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Abstract

Truly interactive dialogue systems need to construct nmgaon at least a word-by-word basis.
We propose desiderata for incremental semantics for di@logpdels and systems, a task not hereto-
fore attempted thoroughly. After laying out the desirahleperties we illustrate how they are met
by current approaches, comparing two incremental sempardaessing frameworks: Dynamic Syn-
tax enriched with Type Theory with Records (DS-TTR) and Radinimal Recursion Semantics
with incremental processing (RMRS-IP). We conclude thgge@aches are not significantly differ-
ent with regards to their semantic representation cortstruchowever their purported role within
semantic models and dialogue models is where they diverge.

1 Introduction

It is now uncontroversial that dialogue participants carsmeaning from utterances on at least as fine-
grained a level as word-by-word (see Brennan, 2000; Schidgeand Bornkessel, 2004hter alia).

It has also become clear that using more fine-grained iner&hprocessing allows more likeable and

interactive systems to be designed (Skantze and Schlagg@®; Skantze and Hjalmarsson, 2010). De-
spite these encouraging results, it has not been cleatigdstehich elements of incremental semantic
frameworks, either formally or implementationally, aresidable for dialogue models and systems; this
paper intends to spell these requirements out clearly.

1.1 The need for incremental semantics in situated dialogue

While traditional computational semantics models the rmeaof complete sentences, for interaction
this is insufficient for achievinghe construction of meaning in real time as linguistic imf@tion is
processedThe motivation for incremental semantics becomes clesitirated dialogue systems, which
we illustrate here with a real-world scenario. Imagineratéing with a robot capable of manipulating
objects of different colours and shapes on a board, wheregoulirect the robot’s action verbally, and
the robot also has the ability to direct your actions. Whéfirig to the robot, natural interactions like the
following should be possible (the utterance timings andbastof the two participants are represented
roughly at the relative time indicated by their horizontakjion):

(1) You:. Take... the red cross

Robot: [turns head to board]
(2) You: Take the red cross ... and the blue square

Robot: mhm [takes red cross] [takes blue square]
(3) You: Take thered cross, uh no, that's green.

Robot: [takes green cross]
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(4) You: The bigred cross uh no, the one in the corner

Robot: [moves hand over nearby cross] [retracts, moves begidcross in corner]
(5) You:. Takethered...
Robot: cross?
(6) You: Takethered...
Robot: what?
(7) You: Take the blue uh ... yes, sorry, the red cross
Robot: Did you mean red?
(8) Robot: What's your name? [makes puzzled face]
You: Take the red cross

However we may not desire the following interactions:

(9) You:. Take every no, wait, take every red cross!
Robot: [moves hand over green cross]

(10) You: Take the ...
Robot: okay!

Here we propose incremental semantics should be motivateddolelling and implementing this
highly interactive, realistic behaviour, putting immeeiaequirements in focus. (1) shows the robot
should begin signalling attention before the command ig,0& shows backchannel acknowledge-
ments should be driven by incremental semantic understgn@8) and (4) show how computing the
meaning of a repaired utterance even when the repair isiedliff'that’s green’) or anaphoric (‘the one’)
is crucial. The compound contribution (5) shows the needdonantic construction to go across dialogue
partners (this does not mean string completion), while )ntf& WH-sluice from the robot relies on the
(potentially defeasible) inference that you wanted it ketaomething. The mid-utterance clarification
request (7) and mid-utterance reaction to irrelevant uskatiour in (8) show the possibility for imme-
diate reaction to pragmatic infelicity. While we would likge maximal amount of information possible
on a word-by-word basis, (9) shows this should not resultaid predictions. (10) shows how human-
robot interaction relying on acoustic cues such as sileetection for ‘end-pointing’ utterances alone is
clearly insufficient— silence is not always an indicator e@fsntic or dialogue-level completeness, nor is
its absence good evidence for a continuation of a unit of inggisee Schlangen and Skantze, 2011).

We address how to meet these requirements in semanticdagsoEection 2 outlines our proposed
desiderata, 3 technically overviews two approaches t@mental semantics, 4 compares the approaches
in terms of the desired properties theoretically and peaflyi, and Section 5 concludes with the implica-
tions of our findings.

2 Desiderata

We take as our point of departure Milward (1991), who poinis tbe difference between a system’s
capacity forstrong incremental interpretatioand its ability to access and produneremental represen-
tation. While these are important and we still consider them cendguirements in terms afemantic
representation construction propertigbere are others we propose below, some directly relatéeese
and others orthogonal to them. We also disasmantic modedialogue andcomputationaldesider-
ata. We explain these in turn and the connections betweem thigure 1 shows some of the desiderata
visually for the utterance ‘take the red cross’ as it is ipteted by a rudimentary interpretation module
reasoning about a real-word scene: the action SELECT ig@tdfeipon processing the first word and the
referent set indicating the possible objects the user ec8et narrows thereafter word-by-word when
relevant information specifies the referent. The parts veepgincipally concerned with are those on
levels two and three in grey, in addition to their interfatethe rest of the model.
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Figure 1: The desired incremental properties of semantiderins of a dialogue state (level 4, top)
idealised scopeless FOL maximal semantic representattbrunderspecified variables marked‘?’ (level
3) the update functions (level 2) triggered by input worés€l 1). Arrows mean ‘triggered by input'.

2.1 Semantic representation construction properties

Strong incremental interpretation  In line with Milward (1991), the maximal semantic represgion
possible should be constructed on a word-by-word basis iasoiing produced or interpreted (e.g. a
representation such as.like’(john', z) should be available after processing “John likes”). Thelava
ability of such a representation may, though not necegsagily on an interfacing incremental syntactic
parsing framework. This is relevant to all examples (1)} fd®achieving natural understanding and gen-
eration. Figure 1 shows the maximal semantic representatithe third level from bottom as idealised
scopeless First Order Logic (FOL) formulae with underdiiettielements indicated with a ‘?".
Incremental representation Again as per (Milward, 1991), assuming a word contributesiimal
amount of semantic representation, the exact contribdmi word or substring makes should be avail-
able as an increment. However this need not necessarilydadlll possible information such as semantic
dependencies available (ej@hn’ attributed to “John” andy.\z.like’ (y, z) attributed to “likes” should

be available after processing “John likes”). While strongrémental interpretation is more obviously
required for dialogue, the incremental representatiomirement becomes stronger when considering
the possibility of elements of the input string being revibkereal-time practical dialogue systems— i.e.
previous word hypotheses from an ASR output may change é8gbh and Skantze, 2011). This is also
relevant in clarification and repair situations (3), (4) &Ay where on-line computation of the meaning
of repaired material relies on identifying its antecedesg&mantic representations precisely: access to
howthe incremental information was constructed is esseritiatemental representations are shown as
time-linear update functions to the maximal semantic regméation as in the second level in Figure 1.
Incremental underspecification and partiality Well-founded underspecification of representation is
required— more specifically, structural underspecificatisuch as that developed @.Ls (Constraint
Language for Lambda Structures, Egg et al., 2001). Undeifsgaion should be derivable with in-
cremental representation such as in Steedman (2012)’s i@atabial Categorial Grammar (CCG) lexi-
calised model of quantifier scope resolution. As time-lirgamantic construction is our central motiva-
tion, while we want to capture scope-ambiguous readingstefances such as ‘Every linguist attends a
workshop’, we add the stipulation that this underspecificelbe derivable word-by-word. After directly
processing a quantifier like ‘every’ such as in (9), the repntation should be as semantically infor-
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mative as possible, but no more so; representations sheulshderspecified enough so as not to make
bad predictions for the final structure. Incremental unolecgication also means having suitable place-
holders for anaphoric and elliptical constructions befitiey get resolved to their final representation.

Subsumption Dialogue models and systems require well-defined subsomfuf incrementally check-
ing representations against domain knowledge, both inrstateding and in checking against a semantic
goal when generating utterances. One computationallyatrbe and suitable candidate is Description
Logic subsumption, where for two semantic concefitand B, A is subsumed by, i.e. B 1O A, iff
there is no object belonging to conceptthat does not belong t8. The semantic framework should
allow subsumption checking from the representation aldneFigure 1 subsumption holds between
maximal semantic representations after each prefix.

2.2 Semantic model properties

While the appropriate representation should be availaldedsy-word as just described, a suitable
model and valuation function must reflect their intuitivensmtics incrementally, again providing ad-
ditional desiderata beyond the valuation of fully specifiegresentations.

Interpretation of partial or underspecified representations The partial representations constructed
must be evaluable in a consistent way in a given interpogtagiystem. This applies to all examples
(1)-(20): for example if the robot responds appropriatedyobe an instruction is over as in (1) it must
have computed a meaning representation to the effexis a taking evengarly in parsing. In recent
type-theoretic approaches in computational semantisskthd of valuation is possible if semantic rep-
resentations are considered types in a type system: imferesn be characterized as subtype relation
checking either by theorem proving (Chatzikyriakidis angb|.2014) or by checking the existence and
ordering relations of types on a model (partial order) oktyHough and Purver, 201%).

Incremental predictivity Related to subsumption is monotonicity (in the sense of rtamio entail-
ment in logic). In general, one would not want the valuationction after the first word to return more
specific information than that returned after the secondiwwor at the second word evaluate expressions
as having a true value which were evaluated as false aftdirsth@ord, and so on. In general, the total
information made available after having consumed a new wbeadild entail the information inferred by
the prefix consumed before it is processed- see the top feiFgure 1. However, from a semantic pars-
ing perspective, maintaining robustness while preseraogotonicity for each interpretation requires
allowing multiple parse paths due to possible lexical andcstiral ambiguity, most notably in ‘garden
path’ sentences, and so the output of a semantic parser dateufs output non-monotonically, so long
as there is a good notion pfedictivity of future states in time afforded by the semantic model.

Interface and consistency with well-founded reasoning sysm Well studied logical inference sys-
tems like FOL may not be adequate for natural language inéereas evidenced by the logical form
equivalence problem (Shieber, 1993Having said this, consistent logical systems should be acepl
which reason with the representations.

2.3 Dialogue properties

Incremental illocutionary information ~ Where available syntactically and lexically, informatiaimout

the type of dialogue move, or illocutionary effects the ratteee causes should be made available as soon
as possible, as evidenced by (1), in support of GinzburgdR®hpproach. This may not generally
be lexicalised, and therefore appropriate underspedditahould be used instead to interface with the
dialogue model. Also, closely related to strong incremlentarpretation is the need to allow fdefault

existential inferenceas in sluices like (6).

1Also, while not immediately a natural language model, comonally incremental interpretation can be modelled in
terms of projection algebras (Sundaresh and Hudak, 1991ghvallow evaluation of partial programs that are consistéth
complete programs.

2Roughly, Shieber (1993) shows how FOL can have differeritiddorms equivalent in meaning within a reasoning system,
but these equivalences may not ramify in a comparable wagtural language.
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Completion and repair potential In dialogue, it is not rare that one participant begins agratice and
another completes it, in the case of compound contribusoh as (5)— according to Howes et al. (2011),
this happens in 3% of all dialogue contributions (turns)ttikermore (11) from the same authors shows
that concatenating contiguous utterances where a speakwletes another’'s can be ungrammatical,
however felicitous at such turn boundaries in real dialogue

(11) A:Did you burn...
B: myself?

Potential for clarifying semantic content made centrahia dialogue framework KoS (Ginzburg, 2012)

is another desirable property. Clarification and repaireshantic information requires incremental rep-
resentation as described above, as parsers and generaginigsave access to the information as to which
part of the semantic construction was triggered by whichdwor

Interchangeability between parsing and generation ldeally, the representations built up in parsing
should be usable by a generation process and vice-versataaltie reversible representation approach
in (Neumann, 1998). This is not just to deal with compoundtiGoutions, but also to be commensurate
with the self-monitoring required in generation (Leve®89) without extra overhead.

Well-founded interface to dialogue or discourse models For extrinsic usefulness, incremental se-
mantics should interface with incremental models of dissewand dialogue. While these models are
rare, PTT (Poesio and Traum, 1997) and recent extensione®f&inzburg, 2012) are candidates. For
the sub-task of reference resolution, a suitable semargaeihshould provide word-by-word reference

information, relevant to all interactions in our toy domain(1)-(10). Also, word-by-word access to the

dialogue state to compute relevance or coherence alloeseimées of pragmatic infelicity like (8).

2.4 Computational properties

Semantic construction stability Related to the predictivity requirement, semantic contdrgady
constructed should not be removed and replaced as progessiinues unless triggered by revoked
input such as a word hypothesis change from ASR input. $tahffects the rest of the dialogue system
served by the semantics. This is pertinent in an automasitesywhich may have different interpreta-
tions stored in a beam, where frequent top hypothesis ckangg have undesirable effects.
Minimisation of re-computation and efficiency When faced with changing input, one wants to min-
imise the re-computation of already evaluated parts ofripati(the prefix). There are great efficiency
benefits if something only has to be evaluated once. For ebeathpart parsing with the Cocke-Younger-
Kasami (CYK) algorithm exhibits this property, as it incremtally hypothesises the syntactic structure
of a sentence, where partial results of the computation eastdred on a word-by-word basis to max-
imise efficiency in a dynamic programming chart, and no caw@mpan is done more than once. Top-down
parsing approaches such as Roark (2001) also have thisrfyrope
Well-founded information and probability theoretic properties For training automatic systems,
well-understood information theoretic properties of teenantic construction process aid induction of
rules from data. This relies on a well understood probabitiodel of the framework in terms of its
distributions of structures and update rules.

We now describe two current incremental semantic parsiamdivorks to illustrate how the above
desiderata are met.

3 Two Current Attempts
3.1 DS-TTR

DS-TTR (Purver et al., 2011) integrates Type Theory withdRds (TTR, Cooper, 2005ecord type
(‘RT’ largely from now on) representations with the inhdigrincremental grammar formalism Dy-
namic Syntax (DS, Kempson et al., 2001) to provide word-loyehwsemantic construction. DS-TTR is
an action-driven interpretation formalism which has ncetagf syntax independent of semantic con-
struction. The trees such as Figure 2 are constructed muinally through sequences of tree-building
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Figure 2: Left: DS-TTR lexical action for ‘john’. Right: Fad DS-TTR tree for “John arrives”

actions consistent with Logic of Finite Trees (LOFT). The [BSicon comprisesexical actionskeyed

to words, and also a set of globally applicallemputational actiongequivalent to general syntactic
rules), both of which constitute packages of monotonic ted@erations on semantic trees, and take
the form of IF-THEN-ELSE action-like structures. DS-TTRedmot change the LOFT backbone of the
DS tree building process, nor does it currently augment dimepeitational actions directly. However, RT
formulae are introduced into the lexical actions; for exbntpe lexical action for the word “John” has
the preconditions and update effects as in the left-sideqfrE 2.

As can be seen on the right side of Figure 2, the DS node typ#ise(rthan the RT formulae at
the nodes) are terms in the typed lambda calculus, with maoldweghter node relations corresponding
to semantic predicate-argument structure. The pointezctb{>, indicates the node currently under
development. Parsing begins by an initial prediction stepmaxiom of a single node with requirement
?Ty(t) and then the set of computational actions are Kleene statétk over to yield a tree set. When
a word is consumed, it triggers all possible parses in theentitree set (or those within a given beam-
width), and then the set of computational actions are thamatgrated over to yield a new tree set.

DS parsing yields an incrementally specified, partial seinéree as words are parsed or generated,
and following Purver et al. (2011) DS-TTR tree nodes are gded not with simple atomic formulae but
with RTs, and corresponding lambda abstracts represeRiing-functions of typeRT — RT. Using
TTR'’s affordance omanifesffields, there is a natural representation for underspetdicaf leaf node
content of DS trees, e.¢z : e] is unmanifest whereds — ., : €] is manifest and the latter is a subtype
of the former. After every word a RT is compiled to the top nedth a simple bottom-up algorithm
(Hough and Purver, 2012). DS-TTR tree nodes include a field in all RTs. Technically, the range of
the A-functions at functor nodes is the asymmetric mgrgeof their domain RT(s) with the RT in their
range. This allows théead field of argument node RTs ifi-reduction operations to be replaced by the
head field of the function’s range RT at the sister functor nodehigirt resulting mother node RT or RT
function. On functor nodes semantic content decoratiom®fthe formAr: [[; : Tl].r [lo=ps, T ]
wherer.l; is a path expression referring to the labgelin » — see the functor node with DS type label
Ty(e — t) of Figure 2.

Briefly, in DS-TTR generation (Hough and Purver, 2012), actefrealisation is done by generating
from a goal TTR RT concept. This requires a notion of subsionpthich is given by the TTR subtype
relation. Generation is driven by parsing and subtypeicglathecking the goal concept against each
tree’s top node RT, and consequently meets the desiderdtimtechangeability between parsing and
generation described above.

3.2 RMRS-IP

While DS-TTR treats both syntactic and semantic constacdis one process, Robust Minimal Recur-
sion Semantics with incremental processing (RMRS-IP,92elsl et al., 2012) splits the task into a top-
down PCFG parse followed by the construction of RMRS (Cadest2006) formulae using semantic
construction rules, operating strictly word-by-word. Therent RMRS-IP implementation uses standard
top-down non-lexicalised PCFG parsing in the style of Rg2001), however uses left-factorization of
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the standard PCFG grammar rules to delay certain struadesions as long as possible, employing a
beam search over possible parses.

Logical RMRS forms are built up by semantic constructioricenst operating on the derived CFG
trees. In RMRS, meaning representations of a FOL are unelgfigal in two ways: First, the scope
relationships can be underspecified by splitting the foenmindo a list ofelementary predicationéEP)
which receive a labdl and are explicitly related by stating scope constraintsotd between them (e.g.
gegconstraints). This way, all scope readings can be compagpiresented. Second, RMRS allows
underspecification of the predicate-argument-structfifeRs. Arguments are bound to a predicate by
anchor variableg, expressed in the form of argument relatiolMARGREL (a,x). This way, predicates
can be introduced without fixed arity and arguments can bedoted without knowing which predicates
they are arguments of. RMRS-IP makes use of this form of @wpeeification by enriching lexical
predicates with arguments incrementally— see the righigire 5.

Combining two RMRS structures involves at least joiningirthist of EPs and ARGRELs and of
scope constraints. Additionally, equations between thi@btes can connect two structures, which is
an essential requirement for semantic construction. A séimalgebra for the combination of RMRSs
in a non-lexicalist setting is defined in Copestake (2007Msafurated semantic increments have open
slots that need to be filled by what is called theok of another structure. Hook and slot are triples
[¢:a:z] consisting of a label, an anchor and an index variable. Evarigble of the hook is equated with
the corresponding one in the slot. This way the semantieseptation can grow monotonically at each
combinatory step by simply adding predicates, constraintsequations. RMRS-IP extends Copestake
(2007) in the organisation of the slots to meet the requirgraéstrong incremental interpretation, con-
structing a proper semantic representation for everyasisigite of growth of the syntactic tree. Typically,
RMRS composition assumes that the order of semantic cotiduinia parallel to a bottom-up traversal
of the syntactic tree. However RMRS-IP proceeds with seim@oimbination in synchronisation with
the syntactic expansion of the tree, i.e. in a top-downttefight fashion. This way, no underspecifi-
cation of projected nodes and no re-interpretation of direxisting parts of the tree is required. This,
however, requires adjustments to the slot structure of RMRS8-recursive rules can introduce multi-
ple slots of the same sort before they are filled, which is Howad in the classic (R)MRS semantic
algebra, where only one named slot of each sort can be opetimaéa Thus slots are organized as a
stack of unnamed slots, where multiple slots of the samecsorbe stored, but only the one on top can
be accessed. A basic combination operation equivalentteafd function composition (as in standard
lambda calculus, or in CCG) allows combination of substreg in a principled way across multiple
syntactic rules without the need to represent slot names.

Each lexical item receives a generic representation defiven its lemma and the basic semantic
type (individual, event, or underspecified denotationsjernined by its POS tag. This makes the gram-
mar independent of knowledge about what later (semantitipoments will actually be able to process
(“understand”). Parallel to the production of syntacticielions, as the tree is expanded top-down left-
to-right, semantic macros are activated for each syntagté& composing the contribution of the new
increment. This allows for a monotonic semantics consoagbrocess that proceeds in lock-step with
the syntactic analysis. The stack of semantic slots is awggchronized with the parser’s stack.

4 Comparison

We now compare DS-TTR and RMRS-IP in terms of how they meetlfsiderata set out in Section 2
and compare their incremental performance extrinsically proof-of-concept reference resolution task.

Semantic representation construction properties Figure 5 shows the representation constructed by
both formalisms for the utterance ‘take the red cross’ baseddand-crafted grammars. As can be seen
both allowstrong incremental interpretatioafter each word. DS-TTR is more predictive after processing
‘take’ by predicting a second (object) argument, howeverRIMRS-IP grammar in principle could also
have this if its PCFG were extended appropriatelgderspecification and partialitin representation is
good for both as they exhibit incremental extension of thatput formulae word-by-word. The DS tree
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u . utt model r_netric 1-6 |78 | 9-14

IE Myle),r: | ctat - . e RMRS-IP flrst_-correct (FC) | 35.1| 235 | 184

’ sphr(u,z) : DS-TTR | (% into utt.) 20.1| 20.1 | 331

ToTralo Ml [ cont - [ Tl ointn © € ] ] NGRAM _ . 39.0 | 234 | 31.7

THEN  put (Ty(e)), R RMRs-IP | first-final (FF) 43.0 | 25,5 | 29.3

DS-TTR (% into utt.) 23.5| 23.3 | 42.8

put (r[A] [ cont : [ —rcrora i €] ]) NGRAM 46.9 | 355 | 41.4

ELSE  abort RMRS 1P | edit overhead (EO) 7.2 | 3.3 | 188

. . . . , DS-TTR 58 |29 | 175

Figure 3: DS-TTR lexical action for ‘myself NGRAM 104 | 186 | 95

checks the formula at the subjeEy(e) node,
which may not have been constructed by cur-

i Figure 4. Incremental reference resolution re-
rent speakes: but can still reference them

sults for utterances of different lengths

keeps a record of the requirements still unsatisfied on idesowvhile in RMRS-IP this is done through
the stack of semantic slots (shown in the curly bracketsguiféi 5). Both DS-TTR and RMRS-IP allow
word-by-word specification of entities (i.e. of the definikescription ‘the red cross’).

In terms of the suitability of the underspecification forpis and anaphora, in DS-TTR the interpre-
tation of strict readings of verb phrase ellipsis (VPE) sastfJohn likes his donkey and Bill does too”
— Bill likes John’s donkewnd sloppy VPE readings, where “John likes his donkey anddBés too”
— Bill likes his own donkejs possible incrementally, by different strategies oweitlirin Kempson et al.
(2015).Wh-pronouns such as ‘who’ can be automatically resolved wpessible. RMRS has sufficient
underspecification to yield similar readings, however ihisot operationalised in RMRS-IP parsing.

The semantic increment each word contributes is computeal dierence between the formula
computed after a given word and that computed at its prewiaurd in both formalisms, therefore both
satisfyincremental representationThe subtype relation in TTR isubsumptiveather than cohersive,
giving DS-TTR another one of our desired properties— seg€@o(2005). Subsumption is not defined
in RMRS-IP, but due to its monotonicity in valuation it shd@xhibit similar properties.

Semantic model properties Both formalisms potentially exhibincremental predictivityn terms of
valuation in a semantic model. DS-TTR permits the subtyfsios to hold between the current RT and
the one constructed at the previous word. This allows vialnain a type lattice whereby type judge-
ments hold from one word to the next but become more specifMRS formulae can be flattened
to FOL with sortal variables, and given this interpretatcan be interpreted monotonically. In terms
of interpretation of partial or underspecified representasand aninterface and consistency with a
well-founded reasoning systen DS-TTR, supertypes (the dual of subtypes) allow wefiraa under-
specified RTs, however more work needs to be done on incamgnanderspecified scope relations. As
RMRS is defined in a semantic algebra allowing underspettitgdCopestake, 2007), it is currently
more strongly positioned here. Furthermore, the extertgstery of reasoning with FOL logical forms
puts RMRS-IP at an advantage to work with well understoodasgin models.

Dialogue properties DS-TTR makes claims about dialogue modelling beyond thé$&MRS-IP to
date. For instance, as regaidserchangeability between parsing and generatioampound contribu-
tions are modelled with speaker-hearer switches whiclilthé same RT, which can be further specified
by subtyping to a new goal during the speaker switch. The plaifb) can also be accounted for in
designing lexical actions which interact with context. Bysaming a simple dialogue context is main-
tained that records who is speaking, this allows interaetioented lexical actions to be created, such as
that for ‘myself’ as in Figure 3. This also makes self-monitg and self-repair in generation possible
incrementally, including generating repairs in the faceclndinging goal concepts (Hough and Purver,
2012). Having said this, these are largely made possibldndyviell-defined subsumption and mono-
tonicity in subtype relations, so this is in principle resgucible in RMRS. In terms of well-founded
interface to dialogue modelgvhile DS-TTR has been used as a dialogue model itself, gD@T TR’S
output of RTs, other popular models of dialogue can interfaith it, most notably KoS (Ginzburg,
2012). RMRS-IP is well positioned to interface with a vayief formalisms that use FOL, and again,
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well-founded logical inference in these models puts it ahdvantage.

Computational properties Un-enriched PCFGs have well studied information-theoretioperties
and complexity, and are learnable from data, however DS-3$d@iRantic grammars have been proven
to be learnable with semantic targets for short utteranEshghi et al., 2013), which has not been at-
tempted yet in RMRS-IP. We discuss both formalissesnantic construction stabilityelow.

4.1 Implementation comparison: Reference Resolution tasgerformance

We also compare the frameworks’ current parsing implentiemisin a real-world inference task contin-
gent on the desiderata. This was done in an incrementaereferresolution (RR) task using Kennington
et al. (2013)’s statistical SIUM model, which learns to asst® words (or in our case, semantic rep-
resentations) with properties belonging to objects in tualrscene. Both semantic grammars were
hand-crafted to achieve coverage of our test corpus of Gespaken instructions directed at a manip-
ulator of blocks in the scene. Word-by-word representatifsom the parsers were used by SIUM to
learn which object properties were likely to be in the reddrpbject. Evaluating using a 10-fold cross
validation, in addition to utterance-finRIR accuracy (where the referent hypothesis was the argmax in
the distribution over objects produced by SIUM), to invgate incremental performance we use metrics
used by the same authoffgst correct (FC): how deep into the utterance (in %) does the model predict
the referent for the first time®irst final (FF) : how deep into the utterance (in %) does the model predict
the correct referent and keep that decision until the enal?edit overhead (EO) how often did the
model unnecessarily change its prediction (the ardgessaryprediction happens when it first makes a
correct prediction)? Goodemantic construction stabilitywould mean low EO, and, gogaredictivity
should mean short distance between FC and FF (once cormdogst not revoke the referent), and in
terms ofstrong incremental representatiome would want it to make this final choice early on (low FF).

The utterance-final RR accuracy was 0.876 for SIUM using RNIRSut-performing DS-TTR
(0.832), and both out-performing a base-line using n-graatuires (0.811). In terms of incremental
metrics, DS-TTR had good performance in short utterances 8pvords long, but RMRS-IP, with more
robust PCFG parsing strategies and flexible RMRS compasyjiglds better results overall, particularly
in longer utterances. DS-TTR showed good stability andiptiedy, on average making correct final
predictions earlier than RMRS-IP for utterance lengths(Ef6 23.5% into the utterance vs 43.0%), and
lengths 7-8, however falling back significantly for lenghd.4 (FF: DS-TTR: 42.8% vs. RMRS-IP:
29.3%), which is likely due to bad parses for long utterand®S-TTR makes more stable choices as
the difference between FF and FC is lowest for all but lengtBsand DS-TTR also achieves the lowest
edit overhead across all utterance lengths— see Figureadti¢ally, currently RMRS-IP is more robust
for long utterances and for utterance-final meaning, whBe IR performs better incrementally.

5 Conclusion

We have proposed desiderata for incremental semantic ¥varke for dialogue processing and com-
pared two frameworks. RMRS-IP and DS-TTR meet semantiesgntation construction criteria very
similarly, however their semantic model, dialogue praopsraind practical robustness differ currently.
In terms of parsimony and familiarity for researchers, RMR$ PCFG parsing combined constitute
more widely studied formalisms, however DS takes Montagaengar-like structures with a dynamic
tree logic as its backbone, and TTR is a well developed ripk gystem, so is also semanticist-friendly.
We conclude that theemit of incremental semantics for dialogue is what needs to bleeegbfurther:
the dialogue phenomena that DS-TTR models directly may eatdsirable for all applications, while
RMRS-IP, although cross-compatible with different weildied reasoning systems and grammars could
be seen as not doing enough dialogical semantics and negclsireg
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Figure 5: Incremental semantic construction by DS-TTR ahtRiS-I1P
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