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Abstract

In this contribution, we deal with graph parsing, i.e., mapping input strings to graph-structured output
representations, using tree approximations. We experiment with the data from the SemEval 2014
Semantic Dependency Parsing (SDP) task. We define various tree approximation schemes for graphs,
and make twofold use of them. First, we statically analyze the semantic dependency graphs, seeking
to unscover which linguistic phenomena in particular require the additional annotation expressivity
provided by moving from trees to graphs. We focus on undirected base cycles in the SDP graphs,
and discover strong connections to grammatical control and coordination. Second, we make use
of the approximations in a statistical parsing scenario. In it, we convert the training set graphs
to dependency trees, and use the resulting treebanks to build standard dependency tree parsers. We
perform lossy graph reconstructions on parser outputs, and evaluate our models as dependency graph
parsers. Our system outperforms the baselines by a large margin, and evaluates as the best non-voting
tree approximation–based parser on the SemEval 2014 data, scoring at just over 81% in labeled F1.

1 Introduction

Recent years have seen growing interest in the development of parsing systems that support graph-
structured target representations, notably various forms of semantic dependency graphs, where it is natu-
ral to move beyond fully connected trees, as are dominant in syntactic dependency parsing. The SemEval
2014 and 2015 tasks on Semantic Dependency Parsing (SDP; Oepen et al., 2014) have made available
large training and test corpora, annotating the Wall Street Journal (WSJ) corpus of the Penn Treebank
(PTB; Marcus et al. 1993) with three different representations of predicate–argument structure.

Participating systems in the SDP tasks can be broadly classified into one of the two groups. They
either (1) developed dedicated graph parsers, mainly by adapting existing dependency parsers to perform
graph parsing, or (2) applied tree approximations, lossily converting graphs to trees in pre-processing,
trained standard dependency tree parsers, and finally converted their outputs to graphs in post-processing.

Contributions All submissions for the SDP shared task are short and to the point, i.e., they focus
exclusively on describing and evaluating the systems. We note an interesting underlying theme in the
tree approximation–based systems, which constitute a majority of the SDP submissions. This theme is
the apparent practical utility of using dependency trees instead of graphs, despite the formal mismatch in
target representations. In our paper, we contribute with the following main points.

First, we take the standpoint of using dependency tree parsers for graph parsing via tree approxima-
tions, because:
1. These parsers are well-tested in syntactic parsing on numerous languages and datasets, and are shown

to be accurate, efficient, and robust.
2. By probing the feasibility and limits of tree approximations, we inquire into the nature of the underly-

ing representations. We implicitly ask why and where are graphs needed to encode semantic relations,
and are graph-specific structures used by convention or with strong linguistic support.
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Second, we expose the underlying properties of the semantic graph representations in SDP from a more
linguistically informed, though still quantitative and empirical viewpoint. Third, we use these insights to
design better tree approximations. Namely, we empirically pinpoint a tree approximation which offers a
good balance between graph coverage, i.e., reduced lossiness, and at the same time, it provides improve-
ments in statistical graph parsing. For this, we submit detailed evaluation. Finally, the system we create
is currently the best non-voting tree approximation–based parser for dependency graphs in the SDP eval-
uation framework. This system implements a tree approximation that strikes a good and linguistically
plausible empirical balance between loss minimization and parsing accuracy.

Outline We provide a detailed account of the properties of SDP graphs (§2), introduce approaches to
tree approximations (§3) and evaluate them (§4). We use this linguistic insight to produce a linguistically
motivated tree approximation–based parsing framework, which we evaluate as the top-performing non-
voting parser based on tree approximations on the SDP data (§5).

Related work In the SDP 2014 campaign, Kuhlmann (2014) adapted the tree parsing algorithm of
Eisner (1996), while Thomson et al. (2014) implement a novel approach to graph parsing. Martins and
Almeida (2014) adapt TurboParser (Martins et al., 2013) for graph processing, and Ribeyre et al. (2014)
utilize the parser of Sagae and Tsujii (2008).

Graph parsing by tree approximations and post-processing was most notably performed by the top-
performing system of the competition, the one by Du et al. (2014). Their tree approximations are obtained
by depth-first and breadth-first graph traversals, possibly changing the edge directions in the direction of
the traversal. However, this was not sufficient to win the competition, since two other teams – Schluter
et al. (2014) and Agić and Koller (2014) – also implemented a similar approach and scored in the mid
range. For overall premium accuracy, Du et al. (2014) applied voting over the outputs of 17 different tree
approximation–based systems, which arguably makes for a computationally inefficient resulting system.

The single top-performing tree approximation system was the one by Schluter et al. (2014), which
is closely followed by Agić and Koller (2014). The latter one are the only to provide some linguistic
insight into the SDP graphs.

2 Semantic Dependency Graphs

In this section, we take a closer look at the semantic dependency graphs from SDP 2014. The three SDP
annotation layers over WSJ text stem from different semantic representations, but all result in directed
acyclic graphs (DAGs) for describing sentence semantics. The three representations can be characterized
as follows (Oepen et al., 2014; Miyao et al., 2014).

1. DM semantic dependencies stem from the gold-standard HPSG annotations of the WSJ text, as pro-
vided by the LinGO English Resource Grammar (ERG; Flickinger, 2000; Flickinger et al., 2012). The
resource was converted to bi-lexical dependencies in preparation for the task by Oepen and Lønning
(2006) and Ivanova et al. (2012) by a two-step lossy conversion.

2. PAS bi-lexical dependencies are also derived from HPSG annotations of PTB, which were originally
aimed at providing a training set for the wide-coverage HPSG parser Enju (Miyao and Tsujii, 2008).
As noted in the task description, while DM HPSG annotations were manual, the annotations for
training Enju were automatically constructed from the Penn Treebank bracketings by Miyao et al.
(2004).

3. PCEDT originates from the English part of the Prague Czech–English Dependency Treebank. In this
project, the WSJ part of PTB was translated into Czech, and both sides were manually in accordance
with the Prague-style rules for tectogrammatical analysis (Cinková et al., 2009). The dataset is post-
processed by the task organizers to match the requirements for bi-lexical dependencies.

Nodes in SDP DAGs are single words, and an edge can be drawn between any two words, provided
that no cycles are introduced. The graphs allow for disconnected (singleton) nodes, which represent
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Figure 1: Distributions of (a) base cycles by the number of words in the base cycle, and of (b) sentences
by the number of base cycles per sentence.

semantically empty words. Each graph typically has one top node which represents the semantic head of
the sentence. By virtue of bi-lexical dependencies, a single node (argument) might have multiple heads
(predicates). We call this phenomenon reentrancy, and refer to nodes with indegree of 2 and more as
reentrant nodes. Reentrancies and disconnected nodes are the two properties that contrast SDP DAGs
from ‘standard’ dependency trees, where a fixed indegree of 1 is required for all nodes.

The core problem of using a tree parser to generate graphs is to investigate the structural properties
that distinguish graphs from trees. Setting aside the singletons, the difference between SDP DAGs and
trees amounts to the phenomenon of reentrancy. Reentrancy may also be necessary to capture certain
semantic relationships, and it is thus worth studying whether we can correlate its various types with
different semantic phenomena. For these reasons, we now take a closer look into reentrant SDP graphs.

Prior to our work, Agić and Koller (2014) provide a short overview of the SDP data. They show the
distribution of node indegrees for all nodes, and for source nodes of edges participating in reentrancies,
showing that a very large number of the latter nodes have zero indegree themselves. They also show that
the frequency mass for other nodes in reentrancies is rather small, but still not negligible, even if their
approach does not address these.

2.1 Base Cycles

Reentrancies caused by non-content source nodes with zero indegree arguably do not amount to much
in terms of meaning representations. One typical example from DM is given in Figure 2: it is the edge
Cray → Computer in the top left corner graph. From the viewpoint of tree approximations, these would
be easily accounted for, as we sketch in the following section.

What interests us much more are the reentrancies originating from connected nodes. By definition,
DAGs do not contain directed cycles. However, the reentrancies that involve connected nodes might
constitute undirected cycles in the graph. There are two such examples in Figure 2: in the top left
graph, Computer is the argument of both applied and trade, while in the top right graph, cultural and
economic are the arguments of both and and forces. These two are typical examples of control in DM,
and coordination in PCEDT. At the same time, they constitute undirected cycles: one spans 3 nodes of
the graph, and the other one 4 nodes.

Further, we gain insight on the quantitative properties of such undirected cycles. For this, we intro-
duce the notion of a cycle base. A cycle base of an undirected graph is a minimal set of simple cycles
of a graph with respect to cardinality. Cycle base of an undirected graph can be detected in polynomial
time by Paton’s algorithm (Paton, 1969). Thus, for each SDP graph, we create an undirected copy, re-
trieve its cycle base using Paton’s algorithm, and then extract all its base cycles. We then look into their
distributional properties.

There is a total of 12,970 base cycles in DM, 45,119 in PAS, and 27,026 in PCEDT. Their distribution
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Table 1: Distributions of coarse-grained parts of speech for nodes participating in base cycles.

DM PAS PCEDT

# % # % # %
N V V 3843 29.63 N V V 15541 34.44 CC N N V 4789 17.72
PRP V V 1208 9.31 MD N V 5005 11.09 CC N N N 3418 12.65
N TO V V 1203 9.28 PRP V V 4012 8.89 , N N V 2512 9.29
J N V 1059 8.16 J N V 3544 7.85 CC V V V 1633 6.04
IN N V 962 7.42 CC N V V 2155 4.78 CC N V V 1614 5.97
J J N 506 3.90 MD PRP V 1622 3.59 N N N V 805 2.98
CD CD N 324 2.50 IN N V 1087 2.41 N N V V 752 2.78
PRP TO V V 277 2.14 J PRP V 877 1.94 N V V V 665 2.46
J PRP V 228 1.76 CC N N N 676 1.50 , N N N 495 1.83
N N V 202 1.56 CC V V 561 1.24 CC J J N 447 1.65

by the number of containing nodes is given in Figure 1 (left side). We can tell that for DM, a large
majority of base cycles span 3 nodes, as well as for PAS, while PCEDT cycles dominantly consist of 4
nodes. Further in the text, we refer to these base cycles as triangle and square cycles.

As for the distribution of sentences by the number of base cycles contained (Figure 1), in DM and
PCEDT, most sentences have no cycles, while the sentences with cycles mostly have 1 or 2. In PAS, the
distribution is more evenly split for 0-2 cycles, and decreases afterwards.

Control and coordination We proceed to look into the distributions of base cycles per parts of speech
(POS) of the containing nodes, and per edge labels of the containing edges. We also look into the node
lemmas, and we extract a number of distributions. One of these, the one with POS tags of nodes in cycles,
is given in Table 1 for the top 10 most frequent cycles. For DM and PAS, we see that the most frequent
POS pattern includes two verbs (V) and a noun (N), and in PCEDT coordinators (CC) are present in
a large majority of cases. By further insight into the distributions of edge label patterns and lemma
patterns, which we omit here due to space limitations, we conclude the following. In DM and PAS, more
than 70% of the cycles address the linguistic phenomena of control and coordination, while in PCEDT, a
large majority of the cycles encodes exclusively coordination. PCEDT coordination commonly involves
4 nodes in base cycles, while both control and coordination in DM and PAS result in 3-node cycles.

We depart from the quantitative analysis of SDP data with the following main observation. If we
exclude semantically empty singleton nodes, graph representations of sentence meaning involve reen-
trancies. Setting aside the simple reentrancies caused by annotation conventions rooted in meaning rep-
resentation theories, we focus on the reentrancies explained through undirected base cycles. Through this
lens, we isolate the linguistic phenomena of control and coordination, which govern the cycles. This in
turn confirms that cycle types do correlate with specific semantic phenomena, and we proceed to utilize
this fact in the process of designing linguistically informed tree approximations of dependency graphs.

3 Tree Approximations

In this section, we define tree approximations. First, we address some general considerations. Then, we
introduce three linguistically uninformed baseline tree approximations, and an informed approximation
based on our observations from the SDP data.

Outline The general framework of the tree approximation parsers for SDP is outlined as follows. First
and foremost, these systems all rely on standard dependency tree parsers for performing the parsing.
These are trained on dependency trees, and they output dependency trees. Thus, in order to utilize a
tree parser in SDP, these systems have to implement pre-processing and a post-processing, which are
respectively related to the training and testing procedures of the standard parser.

Prior to training, the SDP training sets are pre-processed, i.e., converted from DAGs to dependency
trees, and these trees are provided as input for the parser training procedure. In the application phase, the
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models that were trained on these approximated trees are applied on the evaluation data, producing the
trees on top of which post-processing is run. Typically, in post-processing, lossy heuristics are applied
to the output trees, expanding them into graphs.

Deletion and trimming Converting reentrant graphs to trees requires edge removal. The basic idea
of removing edges in pre-processing and trying to reconstruct them in post-processing is at the core
of tree approximations. Before proceeding, we make an important distinction between two types of
edge removal, which we name deletion and trimming. In deletion, it is not possible to reconstruct the
removed edge in post-processing, i.e. the removed edge is permanently lost. In trimming, by contrast,
the removed edge can be reconstructed – or untrimmed – in post-processing, either deterministically or
with a certain success rate. In the shared task, a number of systems approached trimming through label
overloading. In label overloading, a deletion of one edge is recorded in another kept edge, similar to
encoding non-projective dependency arcs in pseudo-projective tree parsing (Nivre and Nilsson, 2005).
In post-processing, the information stored in overloaded labels is used to attempt edge untrimming.

We proceed to explore several ways of performing tree approximations, which include a mixture of
edge removals via deletion and trimming.

3.1 Baselines

Three baselines are used in this research. We re-implement the official SDP shared task baseline, and the
local edge flipping and depth-first flipping systems of Agić and Koller (2014).

OFFICIAL: The official baseline tree approximation only performs deletions and artificial edge inser-
tions to satisfy the dependency tree constraints. No trimming is performed. For reentrancies, all edges
but one are deleted: we keep the edge from the closest predicate measured by surface distance, preferring
leftward predicates in ties. Singletons are attached to the immediately following node, or to the artificial
root node if the singleton ends the sentence, by using the dummy label. Any remaining nodes with no
incoming edges are attached to the root and the edge is labeled as root.

LOCAL: In the OFFICIAL system, all reentrancies are treated uniformly. However, as previously ad-
dressed, Agić and Koller (2014) observe there are lots of reentrancies caused by zero indegree sources.
LOCAL system simply detects such edges and flips them around by changing their direction. These
changes are marked by overloading the label using the prefix flipped. After flipping, OFFICIAL is run
to delete all the remaining reentrancies and meet the tree constraints. Thus, LOCAL combines trimming
in the form of edge flipping and label overloading with OFFICIAL deletion.

DFS: Similar to a number of systems from the SDP shared task, we take the idea of edge flipping
further, and perform depth-first graph traversal. We traverse the undirected copy of the graph starting
from its top node, i.e., the semantic head of the sentence. For each edge traversal, we compare the
traversal direction to the direction of the edge in the original graph. If the directions are identical,
we insert the edge to the tree. If they are reversed, we insert a reversed edge to the tree and denote
this reversal by appending the flipped label to the original label, just like in LOCAL. Any surplus
reentrancies are deleted by the depth-first traversal, and the removals are governed by the traversal order:
the first edge through which a node was visited is preserved, and its label possibly overloaded, while the
other edges are removed. Any remaining disconnected nodes or top-level predicates are connected by
applying OFFICIAL. As for LOCAL, DFS also combines trimming with deletion, generalizing the idea of
LOCAL flipping and likely trimming more edges and deleting less than OFFICIAL and LOCAL.

The two baselines that perform trimming, LOCAL and DFS, are paired with very straightforward
untrimming. Any edge with a label prefixed by flipped is simply flipped back by changing the edge
direction, and the label suffix is removed. Since both approaches also use OFFICIAL, post-processing
also includes dummy and root edge removal. This post-processing scheme results in reconstructing
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Figure 2: An illustration of triangle (5) and square (�) base cycle trimmings, and subsequent DFS traver-
sals for example sentences with DM and PCEDT semantic dependency graph representations. Singleton
nodes are omitted. DM sentence #20018026: Cray Computer has applied to trade on Nasdaq. PCEDT
sentence #20445047: Various cultural and economic forces have suppressed demand.

reentrancies, and re-introducing singletons to the resulting graph. Since all three approaches delete at
least some edges, they are by definition lossy.

DFS trimming and deletion is illustrated in the top part of Figure 2 on a DM graph. The traversal
starts in top node applied. First, we visit Computer, where traversal direction matches edge direction,
and the edge is inserted to the tree. Then, we depart Computer towards Cray, and this time the traversal
direction does not match original edge direction, and we insert the flipped edge to the tree (red in the
figure). Traversal by depth continues until all nodes are visited. The resulting tree has two flipped edges,
and one edge (blue, dashed) is permanently lost in the traversal as DFS visits each node only once.

3.2 Base Cycle Trimming

LOCAL and DFS only manage to trim selected subsets of edges participating in reentrancies. In LOCAL,
the selection is due to indegree filtering of source nodes in reentrancies, and in DFS, it is governed by
the order of graph traversal. In both cases, some edges in reentrancies get deleted. Here, in base cycle
trimming, we define a procedure that accounts for these remaining edges, and attempts to trim them as
well, rather than deleting them.

As we learned from Figure 1, a large majority of base cycles have either 3 or 4 nodes, and we name
them triangles and squares. Building on that, we define two base cycle trimming approaches: one for the
triangles, and the other one for the squares. Before introducing these trimmings, we suggest that they
come in two distinct forms; we first describe these forms, and then proceed with outlining the trimmings.

Radical and conservative trimming Our radical trimming of base cycles amounts to label edge over-
loading. Namely, as LOCAL and DFS approached trimming by flipping and label overloading to system-
atically account for a large portion of edges in reentrancies, radical trimming attempts to systematically
account for all base cycles. It does so by trimming all cycles and overloading a possibly large number
of edge labels with traces of these trimmings. As we expect this will significantly expand the edge label
set, we consider a more moderate approach, which we call conservative trimming. In it, we do not over-
load the edge labels at all. Instead, we perform the trimmings only if linguistic cues, or more precisely,
lemmas and edges in the base cycles allow for it. This is to say that we only trim a subset of base cycles
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Table 2: Upper bound evaluation for the tree approximations. Radical and conservative triangle (5) and
square (�) base cycle trimming and untrimming are compared with the baselines. Scores are provided
for the whole SDP training set as no parsing is performed.

DM PCEDT

P R LM # labels P R LM # labels
OFFICIAL 100.00 55.28 2.54 52 100.00 90.35 54.33 71

LOCAL 100.00 87.50 17.35 79 100.00 92.33 54.65 124
DFS 100.00 97.30 65.43 79 100.00 94.03 54.58 133

radical trimming
5 + LOCAL 100.00 88.33 21.07 101 – – – –
5 + DFS 100.00 98.89 85.07 154 – – – –

� + LOCAL – – – – 100.00 93.59 56.02 382
� + DFS – – – – 100.00 95.21 66.33 413

conservative trimming
5 + LOCAL 98.98 87.93 19.66 79 – – – –
5 + DFS 99.12 98.07 83.83 79 – – – –

� + LOCAL – – – – 98.83 92.88 54.99 124
� + DFS – – – – 98.96 94.65 65.57 133

radical – DFS 0.00 +1.59 +19.64 +75 0.00 +1.18 +11.75 +280
conservative – DFS -0.88 +0.77 +18.40 0 -1.04 +0.62 +10.99 0

which falls within our linguistically motivated pattern, and that we only reconstruct edges when such
patterns are observed in post-processing. In this approach, we do not cover as many base cycles as in
radical trimming, but we avoid the need for large artificial expansions of label sets. Now we proceed to
triangle and square removal, and for each, we describe the radical and the conservative instance.

5 TRIANGLE: We start off by creating an undirected copy of the graph, in which we detect the undi-
rected base cycles. For each of these, we identify its corresponding subgraph in the directed graph. This
subgraph consists only of the edges and nodes that are present in the undirected base cycle, the only dif-
ference between the two being the (un)directedness. All undirected base cycles only contain nodes with
a degree of 2. Their corresponding directed subgraphs also always follow a certain pattern, which we
define as follows. Let x, y and z be the 3 triangle nodes in the directed subgraph. Since the SDP graphs
are DAGs, the triangles are never directed cycles. Consequently, there is only one way to construct such
a triangle regarding in- and outdegree: there will be a governing predicate x (indegree 0, outdegree 2), a
controlled predicate y (1, 1), and an argument z (2, 0). In terms of edges, we would observe x → {y, z}
and y → z. We proceed to trim the edge y → z. In radical trimming, we overload the label l(x, y) of
the edge x → y by prefixing it with (a) the label of the trimmed edge l(y, z), and (b) the label of l(x, z)
in order to find the target for subsequent untrimming. In conservative trimming, we trim the same edge,
but only if a pattern is detected. The pattern requires that l(x, z) = l(y, z) and that the lemmas of x and
y are in the list of allowed lemmas collected from the corpus by observing base cycles at training. After
base cycle trimming, we run DFS to ensure we meet the tree constraints.

There is an example of triangle trimming in Figure 2 for the DM graph. The triangle represents verb
control, where x = applied, y = trade, and z = Computer. The base cycle is detected and the edge is
trimmed. In radical trimming, edge overloading also occurs.

� SQUARE: Similar to triangles, in trimming these base cycles, we also focus on a specific square
structure that we observed in the SDP data. In this structure, there are typically two predicate nodes, x
and y (indegree 0, outdegree 2), and two argument nodes, w and z (2, 0). There are edges x → {w, z}
and y → {w, z}. We delete the latter ones, and insert a new edge x → y. In radical trimming, we
overload the label of the newly-introduced edge with information for subsequent reconstruction of the
two deleted edges in post-processing. This information includes the labels for all four edges in the
square: two for reinserting the deleted edges, and two for detecting the arguments. As for the triangle
case, in conservative trimming, we only trim the edge if a lemma pattern is fired, and if l(x, w) = l(x, z)
and l(y, w) = l(y, z), i.e., if the edge labels are symmetrical.
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This is also illustrated by Figure 2, in the PCEDT graph. In it, the predicates are x = forces and y =
and, while w = cultural and z = economic are arguments. The edges are trimmed, and a new edge x → y
is introduced. In radical trimming, this edge is assigned a label with trace information.

4 Upper Bounds for Trimming

In this section, before applying our tree approximations in graph parsing, we test them for upper bound
accuracy. At this point, we exclude PAS from further consideration, and focus on DM and PCEDT. This
is motivated by focusing the contribution, since PAS is shown to be the easiest dataset to parse in the
shared task, and thus we put our efforts into improving on the two more difficult datasets.

Upper bound accuracy is a loss metric for trimming and subsequent processing. We evaluate by (1)
performing 5 trimming for DM and � trimming for PCEDT, and (2) converting the resulting trees back
to graphs right away, i.e., with no parser training or dependency tree parsing in-between. Then we (3)
evaluate the converted graphs against the original ones using standard metrics. By this, we measure the
edge preservation capabilities of the approximations, or the maximum graph parsing score that would be
obtained if the parsing step provided perfect accuracy. We measure labeled precision (LP), recall (LR)
and labeled graph exact match (LM).

The results are given in Table 2. OFFICIAL is very lossy, since it only performs deletions. Its precision
is perfect as the preserved edges match the original ones, while all the rest are absent from the graph.
The absence shows in recall: for DM, 45% of the original edges are lost, while we lose 10% in PCEDT.
At around 2%, exact match scores are extremely low. LOCAL flipping preserves a more edges than
OFFICIAL, and so does DFS over the both. For DM, LOCAL is 30-40 points better than OFFICIAL in
terms of recall, while DFS beats LOCAL on these two datasets by approximately 10 points. In PCEDT,
the improvements are smaller because OFFICIAL was more competitive to begin with, but the recall still
improves by 4 points from OFFICIAL to DFS. To conclude this first comparison batch, we observe that
the edge loss of DFS is quantified at 2.7% and 5.97% for DM and PCEDT. Thus, whatever improvements
might result from applying the base cycle trimmings, they fall within these margins.

The radical trimmings maintain perfect precision, as untrimming is deterministic given the over-
loaded labels. Combining them with LOCAL tree approximation improves their recall by up to 1 point
over using just LOCAL. Once again, the improvements are more substantial for DM, than for PCEDT.
For radical trimming with DFS, we observe virtually the same improvement pattern over just using the
DFS approximation However, the differences in exact match scores (LM) really outline the benefits of
trimming, with absolute improvements of almost 20 points in DM, and 12 points in PCEDT. In absolute
terms, combining radical trimming and DFS manages to fully reconstruct 85% of DM graphs, and 65%
of PCEDT graphs. Thus, a small 1-1.5 point improvement in recall accounts for large improvements in
exact matching. This is supported by our earlier quantitative assessments of the datasets, as edges that
form undirected cycles and that were previously lost to DFS are now reachable through label overload-
ing. As they are comparatively infrequent phenomena, untrimming these edges improves DFS recall by
a small margin, but the overall gains in upper bound performance are much more significant.

In the conservative mode, the trimmings and untrimmings are triggered by linguistic cues. The
untrimmings therefore don’t necessarily have to result in perfect precision. This is due to the fact that
the untrimming triggers can also be activated by the linguistic cues where not required. We can see this
in Table 2: conservative trimming with LOCAL and DFS decreases precision by approximately 1 point in
DM and PCEDT. As before, combining the trimming with DFS is a bit better than with LOCAL. The recall
of the conservative approach improves over the baselines, and lands between DFS and radical trimming
on the absolute recall and exact match scales. This is expected, as conservative trimming accounts for a
subset of the cycles accounted for by radical trimming.

To conclude the discussion, we observe an ordering of tree approximations by growing upper bound
performance. Basic DFS is followed by conservative trimming, and the highest upper bounds are reached
through radical trimming. However, this comes at a price, which is payed in edge label set increases. We
can see in Table 2 that the label sets increase substantially: 75 extra labels are added over the DFS DM
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label sets, and in PCEDT, the increase amounts to 280 new artificial labels. We expect this to influence
the performance of the tree parser substantially. At the same time, we trust that the rather small decrease
in upper bound precision, paired with an increase in recall for conservative trimming will pay off in
higher graph parsing scores after tree parsing and untrimming, since conservative trimming does not
increase the label sets.

5 Graph Parsing

We proceed to evaluate our tree approximations in graph parsing. Here, our previously outlined parsing
pipeline is applied: training graphs are converted to trees using different pre-processing approximations,
parsers are trained and applied on test data, outputs are converted to graphs and evaluated against the
gold standard graphs. We observe the labeled F1 scores (LF) and exact matches (LM).

Experiment Setup For dependency tree parsing, we use the mate-tools state-of-the-art graph-
based parser of Bohnet (2010). As in the shared task, we experiment in two tracks: the open track, and
the closed track. In the closed track, for training the parser, we use only the features available in the SDP
training data, i.e., word forms, parts of speech and lemmas. In the open track, we also pack additional
features from the SDP companion dataset – automatic dependency and phrase-based parses of the SDP
training and testing sets – as well as the Brown clustering features (Brown et al., 1992).

For top node detection, we use a sequence tagger based on conditional random fields (CRFs). To
guess the top nodes in the closed track, we use words and POS tags as features, while we add the
companion syntactic features in the open track.

5.1 Results

The evaluation results are listed in Table 3. The overall performance of our basic DFS tree approximation
parser is identical to the one of Agić and Koller (2014) in the closed track. In the open track, however, we
improve by 2-3 points in LF due to better top node detection, and improved tree parser accuracy due to
the introduction of additional features in the form of Brown clusters, which were shown to also improve
other systems in the SDP task (Schluter et al., 2014).

The radical approach to trimming and untrimming, both 5 for DM and � for PCEDT, significantly
decreases the overall parsing accuracy in comparison with DFS. The score drops by 1.62 points for
DM, and 2.44 points for PCEDT in the closed track, and even more in the open track, by 2.59 and 4.10
points. This is apparently due to big drop in the dependency tree parsing LAS scores prior to graph
reconstruction, since our radical approach introduces large numbers of new edge labels in the training
stage, and then attempts to parse using these large label sets, which severely undermines the performance.
Still, even with this decrease, the exact match scores actually still improve around 3 points LM for DM,
and 1 point for PCEDT. Since the upper bound LM scores were much higher for the radical trimmings
in comparison with basic DFS, this is expected behavior: even with the large numbers of additional
erroneous outputs of the tree parser, more complete graphs still get reconstructed by the untrimmings.

Conservative trimmings and untrimmings provide the most interesting set of observations when it
comes to our evaluation. For them, the tree parsing scores either remain virtually the same as for DFS,
or even slightly increasing. This as a direct consequence of not introducing extra edge labels while
trimming: we simply remove the cycles using linguistic cues, and attempt to reconstruct them after
parsing; thus, the DFS pre-processing and subsequent parsing are only slightly influenced. The slight
increase can be attributed to the linguistically informed trimmings as well, since with them we don’t rely
on blind deletions of DFS, in turn making the resulting trees linguistically more plausible.

The impact of the conservative approach becomes apparent in post-processing, when we use the
same linguistic clues for untrimming the edges, i.e., reconstructing the undirected cycles. We see the
positive impacts of conservative untrimmings in both evaluation metrics, for both datasets, and in both
the closed and the open track scenario. The LF scores increase 0.70 and 0.55 points over DFS in the
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Table 3: Graph parsing results. The radical and conservative, triangle (5) and square (�) trimmings are
compared with DFS in closed and open track evaluation scenarios. We evaluate for labeled F1 score (LF),
and for labeled exact match (LM). The tree parsing labeled attachment score (LAS) is also provided.

closed track open track

DM PCEDT DM PCEDT

LF LM LAS LF LM LAS LF LM LAS LF LM LAS
DFS 79.35 9.05 78.99 67.92 5.86 81.01 83.00 10.46 84.00 70.24 5.79 85.44

radical
5 + DFS 77.73 12.15 75.62 – – – 80.56 13.44 80.23 – – –
� + DFS – – – 65.33 6.67 77.47 – – – 66.14 6.98 83.37

conservative
5 + DFS 80.05 18.91 79.04 – – – 83.55 20.01 83.96 – – –
� + DFS – – – 68.82 11.53 81.05 – – – 71.18 12.09 85.53

radical – DFS -1.62 3.10 -3.37 -2.59 0.81 -3.54 -2.44 2.98 -3.77 -4.10 1.19 -2.07
conservative – DFS 0.70 9.86 +0.05 0.90 5.67 +0.04 0.55 9.55 -0.04 0.94 6.30 0.09

closed an open track for DM, and around 0.90 points for PCEDT. Exact graph matching improves even
more significantly, 5-10 points for both datasets. We attribute the increase in LF to not impeding the tree
parser by introducing new labels, while at the same time managing to reconstruct a portion of undirected
cycle edges in post-processing.

At this point, it is worth comparing the parsing evaluation to the upper bound performance of DFS,
radical and conservative trimming. In terms of upper bound scores, our conservative trimming scored
slightly higher than DFS, and slightly lower than radical trimming. However, this elaborate design de-
cision to sacrifice a small fraction of upper bound precision and recall not to introduce additional edge
labels to the dataset turns out to pay off substantially in graph parsing. Overall, including our open
track DFS PAS score of 88.33, our system scores an average LF score of 81.02, which makes it the
top-performing single-parser system based on tree approximations on the SDP shared task data.

6 Conclusions

We conducted an exhaustive investigation of semantic dependency graph parsing using tree approxima-
tions. In this framework, dependency graphs are converted to dependency trees, introducing loss in the
process. These trees are then used for training standard parsers, and the output trees of these parsers are
converted back to graphs through various lossy conversions. In the paper, we provide an account on the
various properties of several tree approximations. We measure their lossiness, and evaluate their effects
on semantic dependency graph parsing in the framework of the SemEval 2014 shared task (SDP).

Our main findings pertain to linguistic insights on the properties of directed acyclic graphs as used in
SDP to provide meaning representations for English sentences, and to the impact of linguistically moti-
vated tree approximations to data-driven graph parsing. We manage to attribute the arguments of multiple
predicates to verb control, and to coordination across three different graph representations, and we use
this observation to develop a tree approximation that produces a top-performing tree approximation–
based system on SDP data.
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Agić, Ž. and A. Koller (2014). Potsdam: Semantic Dependency Parsing by Bidirectional Graph-Tree
Transformations and Syntactic Parsing. In SemEval.

Bohnet, B. (2010). Top Accuracy and Fast Dependency Parsing is not a Contradiction. In COLING.

Brown, P. F., P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai (1992). Class-based n-gram
Models of Natural Language. Computational Linguistics 18(4).

226
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Kuhlmann, M. (2014). Linköping: Cubic-Time Graph Parsing with a Simple Scoring Scheme. In
SemEval.

Marcus, M., M. A. Marcinkiewicz, and B. Santorini (1993). Building a Large Annotated Corpus of
English: The Penn Treebank. Computational Linguistics 19(2).

Martins, A., M. Almeida, and N. A. Smith (2013). Turning on the Turbo: Fast Third-Order Non-
Projective Turbo Parsers. In ACL.

Martins, A. F. T. and M. S. C. Almeida (2014). Priberam: A Turbo Semantic Parser with Second Order
Features. In SemEval.

Miyao, Y., T. Ninomiya, and J. Tsujii (2004). Corpus-oriented Grammar Development for Acquiring a
Head-Driven Phrase Structure Grammar from the Penn Treebank. In IJCNLP.

Miyao, Y., S. Oepen, and D. Zeman (2014). In-House. An ensemble of pre-existing off-the-shelf parsers.
In SemEval, Dublin, Ireland.

Miyao, Y. and J. Tsujii (2008). Feature Forest Models for Probabilistic HPSG Parsing. Computational
Linguistics 34(1).

Nivre, J. and J. Nilsson (2005). Pseudo-Projective Dependency Parsing. In ACL.

Oepen, S., M. Kuhlmann, Y. Miyao, D. Zeman, D. Flickinger, J. Hajic, A. Ivanova, and Y. Zhang (2014).
SemEval 2014 Task 8: Broad-Coverage Semantic Dependency Parsing. In SemEval.

Oepen, S. and J. T. Lønning (2006). Discriminant-Based MRS Banking. In LREC.

Paton, K. (1969). An algorithm for finding a fundamental set of cycles of a graph. Communications of
the ACM 12(9).

Ribeyre, C., E. Villemonte de la Clergerie, and D. Seddah (2014). Alpage: Transition-based Semantic
Graph Parsing with Syntactic Features. In SemEval.

Sagae, K. and J. Tsujii (2008). Shift-Reduce Dependency DAG Parsing. In COLING.

Schluter, N., A. Søgaard, J. Elming, D. Hovy, B. Plank, H. Martı́nez Alonso, A. Johanssen, and S. Klerke
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