Feeling is Understanding: From Affective to Semantic Space

Elias losif
School of ECE, National Technical University of Athens, &ge
“Athena” Research Center, Greece
iosife@entral . ntua. gr

Alexandros Potamianos
School of ECE, National Technical University of Athens, &re
“Athena” Research Center, Greece
pot am@entral . ntua. gr

Abstract

Motivated by theories of language development we invesitige contribution of affect to lexical se-
mantics in the context of distributional semantic modelSK¥). The relationship between semantic
and affective spaces is computationally modeled for thedhsemantic similarity computation be-
tween words. It is shown that affective spaces containrsaliormation for lexical semantic tasks.
We further investigate specific semantic relationshipsre/ladéfective information plays a prominent
role. The relations between semantic similarity and ogjmrsare studied in the framework of a bi-
nary classification problem applied for the discriminatidsynonyms and antonyms. For the case of
antonyms, the use of affective features results in 33%ivelahprovement in classification accuracy
compared to the use of semantic features.

1 Introduction

Mainstream distributional semantic models (DSMs) relyeobn linguistic data, being ungrounded to
the real world, i.e., features from other modalities andeeigmtial information that are related to the
acquisition of semantic knowledge are ignored. Motivatgdibdings from the literature of language
development, according to which language acquisition Isojagrounded on communication episodes
where partners exchange feelings (Tomasello et al., 20@5);onsider emotion as part of lexical se-
mantics. We argue that emotion conveys salient informatielaxing the view of emotion as “pathos”
(Salovey and Mayer, 1990) that was ostracized by (traditjomodels of semantics/logic.

In this paper, the affective content of words is investigatgthin a network-based framework re-
garding its contribution to lexical semantics tasks. Thasrfework is motivated by cognitive models that
rely on the distributed representation of semantic atteibiffeatures) (Rogers and McClelland, 2004).
Given a stimulus (e.g., a word), local areas (sub-spacesjaiivated, triggering a number of attributes
that are (semantically) related with the stimulus. Thevatitbn of attributes can be explained in the
context of semantic priming according to which the preserfca word facilitates the cognitive pro-
cessing of another word (McNamara, 2005). Affective prignaonstitutes the emotional analogue of
semantic priming (Ferré and Sanchez-Casas, 2014). Tha&ehinery of the used network is a two-tier
system. The first layer constitutes a local representatitverae for encoding the semantics of target
words simulating the aforementioned activation modelse dttivation models enable the definition of
various similarity metrics in the second layer. In this wonke investigate the creation of activation
models using both lexical and affective features, whichused for the computation of word semantic
similarity. To the best of our knowledge this is the first cartgtional model investigating the role of
affect in semantics.
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2 Related Work

Semantic similarity is the building block for numerous aggtions of natural language processing, such
as affective text analysis (Malandrakis et al., 2013). €hHms been much research interest on devis-
ing data-driven approaches for estimating semantic siityilaetween words. Distributional semantic
models (DSMs) (Baroni and Lenci, 2010) are based on thdallisivnal hypothesis of meaning (Harris,
1954) assuming that semantic similarity between wordsusetfon of the overlap of their linguistic con-
texts. DSMs can be categorized into unstructured that gngplmag-of-words model and structured that
employ syntactic relationships between words (Baroni agmti, 2010). DSMs are typically constructed
from co-occurrence statistics of word tuples that are eidihon existing corpora or on corpora specifi-
cally harvested from the web. In (losif and Potamianos, 204 fanguage-agnostic DSM was proposed
as a two-tier system motivated by cognitive consideratguth as network activation and priming.. The
first layer, encodes the semantics of words via the creafitexical neighborhoods. In the second layer,
similarity metrics are defined on these semantic neighloafioThe extension of DSMs for representing
the compositional aspects of lexical semantics cons$itateactive research area (Baroni et al., 2014).

Analysis of text to estimate affect or sentiment is a re@jivecent research topic that has attracted
great interest, as reflected by a series of shared evaluaiséis, e.g., analysis of tweets (Nakov et al.,
2013). Relevant applications deal with numerous domaiok as news stories (Lloyd et al., 2005) and
product reviews (Hu and Liu, 2004). Affective analysis iscaliseful for other application domains such
as dialogue systems (Lee and Narayanan, 2005). Severaircescenable the development of these
computational models, ranging from flat lexica (e.g., Gahkquirer (Stone et al., 1966) and Affective
norms for English Words (Bradley and Lang, 1999)) to largéctd networks (e.g., SentiWordNet (Esuli
and Sebastiani, 2006) and WordNet Affect (Strapparava atitutti, 2004)). Text can be analyzed for
affect at different levels of granularity: from single wertb entire sentences. In (Turney and Littman,
2003), the affective ratings of unknown words were prediatsing the affective ratings for a small set
of words (seeds) and the semantic relatedness between khewum and the seed words. An example
of sentence-level approach was proposed in (Malandrakik, &013) applying techniques from n-gram
language modeling.

3 Lexical Featuresand Metricsof Semantic Similarity

Co-occurrence-based (CC). The underlying assumption of co-occurrence-based masritst the co-
existence of words in a specified contextual environmeritaids semantic relatedness. In this work,
we employ a widely-used co-occurrence-based metric, narbéte coefficientD (co-occurrence is
considered at the sentence level).

Context-based (CT). The fundamental assumption behind context-based mesritisat similarity of
context implies similarity of meanin@Harris, 1954). A contextual window of siz&H + 1 words is
centered on the word of interegt and lexical features are extracted. For every instance; oh the
corpus theH words left and right ofv; formulate a feature vectar;. For a given value off the context-
based semantic similarity between two words,andw;, is computed as the cosine of their feature
vectors:Q* (w;, w;) Tt ik The elements of feature vectors can be weighted accordivarious
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schemes, while, here we use a binary scheme.

4 Affective Features and Metric of Affective Similarity

A word w is characterized regarding its affective content in a comtus (within the[—1, 1] interval)
space consisting of three dimensions (affective featureshely, valencew), arousal ¢), and domi-
nance {). For each dimension, the affective contentuofs estimated as a linear combination of its’
semantic similarities to a set é@f seed words and the corresponding affective ratings of s¢edthe
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corresponding dimension), as follows (Malandrakis et24113).
K
a(w) = Xo+ > X u(t) S(ts, w), (1)
=1

wheret; ...t are the seed words(t;) is the affective rating for seed wotgdwith « denoting one of the
aforementioned dimensions, i.e,,a, or d. \; is a trainable weight corresponding to seedS(t;, w)
stands for a metric of semantic similarity (see Section 3jvbent; andw. The affective distance
between two wordsy; andw;, can be computed as the Euclidean distance over the thmesndional
space, which can be transformed into similarity.

5 Semantic and Affective Networ ks

In this section, we summarize the main ideas of DSMs that \werposed in (losif and Potamianos,
2015) for building semantic networks, which are extendeet lier the creation of affective networks.
An overview of the semantic and affective networks is pressgim Fig. 1. Each network type consists

Semantic Network Affective Network

Activation Model ; JEISYINNU TN | : BNZZTS U | Activation Model
(Layer 1) ; PRIMING b PRIMING ; (Layer 1)
Similarity Model SIMILARITY SIMILARITY Similarity Model
(Layer 2) (Layer 2)

#l COMPUTATION [l COMPUTATION

Figure 1: Overview of semantic and affective networks. Eaetwork consists of two layers, namely,
activation and similarity.

of two layers, namely, activation and similarity layer. laarget wordyw;, the first layer is used for the
activation of a set of other words that are semanticallgti¥ely related with the target. The second layer
is used for the computation of semantic/affective simijalbetween two words for which the respective
activation layers have been computed. Regardless of theorietype (i.e., semantic or affective), the
network is defined as an undirected (under a symmetric sityilmetric) graph/’ = (V, E') whose the
set of verticesl” are all words in a lexicor©, and the set of edgeg contains the links between the
vertices. The links (edges) between words in the networklatermined and weighted according to the
pairwise (semantic of affective) similarity of the verticd-or each word (target word) that is included in
the lexicon,w; € O, we consider a sub-graph éf, F; = (V;, E;), where the set of vertices; includes

in total n members of), which are linked withw; via edgesE;.

5.1 Layer 1: Activation Models

Semantic Activation Model. The computation of the semantic activation model for a tanged w; is
motivated semantic priming (McNamara, 2005). The modelbzarepresented asfg sub-graph, which
is also referred to as the semantic neighborhoad;ofThe members aN; (neighbors ofw;) are selected
according to a semantic similarity metric (in this woiR,or Q¥ defined in Section 3) with respect to
w;, .., then most similar words tav; are selected. The semantic neighborhood of targetith sizen

is denoted ad.;(n).

Affective Activation Model. The computation of the affective activation model for a ¢anggord w; is
motivated affective priming (Ferré and Sanchez-Cadai4R The model can be represented &3 sub-
graph that denotes the affective neighborhoodofThe members olV; (neighbors ofw;) are selected
according to an affective similarity metric (e.g., as ddlie Section 4) with respect te;, i.e., then
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most similar words tav; are selected. The affective neighborhood of targetvith sizen is denoted as

5.2 Layer 2: Smilarity Model

Here, we describe two network-based similarity metricppsed in (losif and Potamianos, 2015) for
computing the similarity between two (target) wordsandw;. The metrics are defined on top of the
activations models (semantic of affective)wf andw; that were computed in the previous layer of the
network.

forest forest

016

0.30 0 0.09 0.30 0 _0.16
@ @ tree pie
0.0 0o ° 0.09 0.01 0 013
land @ land jam
(a) (b)
Figure 2. Example of network similarity metrics based onabtivation models of two target words. The
targets, “forest” and “fruit”, are depicted along with theeighbors (Layer 1){pine, tree, ..., langdand
{juice, pie, ..., jam, respectively. Arcs represent the similarities betweegetas and neighbors. The

similarity between “forest” and “fruit” (Layer 2) is comped according to (a) maximum similarity of
neighborhoods, and (b) correlation of neighborhood shitiees.

Maximum Similarity of Neighborhoods. This metric is based on the hypothesis that the similarity of
two words,w; andw;, can be estimated e maximum similarity of their respective sets of neighbor
defined as follows:

My (wi, wj) = max{aij, o}, )

where

Qi = xxréaﬁj S(wi, x), oy = yxréaj}\% S(wj,y).
a;; (or ;) denotes the maximum similarity between (or w;) and the neighbors ab; (or w;) that
is computed according to a similarity meti$c for semantic neighborhoods one of the metrics defined
in Section 3, or the metric defined in Section 4 for affectiegghborhoods.N; and N; are the set of
neighbors forw; andw;, respectively. For the case of semantic neighborhoods éfisitibn of A7,
is motivated by the maximum sense similarity assumptiors(iike 1995) hypothesizing that the most
salient information in the neighbors of a word are semam#iures denoting senses of this word. An
example illustrating the computation of similarity betwetargets “forest” and “fruit” is depicted by
Fig.2(a). M, (“forest” ,“fruit” ) = 0.30 because the similarity between “fruit” and “tree” (amongj al
neighbors of “forest”) is the largest.
Attributional Neighborhood Similarity. The similarity betweem; andw; is defined as follows:

Ry, (wi, w;) = max{fj, Bji}, 3

where NN
Big = p(CN,CY), Bji = p(C; 7, C)7).

1Similarity metrics can be applied over the semantic andctffe neighborhoods of; andwj;. In the metric definitions
we use the (generic) notatiod§ and N; to refer to the neighborhoods of; andw;, respectively, regardless of the type (i.e.,
semantic or affective) of those neighborhoods.
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N = (S(wi, 1), S(w;, x2), ..., S(wi, 2,)) @ndN; = {x1,23,...,z,,}. The vectors’™, €17, and

7
C]Nj are defined similarly aé’iNi. The p function stands for the Pearson’s correlation coefficiént,
is the set of neighbors of word;, and S is a similarity metric: for semantic neighborhoods one of
the metrics defined in Section 3, or the metric defined in 8Secti for affective neighborhoods. The
motivation behind this metric is attributional similaritye., we assume that neighborhoods encode se-
mantic or affective features of a word. Semantically/affety similar words are expected to exhibit
correlated similarities with respect to such features. Singlarity computation process is exempli-
fied in Fig.2(b) for the target words; =“forest” andw; = “fruit”. The similarity vectors between
the neighborshN; of “forest” and each of the words are computed’{vi = (0.16,0.09,...,0.09),
CJN = (0.10,0.30,...,0.01). Similarly, CiNj, C]Nj are computed for the neighbors of “fruit” and
combined to estimat&,, (“forest” , “fruit” ) = —0.04.

5.3 Fusion of Lexical and Affective Activation M odels

In this section, we propose two schemes for the unsuperfiséah of semantic and affective activation
models defined in Section 5.1. The motivation behind thia idghe hypothesis that both semantic and
affective activations are triggered given lexical stimaly., the target words for which similarity is com-
puted. In addition, for the task of similarity computatioe @wssume that the two activation models are
fused rather being exploited independently. Two types sibiu are proposed, namely, local and global.
The local scheme is based on the fusion of semantic andiafewtighborhoods of relatively small size.
The largest possible sizes of semantic and affective neitiolods (i.e., equal to the number of network
nodes) are used for the case of global fusion.

Local. A hybrid neighborhoode’(”) for a target wordw; is computed based on its lexical and af-
fective neighborhoodd,;(n) and A;(n) of sizen, as follows:

N = f(Li(n), Ai(n)), 4)

wheref stands for a set operator given ttiatn) and A;(n) are represented as sets.
Global. A hybrid neighborhood\ffz(”) of sizen for a target wordw; is computed based on its lexical
and affective neighborhoods$, (| O |) and A;(] O|) of size| O | (i.e., equal to the size of the lexican)
as:

N7 = g(S(wi, Li(| O1)), S(wi, Ai(|O]));m), 5)

whereS(w;, L;(] O |)) and S(w;, A;(| O |)) stand for the vectors including the semantic and affective
similarity scores between target and the members af;(| O |) and A;(| O|), respectively. Before the
application of they fusion function the two vectors should be normalized anghald. The fusion results
into a single vector of siz& from which then top-ranked values are selected and the corresponding

lexicon entries are considered as members of the neighbdm&(”).

Fusion level: Examples
function Lexical model | Affective model | Fused
Local: L; U A; L; ={pine, tree,.} | A; ={taste, sugar,}.| {pine, tree, taste, sugarj..
Global: ¢ - ¢ ¢I'=10503,...]| ¢1=102,08,...] [0.1,0.24, ... ]
Global: max{¢F, ¢} || ¢f =10.5,0.3,...] | ¢*=1[0.2,08,...] [0.5,0.8,...]

Table 1: Fusion functions for the lexical and affective \atipn models.

We present results for a number of simple functions for tiseofuof L; and A; shown in Table 1. For
the case of local fusion, the hybrid neighborhood is builtdling the union of semantic and affective
neighborhoods. Denoting vectof§w;, L;(| O |) and S(w;, A;(| O |) as¢} and ¢, respectively, two
functions are used for the case of global fusigh: (! andmax{¢F, ¢}. The first stands for the product
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of ¢} and¢#. The second function gives the maximum element-wise valegfor each lexicon entry
and the targety; the respective maximum semantic or affective similarityreds selected.

6 Featuresof Semantic Semantic Opposition

Here, we propose two feature sets that are relevant to thgamd of synonymy and antonymy (also
referred to as semantic opposition (Mohammad et al., 2018)fonymy constitutes a special lexical
relation, since it embodies both the notion of (semantioxipnity and distance (Cruse, 1986). These
features are based on the affective content of words andrésabf semantic similarity. Unlike people
that can easily distinguish synonyms and antonyms, thisdsadlenging problem for the framework
of DSMs. Both synonyms and antonyms exhibit strong assongtwhich can be empirically verified
via standard psycholinguistic experiments, as well asiwithe computational framework of DSMs.
For example, in free association norms antonyms are frélyugimen as responses. Regarding DSMs,
the corpus-derived statistics for synonyms and antonymsamrelated leading to comparable similar-
ity scores. For example, in (Mohammad et al., 2013) theeadlsss (similarity) scores of semantically
similar (SW) and antonymous (AW) words were analyzed. &ggngly, it was found that the average
score for AW was slightly higher compared to SW. The affectiontent of words can be considered
as connotations that are added to the respective semahiiesemotional similarity between synonyms
and antonyms is expected to have a contribution regardigig discrimination. For this purpose, the
following features are proposed:

1) Lex1 (lexical). Similarity score based on direct co-occurrence counts.s €an be regarded as a
coefficient of semantic priming.

2) Lex2 (lexical). Similarity score computed according to (2) (max-based agkunetric). Lexical fea-
tures are used for both network layers.

3) Lex3 (lexical). Similarity score computed according to (3) (correlati@séd network metric). Lexi-
cal features are used for both network layers.

4) Affl (affective). Affective distance computed on the three-dimensional esgaalence—arousal—
dominance). This can be thought as a coefficient of affegiiiming.

5) Aff2 (affective). Similarity: score computed according to (2) (max-basewvask metric). Affective
features are used for both network layers.

6) Aff3 (affective). Similarity score computed according to (3) (correlati@séd network metric). Af-
fective features are used for both network layers.

In essence, for each feature set (lexical and affectiveg ttveo types of similarity. The first type consid-
ers the direct similarity of the words of interest, while tbe second type, the similarity is estimated via
the respective neighborhoods.

7 Experimentsand Evaluation Results

In this section, we investigate the role of semantic andctife features for two tasks of lexical se-
mantics. Semantic and affective activation models are us@dmbination with the aforementioned
network-based similarity metrics for the computation ofrdv@emantic similarity. This is presented
in Section 7.1, while the fusion of the two activation typesshown in 7.2. In Section 7.3, semantic
and affective features are evaluated in the framework oaséimopposition. This is done as a binary
classification problem for the discrimination of synonymsl antonyms.

7.1 Word Semantic Similarity Computation

Creation of Networks. A lexicon consisting oB, 752 (single-word) English nouns was taken from the
SemCor3 corpus. For the extraction of the textual featuvesteharvested corpus was created as follows.
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For each lexicon entry an individual query was formulated #@e 1, 000 top ranked results (document
snippets) were retrieved using the Yahoo! search engineggikgated. The affective ratings ¢ and

d) for these nouns were computed using as seeds the manuatiyased ANEW lexicon (Bradley and
Lang, 1999) (600 seeds were used) and estimating theights of (1) according to (Malandrakis et al.,
2013). Regarding(.) used in (1), the context-based (CT) similarity metric ekpig text features was
applied. The network creation consisted of two main stepscofnputation of semantic and affective
neighborhoods as described in Section 5, 2) computatiomofasity scores usingV/,, and R,, defined

by (2) and (3), respectively. For the case of semantic neidgidnds two types of similarity metrics (in
conjunction with the respective textual features) werdiagp co-occurrence-based (CC), and context-
based (CT) withH =1.

Evaluation. The task of noun semantic similarity computation was usedvJaluation purposes with re-
spect to the following datasets (i) MC (Miller and Charle898),(ii) RG (Rubenstein and Goodenough,
1965), and (iii) WS353 (Finkelstein et al., 2002), retagnthose pairs that were included in the network.
The Pearson’s correlation coefficient against human ratives used as evaluation metric.

Type of feature for Network- Number of neighborsr)
Selection Similarity based
of neighbors| computation| metric 10 | 30 | 50 | 100 | 150
(1st layer) (2nd layer)
MC dataset
Lexical (CC) | Lexical (CT) M, 0.48 | 0.80 | 0.83 | 0.91 | 0.90
Lexical (CT) | Lexical (CC)| R, 0.83 | 0.78 [ 0.80 | 0.78 | 0.76
Affective | Lexical (CC) R, 0.85 | 091 | 0.88 | 0.85 | 0.83
RG dataset
Lexical (CC) [ Lexical (CT)| M, 0.57 [ 0.74 [ 0.78 [ 0.86 | 0.82
Lexical (CT) | Lexical (CC) R, 0.65 | 0.71 | 0.72 | 0.72 | 0.72
Affective | Lexical (CC) R, 0.78 1 080 | 0.79 | 0.77 | 0.74
WS353 dataset
Lexical (CC) | Lexical(CT) M, 0.42 | 0.55 | 0.59 | 0.64 | 0.65
Lexical (CT) | Lexical(CC) R, 0.63 | 0.58 | 0.59 | 0.56 | 0.55
Affective | Lexical (CC) R, 0.63 | 0.68 | 0.68 | 0.65 | 0.63

Table 2: Correlation for word similarity computation.

The performance for various neighborhood sizes is predemfeable 2 for two approaches regarding
the activation model (Layer 1) followed by the neighborhdiaded similarity estimation (Layer 2). Two
types of activation models are used for the computationhiichoods, namely, lexical and affective.
Once the neighborhoods are computed, the network metficand R,, are employed for the similar-
ity computation based on lexical features. Overall, theseta&o basic settingstexical+Lexicaland
Affective+Lexical The core novelty of this work is on the exploitation of atfee features for the acti-
vation model, i.e., the Affective+Lexical approach. Fae #ake of completeness, the results when using
textual features only (Lexical+Lexical) are presentedtifigrrespective best performing metrics and fea-
ture types (according to (losif and Potamianos, 2015)): @Cbr M,, and CT/CC forR,,. Regarding
the Affective+Lexical approach, the performance is regbranly for R,, that was found to outperform
the (omitted))M,, metric. It is notablé that the Affective+Lexical combination performs very wieé-
ing competitivé against the best Lexical+Lexical approach, as well as attate-of-the-art approaches
(Agirre et al., 2009). Specifically, the Affective+Lexicabmbination achieves higher (0.68 vs. 0.65)

This was experimentally verified using the affective wortings given by human annotators (ANEW affective lexicon
(Bradley and Lang, 1999)), instead of the automaticallinestied ratings produced by (1).
*The detailed comparison of the proposed affective modets ether lexical DSMs is beyond the scope of this study.
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and equal (0.91) correlation scores -compared to the Litiesical combination- for the WS353 and
MC datasets, respectively. The Affective+Lexical combma consistently achieves higher (or equal)
performance compared to both Lexical+Lexical combinaiamen few (10-50) neighbors are used.

0.8 R 0.8
07k e , 1 07t
lg 0.6 lg 0.6
© T
I I
8 05+ §os
0.4r 0.4r
“““ ' Affective + Lexical «o Affective + Lexical
——Lexical + Lexical ——Lexical + Lexical
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Size of neighborhood Size of neighborhood
(a) (b)

Figure 3: Correlation for word similarity computation asumétion of neighborhood size for pairs con-
sisting of words with: (a) distant affective magnitude (I&dirs from WS353), and (b) comparable
affective magnitude (122 pairs from WS353). Results aravehior Lexical+Lexical (solid line) and
Affective+Lexical (dotted line) approaches.

Motivated by the very good performance of the Affective+icak approach, we conducted further
investigation regarding the role of affective informatiwith respect to the affective relation of the words
for which the similarity is computed. For this purpose, ttare of the largest experimental dataset
(WS353) where distinguished into two groups according ¢oaffiective magnitude of their constituents
words. The first group includes pairs whose both constitubate high or low affective magnitude
(i.e., words with comparable magnitude), e.g., (king, qyedhe remaining pairs were included in the
second group (i.e., words with distant magnitude), e.gydpology, depression). The discrimination
resulted into 122 and 150 pairs consisting of words with caraple and distant affective magnitude,
respectively. The performance of the Lexical+Lexical arfteétive+Lexical approaches using tii&,
similarity metric is shown as a function of the neighborhaizke in Fig. 3(a) for words with distant
affective magnitude, and in Fig. 3(b) for words with compideaaffective magnitude. We observe that the
Affective+Lexical approach consistently achieves higbeirelation compared to the Lexical+Lexical
approach for both groups. The superiority of the Affectivexical approach is shown more clearly for
the case of words with distant affective magnitude (Fig))3(a

7.2 Fusion of Lexical and Affective Activation M odels

Fusion Fusion Number of neighbors
level function 10 | 30 | 50 | 100 | 150
Best individual model || 0.63 | 0.68 | 0.68 | 0.65| 0.63
Best lexical model 0.42 | 0.55| 0.59| 0.64 | 0.65
Local L; UA; 0.45]|0.47| 0.44 | 0.47 | 0.46

Global ¢t 0.46 [ 0.48] 0.50 | 0.49 | 0.48
max{(}, ('} || 0.63]0.68 | 0.68 | 0.65 | 0.63

Table 3: Correlation for word similarity computation (WSB38ataset).

In this section, the evaluation results for the fusion of astic and affective models (Layer 1) are
presented. The fusion schemes shown in Table 1 were usetddaromputation of hybrid neighbor-
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Semantic || Baseline Feature types
relation || (random) Lexical Affective
(Lex1,Lex2,Lex3)| (Affl,Aff2,Aff3)
Synonymy 50% 61% 62%
Antonymy 50% 61% 82%

Table 4: Classification accuracy for synonymy and antonylewical vs. affective feature sets.

Semantic || Baseline Lexical features Affective features
relation || (random)| Lexl | Lex2 | Lex3 || Aff1 | Aff2 | Aff3
Synonymy 50% 51% | 61% | 59% || 61% | 61% | 51%
Antonymy 50% 55% | 61% | 61% || 81% | 82% | 50%

Table 5: Classification accuracy for synonymy and antonyonynidividual lexical and affective features.

hoods. The network-based similarity metiit;, was applied over the hybrid neighborhoods for the
computation of semantic similarity between words (Layer e performance is presented in Table 3
for the largest dataset (WS353) with respect to varioushiigichood sizes. The correlation achieved
by the best performing individual model (Affective+Lexiagsing R,,) is included for comparison pur-
poses. The performance of the best model based solely araldgatures (Lexical+Lexical usingyf,,)

is also presented. Regarding the different fusion schethedjighest performance is obtained for the
global approach using the maximum-based functienx({¢?, g;“}). This scheme yields performance
that is identical to the best individual model. Also, we aleehat the best fusion scheme consistently
outperforms the Lexical+Lexical approach fidr — 100 neighbors.

7.3 Synonymy vs. Antonymy

Here, we compare the performance of semantic and affecatifes (described in Section 6) for the
discrimination of word pairs the fall into two categoriegnenyms and antonyms. The word pairs were
taken from two sets of WordNet synonyms and oppoités retained those pairs that were included in
the networks described in Section 7.1. In total, 172 pagsantained in each category for a total of 344
pairs. The experimental dataset include pairs such as ifregs felicity) and (comedy, tragedy) that
correspond to synonyms and antonyms, respectively. Stgpotor Machine3 with linear kernel were
applied for classification. For evaluation purposes, 18-twoss validation (10-FCV) was used, while
classification accuracy was used as evaluation measurement

The classification accuracy is shown for each category iteTalvith respect to two feature sets: 1)
all lexical features (Lexl-Lex3), and 2) all affective faats (Aff1-Aff3Y°. The baseline performance
(vielded by random classification) is also presented. Be#iures types exceed the baseline for syn-
onyms and antonyms. The main observation is that the sefagftizk features outperforms the lexical
feature set for the case of antonyms, i.e., 82% vs. 61% filzg#®n accuracy. Regarding synonyms,
lexical and affective features yield almost identical perfance. The moderate discrimination ability of
lexical features was expected since both synonyms andyansaxhibit high similarity scores as mea-
sured in the framework of DSMs. These observations sugbasthe affective information is a major
contributor for the case of antonyms, which is not surpgssimce such words are emotionally distant.
The performance for all individual features in presented@dhle 5 for each category. It is observed that
the similarities based on word co-occurrence (Lex1) gieddwest performance for both synonyms and
antonyms, while the network-based similarities (Lex2 aerad) yield slightly higher results. The key
observation is that the top performance, i.e., greater 884, can be achieved either using the simple

“htt p: // ww. sai f ohammad. conf WebPages/ Resear chi nt er est s. ht i \ #Ant onyny.
SSimilar results were obtained with other classifiers, élgiye Bayes.
SFor the network metrics we used= 30, however, similar results were achieved for other values, &f.g., 10, 50, 100.
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affective similarity (Affl) or the maximum-based networikndarity metric (Aff2). Given the lack of a
standard dataset for this task, the comparison of diffdBi¥is is not easy. A corpus-based algorithm
was evaluated with respect to similar a task (synonym/gmtodiscrimination for 136 pair$ achieving
75% classification accuracy under 10-FCV (Turney, 2011).

8 Conclusions

The affective spaces were shown to contain salient infoaomdor estimating semantic similarity. The
Affective+Lexical approach achieved competitive perfarmoe compared to (an example of) the main-
stream paradigm of distributional semantic models (iree,ltexical+Lexical approach). Moreover, the
affective models were found to be more appropriate for ths fietwork layer (compared to the lexical
models) when the words for which similarity is computed bihdistant affective magnitude. To the
best of our knowledge, this is the first empirical indicatitvat the affect can be regarded as another
source of information that plays a role for the task of sefgagimilarity estimation between words.
Correlation-based similarity metrics and smaller neighbods were shown to perform better for Affec-
tive+Lexical DSMs. Another major finding is that the affeetifeatures are superior to the lexical ones
for the case of antonym identification. Regarding the fusidexical and affective activation models, the
global scheme (i.e., across the entire network) was fourmlitperform the local one. Further research
is needed for understanding the complementarities of tafeeand semantic spaces, which is important
for the design of improved fusion schemes. Last but not |éastrole of affective features should be in-
vestigated with respect to more semantic tasks (e.g., peasipg) and other types of semantic relations
and linguistic phenomena (e.g., figurative language).
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