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Abstract

Truly interactive dialogue systems need to construct meaning on at least a word-by-word basis.
We propose desiderata for incremental semantics for dialogue models and systems, a task not hereto-
fore attempted thoroughly. After laying out the desirable properties we illustrate how they are met
by current approaches, comparing two incremental semanticprocessing frameworks: Dynamic Syn-
tax enriched with Type Theory with Records (DS-TTR) and Robust Minimal Recursion Semantics
with incremental processing (RMRS-IP). We conclude these approaches are not significantly differ-
ent with regards to their semantic representation construction, however their purported role within
semantic models and dialogue models is where they diverge.

1 Introduction

It is now uncontroversial that dialogue participants construe meaning from utterances on at least as fine-
grained a level as word-by-word (see Brennan, 2000; Schlesewsky and Bornkessel, 2004,inter alia).
It has also become clear that using more fine-grained incremental processing allows more likeable and
interactive systems to be designed (Skantze and Schlangen,2009; Skantze and Hjalmarsson, 2010). De-
spite these encouraging results, it has not been clearly stated which elements of incremental semantic
frameworks, either formally or implementationally, are desirable for dialogue models and systems; this
paper intends to spell these requirements out clearly.

1.1 The need for incremental semantics in situated dialogue

While traditional computational semantics models the meaning of complete sentences, for interaction
this is insufficient for achievingthe construction of meaning in real time as linguistic information is
processed. The motivation for incremental semantics becomes clear insituated dialogue systems, which
we illustrate here with a real-world scenario. Imagine interacting with a robot capable of manipulating
objects of different colours and shapes on a board, where youcan direct the robot’s action verbally, and
the robot also has the ability to direct your actions. When talking to the robot, natural interactions like the
following should be possible (the utterance timings and actions of the two participants are represented
roughly at the relative time indicated by their horizontal position):

(1) You: Take... the red cross
Robot: [turns head to board]

(2) You: Take the red cross ... and the blue square
Robot: mhm [takes red cross] [takes blue square]

(3) You: Take the red cross, uh no, that’s green.
Robot: [takes green cross]
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(4) You: The big red cross uh no, the one in the corner
Robot: [moves hand over nearby cross] [retracts, moves handover cross in corner]

(5) You: Take the red ...
Robot: cross?

(6) You: Take the red ...
Robot: what?

(7) You: Take the blue uh ... yes, sorry, the red cross
Robot: Did you mean red?

(8) Robot: What’s your name? [makes puzzled face]
You: Take the red cross

However we may not desire the following interactions:

(9) You: Take every no, wait, take every red cross!
Robot: [moves hand over green cross]

(10) You: Take the ...
Robot: okay!

Here we propose incremental semantics should be motivated by modelling and implementing this
highly interactive, realistic behaviour, putting immediate requirements in focus. (1) shows the robot
should begin signalling attention before the command is over, (2) shows backchannel acknowledge-
ments should be driven by incremental semantic understanding, (3) and (4) show how computing the
meaning of a repaired utterance even when the repair is elliptical (‘that’s green’) or anaphoric (‘the one’)
is crucial. The compound contribution (5) shows the need forsemantic construction to go across dialogue
partners (this does not mean string completion), while in (6), the WH-sluice from the robot relies on the
(potentially defeasible) inference that you wanted it to take something. The mid-utterance clarification
request (7) and mid-utterance reaction to irrelevant user behaviour in (8) show the possibility for imme-
diate reaction to pragmatic infelicity. While we would likethe maximal amount of information possible
on a word-by-word basis, (9) shows this should not result in bad predictions. (10) shows how human-
robot interaction relying on acoustic cues such as silence detection for ‘end-pointing’ utterances alone is
clearly insufficient– silence is not always an indicator of semantic or dialogue-level completeness, nor is
its absence good evidence for a continuation of a unit of meaning (see Schlangen and Skantze, 2011).

We address how to meet these requirements in semantics as follows: Section 2 outlines our proposed
desiderata, 3 technically overviews two approaches to incremental semantics, 4 compares the approaches
in terms of the desired properties theoretically and practically, and Section 5 concludes with the implica-
tions of our findings.

2 Desiderata

We take as our point of departure Milward (1991), who points out the difference between a system’s
capacity forstrong incremental interpretationand its ability to access and produceincremental represen-
tation. While these are important and we still consider them central requirements in terms ofsemantic
representation construction properties, there are others we propose below, some directly related tothese
and others orthogonal to them. We also discusssemantic model, dialogue, andcomputationaldesider-
ata. We explain these in turn and the connections between them. Figure 1 shows some of the desiderata
visually for the utterance ‘take the red cross’ as it is interpreted by a rudimentary interpretation module
reasoning about a real-word scene: the action SELECT is inferred upon processing the first word and the
referent set indicating the possible objects the user is selecting narrows thereafter word-by-word when
relevant information specifies the referent. The parts we are principally concerned with are those on
levels two and three in grey, in addition to their interfacesto the rest of the model.
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Figure 1: The desired incremental properties of semantics in terms of a dialogue state (level 4, top)
idealised scopeless FOL maximal semantic representation with underspecified variables marked‘?’ (level
3) the update functions (level 2) triggered by input words (level 1). Arrows mean ‘triggered by input’.

2.1 Semantic representation construction properties

Strong incremental interpretation In line with Milward (1991), the maximal semantic representation
possible should be constructed on a word-by-word basis as itis being produced or interpreted (e.g. a
representation such asλx.like′(john′, x) should be available after processing “John likes”). The avail-
ability of such a representation may, though not necessarily, rely on an interfacing incremental syntactic
parsing framework. This is relevant to all examples (1)-(10) for achieving natural understanding and gen-
eration. Figure 1 shows the maximal semantic representation at the third level from bottom as idealised
scopeless First Order Logic (FOL) formulae with underspecified elements indicated with a ‘?’.

Incremental representation Again as per (Milward, 1991), assuming a word contributes a minimal
amount of semantic representation, the exact contributioneach word or substring makes should be avail-
able as an increment. However this need not necessarily include all possible information such as semantic
dependencies available (e.g.john′ attributed to “John” andλy.λx.like′(y, x) attributed to “likes” should
be available after processing “John likes”). While strong incremental interpretation is more obviously
required for dialogue, the incremental representation requirement becomes stronger when considering
the possibility of elements of the input string being revoked in real-time practical dialogue systems– i.e.
previous word hypotheses from an ASR output may change (Schlangen and Skantze, 2011). This is also
relevant in clarification and repair situations (3), (4) and(7), where on-line computation of the meaning
of repaired material relies on identifying its antecedent’s semantic representations precisely: access to
how the incremental information was constructed is essential.Incremental representations are shown as
time-linear update functions to the maximal semantic representation as in the second level in Figure 1.

Incremental underspecification and partiality Well-founded underspecification of representation is
required– more specifically, structural underspecification, such as that developed inCLLS (Constraint
Language for Lambda Structures, Egg et al., 2001). Underspecification should be derivable with in-
cremental representation such as in Steedman (2012)’s Combinatorial Categorial Grammar (CCG) lexi-
calised model of quantifier scope resolution. As time-linear semantic construction is our central motiva-
tion, while we want to capture scope-ambiguous readings of utterances such as ‘Every linguist attends a
workshop’, we add the stipulation that this underspecification be derivable word-by-word. After directly
processing a quantifier like ‘every’ such as in (9), the representation should be as semantically infor-
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mative as possible, but no more so; representations should be underspecified enough so as not to make
bad predictions for the final structure. Incremental underspecification also means having suitable place-
holders for anaphoric and elliptical constructions beforethey get resolved to their final representation.

Subsumption Dialogue models and systems require well-defined subsumption for incrementally check-
ing representations against domain knowledge, both in understanding and in checking against a semantic
goal when generating utterances. One computationally tractable and suitable candidate is Description
Logic subsumption, where for two semantic conceptsA andB, A is subsumed byB, i.e. B ⊒ A, iff
there is no object belonging to conceptA that does not belong toB. The semantic framework should
allow subsumption checking from the representation alone–in Figure 1 subsumption holds between
maximal semantic representations after each prefix.

2.2 Semantic model properties

While the appropriate representation should be available word-by-word as just described, a suitable
model and valuation function must reflect their intuitive semantics incrementally, again providing ad-
ditional desiderata beyond the valuation of fully specifiedrepresentations.

Interpretation of partial or underspecified representations The partial representations constructed
must be evaluable in a consistent way in a given interpretation system. This applies to all examples
(1)-(10): for example if the robot responds appropriately before an instruction is over as in (1) it must
have computed a meaning representation to the effectthis is a taking eventearly in parsing. In recent
type-theoretic approaches in computational semantics this kind of valuation is possible if semantic rep-
resentations are considered types in a type system: inference can be characterized as subtype relation
checking either by theorem proving (Chatzikyriakidis and Luo, 2014) or by checking the existence and
ordering relations of types on a model (partial order) of types (Hough and Purver, 2014).1

Incremental predictivity Related to subsumption is monotonicity (in the sense of monotonic entail-
ment in logic). In general, one would not want the valuation function after the first word to return more
specific information than that returned after the second word, nor at the second word evaluate expressions
as having a true value which were evaluated as false after thefirst word, and so on. In general, the total
information made available after having consumed a new wordshould entail the information inferred by
the prefix consumed before it is processed– see the top level in Figure 1. However, from a semantic pars-
ing perspective, maintaining robustness while preservingmonotonicity for each interpretation requires
allowing multiple parse paths due to possible lexical and structural ambiguity, most notably in ‘garden
path’ sentences, and so the output of a semantic parser can update its output non-monotonically, so long
as there is a good notion ofpredictivityof future states in time afforded by the semantic model.

Interface and consistency with well-founded reasoning system Well studied logical inference sys-
tems like FOL may not be adequate for natural language inference, as evidenced by the logical form
equivalence problem (Shieber, 1993).2 Having said this, consistent logical systems should be in place
which reason with the representations.

2.3 Dialogue properties

Incremental illocutionary information Where available syntactically and lexically, informationabout
the type of dialogue move, or illocutionary effects the utterance causes should be made available as soon
as possible, as evidenced by (1), in support of Ginzburg (2012)’s approach. This may not generally
be lexicalised, and therefore appropriate underspecification should be used instead to interface with the
dialogue model. Also, closely related to strong incremental interpretation is the need to allow fordefault
existential inference, as in sluices like (6).

1Also, while not immediately a natural language model, computationally incremental interpretation can be modelled in
terms of projection algebras (Sundaresh and Hudak, 1991), which allow evaluation of partial programs that are consistent with
complete programs.

2Roughly, Shieber (1993) shows how FOL can have different logical forms equivalent in meaning within a reasoning system,
but these equivalences may not ramify in a comparable way in natural language.
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Completion and repair potential In dialogue, it is not rare that one participant begins an utterance and
another completes it, in the case of compound contributionssuch as (5)– according to Howes et al. (2011),
this happens in 3% of all dialogue contributions (turns). Furthermore (11) from the same authors shows
that concatenating contiguous utterances where a speaker completes another’s can be ungrammatical,
however felicitous at such turn boundaries in real dialogue.

(11) A: Did you burn...
B: myself?

Potential for clarifying semantic content made central in the dialogue framework KoS (Ginzburg, 2012)
is another desirable property. Clarification and repair of semantic information requires incremental rep-
resentation as described above, as parsers and generators must have access to the information as to which
part of the semantic construction was triggered by which word.

Interchangeability between parsing and generation Ideally, the representations built up in parsing
should be usable by a generation process and vice-versa; akin to the reversible representation approach
in (Neumann, 1998). This is not just to deal with compound contributions, but also to be commensurate
with the self-monitoring required in generation (Levelt, 1989) without extra overhead.

Well-founded interface to dialogue or discourse models For extrinsic usefulness, incremental se-
mantics should interface with incremental models of discourse and dialogue. While these models are
rare, PTT (Poesio and Traum, 1997) and recent extensions of KoS (Ginzburg, 2012) are candidates. For
the sub-task of reference resolution, a suitable semantic model should provide word-by-word reference
information, relevant to all interactions in our toy domainin (1)-(10). Also, word-by-word access to the
dialogue state to compute relevance or coherence allows inferences of pragmatic infelicity like (8).

2.4 Computational properties

Semantic construction stability Related to the predictivity requirement, semantic contentalready
constructed should not be removed and replaced as processing continues unless triggered by revoked
input such as a word hypothesis change from ASR input. Stability affects the rest of the dialogue system
served by the semantics. This is pertinent in an automatic system which may have different interpreta-
tions stored in a beam, where frequent top hypothesis changes may have undesirable effects.

Minimisation of re-computation and efficiency When faced with changing input, one wants to min-
imise the re-computation of already evaluated parts of the input (the prefix). There are great efficiency
benefits if something only has to be evaluated once. For example chart parsing with the Cocke-Younger-
Kasami (CYK) algorithm exhibits this property, as it incrementally hypothesises the syntactic structure
of a sentence, where partial results of the computation can be stored on a word-by-word basis to max-
imise efficiency in a dynamic programming chart, and no computation is done more than once. Top-down
parsing approaches such as Roark (2001) also have this property.

Well-founded information and probability theoretic prope rties For training automatic systems,
well-understood information theoretic properties of the semantic construction process aid induction of
rules from data. This relies on a well understood probability model of the framework in terms of its
distributions of structures and update rules.

We now describe two current incremental semantic parsing frameworks to illustrate how the above
desiderata are met.

3 Two Current Attempts
3.1 DS-TTR

DS-TTR (Purver et al., 2011) integrates Type Theory with Records (TTR, Cooper, 2005)record type
(‘RT’ largely from now on) representations with the inherently incremental grammar formalism Dy-
namic Syntax (DS, Kempson et al., 2001) to provide word-by-word semantic construction. DS-TTR is
an action-driven interpretation formalism which has no layer of syntax independent of semantic con-
struction. The trees such as Figure 2 are constructed monotonically through sequences of tree-building
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IF ?Ty(e)
THEN put(Ty(e))

put(
[

x = john : e
]
)

ELSE abort

♦, T y(t),









x=john : e
e=arrive : es

p=subj(e,x) : t
head=p : t









Ty(e),
[

x=john : e
head=x : e

]

Ty(e → t),

λr :
[

head : e
]

. ⋗









x=r.head : e
e=arrive : es

p=subj(e,x) : t
head=p : t









Figure 2: Left: DS-TTR lexical action for ‘john’. Right: Final DS-TTR tree for “John arrives”

actions consistent with Logic of Finite Trees (LOFT). The DSlexicon compriseslexical actionskeyed
to words, and also a set of globally applicablecomputational actions(equivalent to general syntactic
rules), both of which constitute packages of monotonic update operations on semantic trees, and take
the form of IF-THEN-ELSE action-like structures. DS-TTR does not change the LOFT backbone of the
DS tree building process, nor does it currently augment the computational actions directly. However, RT
formulae are introduced into the lexical actions; for example the lexical action for the word “John” has
the preconditions and update effects as in the left-side of Figure 2.

As can be seen on the right side of Figure 2, the DS node types (rather than the RT formulae at
the nodes) are terms in the typed lambda calculus, with mother-daughter node relations corresponding
to semantic predicate-argument structure. The pointer object, ♦, indicates the node currently under
development. Parsing begins by an initial prediction step on an axiom of a single node with requirement
?Ty(t) and then the set of computational actions are Kleene star iterated over to yield a tree set. When
a word is consumed, it triggers all possible parses in the current tree set (or those within a given beam-
width), and then the set of computational actions are then again iterated over to yield a new tree set.

DS parsing yields an incrementally specified, partial semantic tree as words are parsed or generated,
and following Purver et al. (2011) DS-TTR tree nodes are decorated not with simple atomic formulae but
with RTs, and corresponding lambda abstracts representingRT λ-functions of typeRT → RT . Using
TTR’s affordance ofmanifestfields, there is a natural representation for underspecification of leaf node
content of DS trees, e.g.[x : e ] is unmanifest whereas[x=john : e ] is manifest and the latter is a subtype
of the former. After every word a RT is compiled to the top nodewith a simple bottom-up algorithm
(Hough and Purver, 2012). DS-TTR tree nodes include a fieldhead in all RTs. Technically, the range of
theλ-functions at functor nodes is the asymmetric merge⋗ of their domain RT(s) with the RT in their
range. This allows thehead field of argument node RTs inβ-reduction operations to be replaced by the
head field of the function’s range RT at the sister functor node in their resulting mother node RT or RT
function. On functor nodes semantic content decorations are of the formλr: [ l1 : T1 ].r ⋗ [ l2=r.l1 : T1 ]
wherer.l1 is a path expression referring to the labell1 in r – see the functor node with DS type label
Ty(e → t) of Figure 2.

Briefly, in DS-TTR generation (Hough and Purver, 2012), surface realisation is done by generating
from a goal TTR RT concept. This requires a notion of subsumption which is given by the TTR subtype
relation. Generation is driven by parsing and subtype relation checking the goal concept against each
tree’s top node RT, and consequently meets the desideratum of interchangeability between parsing and
generation described above.

3.2 RMRS-IP

While DS-TTR treats both syntactic and semantic construction as one process, Robust Minimal Recur-
sion Semantics with incremental processing (RMRS-IP, Peldszus et al., 2012) splits the task into a top-
down PCFG parse followed by the construction of RMRS (Copestake, 2006) formulae using semantic
construction rules, operating strictly word-by-word. Thecurrent RMRS-IP implementation uses standard
top-down non-lexicalised PCFG parsing in the style of Roark(2001), however uses left-factorization of

211



the standard PCFG grammar rules to delay certain structuraldecisions as long as possible, employing a
beam search over possible parses.

Logical RMRS forms are built up by semantic construction actions operating on the derived CFG
trees. In RMRS, meaning representations of a FOL are underspecified in two ways: First, the scope
relationships can be underspecified by splitting the formula into a list ofelementary predications(EP)
which receive a labelℓ and are explicitly related by stating scope constraints to hold between them (e.g.
qeq-constraints). This way, all scope readings can be compactly represented. Second, RMRS allows
underspecification of the predicate-argument-structure of EPs. Arguments are bound to a predicate by
anchor variablesa, expressed in the form of anargument relationARGREL(a,x). This way, predicates
can be introduced without fixed arity and arguments can be introduced without knowing which predicates
they are arguments of. RMRS-IP makes use of this form of underspecification by enriching lexical
predicates with arguments incrementally– see the right of Figure 5.

Combining two RMRS structures involves at least joining their list of EPs and ARGRELs and of
scope constraints. Additionally, equations between the variables can connect two structures, which is
an essential requirement for semantic construction. A semantic algebra for the combination of RMRSs
in a non-lexicalist setting is defined in Copestake (2007). Unsaturated semantic increments have open
slots that need to be filled by what is called thehook of another structure. Hook and slot are triples
[ℓ:a:x] consisting of a label, an anchor and an index variable. Everyvariable of the hook is equated with
the corresponding one in the slot. This way the semantic representation can grow monotonically at each
combinatory step by simply adding predicates, constraintsand equations. RMRS-IP extends Copestake
(2007) in the organisation of the slots to meet the requirement of strong incremental interpretation, con-
structing a proper semantic representation for every single state of growth of the syntactic tree. Typically,
RMRS composition assumes that the order of semantic combination is parallel to a bottom-up traversal
of the syntactic tree. However RMRS-IP proceeds with semantic combination in synchronisation with
the syntactic expansion of the tree, i.e. in a top-down left-to-right fashion. This way, no underspecifi-
cation of projected nodes and no re-interpretation of already existing parts of the tree is required. This,
however, requires adjustments to the slot structure of RMRS. Left-recursive rules can introduce multi-
ple slots of the same sort before they are filled, which is not allowed in the classic (R)MRS semantic
algebra, where only one named slot of each sort can be open at atime. Thus slots are organized as a
stack of unnamed slots, where multiple slots of the same sortcan be stored, but only the one on top can
be accessed. A basic combination operation equivalent to forward function composition (as in standard
lambda calculus, or in CCG) allows combination of substructures in a principled way across multiple
syntactic rules without the need to represent slot names.

Each lexical item receives a generic representation derived from its lemma and the basic semantic
type (individual, event, or underspecified denotations), determined by its POS tag. This makes the gram-
mar independent of knowledge about what later (semantic) components will actually be able to process
(“understand”). Parallel to the production of syntactic derivations, as the tree is expanded top-down left-
to-right, semantic macros are activated for each syntacticrule, composing the contribution of the new
increment. This allows for a monotonic semantics construction process that proceeds in lock-step with
the syntactic analysis. The stack of semantic slots is always synchronized with the parser’s stack.

4 Comparison

We now compare DS-TTR and RMRS-IP in terms of how they meet thedesiderata set out in Section 2
and compare their incremental performance extrinsically in a proof-of-concept reference resolution task.

Semantic representation construction properties Figure 5 shows the representation constructed by
both formalisms for the utterance ‘take the red cross’ basedon hand-crafted grammars. As can be seen
both allowstrong incremental interpretationafter each word. DS-TTR is more predictive after processing
‘take’ by predicting a second (object) argument, however the RMRS-IP grammar in principle could also
have this if its PCFG were extended appropriately.Underspecification and partialityin representation is
good for both as they exhibit incremental extension of theiroutput formulae word-by-word. The DS tree
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IF ?Ty(e), r :



 ctxt :





u : utt
x : e
spkr(u, x) : t







,

↑0↑1∗↓0 r1 :
[

cont :
[

x1=r.ctxt.x : e
] ]

THEN put(Ty(e)),

put(r ⋗

[

cont :
[

x=r.ctxt.x : e
] ]

)
ELSE abort

Figure 3: DS-TTR lexical action for ‘myself’
checks the formula at the subjectTy(e) node,
which may not have been constructed by cur-
rent speakerx but can still reference them

model metric 1-6 7-8 9-14
RMRS-IP first-correct (FC) 35.1 23.5 18.4
DS-TTR (% into utt.) 20.1 20.1 33.1
NGRAM 39.0 23.4 31.7
RMRS-IP first-final (FF) 43.0 25.5 29.3
DS-TTR (% into utt.) 23.5 23.3 42.8
NGRAM 46.9 35.5 41.4
RMRS-IP edit overhead (EO) 7.2 3.3 18.8
DS-TTR 5.8 2.9 17.5
NGRAM 10.4 18.6 9.5

Figure 4: Incremental reference resolution re-
sults for utterances of different lengths

keeps a record of the requirements still unsatisfied on its nodes, while in RMRS-IP this is done through
the stack of semantic slots (shown in the curly brackets in Figure 5). Both DS-TTR and RMRS-IP allow
word-by-word specification of entities (i.e. of the definitedescription ‘the red cross’).

In terms of the suitability of the underspecification for ellipsis and anaphora, in DS-TTR the interpre-
tation of strict readings of verb phrase ellipsis (VPE) suchas “John likes his donkey and Bill does too”
→ Bill likes John’s donkeyand sloppy VPE readings, where “John likes his donkey and Bill does too”
→ Bill likes his own donkeyis possible incrementally, by different strategies outlined in Kempson et al.
(2015).Wh-pronouns such as ‘who’ can be automatically resolved wherepossible. RMRS has sufficient
underspecification to yield similar readings, however thisis not operationalised in RMRS-IP parsing.

The semantic increment each word contributes is computed asa difference between the formula
computed after a given word and that computed at its previousword in both formalisms, therefore both
satisfy incremental representation. The subtype relation in TTR issubsumptiverather than cohersive,
giving DS-TTR another one of our desired properties– see Cooper (2005). Subsumption is not defined
in RMRS-IP, but due to its monotonicity in valuation it should exhibit similar properties.

Semantic model properties Both formalisms potentially exhibitincremental predictivityin terms of
valuation in a semantic model. DS-TTR permits the subtype relation to hold between the current RT and
the one constructed at the previous word. This allows valuation on a type lattice whereby type judge-
ments hold from one word to the next but become more specified.RMRS formulae can be flattened
to FOL with sortal variables, and given this interpretationcan be interpreted monotonically. In terms
of interpretation of partial or underspecified representations and aninterface and consistency with a
well-founded reasoning system, in DS-TTR, supertypes (the dual of subtypes) allow well-defined under-
specified RTs, however more work needs to be done on incorporating underspecified scope relations. As
RMRS is defined in a semantic algebra allowing underspecification (Copestake, 2007), it is currently
more strongly positioned here. Furthermore, the extensivehistory of reasoning with FOL logical forms
puts RMRS-IP at an advantage to work with well understood semantic models.

Dialogue properties DS-TTR makes claims about dialogue modelling beyond those of RMRS-IP to
date. For instance, as regardsinterchangeability between parsing and generation, compound contribu-
tions are modelled with speaker-hearer switches which build the same RT, which can be further specified
by subtyping to a new goal during the speaker switch. The example (5) can also be accounted for in
designing lexical actions which interact with context. By assuming a simple dialogue context is main-
tained that records who is speaking, this allows interaction-oriented lexical actions to be created, such as
that for ‘myself’ as in Figure 3. This also makes self-monitoring and self-repair in generation possible
incrementally, including generating repairs in the face ofchanging goal concepts (Hough and Purver,
2012). Having said this, these are largely made possible by the well-defined subsumption and mono-
tonicity in subtype relations, so this is in principle re-producible in RMRS. In terms of awell-founded
interface to dialogue models, while DS-TTR has been used as a dialogue model itself, givenDS-TTR’s
output of RTs, other popular models of dialogue can interface with it, most notably KoS (Ginzburg,
2012). RMRS-IP is well positioned to interface with a variety of formalisms that use FOL, and again,
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well-founded logical inference in these models puts it at anadvantage.

Computational properties Un-enriched PCFGs have well studied information-theoretic properties
and complexity, and are learnable from data, however DS-TTRsemantic grammars have been proven
to be learnable with semantic targets for short utterances (Eshghi et al., 2013), which has not been at-
tempted yet in RMRS-IP. We discuss both formalisms’semantic construction stabilitybelow.

4.1 Implementation comparison: Reference Resolution taskperformance

We also compare the frameworks’ current parsing implementations in a real-world inference task contin-
gent on the desiderata. This was done in an incremental reference resolution (RR) task using Kennington
et al. (2013)’s statistical SIUM model, which learns to associate words (or in our case, semantic rep-
resentations) with properties belonging to objects in a virtual scene. Both semantic grammars were
hand-crafted to achieve coverage of our test corpus of German spoken instructions directed at a manip-
ulator of blocks in the scene. Word-by-word representations from the parsers were used by SIUM to
learn which object properties were likely to be in the referred object. Evaluating using a 10-fold cross
validation, in addition to utterance-finalRR accuracy (where the referent hypothesis was the argmax in
the distribution over objects produced by SIUM), to investigate incremental performance we use metrics
used by the same authors:first correct (FC) : how deep into the utterance (in %) does the model predict
the referent for the first time?,first final (FF) : how deep into the utterance (in %) does the model predict
the correct referent and keep that decision until the end?, and edit overhead (EO): how often did the
model unnecessarily change its prediction (the onlynecessaryprediction happens when it first makes a
correct prediction)? Goodsemantic construction stabilitywould mean low EO, and, goodpredictivity
should mean short distance between FC and FF (once correct itdoes not revoke the referent), and in
terms ofstrong incremental representationwe would want it to make this final choice early on (low FF).

The utterance-final RR accuracy was 0.876 for SIUM using RMRS-IP, out-performing DS-TTR
(0.832), and both out-performing a base-line using n-gram features (0.811). In terms of incremental
metrics, DS-TTR had good performance in short utterances upto 8 words long, but RMRS-IP, with more
robust PCFG parsing strategies and flexible RMRS composition yields better results overall, particularly
in longer utterances. DS-TTR showed good stability and predictivity, on average making correct final
predictions earlier than RMRS-IP for utterance lengths 1-6(FF: 23.5% into the utterance vs 43.0%), and
lengths 7-8, however falling back significantly for lengths9-14 (FF: DS-TTR: 42.8% vs. RMRS-IP:
29.3%), which is likely due to bad parses for long utterances. DS-TTR makes more stable choices as
the difference between FF and FC is lowest for all but lengths7-8, and DS-TTR also achieves the lowest
edit overhead across all utterance lengths– see Figure 4. Practically, currently RMRS-IP is more robust
for long utterances and for utterance-final meaning, while DS-TTR performs better incrementally.

5 Conclusion

We have proposed desiderata for incremental semantic frameworks for dialogue processing and com-
pared two frameworks. RMRS-IP and DS-TTR meet semantic representation construction criteria very
similarly, however their semantic model, dialogue properties and practical robustness differ currently.
In terms of parsimony and familiarity for researchers, RMRSwith PCFG parsing combined constitute
more widely studied formalisms, however DS takes Montague grammar-like structures with a dynamic
tree logic as its backbone, and TTR is a well developed rich type system, so is also semanticist-friendly.

We conclude that theremitof incremental semantics for dialogue is what needs to be explored further:
the dialogue phenomena that DS-TTR models directly may not be desirable for all applications, while
RMRS-IP, although cross-compatible with different well-studied reasoning systems and grammars could
be seen as not doing enough dialogical semantics and needs enriching.
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word DS-TTR top record type RMRS-IP formula

take



e=take : es
x1 : e
x=addressee : e
p2=object(e,x1) : t

p1=subject(e,x) : t

p=imperative(e) : t

head=e : es


[ℓ0:a0:e0] { [ℓ0:a0:e0] }
ℓ0:a0: take(e0),

ARG1(a0, x2),
ℓ2:a2:addressee(x2)

the



e=take : es

r :
[

x : e
head=x : e

]
x1=ι(r.head,r) : e

x=addressee : e
p2=object(e,x1) : t

p1=subject(e,x) : t

p=imperative(e) : t

head=e : es



[ℓ0:a0:e0] { [ℓ7:a7:e4], [ℓ0:a0:e0] }
ℓ0:a0: take(e0),

ARG1(a0, x2),
ARG2(a0, x4),

ℓ2:a2:addressee(x2),
ℓ4:a4: def q(),

BV(a4, x4),
RSTR(a4, h1),
BODY(a4, h2),
h1 =q ℓ7

red



e=take : es

r :

 x : e
p=red(x) : t

head=x : e


x1=ι(r.head,r) : e

x=addressee : e
p2=object(e,x1) : t

p1=subject(e,x) : t

p=imperative(e) : t

head=e : es



[ℓ0:a0:e0] { [ℓ7:a7:e4], [ℓ0:a0:e0] }
ℓ0:a0: take(e0),

ARG1(a0, x2),
ARG2(a0, x4),

ℓ2:a2:addressee(x2),
ℓ4:a4: def q(),

BV(a4, x4),
RSTR(a4, h1),
BODY(a4, h2),
h1 =q ℓ7,

ℓ7:a10: red(e10),
ARG1(a10, x4)

cross



e=take : es

r :


x : e
p1=cross(x) : t

p=red(x) : t

head=x : e


x1=ι(r.head,r) : e

x=addressee : e
p2=object(e,x1) : t

p1=subject(e,x) : t

p=imperative(e) : t

head=e : es



[ℓ0:a0:e0] { }
ℓ0:a0: take(e0),

ARG1(a0, x2),
ARG2(a0, x4),

ℓ2:a2:addressee(x2),
ℓ4:a4: def q(),

BV(a4, x4),
RSTR(a4, h1),
BODY(a4, h2),
h1 =q ℓ7,

ℓ7:a10: red(e10),
ARG1(a10, x4),

ℓ7:a7: cross(x4)

Figure 5: Incremental semantic construction by DS-TTR and RMRS-IP
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