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Abstract

Multiword expressions (MWEs) are vexing
for linguists, psycholinguists and computa-
tional linguists, as they are hard to define,
detect and parse. However, previous stud-
ies have not taken into account the cogni-
tive constraints under which MWEs are pro-
duced or comprehended. We present a new
modality for studying MWEs, keystroke dy-
namics. We ask subjects to respond to a vari-
ety of questions, varying in the level of cog-
nitive demand required to generate an answer.
In each response, a subject’s pause time pre-
ceding each word – within and outside an
MWE – can illuminate distinct differences in
required effort across tasks. By taking advan-
tage of high-precision keystroke loggers, we
show that MWEs produced under greater cog-
nitive demands are produced more slowly, at a
rate more similar to free expressions. We hy-
pothesize that increasingly burdensome cogni-
tive demands diminish the capacity of lexical
retrieval, and cause MWE production to slow.

1 Introduction

Multi-word expressions (MWEs) are vexing for both
theoretical linguists and those working in Natu-
ral Language Processing. For theoretical linguists,
MWEs occupy a liminal space between the lexicon
and syntax (Langacker, 2008). For NLP practition-
ers, MWEs are notoriously difficult to detect and
parse (Sag et al., 2002).

This paper presents a new modality for studying
MWE production, keystroke dynamics, which al-
lows for large-scale, low-cost, high-precision met-
rics (cf. (Cohen Priva et al., 2010)). Keystroke dy-
namics looks at the speed at which a user’s hands
move across a keyboard (Bergadano et al., 2002). It
has the distinct advantage of using written text, with
clear word and sentence boundaries, while combin-

ing it with dynamic production features, allowing for
greater insight into the language creation process.

This study explores the notion that many of the
principles that guide intonation and speech prosody
are also present during the typing production pro-
cess. Principles related to prosody need not be
limited to spoken language production. The Im-
plicit Prosody Hypothesis, for example, posits that a
“silent prosodic contour” is projected onto a stimu-
lus, and may help a reader resolve syntactic ambigu-
ity (Fodor, 2002). Previous studies applied this hy-
pothesis to silent reading (Fodor, 2002). The present
study, in turn, applies this same principle to (silent)
typing: Language users take advantage of prosodic
contours to help organize and make sense of lan-
guage stimulus, whether in the form of words they
are perceiving or words they are producing.

Moreover, in previous studies, the type of ques-
tion a subject is asked, in order to elicit a response,
has not been taken into consideration. We take
advantage of the low cost and high precision of
keystroke dynamics to uncover trends in MWE pro-
duction, by eliciting responses from subjects using
a variety of questions with very different cognitive
demands. Our findings show that the cognitive de-
mands of an elicitation task have a noticeable ef-
fect on how MWEs are produced during a response.
These findings have important ramifications for lin-
guists performing MWE-related experiments, and
cognitive scientists studying how lexical items are
stored and retrieved.

In order to run our analysis, we collected free re-
sponse typing data from a large set of subjects. The
subjects responded to a wide array of cognitively de-
manding prompts, from simple recall to more com-
plex, creative analysis. From this data, we then per-
form two experiments. In a preliminary experiment,
we analyze how linguistic attributes such as word
length and predictability shape keystroke produc-
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tion. In our main experiment, we then use these find-
ings to analyze how multiword expression produc-
tion is affected by the cognitive demands imposed
upon the subjects.

We hypothesize that the cognitive demands of a
task will impede MWE production, as the overall
demands will interfere with lexical retrieval, creat-
ing a cognitive bottleneck. Our study aims to shed
light on three sets of questions:

• Are MWEs produced differently depending
upon the type of task they are produced within?
If so, how?
• Can patterns in MWE production provide

insights regarding constraints on lexical re-
trieval?
• What are the benefits of keystroke dynamics for

psycholingistics studies?

The rest of the paper is organized as follows: Sec-
tion 2 situates our study in context, illustrating how
prosody is affected by MWEs, and keystroke dy-
namics relates to cognition. Section 3 outlines our
experiments, with results reported in Section 4. Our
results are discussed in Section 5, with a conclusion
and look towards future work in Section 6.

2 Related Work

Our study brings together MWEs, cognition and
keystroke dynamics in a novel manner. In order to
situate our investigation in context, we explore rel-
evant previous studies below, and explain how their
findings contribute to the present work.

2.1 MWEs in speech production
Many studies have concluded that multiword ex-
pressions are stored and retrieved as single lex-
ical units (Wray, 2005; Dahlmann and Adolphs,
2007, and references therein). As such, MWEs ex-
hibit unique phonological and prosodic character-
istics. For example, MWEs have been found to
exhibit greater phonological consistency than free
expressions (Hickey, 1993). Specifically, pauses
have been found to be less acceptable in lexicalized
phrases (Pawley, 1985). In addition, and most rele-
vant to our study, Dahlmann and Adolph study how
pausality differs in and around MWEs (Dahlmann
and Adolphs, 2007). They conclude that “...where

pauses occur they give valuable indications of possi-
ble [MWE] boundaries”. (Dahlmann and Adolphs,
2007, p. 55)

In many ways, the present study can, and
should, be viewed as an extension of Dahlmann and
Adolphs’ study. If we view keystroke dynamics as
a reflection of many speech production principles in
the typing process, then this is a reasonable exten-
sion. We augment the previous findings, though, by
investigating how varying cognitive demands affect
MWE production.

In studies of speech, Erman (2007) notes that
a pause can be caused by the cognitive demands
of lexical retrieval, and Pawley (1985) notes that
pauses are much less acceptable within a lexical-
ized phrase than within a free expression. This
led Dahlmann and Adolphs (2007) to study paus-
ing within spoken MWEs. A central finding of
Dahlmann & Adolphs is that MWEs are often sur-
rounded by pauses, and that pausality is unique
within and around MWEs.

In addition, Dahlmann & Adolphs note the dif-
ficulty of accurately measuring pauses in speech;
keystroke dynamics does not face that obstacle.

2.2 Typing Behavior and Cognition
Typing is an interesting blend of cognitive and phys-
ical activity. On the cognitive side, a typist must un-
dertake the cognitively demanding task of text pro-
duction. Although literate people produce text on a
nearly daily basis, researchers have gone so far as
to call the writing process “one of the most com-
plex and demanding activities that humans engage
in” (Alves et al., 2008, p. 2). The act of typing in-
volves juggling both the high-level text creation pro-
cess, and low-level motor execution.

Beginning in the 1980s (Rumelhart and Norman,
1982), investigators used typing data to construct
cognitive and motor models of language production.
As expounded by Salthouse (1986), a typist must si-
multaneously employ multiple cognitive and motor
schemata, often with a formidable amount of noise
between signals. Translating from lexical retrieval
into physical action is a non-trivial task, which in-
volves multiple pipelines that can be occluded, and
also result in mixed up signals.

The typing task is especially daunting for novice
typists. Gentner, et al. (1988) investigated the
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linguistic characteristics of skilled versus unskilled
typists, finding marked differences in the behavior
(and thus cognitive model) of each population. A
novice typist is so burdened by the physical execu-
tion cycle of typing that the quality of his or her writ-
ing is noticeably diminished.

However, Alves et al. (2008), in studying nar-
rative construction in typing conclude that while
differences do exist between the populations, this
might not be as significant a differentiation as orig-
inally thought. They conclude, “Although motor
execution is more demanding for slow typists, this
higher demand neither prevented them from activat-
ing high-level processes concurrently with typing,
nor changed the distribution of occurrences of the
writing processes.” (Alves et al., 2008, p. 10)

The importance of pauses during the typing pro-
cess is borne out in a number of studies. Schilpero-
ord (2002) concludes that writers pause for a number
of reasons, such as cognitive overload, writing ap-
prehension or fatigue. Alves et al. (2008) similarly
concluded that pauses are usually a sign of cognitive
competition. Many of the reasons given for paus-
ing during typing are similar to the reasons given
for pausing during speech production, thus provid-
ing further motivation to use the typing process to
test phenomena observed during speech.

3 Methodology

3.1 Procedure
Our typing data was collected from 189 Louisiana
Tech students (hereinafter referred to as “subjects”).
The subjects reported themselves to be 41.3% fe-
male, 56.4% male and 88.3% right-handed and 9.1%
left-handed. (Note that these do not sum to 100%;
on each question some percentage of subjects chose
not to respond to one or more of the demographic
questions.)

We limited our study to only native English speak-
ers. This was to avoid the additional confound of
language familiarity, though this is certainly an im-
portant area for study. Specifically, Riggenbach
(1991) found that in speech, placement and length
of pausing around MWEs is seen as a sign of flu-
ency.

Further, we limited our study to only “touch typ-
ists”, or those subjects who only look at the screen

when typing. This is in comparison to “visual typ-
ists” who look at their fingers when typing. As pro-
posed by Johanssen et al. (2010), touch-typists and
visual typists employ distinct cognitive models, as
visual typists also need to dedicate cognitive effort
to figuring out where the next key is. For touch typ-
ists, this is a less conscious process.

Subjects were seated at a desktop computer with
a QWERTY keyboard, and freely responded to
prompts of varying complexity. A keylogger with
15.625 millisecond clock resolution was used to
record text and keystroke event timestamps. There
was no time limit, although subjects had to type at
least 300 characters before proceeding to the next
prompt. Each subject responded to 10−12 prompts,
with the average response comprising 448 characters
and 87 words.

Prompts were designed to test all aspects of
Bloom’s Taxonomy of learning (Krathwohl, 2002),
from simple to more complex tasks. Bloom’s Tax-
onomy includes six different types of tasks: remem-
ber, understand, apply, analyze, evaluate and create.
The Bloom Taxonomy is ordered by complexity, in
that mastery of one learning objective is necessary
in order to progress to the next. It is a useful way
for educators to structure a curriculum, in order to
ensure that learners possess the necessary cognitive
abilities before progressing to more complex tasks.
The taxonomy has been refined and expanded in re-
cent years; as such, we treat each type of task as a
discrete type of task, rather than having a continuous
relationship.

The order that the prompts were presented in was
randomized, with an equal distribution from each
type of task. Examples of prompts include (1) and
(2):

(1) List the recent movies you’ve seen or books
you’ve read. When did you see or read them?
What were they about? [Remember]

(2) How would you design a class if you were the
teacher? What subject would you teach? How
would you structure your course? [Create]

The full data set is part of a long-term longitudi-
nal study relating to subject biometrics. Although
the current data is not publicly available, we hope to
release future data sets.
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3.2 Materials
All texts were tokenized using OpenNLP
(Baldridge, 2005). We then automatically ex-
tracted all multiword expressions using jMWE
(Finlayson and Kulkarni, 2011). For the present
studies we only looked at contiguous MWEs.
jMWE has reported an F1 measure of 83.4 in de-
tecting continuous, unbroken MWEs in the Semcor
(Mihalcea, 1998) Brown Concordance (Finlayson
and Kulkarni, 2011).

Contiguous MWEs should show more signs of be-
ing a cohesive lexical unit, although non-contiguous
MWEs should still exhibit some degree of the same.
As a result of this exclusion, MWEs such as ran up
in (3) would be included in our study, while the same
non-contiguous MWE in (4) would not.

(3) Jack ran up the bill.

(4) Jill ran the bill up.

While keystroke dynamics is concerned with a
number of timing metrics, such as key holds (h in
Figure 1) and pauses between every keystroke (p in
Figure 1), the current study looked only at the pause
preceding a word (the second p in Figure 1). This
interval consists of the time between the spacebar
being released and the first key of the word being
pressed.

Figure 1: Timing Intervals in Keystroke
Dynamics

p = pause h = hold

We also did not remove any outliers, although
this is common in keystroke dynamics (Epp et al.,
2011; Zhong et al., 2012). We feel it is difficult-to-
impossible to discriminate between a “true” pause
that is indicative of a subject’s increased cognitive
effort and any other type of pause, such as those
caused by distraction or physical fatigue. As such
we include any idiosyncrasies, such as long pauses,
in our analyses rather than dismiss them as noise.

4 Experiments

4.1 Experiment 1: Creating A Baseline
In the main experiment, we measure the pause pre-
ceding each word. However, we wanted to remove
as many confounds as possible that were not related
to whether the word was part of an MWE.

Our first line of investigation aimed to understand
the distribution of pauses overall. As seen in Fig-
ure 2, pauses are not distributed normally around a
mean (non-Gaussian). Rather, there is a strong log-
linear relationship between length of pause and fre-
quency. As such, results reported below use the log-
arithm of the pause time. We felt that reporting the
raw pause time would obfuscate important patterns
within pausality.

Figure 2: Distribution of All Pauses

As noted by Nottbusch & Weingarten (2007), the
length of a written word affects pre-word pausing.
We quantified this by mapping each pre-word pause
to the length of the word, and found a strong log-
arithmic relationship, where pause length increased
as a function of the log of the word length (see Fig-
ure 3). Since we expect cognitive demand to affect
typing, we measured this affect on each task, and
created different α and β parameters for our “Ex-
pected Pause” algorithm, as described in (5).

(5) Pauseexpected(w) = α · ln(length(w)) + β

The regression model illustrated in (5) provided a
very reliable fit for all tasks. Between tasks α ranged
from 0.107−0.112 while β ranged from 2.20−2.24.
In the various versions of the Expected Pause algo-
rithm, R2 ranged from 0.93 − 0.98 yet the differ-
ences were never significant, with 0.22 < p < 0.58.

In our main experiment, all pauses were quanti-
fied as a deviation from the expected pause, based
on word length and cognitive demand.
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Figure 3: Duration of Pre-Word Pause By
Word Length

A final confound to be investigated was sequence
likelihood. The effects of predictability are well
documented, in that more likely sequences are pro-
duced and comprehended at a faster rate (Goldman-
Eisler, 1958; Hale, 2006; Nottbusch et al., 2007;
Levy, 2008; Smith and Levy, 2013, and references
therein). Since MWEs are frequently made up of
collocations, i.e. words that are often seen together,
they are inherently highly predictable.

For the present study, we wanted to ensure that
we were not simply detecting faster rates of highly
predictable sequences, but rather that we were de-
tecting a signal idiosyncratic to MWEs. To test
this, we grouped all word tokens according to the
bigram predictability of the sequence they occurred
within. Bigram predictability was calculated using a
development set of users to create a language model.
Smoothing was done using the Laplace technique
with the inverse vocabulary size, as described in (6),
where V is the total number of possible bigrams, i.e.,
the vocabulary size for a bigram model, and C is the
total count of occurrences.

(6) P (wn|wn−1) = C(wn-1wn)+1
C(wn-1)+V

The grouping was done by rounding the log prob-
ability of the bigram sequence. We looked at the
most highly predictable groups, to see if MWEs
were still produced differently from free expres-
sions, when compared to sequences of similar like-
lihood.

Our results are illustrated in Figure 4. Using
a two-tailed t-test, and assuming equal variance,
the differences for the two most highly predictable

groups (where rounded log probability was −1 and
0) is significant at the 0.00001 level, while it is not
significant for left-most grouping (rounded log prob-
ability of −2). The overall difference for all levels
of predictability is significant at the 0.000001 level.

Figure 4: MWE Production in High
Predictability Sequences.

4.2 Experiment 2: MWEs in Varying Cognitive
Tasks

MWEs were produced at a fairly consistently rate
across all tasks, comprising approximately 12−13%
of all word tokens, as reported in Table 1. It should
be noted that this figure is markedly lower than often
cited figures such as Erman & Warren (2000), who
point out that half of spoken and written language
comes from multiword constructions. In the present
case, however, we are dealing with a small subset of
MWEs, namely those that were produced contigu-
ously (cf. examples (3) and (4) above). A total of
1, 982 different MWEs were produced, across the
entire spectrum of “MWE types,” from verb-particle
constructions to idioms.

Task Within-MWE Tokens Outside MWE Tokens Total Tokens MWE Rate (%)

Remember 3,285 23,631 26,916 12.2%
Understand 3,986 25,008 28,994 13.7%
Apply 1,807 12,674 14,481 12.5%
Analyze 3,375 21,300 24,675 13.7%
Evaluate 4,957 35,290 40,247 12.3%
Create 3,629 24,042 27,671 13.1%
Total 21,039 141,945 162,984 12.9%

Table 1: MWE Production Rates and Counts
By Task

Pauses that took place before the first word and
directly after the last word of an MWE were not
considered to be ‘within’ the MWE. An example
of the pauses we did measure is seen in Figure 5.
In this figure, the underscores represent measured
pauses, while a whitespace gap represents a pause
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that was not taken into consideration for the present
study. Pauses that occur on the edges of MWEs may
represent distinct “barrier” pauses (Dahlmann and
Adolphs, 2007), and therefore merit a further, but
distinct study.

Figure 5: An example sentence. Measured
pauses are represented with an underscore.

In each task, words within MWEs were consis-
tently produced with a shorter preceding pause than
were words in free expressions. As seen in Figure 6,
pauses are shorter within MWEs across all tasks.

Figure 6: Pause Duration By Task, Within
and Outside MWEs

However, the distributions of the means as re-
ported in Figure 7 is not uniform1.

Figure 7: Distribution of Mean Pauses
Within and Outside MWEs

Within-MWE pauses are not only shorter in du-
ration, but we see evidence that the distribution is
somewhat more concentrated around the mean. Al-
though the standard deviations of each distribution

1Figure 7 took the mean pause per subject, rather than mean
pause per word token, which is why it uses a linear scale, rather
than a logarithmic scale.

are similar (swithin−mwe = 197.5, soutside−mwe =
209.8), the interquartile ranges were more distinct
(IQRwithin−mwe = 160, IQRoutside−mwe = 240).

However, our investigation aimed to look at how
pausing within MWEs varies between cognitive
loads, rather than an overall distribution. These re-
sults are illustrated in Figure 8. A one-way be-
tween category ANOVA was conducted on the pause
times, to compare the effects of cognitive demands
on pausality. There was a significant effect of cogni-
tive demand at the p < 0.001 level, [F (5, 11796) =
4.19, p = 0.000815].

Figure 8: Within-MWE Pause Duration
Deviation By Cognitive Task

(Tasks are arranged from (generally) simplest
to most complex)

5 Discussion

As demonstrated above, the overall cognitive de-
mands of a task have a significant effect on pauses
within an MWE. While the trend is generally up-
ward, in that MWEs produced under greater cog-
nitive demand behave more similar to free expres-
sions, i.e. they exhibit longer pauses, we note
that this is not perfectly consistent. This is to be
expected, as there are many dimensions to each
of Bloom’s tasks, and each dimension could have
greater or lesser effects on pauses within typing.
This could also be an artifact of the difficulty of as-
signing labels using Bloom’s Taxonomy, as has been
demonstrated even among a group of subject-matter
experts (van Hoeij et al., 2004)

These results seem to demonstrate competing
cognitive demands, operating in parallel. The
canonical theory of MWE production holds that
MWEs are retrieved as a single unit. Our results,
however, imply that a more nuanced view may be
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justified. If an MWE is retrieved as a single unit,
then somewhere between retrieval and execution the
overall cognitive demands can interfere. Specifi-
cally, we theorize that the overall cognitive demands
serve to narrow the bandwidth of lexical retrieval,
occluding large units from being holistically moved
into the executive buffer, as illustrated in Figure 9.
To clarify this idea, though, subsequent investiga-
tions will investigate pauses at the boundaries of
MWEs.

Figure 9: Model of Cognitive Bottleneck

The notion of various schemata interacting is
supported by Kellogg (1996), who proposes that
“resources from the central executive of Badde-
leys model of the working-memory, e.g., Baddeley
(1974), are needed to perform both lower-level writ-
ing processes such as spelling, grammar and motor
movements and higher-level writing processes such
as planning and revising.” (qtd. in Johansson, 2010).

By comparing the production rates of different
types of lexical unit retrieved from working mem-
ory – MWES versus free expressions – along with
varying the overarching cognitive task, we believe
our experiment lends quantifiable support to this no-
tion.

Our findings also bear relevance to investigators
performing psycholinguistic experiments. Although
most experiments are prepared with careful atten-
tion to the linguistic structure of stimulus, such as an
elicitation prompt, there exists little attention to the
overall cognitive demands a stimulus response re-
quires. Our results, however, demonstrate that over-
arching cognitive demands can have a significant ef-
fect on results.

Finally, we hope our results serve as an illus-
tration of the utility of keystroke dynamics within
the linguistic and cognitive science domains. Many
studies cite the difficulty of accurately transcribing
speech data, delineating word boundaries and quan-

tifying pause duration. Keystroke dynamics is not
impeded by any of these factors. Additionally, al-
though the data of this study was collected in a lab-
oratory study, similar studies could be conducted
using much less overhead, e.g. Amazon Mechani-
cal Turk (Cohen Priva et al., 2010), where subjects
can participate remotely without compromising ex-
periment quality (Snow et al., 2008). This allows
for low-cost, high-precision experimentation, with a
wider selection of experiment participants.

6 Conclusion and Further Work

In this paper, we found that pauses within an MWE
can vary significantly, depending upon the cogni-
tive demands of the task within which they were
produced. We first controlled for linguistic factors
that affect typing rate, such as word length and pre-
dictability, and formed an Expected Pause metric.
This metric measures the length of time we expected
a subject to pause before a word, based on linguis-
tic attributes. We then measured the divergence of
pauses within MWEs, and found they varied signifi-
cantly depending on the overarching cognitive task.

We believe our study represents a significant find-
ing within MWE and lexical retrieval research. We
have been able to directly quantify the effects of
overall cognitive demand as it interacts with lexical
retrieval. These results should be kept in mind when
performing MWE research, as they clearly demon-
strate that MWE production can be significantly af-
fected by the cognitive complexity of a task, even if
the method of elicitation is kept consistent.

A potentially important factor in MWE produc-
tion is “MWE type,” such as verb-particle construc-
tion or idiom. Vincze et al. (2011) found useful
differences between types, as they relate to MWE
identification. Similarly, Schneider et al. (2014)
classified MWEs using “strong” and “weak” dimen-
sions, depending on “the strength of association be-
tween words...ranging from fully transparent collo-
cations to completely opaque idioms (Hermann et
al., 2012)” (Schneider et al., 2014, p. 456). Future
studies will investigate the effects of these dimen-
sions on the dynamics of MWE production.

Subsequent studies will also look into other ele-
ments of MWE production, such as errors (typos)
produced within and outside of MWEs. In the cog-
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nitive science tradition, errors are a telltale window
into the mind’s inner workings.

Finally, we will expand our investigation to all
intervals surrounding and within an MWE. Similar
to Dahlmann & Adolphs (2007), we will investi-
gate pauses at the beginning and end of a multi-
word expression. In addition, we will investigate
non-contiguous MWEs, to determine how their pro-
duction differs from contiguous MWEs.
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