentence
pairs. Merging the 2 resources result in parallel
sentences with gold Treebank, gold PropBank, and
gold word alignment annotations, which we dub the
triple-gold corpus.

To generate reference predicate-argument align-
ments, we ran the alignment system with a cutoff
threshold of F,.. < 0.4 (i.e., alignments with F-
score below 0.4 are discarded) using all gold an-
notations. We selected a small random sample of
the Xinhua output and found the output to have both
high precision and recall, with only occasional dis-
crepancies caused by possible word alignment errors
(and was no worse than inter-annotator disagree-
ments). For predicate-argument alignments using
automatic word alignment input, we chose a cutoff
threshold of F¢ . < 0.2.

We trained our Chinese SRL system (Wu and
Palmer, 2015) with Berkeley Parser output on Chi-
nese PropBank 1.0 (all Xinhua News, excluding files
in the triple-gold corpus). We trained our English
SRL system (same architecture as the Chinese SRL
system) with Berkley parser output on OntoNotes
Release 5.0 (excluding files in the triple-gold cor-
pus) and BOLT phase 1 data (which also includes
nominal annotation). We use the Berkeley aligner
trained on a 1.6M sentence parallel corpora col-
lected from a variety of sources®. These same cor-
pora were also used to build our probabilistic align-
ment model.

4.2 Alignment with Nominal/Adjective
Predicates

We evaluated the impact of alignment with the addi-
tion of non-verb predicates on Xinhua News, as the
broadcast conversation sections lack Chinese nom-
inal annotations. In table 3, we restrict alignments
to between only verb predicates, verb predicates
with the addition of Chinese nominal predicates, and

2L DC2009E83

SLDC2002E18, LDC2002L.27, LDC2003E07,
LDC2003E14, LDC2004T08, LDC2005E83, LDC2005T06,
LDC2005T10, LDC2005T34, LDC2006E24, LDC2006E26,
LDC2006E34, LDC2006E85, LDC2006E86, LDC2006E92,
LDC2006E93



pred. type | Vo-Ve Ng-Ve Ve-Ne N.-N. | total

verb only | 4879 - - - 4879
+Ch. nom. | 4762 274 - - 5036
+En. nom. | 4849 - 384 - 5233

all pred. | 4759 239 314 760 |6072

Table 2: Predicate-argument mapping counts on Xinhua
News, where only verb predicate annotations were avail-
able or verb and nominal/adjective predicate annotations.
V. represents Chinese verb predicates, [N, represents En-
glish nominal/adjective predicates

verb predicates with the addition of English nomi-
nal/adjective predicates, as well as allowing all pred-
icate types.

The results show that the addition of nominal
and adjective predicates for both English and Chi-
nese increased the overall number of aligned Chi-
nese and English predicate-argument structures by
24.5%. While a large portion of the additional align-
ments are of the non-verb to non-verb types, the
availability of the non-verb predicates also allowed
some previously unaligned verb predicates to align
to non-verb predicates. This increased the total num-
ber of aligned Chinese verb predicates by 4.0% and
aligned English verb predicates by 2.4%. Also,
some verb predicates that were previously forced to
align to another verb predicate have now found a
more semantically similar non-verb predicate (ev-
ident by the decreased overall number of verb-to-
verb alignments).

4.3 Alignment Probability Model

We produced the alignment probability model using
the 1.6M sentence pair corpus, The EM algorithm
converged after 2-3 iterations, as the alignments did
not vary wildly with different « and (3 values (opti-
mal a = 0.15, 8 = 0.1). In general, the choice of
(3 had a smaller impact on the overall mapping score
of the corpus than a.

The results, detailed in table 3, show that using
automatic SRL and word alignment, the probabil-
ity model improved semantic alignment by about 1
F point on both Xinhua News (includes non-verb
predicates) and broadcast conversation (verb pred-
icates only for Chinese) sections. These improve-
ments were found to be statistically significant*

4SIGF (www.nlpado.de/%7esebastian/software/sigf.shtml),

79

(p < 0.01). Surprisingly, the probability model
(which was extracted from automatic SRL output),
was able to improve the performance of the system
using gold standard SRL input by 0.78 F point on
broadcast conversation (also statistically significant
w/ p < 0.01). For Xinhua News, the already very
high baseline (92.40 F1) likely prevented any addi-
tional improvements.

With gold word alignment input, however, the
probability model was not able to improve the re-
sults of either corpus section, even though the per-
formances are lower than when using gold SRL in-
puts. This is not surprising as the probability model
can suggest more semantically coherent alignments
when faced with word alignment errors, but does not
actually correct any input SRL mistakes made by au-
tomatic systems.

We also experimented with building the proba-
bility model using only 10% of the data. The im-
provements were generally 0.1-0.3 F points less than
using the full dataset. The optimal o = 0.15 and
6 = 0.1 did not change.

Inspecting the output, we found the probabilistic
alignment system was able to correct the bad align-
ment example in figure 2 (corrected in figure 3),
as the aligner preferred the more probable ARG1
to ARG1 alignment between H% and use instead
of the less probable ARG1 to ARGM-MNR align-
ment between H% and build. This also allowed the
correct alignment between & %/construct and build
(also boosted by the increased predicate-to-predicate
alignment probability).

While the predicate alignment performance dif-
ference between using automatic SRL and gold stan-
dard SRL input is around 7 F points, there is a much
larger gap in core argument alignment performance:
on Xinhua News, automatic SRL based output pro-
duced a 73.83 F-score While this is comparable to
Fung et al. (Fung et al., 2007)’s 72.5 (albeit with
different sections of the corpus and based on gold
standard predicates from a bi-lingual dictionary), it’s
18.27 F points lower than using gold standard SRL
based output. When including all arguments, auto-
matic SRL based output achieved 69.14% while the
gold SRL based output achieved 87.56%. The per-
formance on broadcast conversation shows a similar

using stratified approximate randomization test (Yeh, 2000)



corpus system predicate pair core argument label | all argument label
p r fl p r fl p r fl
baseline | 86.93 82.56 84.69 |80.27 67.04 73.06 |75.14 62.53 68.26
+prob model | 87.97 83.47 85.66 | 81.07 67.78 73.83|76.64 62.98 69.14
Xinhua gold SRL | 93.67 91.16 92.40|94.45 89.93 92.13]90.71 84.63 87.56
News +prob model | 93.02 90.38 91.68 | 93.91 89.54 91.67 |90.62 83.26 86.78
gold WA | 90.83 87.42 89.09 |83.16 71.55 76.92|80.42 71.11 75.48
+prob model | 91.21 87.45 89.29 | 83.48 71.57 77.07 | 80.84 70.64 75.40
baseline | 80.45 78.50 79.46 |72.87 57.77 64.45|64.88 51.89 57.66
+prob model | 81.52 79.51 80.50 | 73.75 58.40 65.18 | 66.28 52.27 58.45
broadcast gold SRL | 89.50 85.29 87.34|90.21 82.19 86.02|82.61 75.20 78.73
conversation | +prob model | 90.17 86.15 88.12 |90.82 82.93 86.70 | 84.11 75.25 79.43
gold WA | 87.02 86.66 86.84|78.31 65.11 71.10|74.85 64.94 69.55
+prob model | 87.17 86.61 86.89 | 78.26 64.80 70.89 | 74.96 64.20 69.16

Table 3: Predicate-argument mapping improvements using the probability model

Vv
. | BE|RE BIE T — EBEET K H

Su steel also |self provide| fund

A

v

construct

one place acrosscanal  big bridge

The Jiangsu Steel ... |Using| |its own funds, it also built a large bridge spanning the canal

Vv

Figure 3: Corrected alignment using the probability model

drop between the 2 SRL outputs. Still, the probabil-
ity model was able to generate statistically signif-
icant improvements to argument alignments when
using automatic SRL inputs, albeit with a smaller
margin.

These argument results are not too surprising
given the alignment system need to deal with many
sources of error, from errors introduced by the au-
tomatic Chinese SRL, English SRL and word align-
ment systems to incompatibilities between English
and Chinese frame files, as well as confusions
arising from implicit arguments. Along with the
lack of improvement in predicate alignment perfor-
mance when the probability alignment model uses
gold word alignment input, the results indicate that
a higher-performing PropBank alignment system
need to address automatic SRL errors.
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5 Conclusion

We described 2 improvements to Chinese-English
PropBank alignments. The first takes advantage of
expanded English nominal/adjective predicate an-
notation to produce a more comprehensive Prop-
Bank alignment between Chinese and English, in-
creasing the number of aligned Chinese and English
predicate-argument structures by 24.5%. The sec-
ond utilizes predicate-argument alignment probabil-
ities extracted from a large unannotated parallel cor-
pus to both improve predicate-argument alignment
performance and provide a probability model that
can be used to evaluate/improve semantically-driven
machine translation.

Given that the probability model, built using all
automatic system output, provides smaller improve-
ments to (or even degrades) the system when either
gold standard SRL or word alignment is used, it still



has room for improvement. One such possible im-
provement would be to build a probability model
predicated on verb classes/clusters. This could ad-
dress the sparse alignment frequency count issue
from the many possible Chinese-English predicate-
argument pairings. For English, we can use the ex-
isting VerbNet class resource and train an automatic
system for polysemous verbs. For Chinese, how-
ever, we would need to either induce verb classes
through mapping (Wu et al., 2010), or via an auto-
matic verb clustering method.

While we have achieved good predicate-argument
alignment performance, specific argument align-
ment performance still lags behind. One reason is
that while we can induce correct predicate-argument
mapping from the argument mapping pairs, even
when the predicates themselves are misaligned, for
argument alignment, our system currently does not
attempt to directly correct argument labels from
automatic SRL output. Therefore, any SRL la-
beling error in the automatic SRL system out-
put (made worse by having 2 languages) is prop-
agated through the alignment system. A joint-
inference/joint-learning framework between seman-
tic alignment, SRL (including joint inference of Chi-
nese and English SRL as proposed by Zhuang and
Zong (2010)), and word alignment could potentially
address the shortcomings in our current implemen-
tation.
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