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Abstract

The semantic complexity of a quantifier can be defined as the computational complexity of the
finite model checking problem induced by its semantics. This paper describes a preliminary study
to understand if quantifier distribution in corpora can be to some extent predicted or explained by
semantic complexity. We show that corpora distributions for English are significantly skewed towards
quantifiers of low complexity and that this bias can be described in some cases by a power law.

1 Introduction

Quantification is an essential feature of natural languages. It is used to specify the (vague) number or
quantity of objects satisfying a certain property. Quantifier expressions are built from noun phrases
(whether definite or indefinite, names or pronouns) and determiners resulting in expressions such as “a
subject”, “more than half of the men”, “the queen of England”, “John”, “some”, “five” or “every” (see
Peters and Westerståhl (2006) for an overview).

More recently, interest has arisen regarding semantic complexity, that is, the complexity of reasoning
with (and understanding) fragments of natural language. One model that has been proposed to study
natural language semantic complexity is to consider the computational properties that arise from formal
semantic analysis, see e.g., Ristad (1993); van Benthem (1987); Kontinen and Szymanik (2008). One
could wonder whether speakers (due to their restricted cognitive resources) are naturally biased towards
low complexity expressions, see Szymanik and Zajenkowski (2010); Schlotterbeck and Bott (2013).
Additionally, related work by Thorne (2012) shows that, when one considers the satisfiability problem
of specific fragments of English then computationally tractable combinations of constructs occur more
frequently than intractable ones.

This paper extends such work by showing that: (i) quantifiers can be ranked w.r.t. to their semantic
complexity, viz., their computational complexity w.r.t. the model-checking problem, and their expres-
siveness; (ii) within a selected set of corpora quantifier distribution is skewed towards computationally
easier quantifiers; and (iii) such distribution describes a power law.

2 Generalized Quantifiers and Semantic Complexity

Generalized Quantifiers. Generalized quantifiers are usually taken to denote relations holding between
subsets of the universe. For instance, in a given model I = (DI , ·I) the statement “most As are B”
says: #(AI ∩BI) > #(AI \BI), where AI , BI ⊆ DI and #(A) stands for the cardinality of set
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Table 1: Top: Base FO (Aristotelian and counting) and proportional generalized quantifiers studied in
this paper, ranked by semantic complexity;> k and< k comprise by abuse the superlative quantifiers “at
least k” and “at most k”. Bottom, left: Sample English sentences realizing Ramsey quantifiers; notice
the use of the reciprocal “each other”. Bottom, right: Semantic complexity of Ramsey quantifiers by
quantifier class.

Q Model Class S. C. Example
some {I | AI ∩BI 6= ∅} AC0

}
ari

some men are happy
all {I | AI ⊆ BI} AC0 all humans are mammals
the {I | #(AI ∩BI) = 1} AC0

 cnt

the third emperor of Rome was deranged
> k {I | #(AI ∩BI) > k} AC0 more than 5 men are happy
< k {I | #(AI ∩BI) < k} AC0 fewer than 100 violins are Stradivari
k {I | #(AI ∩BI) = k} AC0 50 MPs voted against the war in Irak

most {I | #(AI ∩BI) > #(AI \BI)} P


pro

most trains are safe
few {I | #(AI ∩BI) < #(AI \BI)} P few people are trustworthy

> p/k {I | #(AI ∩BI) > p · (#(A)/k)} P more than 2/3 of planets are lifeless
< p/k {I | #(AI ∩BI) < p · (#(A)/k)} P less than 1/3 of Americans are rich
p/k {I | #(AI ∩BI) = p · (#(A)/k)} P 1/3 of Peru’s population lives in Lima

> k% {I | #(AI ∩BI) > k · (#(A)/100)} P more than 10% of Peruvians are poor
< k% {I | #(AI ∩BI) < k · (#(A)/100)} P less than 5% of the Earth is water
k% {I | #(AI ∩BI) = k · (#(A)/100)} P 15% of Muslims are Shia

RQ Example
Rsome some children like each other
R>p/k more than 2/3 of female MPs sit next to each other
Rmost most people help each other
R>k at least 2 men married each other in the UK last year

Quantifier Class RQ S.C.
Aristotelian (ari+recip) AC0

counting (cnt+recip) AC0

proportional (pro+recip) NP-complete

A. Going a step further, we can take a generalized quantifier Q to be a functional relation associating
with each model I a relation between relations on its universe, DI . This is actually equivalent to their
standard Lindström (1966) model-theoretic definition as classes of models:

Definition 2.1 (Generalized Quantifier). Let t = (n1, . . . , nk) be a k-tuple of positive integers. A
generalized quantifier of type t is a class Q of models of a vocabulary τt = {R1, . . . , Rk}, such that Ri

is ni-ary for 1 ≤ i ≤ k, and Q is closed under isomorphisms, i.e. if I ∈ Q and I ′ is isomorphic to I,
then I ′ ∈ Q. It gives rise to a query Q(R1, . . . , Rn) such that I |= Q(R1, . . . , Rn) iff I ∈ Q.

Semantic Complexity. An important consequence of this definition is the notion of semantic complexity,
which refers to the computational complexity1 of the finite model checking problem that it induces,
namely the question: does I |= Q(R1, . . . , Rn)? When considering such problem we are interested in
its complexity w.r.t. the size of the model I, that is, in data complexity, see Immerman (1998). Semantic
complexity induces a partial ordering (ranking) of quantifiers. Furthermore, it induces a partition into
tractable and intractable generalized quantifiers. Respectively: quantifiers, for which model checking is
at most P, and quantifiers for which model checking is at least NP-hard.

Tractable Quantifiers. Tractable quantifiers come in two flavors: first-order (FO) and proportional:
1. FO. FO quantifiers Q of type t over τt = {R1, . . . , Rn}, are quantifiers which give rise to FO queries

(with identity). They are those with the lowest semantic complexity, viz. AC0 (the data complexity
of model checking in FO with identity is in AC0, see Immerman (1998)). See Table 1, top. They are
typically split in the literature into:
1Please refer to Papadimitrou (1994) for the basics of computational complexity.
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• Aristotelian quantifiers (some, all), which are the quantifiers dealt with in traditional syllogistic
logic.
• Counting quantifiers (the, < k, > k, k), in which the number of individuals in the domain verify-

ing a given property is specified. Counting quantifiers while sharing the same semantic complex-
ity of Aristotelian quantifiers, are nevertheless more expressive and can be distinguished via their
associated language problem (van Benthem (1987)): given a model I and query Q(R1, . . . , R1)
one can construct a finite state automaton AI for I and a word wQ over the alphabet {0, 1} s.t.
I |= Q(R1, . . . , R1) iff wQ ∈ L(AI) where L(AI) denotes the language recognized by AI . The
automaton AI will have 2 states whenever Q is Aristotelian, and at most k + 2 states whenever Q
is a counting quantifier2.

2. Proportional. More interesting are proportional quantifiers, e.g., most (“most men”) and > p/k
(“more than one third of men”). They are used often by speakers when referring to collections (the
denotation of collective or plural nouns) and their quantitative properties. Proportional quantifiers
are strictly more expressive than Aristotelian or counting quantifiers. Indeed, as Barwise and Cooper
(1980) showed, they are not FO expressible. This is reflected by their higher semantic complexity, in
P (Szymanik, 2010).

Intractable Quantifiers. Intractable quantifiers can be derived from tractable ones via various model-
theoretic operations. One such operation is Ramseyfication, that turns a monadic quantifier of type (1, 1)
into a polyadic quantifier of type (1, 2). Ramseyfication is expressed by the reciprocal expression “each
other” under the default (strong) interpretation of Dalrymple et al. (1998). It intuitively states that the
models of the resulting Ramseyfied quantifiers are graphs with connected components. Intractability
arises when it is applied to proportional quantifiers, giving rise to so-called “clique” quantifiers (Szy-
manik, 2010). See Table 1, bottom.

3 Pattern-based Corpus Analysis

Semantic complexity and expressiveness can be leveraged to induce both a partition and a ranking of
quantifiers3, where Aristotelian quantifiers occupy the lowest and Ramseyfied proportional quantifiers
the highest end of the spectrum. Such theoretical results are reflected by their distribution in (English)
corpora.

Quantifier Patterns. We identified generalized quantifiers indirectly, via part-of-speech (POS) patterns
that reasonably approximate their surface forms and lexical variants. The POS tags were required to filter
out contexts in which quantifier words do not express a quantifier such as “no” in “you cannot say no”
(an interjection) –as opposed to “no” in “no tickets were left” (a determiner). Each such pattern defined a
quantifier type. This done, we counted the number of times each type is instantiated within a sentence in
the corpus, that is, its number of tokens (lexical variants). We considered Penn Treebank/Brown corpus
POSs (Francis and Kucera, 1979)4. We present two such patterns (the others were defined analogously):
1. to identify the Aristotelian quantifier all, we considered its lexical variants “all”, “everybody”, “ev-

erything”, “every”, “each”, “everyone” and “the N” (where N is a plural noun), and built the regex:
.*( every/at | Every/at | all/abn | All/abn | the/at .*/nns | The/at ./nns | everything/pn | Everything/pn |
everyone/pn | Everyone/pn | everybody/pn | Everybody/pn | each/dt | Each/dt ).*;

2. to identify Ramsey quantifiers, we checked for sentences that match at the same time the regular
expressions of the base (FO, counting or proportional) quantifiers and the following pattern for the
reciprocal: .* each/dt other/ap .*.

Using such patterns we observed the frequency of (i) generalized quantifiers, and (ii) tractable and in-
tractable Ramsey quantifiers, to see whether such distribution was skewed towards low complexity quan-

2More in general, the class REG of regular languages corresponds to the class of quantifiers definable in so-called divisibility
logic, see Mostowski (1998).

3Note that AC0 ⊆ P ⊆ NP-complete and REG2 ⊆ REG≤k+2.
4For the POS tagging, we relied on the NLTK 3-gram tagger, see http://www.nltk.org/.
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tifiers in the former case, and towards tractable quantifiers in the latter case.

Corpora. To obtain sufficiently large, balanced and representative samples of contemporary English, we
considered two corpora covering multiple domains and sentence types (declarative and interrogative).
Specifically, we considered the well-known Brown corpus by Francis and Kucera (1979) (∼ 60,647 sen-
tences and 1,014,312 word tokens). We also considered a sizeable sample of a large web corpus, the
ukWaC corpus (∼ 280,001 sentences and 100,000,000 word tokens) from Baroni et al. (2009), built from
a 2006-2007 crawl of the (complete) .uk domain.

Power Laws. Power laws, first discussed by Zipf (1935), relate the frequency of linguistic tokens to
their rank, viz., to the ordering induced by their frequency. They typically predict that frequency is
proportional to rank (modulo two real-valued parameters a and b−1), giving rise to non-normal, skewed
distributions where the topmost (w.r.t. rank) 20% words in a corpus concentrate around 80% of the
probability mass or frequency. They are widespread in natural language data (Baroni, 2009). More
recent work (Newman, 2005) has shown that power laws can be variously modified and extended to
cover wider spectra of natural language phenomena and rankings. One such possible extension is to
consider, as we do in this paper, power laws relating the frequency of a quantifier Q to its semantic
complexity rank:

Definition 3.1 (Complexity Power Law). The power law between quantifier frequency fr(Q) and quan-
tifier complexity rank rk(Q) is described by the equation: fr(Q) = a/rk(Q)b, with a, b ∈ R.

To approximate the distribution parameters a and b we ran (Newman, 2005) a least squares linear
regression, since power laws are equivalent to linear models on the log-log scale5. We measured also the
ensuing R2 coefficient, that captures how well the observations fit the inferred power law equation and
that ranges from 0 (no fit) to 1 (perfect fit). To validate further our models we ran a χ2 test (at p = 0.01
significance) w.r.t. the uniform distribution as our null hypothesis.

Results and Interpretation. The distributions observed are summarized by Figure 1. The top left corner
describes the contingency (raw frequency) tables used for the figures. The top right figures describe
relative frequency by quantifier class. The bottom figures, by quantifier: the reader will find to the left
the average and cumulative relative frequency plots, and to the right the log-log (power law) regressions.

As expected by the theory, Aristotelian and counting —AC0— quantifiers occur more frequently
than proportional —P— quantifiers, and (proportional) Ramsey —NP-hard— quantifiers. See Figure 1
(top right). This bias is statistically significant: their distribution significantly differs from uniform or
random distributions, as p < 0.01.

Furthermore, when we consider separately the distribution of, on the one hand, base quantifiers,
and on the other hand, Ramseyfied quantifiers, we can infer power laws skewed towards Aristotelian
quantifiers and bounded Ramsey quantifiers: see Figure 1 (bottom). In both cases a high goodness-of-fit
coefficient was obtained: R2 = 0.94 for base quantifiers and R2 = 0.92 for Ramseyfied quantifiers
(mean distribution).

Finally Figure 1 (top left) shows that tractable quantifiers occur significantly more often than in-
tractable quantifiers. Furthermore, the same observation applies to FO and proportional quantifiers vis-
à-vis their Ramseyfications. Actually, Ramseyfications, whether tractable or intractable, appear to be
in general rare (“sparse”) in natural language data. We conjecture that this is due to an increase in ex-
pressiveness and complexity relatively to proportional and FO quantifiers, that cannot be easily captured
through the techniques used to build Table 1, and merits further investigation.

The method described was relatively noisy (the POS tagger had an accuracy of around 80%) and not
fully exhaustive (the patterns did not cover all quantifier surface forms). However, we believe that our
datasets were large and representative enough, and our rule patterns adequate enough to derive reasonable
approximations to the distribution of quantifiers in English.

5I.e., y = a/xb iff log(y) = log(a/xb) = a− b · log(x).

67



Brown
ukwack

total

pro+ cnt+ ari+
recip recip recip

4 17 186
5,732 10,484 33,107
5,736 10,501 33,293

pro cnt ari
20,362 64,846 687,915

1,306,971 1,983,694 8,650,650
1,327,333 2,048,540 9,338,565

ar
i+

re
cip cn
t+

re
cip pr
o+

re
cip

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

fre
qu

en
cy

Ramsey GQs

brown
ukwack

ar
i

cn
t

pr
o0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

fre
qu

en
cy

Base GQs

brown
ukwack

Qs
om

e
Qa

ll
Q>

k
Q<

k Qk
Qm

os
t

Qf
ew

Q>
k/1

00
Q<

k/1
00

Qk
/1

00
Q>

p/
k

Q<
p/

k
Qp

/k

0.0

0.2

0.4

0.6

0.8

1.0

re
lat

ive
 fr

eq
ue

nc
y

Ramsey GQs

avg
cumul
brown
ukwack

0.00.51.01.5
log rank

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

log
 fr

eq
ue

nc
y

Ramsey GQs (log-log best fit)

y=2.66-3.19x, R2=0.96
y=2.61-2.80x, R2=0.92

so
m

e all th
e >k <k k

m
os

t
fe

w
>k

/1
00

<k
/1

00
k/1

00
>p

/k
<p

/k p/
k0.0

0.2

0.4

0.6

0.8

1.0

re
lat

ive
 fr

eq
ue

nc
y

Base GQs

avg
cumul
brown
ukwack

0.00.51.01.5
log rank

0.0

2.0

4.0

6.0

8.0

log
 fr

eq
ue

nc
y

Base GQs (log-log best fit)

y=3.51-4.04x, R2=0.98
y=3.51-3.64x, R2=0.94

Figure 1: Top, left: Ramsey quantifier (raw) frequencies, and base quantifier (raw) frequencies. Top,
right: Ramsey and base quantifier distribution by quantifier class. Bottom, left: Ramsey quantifier distri-
bution and log-log power law regression. Bottom, right: Base quantifier distribution and log-log power
law regression.

4 Conclusions

We have studied the semantic complexity and corpora distribution of natural language quantifiers. The
computationally easier quantifiers occur more frequently in everyday communication, i.e., their distri-
butions satisfy power laws. Moreover, we have empirically shown—as suggested by Ristad (1993);
Mostowski and Szymanik (2012)—that: although everyday English may contain computationally hard
constructions, they are infrequent. These results, together with Thorne (2012), suggest that abstract com-
putational properties of natural language expressions can be used to explain their distribution in corpora.
Indeed, one of the linguistic reasons to expect power laws in natural language data is the principle of
least effort in communication: speakers tend to minimize the communication effort by generating “sim-
ple” messages (Zipf, 1935).

As ongoing and further research, we envision several axes. Firstly, to refine our patterns to better
cover the lexical variants of the quantifiers considered in this paper. Secondly, to consider much larger
corpora. Thirdly, to refine our complexity analysis to explain the frequency gap induced by Ramseyfica-
tion. Finally, to run cross-language experiments to address the equivalent complexity question: does the
complexity of quantification imply a distribution similar accross languages?
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Peters, S. and D. Westerståhl (2006). Quantifiers in Language and Logic. Oxford: Clarendon Press.

Ristad, E. S. (1993, March). The Language Complexity Game. Artificial Intelligence. The MIT Press.

Schlotterbeck, F. and O. Bott (2013). Easy solutions for a hard problem? The computational complexity
of reciprocals with quantificational antecedents. Journal of Logic, Language and Information 22(4),
363–390.

Szymanik, J. (2010). Computational complexity of polyadic lifts of generalized quantifiers in natural
language. Linguistics and Philosophy 33(3), 215–250.

Szymanik, J. and M. Zajenkowski (2010). Comprehension of simple quantifiers. Empirical evaluation of
a computational model. Cognitive Science: A Multidisciplinary Journal 34(3), 521–532.

Thorne, C. (2012). Studying the distribution of fragments of English using deep semantic annotation. In
Proceedings of the ISA8 Workshop.

Zipf, G. (1935). The Psychobiology of Language: An Introduction to Dynamic Philology. Cambridge,
Mass.: M.I.T. Press.

69


