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Abstract

Event Mention detection is the first step in tex-
tual event understanding. Proper evaluation is
important for modern natural language process-
ing tasks. In this paper, we present our eval-
uation algorithm and results during the Event
Mention Evaluation pilot study. We analyze
the problems of evaluating multiple event men-
tion attributes and discontinuous event mention
spans. In addition, we identify a few limita-
tions in the evaluation algorithm used for the
pilot task and propose some potential improve-
ments.

1 Introduction
Textual event understanding has attracted a lot of at-
tention in the community. Recent work has covered
several areas about events, such as event mention
detection(Li et al., 2013; Li et al., 2014) , event coref-
erence (Bejan et al., 2005; Chen and Ji, 2009; Lee
et al., 2012; Chen and Ng, 2013; Liu et al., 2013),
and script understanding (Chambers and Jurafsky,
2008; Chambers and Jurafsky, 2009). Event Mention
detection is the fundamental preprocessing step for
these tasks. However, downstream event researches
often make minimal effort for event mention detec-
tion. For example, in event coreference work, Lee
et al. (2012) do not make clear distinction between
event and entity mentions. Bejan et al. (2005) and Liu
et al. (2013) use oracle event mentions from human
annotations. Building robust event mention detection
system can help promote research in these areas and
enable researchers to produce end-to-end systems. In
this paper, we discuss our recent effort in providing a
proper evaluation metric for event mention detection.

1.1 The Event Nugget Detection Task

As defined in Mitamura (2014), event nugget detec-
tion involves identifying semantic meaningful units
(mention span detection) that refer to an event1.
The task also requires a system to identify other at-
tributes (attribute detection). In this pilot study, the
attributes are event type and realis status.

(1) President Obama will nominate [realis: Other type:
Personnel.Nominate] John Kerry for Secretary of State.

(2) He carried out the assassination [realis:
Actual type: Life.Die] .

Example 1 shows one annotated event nugget
nominate, which has the realis type “other” and
event type “Personnel.Nominate”. Example 2 anno-
tates one event nugget with discontinuous event span
carried out assassination. The evalua-
tion corpus is annotated with event nuggets that fall
into 8 types of event2. Please refer to Mitamura
(2014) for detailed definitions of the attributes.

1.2 Past Evaluation Methods

The Automatic Content Extraction 2005 evaluation
task involves event extraction. The Event Detection
and Recognition (VDR) task in the Automatic Con-
tent Extraction 2005 evaluation (NIST, 2005) eval-
uate the accuracy of event arguments and multiple
other event attributes. However, event mention recog-
nition is not directly evaluated (§3.2).

1This is similar to Event Trigger in ACE 2005, which is
adopted in other work (Li et al., 2013; Li et al., 2014)

2These are Life, Movement, Business, Conflict, Contact, Per-
sonnel, Transaction, Justice
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Li et al. (2013; 2014) evaluate event trigger de-
tection using a mention-wise F-1 score. An event
trigger is considered correct only when the span and
event type are matched exactly. Errors from different
sources are not separately presented.

In addition, most previous evaluations on event
mention evaluation do not give partial credits to par-
tial matches. Partial scoring is more important in the
current setting because of the mention span detection
task is difficult with discontinuous event nuggets.

2 The Evaluation Algorithm in Pilot Study
In this section, we describe our mention detection
algorithms3. We will use the terms Event Nugget and
Event Mention interchangeably.

2.1 Prerequisites

The main prerequisite for the evaluation is tokeniza-
tion. In our pilot study, we provide a standard to-
kenization for all participants. System responses
represent each event mention in terms of predefined
token ids4. Discontinuous mentions can be easily
represented using tokens.

2.2 Partial Span Scoring

The proposed evaluation produces a span similarity
score for a pair of mentions (system and gold stan-
dard) between 0 and 1. Given a pair of mentions (G,
S), we represent the span of each mention by a set
of token ids (TG , TS). The span similarity score is
defined as the Dice coefficient between the two sets
(which is the same as the F-1 score).

Dice(TG, TS) =
2|TGTS |
|TG|+ |TS |

=
2

|TG|/|TGTS |+ |TS |/|TGTS |
= F1(TG, TS) =

2
1/P + 1/R

2.3 Mention Mapping

To evaluate mention attributes, the evaluation algo-
rithm needs to decide which system mention corre-

3Code base: github.com/hunterhector/EvmEval
4Some other KBP evaluations use character span evaluation,

which will favor long words than short words. We argue that
the difficulties in tokenizing a long word and a short word in
English should be virtually the same; hence scoring these two
cases differently is not fair.

sponds to a gold standard mention. We refer to this
step as mention mapping. The input of our mention-
mapping algorithm is the pairwise scores between all
gold standard vs. system mention pair. We use the
token-based Dice score (§2.2). Algorithm 1 shows
our mapping algorithm to compute the mapping in
one document.

Algorithm 1 Compute a mapping between system
and gold standard mentions
Input: A list L of scores Dice(TG, TS) for all pair

of G, S in the document
1: M ← ∅; U ← ∅
2: while L 6= ∅ do
3: Gm, Sn ← arg max(G,S)∈L Dice(TG, TS)
4: if Sn 6∈ U and Dice(TGm , TSn) > 0 then
5: MGm ←MGm ∪ (Sn, Dice(TGm , TSn))
6: U ← U ∪ {Sn}

Output: The mapping M

Algorithm 1 iteratively searches for the highest
Dice score in all remaining mention pairs. Line 4 en-
sures that each system mention can only be mapped
to one gold standard mention to avoid multiple count-
ing. One gold standard mention is allowed to be
mapped to multiple system mentions, which will be
used in calculating attribute accuracy scores.

2.4 Overall Span Scoring

In the pilot study, we first evaluate the system’s per-
formance on span detection5. We use F-1 score (re-
ferred as mention level F-1 score to distinguish with
the token level F-1 score in §2.2) for this task.

The definition of True Positive (TP) and False Pos-
itive (FP) for mention-level F-1 are slightly adjusted
to reflect partial matching. TP values are accumu-
lated according to Algorithm 2.

Precision, Recall, F-1 are calculated as followed:

P =
TP

TP + FP
; R =

TP

NG
; F1 =

2PR

P + R

NG is the number of gold standard mentions.
In the study, we use TP + FP as the denominator

for Precision. We later identify a problem of this
formulat. When FP is 0, even if the span range is

5For simplicity, we describe our algorithm on a single docu-
ment, the scorer will produce aggregate results for each metric
with standard Micro and Macro average methods.
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Algorithm 2 Compute TP and FP
Input: The set of gold standard G; The mapping M

indexed by G; Number of system mentions NS

1: TP ← 0; FP ← 0
2: for ∀G ∈ G do
3: if |MG| = 0 then
4: FP ← FP + 1
5: else
6: ST ← arg maxDice(S, Dice) ∈MG

7: TP ← TP + Dice(G, ST )
Output: TP

not exactly correct, the system can still get perfect
precision (though imperfect recall), which is counter-
intuitive. If we calculate FP with NS − TP , the
precision, recall calculation will naturally resolve to:

P =
TP

NS
; R =

TP

NG

The new formula is also aesthetically symmetric on
precision and recall. We present the influence of this
fix in §4.1.

2.5 Attribute Scoring

For each attribute and gold standard mention, we
calculate the accuracy according to algorithm 3. This
algorithm will give a system full credit even when the
span matching is not perfect. In addition, when one
system incorrectly splits one gold standard mention
into two, we still give it credit as long as attributes
are all predicted correctly.

Algorithm 3 Compute Attribute Accuracy for one
Gold Standard Mention
Input: The gold standard mention G; The mapping

M indexed by G; The set A indexing target at-
tributes for all mentions;

1: Accuracy ← 0
2: for S, Dice(TS , TG) ∈MG do
3: if AS = AG then
4: Accuracy ← Accuracy + 1/|MG|

Output: Accuracy

Gold He carried out the assassination [type:
Life.Die] .

System 1 He carried[type: Life.Die] out the
assassination [type: Life.Die] .

System 2 He carried[type: Business.MERGE] out the
assassination [type: Life.Die].

In the above examples, there is one gold standard
mention while both systems report two event men-
tions, and they both omit the word “out”. According
algorithm 3, System 1 gets full credit while System
2 gets 0.5. The algorithm is designed this way to
prevent a system being penalized again for its span
error. However, this make it difficult to find a natural
way to combine span scores with attribute scores.

2.6 Combining multiple scores

Algorithm 2 and 3 are limited in that there is no one
simple score for final system ranking. Furthermore,
the span score only reflects the system’s ability to
distinguish the 8 types of event mentions from every-
thing else, which is not a useful metric by its own.

A naive way to combine the scores is to multiply
these individual scores. However, theoretically, the
errors in attribute scoring and the span scoring are
not independent, thus it is inappropriate to perform
a simple multiplication. We propose a natural ad-
justment by directly augmenting attribute evaluation
into F1 score calculation (Algorithm 4). Line 3 in
the algorithm finds a system mention with the high-
est mapping score that also fits all the attributes of
interest as true positive. We can choose the set A
to contain the desired attributes we would like to
evaluate on. In our implementation, we iterate all
possible attribute combinations and produce all the
scores (§4.2).

Algorithm 4 Compute True Postive with Attributes
Input: The set of gold standard mentions G; The

mapping M indexed by gold standard mentions;
Number of system mentions NS ; The set A in-
dexing the attributes that will be evaluated for all
mentions

1: TP ← 0
2: for G ∈ G do
3: Smax ← arg maxDice(S, Dice) ∈ MG

Subject to ASmax = AG

4: TP ← TP + Dice(Smax, G)
Output: TP
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3 Comparison with Previous Methods
3.1 Comparison with MUC

The Message Understanding Conference provides
a scoring algorithm for the information extraction
task (Chinchor, 1992). Though there is no event
mention evaluation, some algorithm design can still
be compared with our methods.

The MUC scorer first calculates an alignment be-
tween gold standard mention and system, and then
counts the number of exact matches COR, the num-
ber of partial matches PAR, the number of gold
standard keys POS, the number of system responses
ACT . The precision and recall are calculated as6 :

P =
COR + 0.5PAR

POS
; R =

COR + 0.5PAR

ACT

The MUC scorer then takes the highest F-Score from
all possible alignments.

Our method makes several different decisions.
First, we use a simple greedy method for choosing an
alignment based on span matching instead of trying
to find the best alignment.

Second, we give a partial score between 0 to 1
using the Dice Coefficient, while MUC uses a univer-
sal partial credit of 0.5. A variable partial score can
reflect more subtle differences between systems.

3.2 Comparison with ACE

The Automatic Content Extraction 2005 task in-
cluded an event related evaluation (NIST, 2005). The
Event Mention Detection (VMD) task described in
the evaluation guideline defines the event mention
as a sentence or phrase. The ACE event task evalu-
ates the systems on the attributes and arguments of
a whole event (which may contains multiple event
mentions). Such evaluation also requires a system to
resolve event coreference. Thus, there is no direct
evaluation for event nuggets in ACE 2005.

4 Experiments
We conduct evaluation on the 15 pilot study submis-
sions using the LDC2015E3 dataset, which contains
200 documents with 6921 annotated event mentions.
The results we show in this section are all micro
average across these mentions.

6We simplified the discussion by assuming there is no op-
tional gold standard key, which will be removed by the MUC
scorer if exists but not aligned

4.1 Fixing the Precision Formula

The simple fix on precision calculation (§2.4) does
not affect the overall trend of the evaluation. The
scores of the participant systems only change by a
very small value, and the span-based ordering re-
mains the same. We argue that this fix is both more
theoretically sound and mathematically pleasing.

4.2 Combining Multiple Scores

As discussed in §2.6, scoring each metric individu-
ally will make it difficult to provide one unified score
to rank all systems. This can be seen from Figure 1,
which plot the evaluation results using the original
scoring (sorted on Span F1). In addition, because at-
tribute scores are only calculated on the gold standard
mentions, the false alarms on the rest of the predicted
mentions are not penalized.

Figure 2 shows the results using multiplicity com-
bination. We observe that the resulting scores will
soon become too small after multiplication, which
are less interpretable.

Figure 3 presents the results after applying Algo-
rithm 4. The combined score of all attributes now
falls into a more reasonable range (bounded by the
performance of the hardest attribute, namely realis
status). We also observe that all performances de-
crease monotonically.

We can also use the results from Figure 3 to un-
derstand the performance bottleneck of the systems.
For example, in system 7, there is a big gap between
the mention type F1 score and the span F1. This
indicates that the type detection accuracy is low and
should be improved. In system 5, the mention span
F1 and mention type F1 are very close. Therefore the
bottleneck might be in event span identification. This
information is not immediately clear from the other
figures.

5 Conclusions
In this paper we describe our proposed evaluation
metric for event nugget task and identify two prob-
lems in evaluation design. We propose solutions to
these problems and find out that the new methods
produce more interpretable results.
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Figure 1: System results sorted by Span F1 score
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Figure 2: Combining scores with multiplicity (sorted on
combined score)
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Figure 3: Attribute augmented scoring (sorted on com-
bined score)
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