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Abstract

This paper describes the Nara Institute

of Science and Technology’s (NAIST)

submission to the 2014 Workshop on

Asian Translation’s four translation tasks.

All systems are based on forest-to-string

(F2S) translation, in which the input sen-

tence is first parsed using a syntactic

parser, then a forest of possible syntac-

tic analyses is translated into the target

language. In addition to the baseline

F2S system, we add rescoring using a

recurrent neural network language model

(RNNLM), which allows for more fluent

output. The resulting system achieved the

highest results in both automatic and man-

ual evaluation for all four of the language

pairs targeted by the workshop.

1 Introduction

The Workshop on Asian Translation (WAT) 2014

(Nakazawa et al., 2014) included a translation task

over four language pairs, all involving translating

Japanese (ja), a language with SOV word order,

to/from English (en) or Chinese (zh), languages

with SVO word order. Because of this, it can be

expected that one of the major challenges facing

translation systems in this task is the proper re-

ordering of the words between the source and tar-

get languages.

One promising way to tackle the reordering

problem is through the use of tree-to-string (T2S)

translation, a translation formalism where the

source sentence is first parsed using a syntac-

tic parser, then sub-structures of the parse tree

are translated into target-side strings (Liu et al.,

2006). Mi et al. (2008) have also demonstrated

that forest-to-string (F2S) translation allows for

more robust use of source-side syntax by not con-

sidering a 1-best parse tree, but a myriad of parse

candidates stored efficiently in a packed-forest

data structure. In our previous work (Neubig and

Duh, 2014), we have shown that F2S translation

is effective for en-ja and ja-en translation, and

can outperform alternative methods such as pre-

or post-ordering. Thus, in our WAT submission,

we choose this formalism, and specifically it’s im-

plementation in the open-source Travatar decoder1

(Neubig, 2013) as the base of our system.

Another promising development over the past

couple years is the use of continuous-space rep-

resentations of language combined with neural-

network-based probabilistic models. These have

been incorporated into translation as either lan-

guage models (LMs) (Vaswani et al., 2013) or

translation models (TMs) (Le et al., 2012), allow-

ing for large increases in translation accuracy. In

our submission, we incorporate this continuous-

space representation by training a recurrent neural

network language model (RNNLM; Mikolov et al.

(2010)) and using its scores as a feature in n-best

hypothesis rescoring.

We also made a few small improvements to

our ja-en system, mainly in an attempt to reduce

the number of unknown words. Specifically, we

perform compound splitting (Koehn and Knight,

2003) of unknown words to help reduce the effects

of under-segmentation, perform one small word

substitution to regularize for the peculiarities of

the development/test data, and add large external

dictionaries.

As a result of the incorporation of F2S transla-

tion and RNNLMs, we see a large gain in accu-

racy over a baseline phrase-based machine trans-

lation model. Specifically, we see a gain in BLEU

of 8.21 for en-ja, 5.44 for ja-en, 4.71 for zh-ja, and

2.47 for ja-zh. In addition, according to the official

automatic evaluation, our system outperformed all

other submitted systems in all tracks. Scripts to

1http://phontron.com/travatar
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largely reproduce our experiments will be released

open source.2

2 Data and Data Processing

2.1 Data Used

For the majority of our systems, we simply used

the ASPEC corpus provided by the WAT task. For

the zh-ja and ja-zh systems, we used all of the data,

amounting to 672k sentences. For the en-ja and

ja-en systems, we used all of the data for training

the language models, but because the ja-en trans-

lation data was automatically aligned and low-

confidence sentences were often noisy, we only

used the first 2 million sentences of the training

data, discarding the rest.

In addition to this official data, for the ja-en pair

we submitted one system that used additional dic-

tionaries to reduce the number of unknown words.

Specifically, we used the EDICT3, and Eijiro4 dic-

tionaries, as well as the Japanese-English links be-

tween Wikipedia pages. There are a number of

ways to incorporate these dictionaries, but in the

submitted system, we simply added a rule to the

translation table for all unknown words that ex-

isted in the dictionary.

2.2 Tokenization and Preprocessing

For English, Japanese, and Chinese, tokenization

was performed using the Stanford Parser (Klein

and Manning, 2003), the KyTea toolkit (Neubig et

al., 2011), and the Stanford Segmenter (Tseng et

al., 2005) respectively. We also performed case

normalization for English, by changing the first

word in English sentences to its most common

capitalization before training models and transla-

tion, and capitalizing the first letter of the sen-

tence after translation.5 For zh-ja translation, in

order to make unknown words more comprehensi-

ble, we converted simplified Chinese characters to

their Japanese equivalents, and vice-versa for ja-zh

translation (using the Kanconvit.pm Perl script).

In addition to our standard tokenization, for

Japanese, while KyTea is on average more robust

to unknown words than other standard alternative

word segmenters for Japanese, it also has a greater

tendency to under-segment words, which can be

detrimental for machine translation. As a quick

2http://phontron.com/project/wat2014
3http://www.edrdg.org/jmdict/edict.html
4http://www.eijiro.jp
5This is often referred to as “truecasing.”

fix to this problem, we re-segmented all words

that appear in the dev or test set but not the train-

ing set using the compound segmentation method

of (Koehn and Knight, 2003), which splits words

into two, resolving ambiguities such that the newly

split words have the highest unigram probability.

Finally, in a preliminary analysis of our ja-en

system using the error analysis method of Akabe

et al. (2014),6 we discovered a peculiarity in the

development data: prolific use of the word “標題”

(which can be translated into “the mentioned,” or

“the XX in the title”). This word appeared prolifi-

cally in the dev set (as well as devtest and test), but

not once in the training corpus. In order to solve

this problem, we normalized “標題” into the lexi-

cally different but semantically largely equivalent

“表題,” which appeared many times in the training

corpus.

2.3 Syntactic Parsing

As we are performing translation using syntactic

parsing, it is essential that we have an accurate

syntactic parser. Based on the experiments pre-

sented in Neubig and Duh (2014) we opt to use the

Egret parser,7 which implements the latent vari-

able parsing model of (Petrov et al., 2006).

For the parsing models in English and Chinese,

we use models trained on the English and Chinese

Penn Treebanks respectively (Marcus et al., 1993;

Xue et al., 2005). For the Japanese model, we train

our own model on the Japanese Word Dependency

Treebank (Mori et al., 2014). As this is a depen-

dency treebank, we use head rules contained the

Travatar toolkit to transform the dependency trees

into phrase structure trees.8

For training, we simply use 1-best parses, but at

test time we use a forest of parse trees, specifically

using forests with all tree edges that exist in at least

one of the 100-best parses.

3 Model Training

3.1 Alignment

For T2S translation, it is necessary to have an

accurate word alignment model, which allows

for the extraction of more rules that match the

parse tree, and the estimation of more accurate

reordering probabilities (Neubig and Duh, 2014).

6In fact we slightly modified the method to use the trans-
lation reference and a smoothed naive Bayes classifier.

7https://github.com/neubig/egret
8ja-depadjust.pl and ja-dep2cfg.pl
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Thus, for en-ja and ja-en translation, we use Nile9

(Riesa and Marcu, 2010), a supervised syntax-

based aligner that can improve alignment accuracy

by incorporating information about parse trees and

learn from manually created alignments. For our

manual alignments, we use the alignments pro-

vided by the Kyoto Free Translation Task (Neubig,

2011). Unfortunately, for zh-ja and ja-zh transla-

tion, we do not have any hand-aligned data avail-

able, so we use the GIZA++ unsupervised aligner

(Och and Ney, 2003).

3.2 Translation Model Training

For training our translation model, we extract a

synchronous tree substitution grammar (STSG)

according to the method of Galley et al. (2006).

We used composed rules including up to 5 min-

imal rules, and attached null-aligned words to

the highest possible point in the parse tree. For

the translation model features, we used a stan-

dard set of 5 features including forward and back-

ward translation probabilities, forward and back-

ward lexical probabilities, and the phrase penalty.

When calculating the translation probabilities, we

first applied Kneser-Ney smoothing to the phrases

counts (Kneser and Ney, 1995).

3.3 Language Model Training

For all systems, we trained a 6-gram lan-

guage model smoothed with modified Kneser-Ney

smoothing using KenLM (Heafield et al., 2013).

In addition, because we had two different data

sets containing Japanese data (en-ja and zh-ja), we

trained two separate language models and interpo-

lated them together. We chose different interpo-

lation coefficients for the en-ja and zh-ja tasks by

choosing the interpolation coefficients that max-

imize the likelihood on the development data on

each of the respective tasks. This gave us a small

but significant improvement in perplexity on the

development set.

In addition to the n-gram language model, we

incorporated a recurrent neural network language

model (RNNLM) (Mikolov et al., 2010). This,

as mentioned in the introduction, will allow us to

incorporate recent advances in continuous-space

language modeling, improving robustness to un-

known or low-frequency linguistic phenomena.

We used the RNNLM toolkit,10 with 500 hidden

9https://code.google.com/p/nile/
10http://rnnlm.org

layers and 300 classes. Because training RNNLM

on large data sets is prohibitively expensive, we

used only the first 500,000 sentences from the par-

allel data to train models for each respective task.

As RNNLMs cannot be trivially incorporated into

decoding due to their continuous-space state rep-

resentation, we instead use the RNNLM score as

an additional feature in 10,000-best rescoring of

the output of the baseline model.

3.4 Parameter Optimization

In order to optimize the parameters of the log-

linear model, we use standard minimum error rate

training (MERT; Och (2003)). As the two offi-

cial evaluation measures of the contest are BLEU

(Papineni et al., 2002) and RIBES (Isozaki et al.,

2010), we submitted two systems, one optimized

for BLEU, and one optimized for BLEU+RIBES.

We also attempted optimizing for RIBES only,

which did result in higher RIBES scores, but also

extremely short translations and extremely low

scores, so we decided against submitting this sys-

tem.

4 Issues for Context-aware Machine

Translation

We did not make any particular attempt to con-

sider super-sentential context in our system. Sub-

sentential context is considered to a lesser extent

by the n-gram LM, and to a greater extent by

the RNNLM, the theoretically infinite history of

which could potentially capture syntactic or se-

mantic agreement of words that are beyond the

scope of traditional n-grams.

5 Experimental Results

In Table 1 we show the results for our systems with

and without the RNNLM, and tuning with BLEU

or BLEU+RIBES. In addition, we show the re-

sults for a PBMT system trained using the Moses

toolkit (Koehn et al., 2007), with the same data as

the F2S system and the default settings except for

a reordering limit of 18, which gave better results

on all language pairs than the default of 6.

From this table we can first see that the F2S

translation greatly outperforms PBMT. The trend

is more prominent in the translation to or from En-

glish, a result of the fact that the amount of re-

ordering is greater between English and Japanese

than between Chinese and Japanese. In addition,

we can see that the gain over PBMT is smaller
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en-ja ja-en zh-ja ja-zh

System RNN Tune B R B R B R B R

PBMT No B 29.00 68.99 19.41 64.71 35.57 76.78 27.07 79.80

F2S No B 36.50 79.69 23.76 71.79 39.82 82.42 29.27 81.26

B+R 36.24 79.95 24.02 71.77 39.22 83.10 28.83 82.58

Yes B 37.21 80.21 24.72 72.39 40.61 83.18 29.78 81.66

B+R 36.94 80.78 25.12 72.64 40.01 83.52 29.03 82.82

F2S+Dict Yes B - 25.27 72.56 - -

Table 1: Overall BLEU and RIBES results for a baseline Moses, and five of our systems without and with

the RNNLM rescoring, tuning for BLEU or BLEU+RIBES, and with/without dictionaries. Bold indi-

cates systems not statistically different from the best system according to bootstrap resampling (Koehn,

2004).

in pairs where the source is Japanese. We ac-

count this to the fact that the syntactic parsing

accuracy is lower, partly due to the fact that the

training data for the parser is smaller (approxi-

mately 6,000 sentences), and partly due to the fact

that we have done very little grammar engineer-

ing for Japanese, in contrast to the more carefully

thought-out phrase structure of the English and

Chinese treebanks.

Next, taking a look at the results with RNNLM,

we can see that adding RNNLM helps across

all language pairs on the order of 0.7-1.0 BLEU

points, with slightly smaller gains for RIBES.

These consistent gains are in concert with previ-

ous results, adding further evidence to the obser-

vation that continuous space language models are

beneficial for translation.

We can also see that adding RIBES to the eval-

uation function used in parameter optimization

leads to a significant increase in RIBES across all

data sets. On the other hand, it also leads to a de-

crease in BLEU for the ja-zh and zh-ja data sets,

although no significant decrease is observed in the

ja-en and en-ja data sets.

It should also be noted that the systems tuned

for BLEU+RIBES tend to result in significantly

shorter translation outputs than other systems. Ta-

ble 2 shows the average length of sentences for

each of the systems (using RNNLM in all cases).

From this, we can see that for all language pairs

except ja-en, BLEU-tuned systems tend to largely

match the length of the reference hypotheses,

while the BLEU+RIBES tuned systems are signif-

icantly shorter.

Tune en-ja ja-en zh-ja ja-zh

B 29.86 25.10 37.26 27.55

B+R 28.40 25.05 35.61 25.64

Ref. 29.73 24.39 37.51 27.78

Table 2: The average number of words per sen-

tence according to different tuning objectives, as

well as for the reference.

6 Official Results

In this section, we discuss the official results of

the evaluation focusing on two aspects: the rela-

tionship with human evaluation, and a compari-

son with other systems. In Table 3 we show the

official results for each system, including human

evaluation. When reports for multiple segmenters

are reported, we display the ones calculated using

KyTea. Human evaluation is calculated according

to pairwise comparison with the baseline accord-

ing to the official task description (Nakazawa et

al., 2014), where 100 indicates that the proposed

system exceeds the baseline in all judgements, and

0 indicates that the system is equivalent with the

baseline.

First, we note that the NAIST submissions

achieved the highest score in all three evaluation

measures across all four language pairs. The com-

peting teams include PBMT, Hiero, tree-to-string,

string-to-tree systems prepared by the organizers,

as well as systems prepared by the participants

(often based on preordering, or statistical post-

editing of rule-based MT). This provides further

evidence to support our previous observation that

F2S translation provides strong results for the lan-

guage pairs under consideration for the WAT task

(Neubig and Duh, 2014).
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en-ja ja-en zh-ja ja-zh

Dict Tune B R H B R H B R H B R H

No B 37.2 80.2 56.3 23.3 72.4 37.5 41.3 83.5 50.8 30.5 81.8 17.8

B+R 37.2 80.7 51.5 23.5 72.4 - 40.8 83.8 38.0 29.8 83.0 1.3

Yes B - 23.8 72.3 40.5 - -

Best B 35.0 79.0 36.0 21.1 69.9 25.0 37.7 82.6 22.5 28.7 81.0 14.0

Best R 35.0 79.0 36.0 20.6 70.8 23.3 37.7 82.6 22.5 27.7 81.0 3.8

Best H 34.9 78.6 43.3 20.4 67.8 25.5 37.7 82.6 22.5 28.7 81.0 14.0

Table 3: BLEU, RIBES, and HUMAN evaluation according to the official evaluation results. We also

show the best competing systems other than ours according to each evaluation metric. Bold indicates

systems within 0.3 of the best system for BLEU and RIBES, and systems that do not show a significant

decrease from the best system according to Student’s t-test for HUMAN (p < 0.05).

System Translation

Source 由于气候变化和能源保障问题，引入
了环境污染税和碳税，这对电力产业

尤为重要。

Tuned B 気候の変化とエネルギー保障問題，
環境汚染税と炭素税を導入し，電力
産業に対して極めて重要である。

Tuned B+R 気候変化やエネルギー保障問題，環
境汚染税と炭素税を導入し，電力産
業が重要である。

Table 4: Examples of zh-ja translations for sys-

tems tuned with different objectives.

Next, we take a look at the correlation between

automatic evaluation measures and human evalu-

ation scores. Just looking at our systems, we can

see that in general BLEU scores are a good indica-

tor of human evaluation, while in many instances

systems with higher RIBES scores achieve lower

human evaluation. This is in contrary to previous

evaluation campaigns including the Japanese lan-

guage (Goto et al., 2011), and thus a somewhat

noteworthy result.

We hypothesize that this is due to the fact, as

mentioned in the previous section, that systems

tuned for BLEU+RIBES achieve higher RIBES

scores, but also produce short hypotheses. Be-

cause the hypotheses are short, they have a larger

chance of dropping words and missing important

information. We show one example of this in Ta-

ble 4, where the BLEU system received a higher

manual evaluation score than the BLEU+RIBES

system. In this example, the system tuned with

only BLEU produces a longer hypothesis than that

of the system tuned with BLEU+RIBES. In par-

ticular, focusing on the word “に対して” (“for”

in English), the BLEU system includes this word

and is able to achieve a translation corresponding

to the true meaning of “is important for the electric

industry,” while the BLEU+RIBES system drops

the word, causing a mistaken translation of “the

electric industry is important.”

7 Conclusion

In this paper we described the NAIST submission

to the WAT 2014 translation task. The system was

based on forest-to-string statistical machine trans-

lation, and achieved the highest translation accu-

racy on all four language pairs.

While the accuracy was relatively high, there is

still significant amounts of work to be done. First,

our subjective assessment of the translation results

indicated that the parsing accuracy for Japanese is

still likely lower than it is for other languages. Ex-

amining the use of other, more accurate parsers for

Japanese is high on the list of priorities. In addi-

tion, the statistical model used in our translation

system is a standard one based on standard max-

imum likelihood estimation and minimum error

rate training of a small number of dense features.

In future work we hope to improve both the model

estimation and parameter tuning processes using

more sophisticated models, features, and methods.
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