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Abstract 

In this paper we present a cross-linguistic evaluation of a lexicon-based decomposition method 

for decompounding, augmented with a “guesser” for unknown components. Using a gold 

standard test set, for which the correct decompositions are known, we optimize the method’s 

parameters and show correlations between each parameter and the resulting scores. The results 

show that even with optimal parameter settings, the performance on compounds with unknown 

elements is low in terms of matching the expected lemma components, but much higher in 

terms of correct string segmentation. 

1 Introduction 

Compounding is a productive process that creates new words by combining existing words together in 

a single string. It is predominant in Germanic and Scandinavian languages, but is also present in other 

languages, e.g. Finnish, Korean, or Farsi. Many languages that are not usually thought of as 

“compounding” nevertheless display marginal presence of compounds, restricted, for instance, to 

numerical expressions (e.g. Polish czterogodzinny ‘four-hour’). Depending on a language, 

compounding can be a very frequent and productive process, in effect making it impossible to list all 

the compound words in the dictionary. This creates serious challenges for Natural Language 

Processing in many areas, including search, Machine Translation, information retrieval and related 

disciplines that rely on matching multiple occurrences of words to the same underlying representation.  

In this paper, we present a cross-linguistic evaluation of a lexicon-based decomposition method 

augmented with a “guesser” for handling unknown components. We use existing lexicons developed 

at Oracle Language Technology in combination with a string scanner parametrized with language-

specific input/output settings. Our focus is on the evaluation that tries to tease apart string 

segmentation (i.e. finding boundaries between components) and morphological analysis (i.e. matching 

component parts to known lemmas). 

The paper is organized as follows: Section 2 gives an overview of related research; Section 3 

describes the compound analyzer used in our experiments; Section 4 presents experimental results; 

Section 5 contains error analysis and discussion. Section 6 concludes and suggests future research. 

2 Related research 

Current research on compound splitting is predominantly lexicon-based, with a range of selection 

methods to choose the most likely decomposition. The lexicons used to identify components are 

usually collected from large monolingual corpora (Larson et al., 2000; Monz and de Rijke, 2001; 

Alfonseca et al, 2008; Holz and Biemann, 2008; von Huyssteen and von Zaanen, 2004).  

The problem with pure lexicon-based approach without any constraints is that it will produce many 

spurious decompositions, matching small substrings that happen to be legitimate words in the 
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language. Therefore, some approaches introduce maximizing component length (or, conversely, 

minimizing the number of components) as one of the selection factors (von Huyssteen and von 

Zaanen, 2004; Holz and Biemann, 2008; Macherey et al., 2011; Larson et al., 2000); others use part of 

speech to eliminate short components which tend to be function words (Koehn and Knight, 2003; 

Monz and de Rijke, 2001). In other cases, Named Entity Recognition is used to filter out proper names 

that should not be decomposed but that can contain frequent short components like “-berg” or “-dorf” 

(Alfonseca et al., 2008).  

Even after removing unlikely small component candidates, there is enough ambiguity in 

decomposition to warrant further filtering methods. And so, approaches related to Machine Translation 

use bilingual parallel corpora to find the most likely components by checking whether their 

translations match elements of the whole compound translation (Koehn and Knight, 2003; Macherey 

et al., 2011). Other filtering methods are based on combined frequency of the components (Koehn and 

Knight, 2003; Holz and Biemann, 2008), point-wise mutual information of components, or occurrence 

of components in related locations, such as anchor text (Alfonseca et al., 2008). A very interesting 

lexicon-free approach is presented in Aussems et al. (2013), which uses point-wise mutual information 

to detect likely boundaries between characters that would identify a compound. 

A major issue with the current research is the absence of common training and testing data, 

particularly across multiple languages, which then translates into limited evaluations of presented 

methods. Using pre-annotated frequency lists, we create gold standard test sets for 10 languages: 

Norwegian, Danish, Dutch, Estonian, Finnish, German, Hungarian, Korean, Farsi, Swedish, which 

range from around 600 to 15,000 compounds. This allows a more thorough comparison of the analyser 

performance across different languages.  

3 Lexicon-based analyzer 

Our approach follows the main line of research in that it uses lexicons to identify potential components 

in a compound; however, our lexicons contain lemmas rather than word forms, in contrast to lexicons 

harvested from monolingual corpora. However, the lexicons we use contain as well as partial lemmas 

whose occurrences are restricted to compounds (e.g. German verb forms without the final –en; for 

example schließ-). In addition, we use morphological rules to map recognized inflected forms to base 

(lexicon) lemmas. Both the lexicons and the morphological rules have been previously created by 

computational linguists and native speakers for use in a variety of NLP applications at Oracle 

Language Technology.   

On the most basic level, a compound can be explicitly added to the lexicon, with a specific 

decomposition and appropriate part of speech and grammatical features; this option is used when the 

decomposition is irregular or non-obvious, for instance when the component appears in a form that is 

not directly analyzable to its lemma, as in the example below, which shows irregular plurals and 

deletion of consonant: 

 

(1) a. Danish: barn ‘child’ plural: børn 

børnebog barn+e+bog [child-connector-book] ‘children’s book’ 

b. Norwegian Bokmål: deletion of repeated consonant 

musikkorps musikk+korps [music-band] ‘music band’ 

 

Lexicalized compounds are treated like any other words, and their inflected forms will be 

recognized. Explicitly adding the compound to the lexicon is also useful when the compound can have 

multiple decompositions, and we want to restrict the output only to the semantically correct analysis. 

In Dutch, for instance, the compound part stem can refer to the noun stem ‘voice’ or to the root of the 

verb stemmen ‘vote’. These readings are distinguished in the lexicon by listing explicit decompositions 

for compounds that contain the part:  

 

(2) Dutch stem N vs. V 

a. stemband stem#band  [voice-cord]  ‘vocal cord’ (N-N)  

b. stembureau stemmen#bureau [vote-station] ‘polling station (V-N) 
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However, adding all compounds to the lexicon is simply unfeasible for many languages where the 

compounding process is highly productive. For this reason, we also use a compound analyser to 

identify components in a dynamic manner, based on available component lemmas in the lexicon. 

Components are found by removing any recognizable inflections from the candidate string, scanning it 

left-to-right, and looking for all matching lemmas, subject to constraints based on part of speech, 

length, number of components, and available features. For speed reasons, we apply greedy matching, 

and prefer decompositions with the longest prefix and the smallest number of components. 

Since our goal is developing language processing systems that are as universal as possible, leaving 

context-dependent decisions to higher-level applications, we are not particularly concerned with 

always selecting the single best decomposition for a compound, since in many cases is will be 

dependent on the domain and application. However, it is useful to filter out decompositions that would 

be highly unlikely in any context, for instance those containing small function words mentioned in 

previous section. For this purpose, we apply constraints described below. 

3.1 Rules for compound sequences 

For each language, we list the possible part of speech sequences that can appear in compounds. These 

rules serve not only to prevent the decompositions that would not appear in the language (for instance, 

noun-verb-particle), but also to restrict sequences that are fairly infrequent, but that would lead to 

considerable over-generation if they were added. For example, in German, there are relatively few 

compounds that end with a verb, unless it is a combination of movable prefix particle (aus, an, ab, ein, 

etc.) and the verb (aus+gehen, auf+stehen, um+steigen, etc.). These verbs are functionally analyzed as 

compounds, i.e. a concatenation of two lemmas. However, since sequences noun/adjective/verb + verb 

are much less productive (spazieren+gehen, auto+fahren), it is more efficient to restrict the verb-final 

compounds to particle-verb only, and add the exceptions to the lexicon. A few examples of compound 

part of speech sequences for different languages are shown in (3). 

 

(3) a. Dutch:  

 cardinal_number + verb e.g., vier+en+delen ‘quarter’ 

b. Estonian:  

noun+adjective  e.g. silmi+pimestav ‘eye-dazzling’ 

c. German:  

ordinal_number + adjective e.g. zweit+größt ‘second largest’ 

d. Swedish:  

noun + noun   e.g citron+saft ‘lemon juice’ 

 

Another issue is compounds of cardinal or ordinal numbers, which can also occur in some 

languages like Italian (cinquecento+sessanta+nove ‘five hundred sixty nine’) or Greek (οκτακόσιοι, 

οκτώ + ακόσιοι ‘eight hundred’). These number compounds can be very productive and are also 

included in the lists of allowed compound sequences.   

3.2 Connectors 

In many compounding languages, the subparts of a compound can be connected with extra material, a 

connector (or linking element). These are semantically empty elements that have a mainly 

phonological role in connecting the compound parts (Bauer, 2009). In many Germanic languages 

connectors are derived from plural or genitive morphemes (such as –er or –s in German), but do not 

have this role any more, as evidenced, among others, by the fact that in certain cases the connector is 

optional and compounds with and without a connector co-exist (4a) or by the fact that there are cases 

where two different connectors co-occur (4b) (Krott et al., 2007): 
 

(4) a. Norwegian Bokmål: 

rettssak rett + s + sak ‘court case’ 

rettsak rett + Ø + sak 

b. Dutch: 

paddestoel pad + e + stoel ‘toadstool’ 

paddenstoel pad + en + stoel 
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For each language, we create a set of allowed connectors, a few examples of which can be seen in 

(5).
1
 Note that it might be useful to restrict certain connectors to appear only in certain sequences (e.g. 

between noun and noun, but not adjective and verb); we plan to implement this restriction in future 

work. 

 

(5) Connector examples 

a. Dutch  s e.g. water+s+nood ‘flood’ 

b. German  zu e.g. to match auf+stehen and auf+zu+stehen ‘stand up’ 

c. Swedish o e.g. veck+o+slut ‘weekend’ 

3.3 Decompounding settings 

Another factor in successful dynamic decompounding is restrictions on possible number of 

components, and on length of candidate strings and candidate components. Choosing to allow fewer 

components of longer length helps to prevent spurious over-analysis, where several short words can 

accidentally match the string which is being analyzed. However, setting the limits too high might also 

prevent legitimate decomposition, so this trade-off needs to be carefully balanced. There are four basic 

length settings, as shown in Table 1 below; the values are dependent on language. 

Maximum number of elements: Limits the number of components in a compound. Low values help 

prevent spurious decompositions into many small elements. 

Minimum length of compound: The minimum length of string that should be subject to 

decompounding; short strings are unlikely to be compounds, so for efficiency reasons, they are not 

decompounded. 

Minimum length of component: Specifies the minimum length of potential compound elements; 

shorter substrings are excluded to avoid accidental matching of very short words. 

Minimum length of component with connector: A version of the above setting, it specifies the 

minimum length of potential element when this element is next to a connector; to avoid spurious 

matches of the short word + connector combination (e.g. Dutch paspoort should be decomposed as 

pas+poort, not pa+s+poort).    
 

setting  value 

maximum number of elements 2-4 

minimum length of compound 4-11 

minimum length of component 2-4 

minimum length of component with connector 2-4 

 

Table 1. Length settings for dynamic decompounding. 
 

The values for these settings are established manually and separately for each language, based on 

review of top N most frequent compounds in the lexicon and the general knowledge of that language’s 

grammar and patterns. 

4 Experimental results 

Despite all the constraints and settings described above, decompounding is still an imperfect process: 

there can be multiple competing (i.e. overlapping) decompositions, and many decompositions that are 

technically possible are incorrect due to semantic reasons. This problem becomes even more 

challenging when some of the components are not present in the lexicon. Since lexicons are limited, 

and real world text can contain misspellings, proper names, or obscure words, we need to address the 

issue of decompounding with unknown elements. Therefore, we set out to evaluate the performance of 

our lexicon-based method on a gold standard set of known compounds, and compare it to an 

augmented version that also tries to construct potential components from unknown substrings. 

                                                           
1 Note that for our purposes, particle zu in German is also treated as a connector, to match the movable particle verbs that can 

appear with and without zu: auf + zu + stehen and auf + stehen ‘get up’. 
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4.1 Test set  

For our experiments, we collected compounds from the top 90% frequency lists based on large 

news and Wikipedia corpora. Each compound was annotated with the correct decomposition(s) by a 

linguist who was also a native speaker of the target language according to simple instructions: if the 

meaning of the word is compositional (i.e. can be fully described by the component elements), treat it 

as a compound and provide component lemmas.  

Approximate sizes of source corpora per language are given in Table 2; column “compounds” 

shows the count of compounds; column “lexical” shows how many of these are lexicalized compounds 

(i.e. compounds that have been added to the lexicon for reasons of irregularity). While two-part 

compounds are by far the most frequent in all the languages we examined, there is also some 

percentage of compounds with more than two parts; the distribution is shown in the last four columns. 

 

language 

news 

corpus 

MB 

wiki 

corpus 

MB 

compounds lexical 2-part 3-part 4-part 5-part 

Danish 335 154 1,982 1,326 1,856 122 4 0 

Dutch 512 103 3,439 1,909 3,186 245 8 0 

Estonian 204 41 2,343 562 2,166 169 8 0 

Farsi 512 244 648 340 635 13 0 0 

Finnish 512 78 1,868 1,665 1,703 154 11 0 

German 520 227 15,490 5,087 14,544 915 31 0 

Hungarian 512 257 1,841 1,537 1,794 45 2 0 

Korean 826 190 11,398 4,774 10,919 425 39 5 

Norwegian 512 88 3,582 1,106 3,405 175 2 0 

Swedish 512 204 9,677 5,608 8,901 744 31 5 

 

Table 2. Size of corpora per language, count of compounds, distribution of parts. 

 

4.2 Dynamic decompounding with available lemmas 

As mentioned before, it is not feasible to add all (or even the majority) of possible compounds, so we 

need to examine our performance using only dynamic decompounding. For this purpose, we removed 

all lexicalized compounds from the lexicon, and then ran the analyzer on the compound test set 

described above. This means that all the compound analysis was done dynamically, using only the 

available simple lemmas and compound rules and length restrictions. Table 3 shows the results. The 

scores for lexicalized + dynamic decompounding are given only for reference; they are high but less 

interesting, since they reflect the fact that the lexicalized compounds were largely collected from the 

same corpora (among other sources). Our focus is on the dynamic scores, which show performance on 

unknown compounds assuming a nearly “perfect” lexicon that contains almost all the component 

lemmas. As such, these scores will serve as the upper bound for our next experiment, in which we 

remove at least one of the component lemmas from the lexicon and test the resulting performance.   

As can be seen in Table 3, for most languages recall decreases considerably – this suggests that 

lexicalized compounds are of the kind that are not covered by the decompounding rules or whose 

correct analysis is blocked by another decomposition.  

4.3 Dynamic decompounding with missing lemmas 

While dynamic decompounding can handle the productive nature of compounds, it is still limited to 

finding components that are already present in the lexicon. However, in the real world compounds will 

contain elements unknown to a lexicon-based analyzer, whether it is because they are domain-specific 

vocabulary, proper names, foreign borrowings, or misspellings. In those cases, it is still useful to 

attempt analysis and return the known parts, with the option of returning the unknown substring as the 

missing lemma. 
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  lexicalized + dynamic dynamic only 

  prec rec f-score prec rec f-score 

Danish 98.18 99.6 98.88 87.99 66.9 76.01 

Dutch 98.84 100 99.42 84.46 80.49 82.43 

Estonian 98.25 99.83 99.03 95.69 90.27 92.9 

Farsi 92.9 100 96.32 65.75 72.84 69.11 

Finnish 98.74 100 99.37 84.55 68.63 75.76 

German 96.11 99.98 98.01 88.01 89.03 88.52 

Hungarian 90.44 99.84 94.91 77.42 72.19 74.71 

Korean 99.72 100 99.86 95.23 59.49 73.23 

Norwegian 99.6 100 99.8 93.25 86.32 89.65 

Swedish 96.35 99.88 98.08 86.67 75.75 80.84 

 

Table 3. Precision, recall, and f-measure for dynamic decompounding. 

 

To evaluate the performance of our analyzer in case where some component lemmas are unknown, 

we applied a “compound guesser” function that tries to find known elements of unknown compounds, 

even if a complete decomposition to only known elements is impossible. The guesser has its own 

constraints, independent of the main compound analyzer, which are shown in Table 4. 

 

 

setting  value 

maximum number of elements 2-20 

minimum length of compound 3-20 

minimum length of component 2-5 

minimum length of unknown element 1-5 

minimum percent of string covered 0-100% 

 

Table 4. Settings for dynamic decompounding with unknown elements. 

 

The first three settings are parallel to the settings for regular dynamic decompounding; however, we 

also add restrictions on length for unknown elements (minimum length of unknown element) and total 

string coverage (minimum percent of string covered). Restriction on length of unknown element mean 

that any unknown string shorter than the minimum length will be treated as a potential 

connector/suffix/prefix and will not be returned as a lemma: 

 

(6) German: assuming freundlicher ‘friendlier’ is unknown: 

umweltfreundlicher -> umwelt + freundlich (! + er) [environment + friendly]  

 

The last setting allows a more fine-grained control over the proportion of known to unknown parts; 

however, since any value less than 100% will restrict the number of produced candidate 

decompositions, resulting in no output if the unknown substring is too long, we do not test the impact 

of this setting.  

For this experiment, we collected all component lemmas from the test compounds, and removed 

from lexicon at least one component lemma per compound. This renders the whole string 

unanalyzable by regular means. Then we ran the compound guesser with each combination of settings 

from Table 4, to find the optimal set of values.  

Table 5 shows results obtained with the optimal guesser settings per language, compared to scores 

from Table 3: a fully functional decomposition that has access to both dynamic decomposition and 

lexicalized compounds, and dynamic decomposition with near-perfect component lexicon. It is clear 
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that even with optimal settings, the guesser performance falls well below the level of full functionality, 

even when we compare to a system that has no access to lexicalized compounds. The highest score 

achieved by the guesser is 34 for the Hungarian test set, which includes mostly simple two-part 

compounds, and where the lexicon does not provide too many spurious sub-matches.  

 

language lexical + dynamic 
dynamic 

only 

dynamic 

guesser 

dynamic guesser - 

string segmentation 

Danish 98.88 76.01 25.93 51.25 

Dutch 99.42 82.43 27.13 64.01 

Estonian 99.03 92.9 9.56 53.89 

Farsi 96.32 69.11 27.16 78.68 

Finnish 99.37 75.76 19.49 51.6 

German 98.01 88.52 25.1 52.29 

Hungarian 94.91 74.71 34 53.5 

Korean 99.86 73.23 16.81 76.54 

Norwegian 99.8 89.65 22.56 49.74 

Swedish 98.08 80.84 25.56 54.18 

Table 5. Dynamic decomposition with missing lemmas, optimal settings; string segmentation shows 

accuracy score; remaining values are harmonic f-score of precision and recall. 

 

However, a major problem with this evaluation is that output of the regular decompounding process 

produces lemmas in their dictionary form, without inflection, whereas the guesser can only return 

surface strings for the unknown elements which might carry grammatical inflection or stem 

alternations. Therefore, it would be more fair to compare the guesser to dynamic decompounding in 

terms of pure string segmentation – whether it finds the same boundaries between components, 

without concern for the form of the returned component. This lets us tease apart the impact of finding 

component elements from the impact of morphology. The last column in Table 5 shows accuracy of 

guesser string segmentation as compared to string segmentation performed by regular dynamic 

decompounding; in this respect the guesser’s performance is indeed much better. These results are 

encouraging, showing that we can recover correct components in up to 79% of cases, which is a very 

useful improvement for the purposes of information retrieval and search. While some recall is lost by 

returning strings instead of lemmas, we are planning to add a second step that would employ a lemma 

“guesser”, in order to produce the most likely dictionary form from the recovered unknown string. 

 

language 
max 

elements 

corr. 

with 

score 

min 

length of 

compound 

corr. 

with 

score 

min 

length 

of 

element 

corr. 

with 

score 

min 

length of 

unknown 

element 

corr. 

with 

score 

Danish 2 -0.19 3-7 -0.46 4 0.43 3 -0.09 

Dutch 2 -0.21 8 -0.47 5 0.51 3 -0.06 

Estonian 2 -0.15 3-7 -0.57 4 0.33 3 -0.08 

Farsi 2 -0.17 3-5 -0.51 3 0.11 2 -0.24 

Finnish 2-10 -0.07 3-8 -0.49 5 0.41 3 0 

German 2 -0.26 8 -0.43 5 0.5 3 -0.06 

Hungarian 2-16 0 1-6 -0.58 4 0.39 2 -0.33 

Korean 2-10 -0.07 3 -0.14 2 -0.07 1 -0.11 

Norwegian 2-10 -0.18 3-8 -0.61 5 0.56 3 0.01 

Swedish 2 -0.23 7 -0.45 4 0.49 3 -0.04 

Average   -0.15   -0.47   0.37   -0.1 

Table 6. Optimal guesser settings and their correlations of settings with the guesser score. 
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Finally, Table 6 shows the correlation (Pearson’s r) of guesser settings (or their ranges) and the 

resulting scores. As can be seen, the strongest correlation holds for the minimum length of compound 

(average -0.47) and minimum length of element (0.37). In the former case, the correlation is inverse, 

which means the higher the value, the lower the final score; this is caused by the fact that our test set 

contains only compounds, so returning the whole unsplit string will never be the right result. The 

second correlation reflects the fact that it is safer to exclude very short elements from appearing as 

components, a finding that confirms earlier research.  

5 Error analysis 

A considerable percentage of mismatch errors when guessing the unknown components of 

compounds is caused by the connectors. Our current guesser settings return the whole unknown string, 

without attempting to identify any potential connectors on its edges. This seems like an obvious area 

for improvement, as it would let us return more correct decompositions for cases shown in Table 7 

(unknown strings are enclosed in square brackets and are currently returned whole).  
 

language token dynamic guesser translation 

Norwegian kjærlighetsbrev kjærlighet#brev kjærlighet#[s + brev] love letter 

Danish ungdomshus ungdom#hus ungdom#[s + hus] youth 

German sklavenmoral sklave#moral sklave#[n + moral] slave morality 

Swedish kvinnoförbund kvinna#förbund kvinn#[o + förbund] women's alliance 

Table 7. Examples of connector mismatches between dynamic decompounding and the guesser. 
 

As could be expected, most errors are nevertheless caused by the guesser splitting unknown strings 

into smaller known chunks; several typical examples are shown in Table 8. 

 

language token dynamic guesser translation 

Danish populærkulturen populær#kultur populær#kult#uren popular culture 

Dutch kunstschilders kunst#schilder kunst#schil#ders painters 

Finnish rockmuusikot rock#muusiko rock#muusi#kot rock music 

Swedish radioversion radio#version radio#vers#ion radio  version 

Table 8. Examples of incorrect splitting of unknown strings. 

 

6 Conclusion and future work 

In this paper, we have shown a dictionary-based compound analyzer, augmented with the function to 

handle unknown substrings. A cross-linguistic evaluation against the gold standard containing 

component lemmas shows that the correct handling of unknown compound elements is a difficult issue 

especially if we try to match dictionary lemmas; however, a more detailed evaluation of the string 

segmentation and boundary detection shows fairly good results. Being able to decompose unknown 

compounds and match the components to known lemmas to increase recall is crucial to many NLP 

applications, such as information retrieval or Machine Translation. A correct segmentation is of 

fundamental importance, but the question remains how we can match the unknown, possibly inflected, 

substring to known lemmas. In the future, we plan to address this question by (1) adding the option to 

separate out connectors from unknown strings, and (2) build a lemma “guesser” that would try to 

construct a probable dictionary representation for the unknown string, in effect building a pipeline that 

would more fully mirror the process of regular dynamic decompounding. 
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