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Abstract

Many approaches to sentiment analysis rely on a lexicon that labels words with a prior polarity.
This is particularly true for languages other than English, where labelled training data is not
easily available. Existing efforts to produce such lexicons exist, and to avoid duplicated effort, a
principled way to combine multiple resources is required. In this paper, we introduce a Bayesian
probabilistic model, which can simultaneously combine polarity scores from several data sources
and estimate the quality of each source. We apply this algorithm to a set of four German sentiment
lexicons, to produce the SentiMerge lexicon, which we make publically available. In a simple
classification task, we show that this lexicon outperforms each of the underlying resources, as
well as a majority vote model.

1 Introduction

Wiegand (2011) describes sentiment analysis as the task of identifying and classifying opinionated con-
tent in natural language text. There are a number of subtasks within this field, such as identifying the
holder of the opinion, and the target of the opinion.

In this paper, however, we are concerned with the more specific task of identifying polar language -
that is, expressing either positive or negative opinions. Throughout the rest of this paper, we will use the
terms sentiment and polarity more or less interchangeably.

As Pang and Lee (2008) explain, sentiment analysis has become a major area of research within natural
language processing (NLP), with many established techniques, and a range of potential applications.
Indeed, in recent years there has been increasing interest in sentiment analysis for commercial purposes.

Despite the rapid growth of this area, there is a lack of gold-standard corpora which can be used to
train supervised models, particularly for languages other than English. Consequently, many algorithms
rely on sentiment lexicons, which provide prior knowledge about which lexical items might indicate
opinionated language. Such lexicons can be used directly to define features in a classifier, or can be
combined with a bootstrapping approach.

However, when presented with a number of overlapping and potentially contradictory sentiment lex-
icons, many machine learning techniques break down, and we therefore require a way to merge them
into a single resource - or else a researcher must choose between resources, and we are left with a leaky
pipeline between resource creation and application. We review methods for combining sources of infor-
mation in section 2, and then describe four German sentiment lexicons in section 3.

To merge these resources, we first want to make them match as closely as possible, and then deal with
the differences that remain. We deal with the first step in section 4, describing how to align the polarity
scores in different lexicons so that they can be directly compared. Then in section 5, we describe how to
combine these scores together.

We report results in section 6, including evaluation against a small annotated corpus, where our merged
resource outperforms both the original resources and also a majority vote baseline. Finally, we discuss
distribution of our resource in section 7, future work in section 8, and conclude in section 9.
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Lexicon # Entries
C&K 8714
PolarityClues 9228
SentiWS 1896
SentiSpin 95572
SentiMerge 96918

Table 1: Comparison of lexicon sizes

2 Related Work

A general problem is how to deal with missing data - in our case, we cannot expect every word to
appear in every lexicon. Schafer and Graham (2002) review techniques to deal with missing data, and
recommend two approaches: maximum likelihood estimation and Bayesian multiple imputation. The
latter is a Monte Carlo method, helpful when the marginal probability distribution cannot be calculated
analytically. The probabilistic model presented in section 5.1 is straightforward enough for marginal
probabilities to be calculated directly, and we employ maximum likelihood estimation for this reason.

A second problem is how to combine multiple sources of information, which possibly conflict, and
where some sources are more reliable than others. This becomes particularly challenging in the case
when no gold-standard data exists, and so the sources can not be evaluated directly. Raykar et al. (2010)
discusses this problem from the point of view of crowdsourcing, where there are multiple expert views
and no certain ground truth - but we can equally apply this in the context of sentiment analysis, viewing
each source as an expert. However, unlike their approach, our algorithm does not directly produce a
classifier, but rather a newly labelled resource.

Confronted with a multiplicity of data sources, some researchers have opted to link resources together
(Eckle-Kohler and Gurevych, 2013). Indeed, the lexicons we consider in section 3 have already been
compiled into a common format by Declerck and Krieger (2014). However, while linking resources
makes it easier to access a larger amount of data, it does not solve the problem of how best to process it.

To the best of our knowledge, there has not been a previous attempt to use a probabilistic model to
merge a number of sentiment lexicons into a single resource.

3 Data Sources

In the following subsections, we first describe four existing sentiment lexicons for German. These four
lexicons represent the data we have merged into a single resource, with a size comparison given in table 1,
where we count the number of distinct lemmas, not considering parts of speech. Finally, in section 3.5,
we describe the manually annotated MLSA corpus, which we use for evaluation.

3.1 Clematide and Klenner

Clematide and Klenner (2010) manually curated a lexicon' of around 8000 words, based on the synsets
in GermaNet, a WordNet-like database (Hamp and Feldweg, 1997). A semi-automatic approach was used
to extend the lexicon, first generating candidate polar words by searching in a corpus for coordination
with known polar words, and then presenting these words to human annotators. We will refer to this
resource as the C&K lexicon.

3.2 SentimentWortschatz

Remus et al. (2010) compiled a sentiment lexicon? from three data sources: a German translation of
Stone et al. (1966)’s General Inquirer lexicon, a set of rated product reviews, and a German collocation
dictionary. At this stage, words have binary polarity: positive or negative. To assign polarity weights,
they use a corpus to calculate the mutual information of a target word with a small set of seed words.

'"http://bics.sentimental.li/index.php/downloads
http://asv.informatik.uni-leipzig.de/download/sentiws.html
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3.3 GermanSentiSpin

Takamura et al. (2005) produced SentiSpin, a sentiment lexicon for English. It is so named becaused
it applies the Ising Model of electron spins. The lexicon is modelled as an undirected graph, with each
word type represented by a single node. A dictionary is used to define edges: two nodes are connected if
one word appears in the other’s definition. Each word is modelled as having either positive or negative
sentiment, analogous to electrons being spin up or spin down. An energy function is defined across the
whole graph, which prefers words to have the same sentiment if they are linked together. By using a
small seed set of words which are manually assigned positive or negative sentiment, this energy function
allows us to propagate sentiment across the entire graph, assigning each word a real-valued sentiment
score in the interval [—1, 1].

Waltinger (2010b) translated the SentiSpin resource into German
at most three translations of each English word.

3 using an online dictionary, taking

3.4 GermanPolarityClues

Waltinger (2010a) utilised automatic translations of two English resources: the SentiSpin lexicon, de-
scribed in section 3.3 above; and the Subjectivity Clues lexicon, a manually annotated lexicon produced
by Wilson et al. (2005). The sentiment orientations of the German translations were then manually
assessed and corrected where necessary, to produce a new resource.*

3.5 MLSA

To evaluate a sentiment lexicon, separately from the general task of judging the sentiment of an entire
sentence, we relied on the MLSA (Multi-Layered reference corpus for German Sentiment Analysis).
This corpus was produced by Clematide et al. (2012), independently of the above four lexicons, and
consists of 270 sentences annotated at three levels of granularity. In the first layer, annotators judged
the sentiment of whole sentences; in the second layer, the sentiment of words and phrases; and finally in
the third layer, they produced a FrameNet-like analysis of each sentence. The third layer also includes
lemmas, parts of speech, and a syntactic parse.

We extracted the sentiment judgements of individual words from the second layer, using the majority
judgement of the three annotators. Each token was mapped to its lemmatised form and part of speech,
using the information in the third layer. In some cases, the lemma was listed as ambiguous or unknown,
and in these cases, we manually added the correct lemma. Additionally, we changed the annotation of
nominalised verbs from nouns to verbs, to match the lexical entries. Finally, we kept all content words
(nouns, verbs, and adjectives) to form a set of test data. In total, there were 1001 distinct lemma types,
and 1424 tokens. Of these, 378 tokens were annotated as having positive polarity, and 399 as negative.

4 Normalising Scores

By considering positive polarity as a positive real number, and negative polarity as a negative real number,
all of the four data sources give polarity scores between —1 and 1. However, we cannot assume that the
values directly correspond to one another. For example, does a 0.5 in one source mean the same thing
in another? An example of the kind of data we are trying to combine is given in table 2, and we can see
that the polarity strengths vary wildly between the sources.

The simplest model is to rescale scores linearly, i.e. for each source, we multiply all of its scores by
a constant factor. Intuitively, the factors should be chosen to harmonise the values - a source with large
scores should have them made smaller, and a source with small scores should have them made larger.

4.1 Linear Rescaling for Two Sources

To exemplify our method, we first restrict ourselves to the simpler case of only dealing with two lexicons.
Note that when trying to determine the normalisation factors, we only consider words in the overlap
between the two; otherwise, we would introduce a bias according to what words are considered in each

*http://www.ulliwaltinger.de/sentiment
‘nttp://www.ulliwaltinger.de/sentiment
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Lemma, POS | vergdttern, V
C&K 1.000
PolarityClues 0.333
SentiWws 0.004
SentiSpin 0.245

Table 2: An example lemma, labelled with polarity strengths from each data source

source - it is only in the overlap that we can compare them. However, once these factors have been
determined, we can use them to rescale the scores across the entire lexicon, including items that only
appear in one source.

We consider lemmas with their parts of speech, so that the same orthographic word with two possible
parts of speech is treated as two independent lexical entries, in all of the following calculations. However,
we do not distinguish homophonous or polysemous lemmas within the same part of speech, since none
of our data sources provided different sentiment scores for distinct senses.

For each word 17, let u; and v; be the polarity scores for the two sources. We would like to find
positive real values A and p to rescale these to Au; and pw; respectively, minimising the loss function
i (Au; — ;wi)2. Intuitively, we are trying to rescale the sources so that the scores are as similar as
possible. The loss function is trivially minimised when A = p = 0, since reducing the sizes of the scores
also reduces their difference. Hence, we can introduce the constraint that Ay = 1, so that we cannot
simultaneously make the values smaller in both sources. We would then like to minimise:

1 2
Z ()\ui - )\vi) = [u|* A2 = 2u.v + [v]* A2

i
Note that we use vector notation, so that |u|2 = Y;u?. Differentiating this with respect to A, we get:

[l

Au)* —2fPA3=0 = A=

Jul

However, observe that we are free to multiply both A and i by a constant factor, since this doesn’t
affect the relationship between the two sources, only the overall size of the polarity values. By dividing
by \/Ju[[v], we derive the simpler expressions A = |u| ™" and x = |v|™", i.e. we should divide by the
root mean square. In other words, after normalising, the average squared polarity value is 1 for both

sources.5

4.2 Rescaling for Multiple Sources

For multiple sources, the above method needs tweaking. Although we could use the overlap between all
sources, this could potentially be much smaller than the overlap between any two sources, introducing
data sparsity and making the method susceptible to noise. In the given data, 10749 lexical items appear
in at least two sources, but only 1205 appear in all four. We would like to exploit this extra information,
but the missing data means that methods such as linear regression cannot be applied.

A simple solution is to calculate the root mean square values for each pair of sources, and then average
these values for each source. These averaged values define normalisation factors, as a compromise
between the various sources.

4.3 Unspecified scores

Some lexical items in the PolarityClues dataset were not assigned a numerical score, only a polarity
direction. In these cases, the task is not to normalise the score, but to assign one. To do this, we can first
normalise the scores of all other words, as described above. Then, we can consider the words without
scores, and calculate the root mean square polarity of these words in the other sources, and assign them
this value, either positive or negative.

>In most sentiment lexicons, polarity strengths are at most 1. This will no longer be true after this normalisation.
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S Combining Scores

Now that we have normalised scores, we need to calculate a combined value. Here, we take a Bayesian
approach, where we assume that there is a latent “true” polarity value, and each source is an observation
of this value, plus some noise.

5.1 Gaussian Model

A simple model is to assume that we have a prior distribution of polarity values across the vocabulary,
distributed normally. If we further assume that a language is on average neither positive nor negative,
then this distribution has mean 0. We denote the variance as o. Each source independently introduces
a linear error term, which we also model with a normal distribution: errors from source a are distributed

with mean 0 and standard deviation o2, which varies according to the source.5
5.2 Hyperparameter Selection
If we observe a subset S = {ay,...,a,} of the sources, the marginal distribution of the observations

will be normally distributed, with mean 0 and covariance matrix as shown below. If the error variances
o2 are small compared to the background variance o2, then this implies a strong correlation between the

observations.

0%+ 021 o? c. o?
2 2 2
o o°+ oy, o
o? o? o? + o2

To choose the values for o2 and ag, we can aim to maximise the likelihood of the observations, i.e.
maximise the value of the above marginal distributions at the observed points. This is in line with Schafer
and Graham (2002)’s recommendations. Such an optimisation problem can be dealt with using existing
software, such as included in the SciPy’ package for Python.

5.3 Inference

Given a model as above (whether or not the hyperparameters have been optimised), we can calculate the
posterior distribution of polarity values, given the observations ;. This again turns out to be normally
distributed, with mean /i and variance 52 given by:

> 0,22,

o2+ Y 00

6 2=02+ Z 06;2

The mean is almost a weighted average of the observed polarity values, where each source has weight
o, 2. However, there is an additional term =2 in the denominator - this means we can interpret this
as a weighted average if we add an additional polarity value 0, with weight 2. This additional term
corresponds to the prior.

The weights for each source intuitively mean that we trust sources more if they have less noise. The
extra 0 term from the prior means that we interpret the observations conservatively, skewing values
towards O when there are fewer observations. For example, if all sources give a large positive polarity
value, we can be reasonably certain that the true value is also large and positive, but if we only have data
from one source, then we are less certain if this is true - our estimate /& is correspondingly smaller, and
the posterior variance 52 correspondingly larger.

o=

Because of the independence assumptions, this model can alternatively be viewed as a Markov Network, where we have
one node to represent the latent true polarity strengths, four nodes to represent observations from each source, and five nodes
to represent the hyperparameters (variances)

"nttp://www.scipy.org
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Probability density

-1.5 -1 -0.5 0 0.5 | 1.5
Polarity Strength

Figure 1: Gaussian kernel density estimate

6 Experiments and Results

6.1 Parameter Values

The root mean square sentiment values for the sources were: C&K 0.845; PolarityClues 0.608; SentiWS
0.267; and SentiSpin 0.560. We can see that there is a large discrepancy between the sizes of the scores
used, with SentiWS having the smallest of all. It is precisely for this reason that we need to normalise
the scores.

The optimal variances calculated during hyperparameter selection (section 5.2) were: prior 0.528;
C&K 0.328; PolarityClues 0.317; SentiWS 0.446; and SentiSpin 0.609. These values correlate with our
intuition: C&K and PolarityClues have been hand-crafted, and have smaller error variances; SentiWS
was manually finalised, and has a larger error; while finally SentiSpin was automatically generated, and
has the largest error of all, larger in fact than the variance in the prior. We would expect the polarity
values from a hand-crafted source to be more accurate, and this appears to be justified by our analysis.

6.2 Experimental Setup

The MLSA data (see section 3.5) consists of discrete polarity judgements - a word is positive, negative, or
neutral, but nothing in between.® To allow direct evaluation against such a resource, we need to discretise
the continuous range of polarity values; i.e. if the polarity value is above some positive threshold, we
judge it to be positive; if it is below a negative threshold, negative; and if it is between the two thresholds,
neutral. To choose this threshold before evaluation, we calculated a Gaussian kernel density estimate of
the polarity values in the entire lexicon, as shown in figure 1. There is a large density near 0, reflecting
that the bulk of the vocabulary is not strongly polar; indeed, so that the density of polar items is clearly
visible, we have chosen a scale that forces this bulk to go off the top of the chart. The high density stops
at around +0.23, and we have accordingly set this as our threshold.

We compared the merged resource to each of the original lexicons, as well as a ”majority vote” baseline
which represents an alternative method to combine lexicons. This baseline involves considering the
polarity judgements of each lexicon (positive, negative, or neutral), and taking the most common answer.
To break ties, we took the first answer when consulting the lexicons in the following order, reflecting their
reliability: C&K, PolarityClues, SentiWsS, SentiSpin.

For the automatically derived resources, we can introduce a threshold as we did for SentiMerge. How-
ever, to make these baselines as competitive as possible, we optimised them on the test data, rather than
choosing them in advance. They were chosen to maximise the macro-averaged f-score. For SentiWs,
the threshold was 0, and for SentiSpin, 0.02.

Note that a perfect score would be impossible to achieve, since 31 lemmas were annotated with more
than polarity type. These cases generally involve polysemous words which could be interpreted with
different polarities depending on the context. Indeed, two words appeared with all three labels: Span-
nung (tension) and Widerstand (resistance). In a political context, interpreting Widerstand as positive or

8The annotation scheme also allows a further three labels: intensifier, diminisher, and shifter. While this information is

useful, we treat these values as neutral in our evaluation, since we are only concerned with words that have an inherent positive
or negative polarity.
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Lexicon Precision Recall F-score

C&K 0.754 0.733  0.743
PolarityClues 0.705 0.564  0.626
SentiWsSs 0.803 0.513  0.621
SentiSpin 0.557 0.668  0.607

majority vote 0.548 0.898 0.679
SentiMerge 0.708 0.815  0.757

Table 3: Performance on MLSA, macro-averaged

negative depends very much on whose side you support. In such cases, a greater context is necessary to
decide on polarity, and a lexicon simply cannot suffice.

6.3 Evaluation on MLSA

We calculated precision, recall, and f-score (the harmonic mean of precision and recall) for both positive
and negative polarity. We report the average of these two scores in 3. We can see that in terms of f-
score, SentiMerge outperforms all four data sources, as well as the majority vote. In applications where
either precision or recall is deemed to be more important, it would be possible to adjust the threshold
accordingly. Indeed, by dropping the threshold to zero, we achieve recall of 0.894, competitive with the
majority vote method; and by increasing the threshold to 0.4, we achieve precision of 0.755, competitive
with the C&K lexicon. Furthermore, in this latter case, the f-score also increases to 0.760. We do not
report this figure in the table above because it would not be possible to predict such a judicious choice
of threshold without peeking at the test data. Nonetheless, this demonstrates that our method is robust to
changes in parameter settings.

The majority vote method performs considerably worse than SentiMerge, at least in terms of f-score.
Indeed, it actually performs worse than the C&K lexicon, with noticeably lower precision. This finding
is consistent with the results of Raykar et al. (2010), who argue against using majority voting, and who
also find that it performs poorly.

The C&K lexicon achieves almost the same level of performance as SentiMerge, so it is reasonable
to ask if there is any point in building a merged lexicon at all. We believe there are two good reasons
for doing this. Firstly, although the C&K lexicon may be the most accurate, it is also small, especially
compared to SentiSpin. SentiMerge thus manages to exploit the complementary nature of the different
lexicons, achieving the broad coverage of SentiSpin, but maintaining the precision of the C&K lexicon
for the most important lexical items.

Secondly, SentiMerge can provide much more accurate values for polarity strength than any human-
annotated resource can. As Clematide and Klenner (2010) show, inter-annotator agreement for polarity
strength is low, even when agreement for polarity direction is high. Nonetheless, some notion of po-
larity strength can still be helpful in computational applications. To demonstrate this, we calculated the
precision, recall, and f-scores again, but weighting each answer as a function of the distance from the
estimated polarity strength to the threshold. With this weighted approach, we get a macro-averaged f-
score of 0.852. This is considerably higher than the results given in table 3, which demonstrates that the
polarity scores in SentiMerge are useful as a measure of classification certainty.

6.4 Manual Inspection

In cases where all sources agree on whether a word is positive or negative, our algorithm simply serves
to assign a more accurate polarity strength. So, it is more interesting to consider those cases where the
sources disagree on polarity direction. Out of the 1205 lexemes for which we have data from all four
sources, only 22 differ between SentiMerge and the C&K lexicon, and only 16 differ between SentiMerge
and PolarityClues. One example is Beschwichtigung (appeasement). Here we can see the problem with
trying to assign a single numeric value to polarity - in a political context, Beschwichtugung could be
interpreted either as positive, since it implies an attempt to ease tension; or as negative, since it could be
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viewed as a sign of weakness. Another example is unantastbar, which again can be interpreted positively
or negatively.

The controversial words generally denote abstract notions, or have established metaphorical senses.
In the authors’ view, their polarity is heavily context-dependent, and a one-dimensional score is not
sufficient to model their contibution to sentiment.

In fact, most of these words have been assigned very small polarity values in the combined lexicon,
which reflects the conflicting evidence present in the various sources. Of the 22 items which differ in
C&K, the one with the largest value in the combined lexicon is dominieren, which has been assigned a
fairly negative combined score, but was rated positive (0.5) in C&K.

7 Distribution

We are making SentiMerge freely available for download. However, with the expanding number of
language resources, it is becoming increasingly important to link resources together, as mentioned in
section 2. For this reason, we are publishing our resource as part of the Linguistic Linked Open Data’
initiative. In particular, we have decided to follow the specifications set forth by Buitelaar et al. (2013),
who propose a representation for sentiment resources based on Lemon (McCrae et al., 2011) and Marl
(Westerski et al., 2011). Lemon'? is a model for resource description which builds on LMF (Lexical
Markup Framework),'! and facilitates combination of lexicons with ontologies. Marl is an an ontology
language designed for sentiment analysis, which has been fully implemented.'?

8 Future Work

To align the disparate sources, a simple linear rescaling was used. However, in principle any monotonic
function could be considered. A more general function that would still be tractable could be u; — Aus'.

Furthermore, the probabilistic model described in section 5.1 makes several simplifying assumptions,
which could be weaked or modified. For instance, we have assumed a normal distribution, with zero
mean, both for the prior distribution and for the error terms. The data is not perfectly modelled by a
normal distribution, since there are very clear bounds on the polarity scores, and some of the data takes
discrete values. Indeed, we can see in figure 1 that the data is not normally distributed. An alternative
choice of distribution might yield better results.

More generally, our method can be applied to any context where there are multiple resources to be
merged, as long as there is some real-valued property to be aligned.

9 Conclusion

We have described the merging of four sentiment lexicons into a single resource, which we have named
SentiMerge. To demonstrate the utility of the combined lexicon, we set up a word-level sentiment clas-
sification task using the MLSA corpus, in which SentiMerge outperformed all four of the underlying
resources, as well as a majority vote baseline. As a natural by-product of the merging process, we are
also able to indirectly evaluate the quality of each resource, and the results match both intuition and the
performance in the aformentioned classification task. The approach we have taken requires no parameter
setting on the part of the researcher, so we believe that the same method can be applied to other settings
where different language resources present conflicting information. This work helps to bridge the gap be-
tween resource creation efforts, which may overlap in scope, and NLP research, where researchers often
want to use all available data. Furthermore, by grounding our work in a well-defined Bayesian frame-
work, we leave scope for future improvements using more sophisticated probabilistic models. To allow
the community at large to use and build on this work, we are making SentiMerge publically available for
download, and are incorporating it into the Linguistic Linked Open Data initiative.

‘http://linguistics.okfn.org/resources/1llod
10http: //lemon-model .net
Uhttp://www.lexicalmarkupframework.org
Phttp://www.gsi.dit.upm.es/ontologies/marl
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