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Abstract

The paper presents an approach to morphological compound splitting that takes the degree of
compositionality into account. We apply our approach to German noun compounds and particle
verbs within a German—English SMT system, and study the effect of only splitting compositional
compounds as opposed to an aggressive splitting. A qualitative study explores the translational
behaviour of non-compositional compounds.

1 Introduction

In German, as in many other languages, two (or more) simplex words can be combined to form a com-
pound. This is a productive process, leading to a potentially infinite number of sound German com-
pounds. As a consequence, many NLP applications suffer from coverage issues for compounds which
do not appear or appear only infrequently in language resources. However, while many compounds are
not covered, their component words are often found in lexical resources or training data. Compound
processing allows access to these component words and thus can overcome these sparsity issues.

We use Statistical Machine Translation (SMT) as an example application for compound processing.
Our SMT system translates from German to English, where compounds are usually split in the German
source language prior to training and decoding. The benefits are obvious: vocabulary size is reduced
and the languages are adjusted in terms of granularity, as exemplified by the compound Holzzaun. This

wooden  Holz — wooden results in better alignment quality and model estimation.
Holzzaun < fence Zaun — fence Compound splitting also enables the translation of com-
1:n alignment 1:1 alignment pounds not occurring in the parallel data, if the parts have
been seen and can thus be translated individually. However, these assumptions only hold for compo-
sitional compounds like Holzzaun ("wooden fence’), whose meanings can be derived from the mean-
ings of their constituents, namely Holz (wood’) and Zaun ("fence’). In contrast, the splitting of non-
compositional compounds may lead to translation errors: e.g. the meaning of Jagerzaun (’lattice fence’)
cannot be represented by the meanings of its constituents Jéiger (Chunter’) and Zaun (’fence’). Here, an
erroneous splitting of the compound can lead to wrong generalizations or translation pairs, such as Jéger
— lattice, in the absence of other evidence about how to translate Jager. When splitting compounds
for SMT, two important factors should thus be considered: (1) whether a compound is compositional
and should be split, and if so (2) how the compound should be split. Most previous approaches mainly
focused on the second task, ~ow to split a compound, e.g. using frequency statistics (Koehn and Knight,
2003) or a rule-based morphology (Fritzinger and Fraser, 2010), and all of them showed improved SMT
quality for compound splitting. The decision about whether the compound is compositional and should
be split at all has not received much attention in the past.

In this work, we examine the effect of only splitting compositional compounds, in contrast to splitting
all compounds. To this end, we combine (A) an approach relying on the distributional similarity be-
tween compounds and their constituents, to predict the degree of compositionality and thus to determine
whether to split the compound with (B) a combination of morphological and frequency-based features
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to determine sow to split a compound. We experiment with this novel semantically-informed compound
splitting on the source-side data of a German-English SMT system. As far as we know, we are the first
to study the impact of compositionality-aware compound splitting in SMT. We evaluate our systems on
a standard and on a specifically created test set, both for noun compounds and particle verbs. Our re-
sults show that phrase-based SMT is generally robust with regard to over-splitting non-compositional
compounds, with the exception of low-frequency words. This is in line with corresponding assumptions
from previous work. Furthermore, we present a small-scale study about the translational behaviour of
non-compositional compounds, which can surprisingly often be translated component-wise.

2 Related Work

We combine morphology-based compound splitting with distributional semantics to improve phrase-
based SMT. Here, we discuss relevant work of compound splitting in SMT and distributional semantics.

2.1 Compound Splitting in SMT

Compound splitting in SMT is a well-studied task. There is a wide range of previous work, including
purely string- and frequency-based approaches, but also linguistically-informed approaches. All lines
of research improved translation performance due to compound splitting. In Koehn and Knight (2003),
compounds are split through the identification of substrings from a corpus. The splitting is performed
without linguistic knowledge (except for the insertion of the filler letters “(e)s”), which necessarily leads
to many erroneous splittings. Multiple possible splitting options are disambiguated using the frequencies
of the substrings. Starting from Koehn and Knight (2003), Stymne (2008) covers more morphological
transformations and imposes POS constraints on the subwords. Nieen and Ney (2000) and Fritzinger
and Fraser (2010) perform compound splitting by relying on morphological analysers to identify suitable
split points. This has the advantage of returning only linguistically motivated splitting options, but the
analyses are often ambiguous and require disambiguation: NieBlen and Ney (2000) use a parser for
context-sensitive disambiguation, and Fritzinger and Fraser (2010) use corpus frequencies to find the best
split for each compound. Other approaches use a two-step word alignment process: first, word alignment
is performed on a split representation of the compounding language. Then, all former compound parts
for which there is no aligned counterpart in the non-compounding language are merged back to the
compound again. Finally, word alignment is re-run on this representation. See Koehn and Knight (2003)
for experiments on German, DeNeefe et al. (2008) for Arabic and Bai et al. (2008) for Chinese. This
blocks non-compositional compounds from being split if they are translated as one simplex English word
in the training data (e.g. Heckenschiitze, lit. “hedge|shooter’; *sniper’) and aligned correctly. However,
cases like Jigerzaun, ’lattice fence’ are not covered.

In the present work, we identify compounds with a morphological analyser, disambiguated with corpus
frequencies. Moreover, we restrict splitting to compositional compounds using distributional semantics.
We are not aware of any previous work that takes semantics into account for compound splitting in SMT.

2.2 Distributional Semantics and Compounding

Distributional information has been a steadily increasing, integral part of lexical semantic research over
the past 20 years. Based on the distributional hypothesis (Firth, 1957; Harris, 1968) that ”you shall know
a word by the company it keeps”, distributional semantics exploits the co-occurrence of words in corpora
to explore the meanings and the similarities of the words, phrases, sentences, etc. of interest.

Among many other tasks, distributional semantic information has been utilised to determine the degree
of compositionality (or: semantic transparency) of various types of compounds, most notably regarding
noun compounds (e.g., Zinsmeister and Heid (2004), Reddy et al. (2011), Schulte im Walde et al. (2013),
Salehi et al. (2014)) and particle verbs (e.g., McCarthy et al. (2003), Bannard (2005), Cook and Stevenson
(2006), Kiihner and Schulte im Walde (2010), Bott and Schulte im Walde (2014), Salehi et al. (2014)).
Typically, these approaches rely on co-occurrence information from a corpus (either referring to bags-
of-words, or focusing on target-specific types of features), and compare the distributional features of
the compounds with those of the constituents, in order to predict the degree of compositionality of the
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Preprocessing SMT

| _.-- Holz ------ ---- 0311 ----- ----- Holz wooden
Holzzaun <27
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Figure 1: Semantically-informed compound processing in SMT.

compound. The underlying assumption is that a compound which is similar in meaning to a constituent
(as in Holzzaun—Zaun (‘wooden fence’—‘fence’) but not in Lowenzahn—Zahn (‘lion|tooth (dandelion)’—
‘tooth’)) is also similar to the constituent with regard to co-occurrence information.

Most related to this work on noun compounds, Reddy et al. (2011) relied on window-based distribu-
tional models to predict the compositionality of English noun compounds, and Schulte im Walde et al.
(2013) compared window-based against syntax-based distributional models to predict the composition-
ality of German noun compounds. Zinsmeister and Heid (2004) used subcategorising verbs to predict
compound-head similarities of German noun compounds. Most recently, Salehi et al. (2014) extended
the previous approaches to take multi-lingual co-occurrence information into account, regarding English
and German noun compounds, and English particle verbs.

3 Methodology

We integrate our semantically-informed compound splitting as a pre-processing step to the German
source language of an SMT system. See Figure 1 for an illustration of our compound processing pipeline.

3.1 Target Compounds

German compounds are combinations of two (or more) simplex words. In some cases, a morphological
transformation is required: for example, when combining the two nouns Ausflug (‘excursion’) and Ziel
(“destination’) — Ausflugsziel (‘excursion destination’), a filler letter (here: “s”) needs to be inserted.
Other such transformations include more filler letters or the deletion/substitution of letters.

Noun compounds are formed of a head noun and a modifier, which can consist of nouns, verbs, adjec-
tives or proper nouns.

Particle verbs are productive compositions of a base verb and a prefix particle, whose part-of-speech
varies between open-class nouns, adjectives, and verbs, and closed-class prepositions and adverbs. In
comparison to noun compounds, the constituents of German particle verbs exhibit a much higher degree
of ambiguity: Verbs in general are more ambiguous than nouns, and the largest sub-class of particles
(those with a preposition particle) is highly ambiguous by itself (e.g. Lechler and RoBdeutscher (2009)
and Springorum (2011)). For example, in anknabbern (‘to nibble partially’), the particle an expresses a
partitive meaning , whereas in ankleben (‘to glue onto sth.”) an has a topological meaning (to glue sth.
onto an implicit background). In addition, particle verb senses may be transparent or opaque with respect
to their base verbs. For example, abholen ‘fetch’ is rather transparent with respect to its base verb holen
‘fetch’, whereas anfangen ‘begin’ is more opaque with respect to fangen ‘catch’. In contrast, einsetzen
has both transparent (e.g. ‘insert’) and opaque (e.g. ‘begin’) verb senses with respect to setzen ‘put/sit
(down)’. The high degree of ambiguity makes particle verbs a challenge for NLP. Moreover, particle
and base verb can occur separately (er fdangt an: ‘he begins’) or in one word (dass er anfdngt: ‘that he
begins’), depending on the clausal type. This makes consistent treatment of particle verbs difficult.

3.2 Identification of Component Parts

We use the rule-based morphological analyser SMOR (Schmid et al., 2004) to identify compounds and
their constituents in our parallel training data (cf. Section 4). It relies on a large lexicon of word lemmas
and feature rules for productive morphological processes in German, i.e., compounding, derivation and
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inflection. In this paper, we will not consider splitting into derivational affixes (as needed for, e.g., Arabic
and Turkish), but instead identify simplex words that may also occur independently. Moreover, we only
keep noun compounds and particle verbs consisting of two constituents. The resulting set consists of
93,299 noun compound types and 3,689 particle verb types.

3.3 Predicting Compositionality based on Distributional Similarity

Starting from this set of compounds as derived from our parallel training data, we collected distributional
co-occurrence information from two large German web corpora and the machine translation training data:
(i) the German COW corpus (Schifer and Bildhauer (2012), ~9 billion words), (ii) the SdeWaC (Faal3
and Eckart (2013), ~880 million words), (iii) our MT parallel corpus (~40 million words) and (iv) MT
language model training data (~146 million words). We relied on earlier work and used the 20,000 most
frequent nouns from the SdeWacC as co-occurrence features, looking into a window of 20 words to the left
and to the right of our target compounds and their constituents. We thus obtained a co-occurrence matrix
of all compounds and their constituents with the 20,000 selected nouns. As co-occurrence strength (i.e.,
how strong is a co-occurrence between a target word and a co-occurring noun), we collected frequencies
and transformed them into local mutual information (LMI) values, cf. Evert (2005). Finally, we calcu-
lated the distributional similarity between the compounds and their constituents, relying on the standard
measure cosine. The cosine value is then used to predict the degree of compositionality between the
respective compound—constituent pairs. For example, the cosine value of the pair Baumschule—Baum' is
0.38, while the cosine value of the pair Baumschule—Schule is only 0.01.

3.4 Semantically-Informed Compound Splitting

In the two preceding sections, we described how we identified component words and calculated distribu-
tional compositionality scores for all of the compounds found in our training data. Here, we give details
on how we include the semantic information into the compound splitting process. Recall that we only
want to split compositional compounds and keep non-compositional compounds together.

The splitting decision (to split/not split a compound) is based on the compositionality score of the
compound that takes into account either one or both of the compound—constituent cosine values: if the
predicted degree of compositionality is high, the compound is split. We consider and combine four dif-
ferent criteria: i) only the compound—modifier similarity (mod); (ii) only the compound-head similarity
(head); a combination of the compound—modifier and the compound-head similarities, relying on (iii) the
geometric mean (geom) or (iv) on the arithmetic mean (arith). We used different thresholds for each of
these criteria throughout our experiments, with a specific focus on distinguishing the contributions of the
modifiers vs. the heads in the splitting decision, following insights from recent work in psycholinguistic
studies (Gagné and Spalding, 2009; Gagné and Spalding, 2011) as well as in computational approaches
on noun compounding (Reddy et al., 2011; Schulte im Walde et al., 2013). Furthermore, we compare
the effects of splitting with regard to two types of compounds, noun compounds and particle verbs: Both
types are very productive and can generate a potentially infinite number of new forms.

4 Experimental Setting

This section gives an overview on the technical details of the SMT system and our data sets. Compound
splitting is applied to all source-language data, i.e. the parallel data used to train the model, as well as
the input for parameter tuning and testing.?

Translation Model Moses is a state-of-the-art toolkit for phrase-based SMT systems (Koehn et al.,
2007). We use it with default settings to train a translation model and we do so separately for each of the
different compound splittings. Word alignment is performed using GIZA++ (Och and Ney, 2003). Fea-
ture weights are tuned using Batch-Mira (Cherry and Foster, 2012) with ’-safe-hope’ until convergence.
Training Data Our parallel training data contains the Europarl corpus (version 4, cf. Koehn (2005))
and also newspaper texts, overall ca. 1.5 million sentences® (roughly 44 million words). In addition, we

! Baum|schule: ‘tree|school” (tree nursery)

2Compounds not contained in the parallel data are always split, as they cannot be translated otherwise.
3Data from the shared task of the EACL 2009 workshop on statistical machine translation: www . statmt . org/wmt 09
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use an English corpus of roughly 227 million words (including the English part of the parallel data) to
build a target-side 5-gram language model with SRILM (Stolcke, 2002) in combination with KENLM
(Heafield, 2011). For parameter tuning, we use 1,025 sentences of news data.

Standard Test set 1,026 sentences of news data (test set from the 2009 WMT Shared Task): this set is
to measure the translation quality on a standard SMT test and make it comparable to other work.
Noun/Verb Test set As our main focus lies on sentences containing compounds, we created a second
test set which is rich in compounds. From the combined 2008-2013 Shared Task test sets, we extracted
all sentences containing at least one noun compound for which we have compound-constituent similarity
scores. Moreover, we excluded sentences containing nouns that are not in the parallel training data: such
compounds can only be translated when split which allows to translate their components. The final test
set consists of 2,574 sentences. Similarly, we also created a set rich in particle verbs (855 sentences).
Opaque Test set As the two first test sets mainly contain compositional compounds, we use a third test
set consisting of sentences with only non-compositional compounds. The underlying compounds were
chosen based on a list containing noun compounds and human ratings for compositionality (von der
Heide and Borgwaldt (2009)). As before, the compounds must have occurred in the parallel data. The
result is a list of 14 compounds, of which 11 have a low modifier-compound similarity and 3 have a low
head-compound similarity. We then extracted sentences containing these compounds (5 per compound =
70 in total) from German newspaper data*. In contrast to the other sets, we use this test set in a qualitative
study, to approximate the translation quality by counting the number of correctly translated compounds.

5 SMT Results

In this section, we present and discuss the results of our machine translation experiments. We first report
results for two test sets in terms of a standard evaluation metric (BLEU) and then continue with a small-
scale qualitative study on the translational behaviour of non-compositional compounds.

5.1 Compound Splitting within a Standard SMT Task

BLEU (Papineni et al., 2002) is a common metric to automatically measure the quality of SMT output
by comparing n-gram matches of the SMT output with a human reference translation. Table 1 lists the
results for our SMT-systems: we report on different compound-constituent scores and thresholds, for
noun compounds and particle verbs respectively. Note that BLEU scores are not comparable across dif-

nouns particle verbs | ferent test sets, but only illustrate system differences
: stand. noun | stand. verb | (ithin one test set. We compare our systems to the
baseline | 2100 2108 | 21.00 2029 scores of a baseli tem (without compound process
aseline system -
5 DIST | 2200 2202 | 21.02 2011 | | ystent | ompound p
® FREQ | 22.04 21.88 | 21.11 2021 | ing) and an aggressive split system in which all noun
head | 21.77 21.58 | — _ compounds and particle verbs are split. The labels DIST
o mod. | 2201  21.74 | - - and FREQ indicate how several possible splittings were
< geom. | 21.99 2171 | - - . . . .
arith. | 2195 2195 | — _ disambiguated: DIST means we chose the splitting option
head | 21.91 21.69 | 21.11 2024 | having the higher geometric mean of the two compound-
— mod. | 2201 2163 | 2098 2043 | constituent scores, assuming that the variant expressing a
S geom. | 22.06 21.90 | 21.12 20.55 . .. .
arith. | 2205 2173 | 21.08 2034 | higher compositionality score leads to the more probable
head | 21.80 21.67 | 21.10  20.09 | splitting analysis. For FREQ, the decision is based on the
vy mod. | 2171 2177 | 2100 2025 | geometric mean of corpus frequencies of the respective
< geom. | 21.78  21.64 | 20.84  20.30 . .
arith. 22.00 21.77 21.24 20.40 Components of the Compound, as 1S common practlse for
head | 21.78  21.51 | - - the disambiguation of multiple splitting options in SMT
a mod. %%;2 %}‘S‘Z - - (Koehn and Knight, 2003; Fritzinger and Fraser, 2010).
com. . . - - . . .
irith. 2202 2179 | — _ In terms of BLEU, there is little difference for these two

variants. For further experiments, we thus decided to al-
Table 1: BLEU scores for all compound- ways use FREQ for disambiguation, assuming that com-
constituent variations. ponents chosen by frequency are potentially better repre-

“www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/hgc.html
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[ rating | compound gloss [ mod. | head | translation ]

HIGHLY | Staats|bankrott nation |bankruptcy 0.4779 | 0.6527 | national bankruptcy
COMP. Staats|gebilde nation |structure 0.6955 | 0.3431 | national structure
MEDIUM | Industrie|staat industry|[nation 0.0258 | 0.1488 | industrial nation
COMP. Staats|kasse nation|cash box 0.0718 | 0.2757 | public purse, treasury
LOW Staats|spitze nation|top 0.0024 | 0.0040 | top/head of state
COMP. Staats|monotheismus  nation|monotheism | 0.0071 | 0.0071 | national monotheism

Table 2: Examples for different compound-constitutent score ranges: HIGH: highly compositional,
MEDIUM: cases of doubt, LOW: highly non-compositional, according to their scores.

sented in the training data. Thus, we first use frequencies to determine the best split option in the case
of several possibilities, and then we apply distributional semantics to determine whether to split at all.
The remainder of Table 1 reports on different variants of the semantically-informed splitting criteria we
used. The notation head/mod/geom/arith indicates which (combination of) compound-constituent scores
were applied as criterion, with the threshold indicated by the vertical number. We performed the first
set of experiments with different thresholds for noun compounds, and then applied the medium-range
thresholds to the particle verbs. Generally, there are no considerable differences between the systems
with semantically restricted splitting and the aggressive split systems, even though there seems to be a
slightly positive effect for particle verbs. Having a closer look, we find that for noun compounds on the
standard test set, the best results (threshold: 0.1) are at the same level as the aggressive split systems;
with some small losses in BLEU on some of the other settings.

5.2 Discussion

All settings clearly outperform the baseline system (without compound processing). This indicates that
phrase-based SMT is rather robust with regard to non-semantic splitting as it is can often recover from
over-splitting by translating the word sequence as a phrase. This is in line with previous observations
of Koehn and Knight (2003). The results for the noun test set, which is biased towards containing more
nominal compounds, even suggests that less splitting might harm the system, as the BLEU scores tend
to drop when increasing the threshold. For particle verbs,’ the picture is slightly different: first, splitting
only particle verbs does not lead to a considerable improvement over the baseline, as in the case of noun
compounds. For the verb test set, it even leads to a drop in BLEU. However, a more restricted splitting
leads to improved BLEU scores, even though not significantly better than the un-split baseline system.
Even though the handling of particle verbs needs to be refined in terms of dealing with their structural
behaviour (split vs. unsplit depending on the sentence structure) or ambiguities of the particle verb,
we consider this an encouraging result indicating that particle verbs can benefit from a semantically-
informed splitting process.

There are several possible reasons why a more restricted splitting might not lead to an improvement,
even though the idea of splitting only compositional compounds is intuitive and straightforward.

Inconsistent Splitting Compositionality is a continuum rather than a binary decision, with the scores of
many (compositional) compounds being in the medium range. Thus, it happens that some compounds
containing a certain constituent are split, whereas others are not: such inconsistent splittings do not
contribute to the generalization compound splitting aims for. Table 2 gives examples for compounds
with different degrees of compositionality, which illustrate this issue: for Industriestaat (’industrial
nation’) and Staatskasse ('public purse’) in the middle part of the table, a splitting decision based on
the head scores for thresholds of 0.15 or 0.2 leads to inconsistent splitting. Only compounds with high
scores, as the examples at the top of Table 2 are always split. The bottom part gives examples with
comparatively low compound-constituent scores that would benefit from splitting, but which will not be
split in any of our systems.

Note that there are considerably less particle verbs than noun compounds in the standard test set and the parallel data.
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compound gloss translation unsplit f | split f
Seehunde sealdogs seals seals 5 | seals 5
Flohmarkt Sflea|market flea market flea market 5 | flea market 5
Kopfsalat head|salad lettuce lettuce 5 | lettuce 5
Handtuch hand|cloth towel towel 5 | towel 5
Kronleuchter crown|candelabra chandelier chandelier 5 | crown leuchter 5
Gilrteltiere belt|lanimal armadillo armadillos 5 | belt animals 5
Wasserhahn water|rooster tap tap 5 | Watertap 2
water supply 3

Meerschweinchen sealpiglet guinea pig e 5 guinea pig 4
’ sea pig 1

Taschenbuch pocket|book paperback paperback 5 g 2212:);31;1( 3
Kronkorken crown|cork crown cap *kronkorken 5 | crown corks 5
Taschenlampe pocket|lamp flashlight *taschenlampe 5 Egglmi;mp ‘1‘
Fleischwolf meat|wolf meat grinder | *fleischwolf 5 | meat wolf 5
Marienkéfer Mary|bug ladybug *marienkéfer 5 | *marie kifer 5
Blockfloten block|flute recorder *plockfloten 5 E{OCk “.“ght 5
oc might 1

Table 3: correct vs. 'wrong — Translation of non-compositional compounds (opaque test set) without
being split (unsplit) vs. being split prior to translation. **’ highlights untranslated compounds.

Coverage of Opaque Compounds Another relevant factor concerns the frequency ranges of compounds
that are most interesting for this approach. High/mid frequency compounds are usually well-covered by
the training data of an SMT system, and in most cases they are translated correctly even if they have
been split erroneously. This is due to the fact that split compounds can be learned and translated as a
phrase if there were enough instances for the system to learn a valid translation. In the case of low-
frequency compounds, the system is less likely to learn a correct translation from the parallel data.
However, low-frequency compounds are not well covered by the system and splitting should thus be
highly beneficial. Newly created, i.e. highly compositional compounds, tend to be of low frequency, as
is illustrated by the example of Staatsmonotheismus (freq=1 in the parallel data) in Table 2. However,
a wrong splitting decision for a non-compositional compound of low frequency is likely to lead to an
incorrect translation as the SMT system has better statistics for the individual parts than for the sequence
of the compounds constituents. We assume that for low-frequency compounds the distributional similar-
ity scores are generally less reliable, even though using LMI helps to minimize this. To a certain extent,
we expect non-compositional compounds —which are typically considered as lexicalized— to occur with
higher frequencies than novel compositional compounds.® Furthermore, there are considerably more
compositional than non-compositional compounds in standard text. Thus, being in favor of splitting in
the case of low-frequency words should be reasonable in most contexts.

6 A Closer Look at Translating Opaque Compounds

In this section, we compare the translations of non-compositional compounds when they are unsplit
and when they are split. We use a small test set containing 70 sentences, 5 for each of the 14 non-
compositional compounds (see Section 4). Then we conduct a small-scale qualitative analysis focusing
on the correct translation of opaque compounds.

Table 3 reports on correct translations for the non-compositional compounds for an experiment where
they have been split or not split (unsplit) prior to translation. Even though all compounds occurred in
the parallel data, five (which are marked with ’*’) cannot be translated by the unsplit system due to not
being aligned correctly. The other compounds are translated correctly (marked with “+” in Table 3).
In the course of our study, we found that many of the correct translations remain the same (seals, flea
market, lettuce, towel). In the case of guinea pig, paperback and tap there are mixed results of correct and
incorrect translations. Only in the cases of chandelier (“crown leuchter”) and armadillo (“belt animal”),

%1t has to be noted, though, that the model is influenced by the somewhat different domain of the parallel data (European
Parliament proceedings, a standard data set for SMT).
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compound gloss translation compound  gloss translation
Barlauch bearlleck bear leek Handtasche  hand[bag handbag
Baumschule  tree|school tree nursery Hirschkifer — stag|beetle stag beetle
Lowenanteil — lion|share lion’s share Hiittenkéise  cottage|cheese | cottage cheese
Fliegenpilz  fly|mushroom | fly agaric Kronkorken  crown|cork crown cap
Flohmarkt Sflea|market flea market Teelicht teallight tea candle

Table 4: Examples for (near) literal translation of non-compositional compounds.

which were translated correctly with the unsplit system, all translations obtained with the split system are
wrong. Somewhat surprisingly, in some cases there even is a benefit from splitting the non-compositional
compounds: Kronkorken, previously not translated at all, is correctly generated as crown cork. For other
previously untranslated words, Fleischwolf and Taschenlampe, literal translations of the constituents
are given: while meat wolf (instead of meat grinder) is probably not understandable, the translation of
Taschenlampe as pocket lamp is certainly preferable to the untranslated compound.

Due to the observed unexpected translational behaviour of 2 of the 14 non-compositional compounds
(Flohmarkt and Kronkorken), which can be translated literally and thus —in theory— benefit from splitting,
we present a small study illustrating that this phenomenon is not as rare as one would intuitively expect.
This study is not meant to be comprehensive, but rather to point out that the translational behaviour of
non-compositional compounds can correspond to that of compositional compounds; Table 4 lists a few
such examples. We assume that this behaviour is due to the fact that English and German are similar
languages with a similar background. Thus, the “images” used in non-compositional words often tend to
be similar. For some of the compounds (e.g. Flohmarkt) this is even true for some Romance languages,
too (IT: mercato delle pulci, FR: marché aux puces) .

Generally, the SMT system should even be able to handle cases where the translation of one part is
not strictly literal (e.g. cap—cork or agaric—mushroom). In comparison to a dictionary, which only lists
few translations, the translation model offers a large choice of translation options that are not always
strictly synonymous, but can cover a large range of related meanings. In combination with the target-
side language model, this could allow to “guess” good translations of such compounds. However, the
component-wise translation of non-compositional compounds only works if the source- and target lan-
guage compounds contain the same number of constituents. For example, consider translating the word
Faultier (lazy|animal: “sloth”): even if the SMT system offers the translation faul-sloth, it would also
need to produce a translation for the constituent tier, probably resulting in something like sloth animal.

In conclusion, while phrase-based SMT is often able to recover from over-splitting by translating
a word sequence as a phrase, this is not always necessary for opaque compounds as they can have a
literal or near-literal translation. Thus, for explicitly handling non-compositional compounds in SMT, a
monolingual estimation of compositionality is not the only relevant factor. The translational behaviour
of compounds should also be taken into account.

7 Conclusion and Future Work

We studied the impact of compositionality in German-English SMT by restricting compound splitting to
compositional compounds. The decision about compositionality is based on the distributional similarity
between a compound and its constituents. We experimented with different threshold/score combinations
on a standard and a specifically created test set. Our results indicate that phrase-based SMT is very robust
with regard to over-splitting non-compositional noun compounds, with the exception of low-frequency
compounds. Furthermore, we studied the translational behaviour of non-compositional compounds with
a special focus on the fact that non-compositional compounds can in some cases be translated component-
wise, leading to the conclusion that a monolingual estimation of compositionality is not sufficient for an
optimal explicit handling of compounds in SMT applications.

The relatively low impact of distinguishing the degree of compositionality might also be due to the fact
that the task of translating noun compounds can be considered “easy”, as the split components always
occur adjacently. In contrast, handling other types of non-compositional structures (e.g. noun-verb or
preposition-noun-verb combinations which are non-compositional) is a challenging task for future work.
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