A Dictionary Data Processing Environment and Its Aglication in
Algorithmic Processing of Pali Dictionary Data forFuture NLP Tasks

Dipl. Inf. Jurgen Knauth David Alfter
Trier Center for Digital Humanities Trier Center for Digital Humanities
Universitatsring 15 Bollwerkstrasse 10
54296 Trier 54290 Trier
Germany Germany
knauth@uni-trier.de s2daalft@uni-trier.de
Abstract

This paper presents a highly flexible infrastruettor processing digitized dictionaries and
that can be used to build NLP tools in the futlitd@s infrastructure is especially suitable for
low resource languages where some digitized infoomas available but not (yet) suitable
for algorithmic use. It allows researchers to deast some processing in an algorithmic way
using the full power of the C# programming languagducing the effort of manual editing
of the data. To test this in practice, the papsecdbes the processing steps taken by making
use of this infrastructure in order to identify warlasses and cross references in the
dictionary of Pali in the context of the SeNeReKojgct. We also conduct an experiment to
make use of this data and show the importanceeodittionary. This paper presents the
experiences and results of the selected approach.

1 Introduction

Pali (also written i, Pdi or Fali) is a dead language from the group of Middle Wdgan languages
(Burrow, 1955: 2). Despite its status as dead lagguPali is still widely studied because manyhef t
early Buddhist scriptures were written in Pali (@ip 1970: 8). It is also said that Buddha himself
spoke Pali or a closely related dialect (Pali Teatiety; Thera, 1953: 9).

SeNeReKo is a joint research project of the Trient€r for Digital Humanities (TCDH) and the
Center of Religious Studies in Bochum (CERES), Gawn This project aims to process the Pali
Canon — which at the same time is the only texXtsofePali — in order to research religious consact
between the early Buddhists and other religiousipgsand cultures.

To achieve this we aim to develop NLP tools andcess this data as we believe that the concepts
of interest will be found in direct verbal express within this corpus. From the information we aim
to extract we intend to create networks that abbmalysis of these concept.

Until now such an attempt has never been made. Br@ressing Pali using computer algorithms
has not been in the focus of the scientific comyupet. As we researchers in SeNeReKo try to
change this we now focus on a basic building bifmkNLP tools: Building a machine readable
dictionary that allows building sophisticated NL&dls in the long run. To attempt this a digitized
copy of the dictionary of William and Davids (199%s been provided to our team by the University
of Chicago.

2 Related Work

As Pali is a low resource language not much wokkyet been done in this field, especially not with
the dictionary data. The only researchers we knbthat have tried to use this data is a team of the

This work is licensed under a Creative Commons Attidn 4.0 International Licence. Page numbers andgedings foote
are added by the organisers. Licence details/futpativecommons.org/licenses/by/4.0/

65

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 65-73,
Dublin, Ireland, August 23-29 2014.

University of Copenhagen. Their goal was to creat@eew digitized version of this dictionary.
Unfortunately they did not succeed and stopped afwing edited three letters of the Pali alphabet.
To our knowledge we are the first to work with tbeta again.

With good success a language somehow similar tohRal been addressed in the past: Sanskrit
(Hellwig 2009). Nevertheless attempts to adaptehesls to Pali have not been possible due to the
lack of a suitable dictionary.

Regarding NLP tools addressing Pali some experisndiatve already been performed by the
members of the SeNeReKo project team and espebialyavid Alfter. Nevertheless no work could
yet reach a state of publication due to the lack glitable digital dictionary that would serveaas
basis for NLP tasks.

3 Technical infrastructure

As it is the nature of digital humanities projelike SeNeReKo a variety of researchers is involved
into the process of processing and editing datadaveloping methods for the research intended. In
SeNeReKo this involves Pali experts, SociologisBgmputer Linguists and Scientists (and
Egyptologists for performing work with other texbrpora not addressed by this paper.) An
infrastructure that aims at enabling collaborati®rtherefore mandatory. This section describes key
aspects of the infrastructure developed.

3.1 Dictionary Server

Each dictionary entry is to be understood as aeidgcument which is self-contained and structured.
A dictionary is considered to be a collection o€dments.

Being self-contained all information relevant tocleaindividual entry is stored in the same
document. Each of these entries must be structarpebvide information in a clearly defined way for
NLP tools in the future.

To store the dictionary data a MongoDB data bassésl. This NoSQL data base not only supports
such kind of data model it also provides the nemgsBexibility to define and change the internal
structure of such dictionary document in the fuseneeded.

For ease of use a NodeJS-based dictionary servwerbban implemented that provides user
authentication and high level data base operatamdressing searching, inserting, updating and
deleting specific to the requirements of a dictigna

The pairing of NodeJS and MongoDB is reasonablelms of performance reasons: MongoDB
receives and returns data not in XML, but in JS@Mation; and as NodeJS provides its functionality
through a highly efficient JavaScript engine JSGithdcan directly be processed without any need of
conversion.

For collaboration purposes a REST-API has been emehted with compatibility and
interoperability in mind. As we aim for algorithmizocessing of data and want to enable researchers
to easily implement custom NLP tools that make afsthe dictionary data independently from each
other. To support this as best as possible a Jay&# library has been implemented as well as an R
module for convenience.

As it is the nature of dictionary data to consistadarger amount of individual entries, classical
request-response communication models, as theydwoelimposed by HTTP, are unsuitable for
processing (in the sense of algorithm based editihgllowing that approach would result in notable
performance degradation. Fortunately single pracgssteps as we intend them for pattern matching
and enriching of dictionary entries have largelyratation between individual entries. Therefore the
dictionary server provides an interface for bulknoounication: A large amount of individual protocol
function calls can be packed into a single packAgehe server processes them in parallel andntur
the response to all requests again in a singleonsgpwe are capable of overcoming the problem of
summation of network latencies and end up with goedormance in updating data.

3.2 Data Processing Tool

In SeNeReKo we need to process the original - pkedémtext - dictionary entries. This data is inedrt
into the dictionary server beforehand and thernovaranalysing and processing steps need to be. taken
To perform these, we implemented a processing emvient that makes developing of individual

66

processing units very easy, gives high performaruk great transparency about data modifications
intended by these units.

Our data processing tool is a programming envirarinfi@ creating small processing units in C#.
Data management issues do not need to be addrd$ssds done by the programming environment
automatically. The individual units are compiled rtative .Net code for speed of processing. On
execution data from the dictionary server is rg>band passed through these units and — if nggessa
— sent back to the server after modifications hiawen applied. Together with the bulk processing
supported by the dictionary server the compilatibrihe code units speeds up any processing. By
directly making use of C# this approach we achgreat flexibility: It allows making use of all kisd
of existing libraries if desired and enables redeens to implement all kinds of data specific patte
matching and processing for research tasks.

As it is the nature of dictionary data to consistadarge amount of individual entries, applying
pattern matching and transformation tasks requirgreat deal of transparency. Researchers
performing these tasks need to be able to identfich rule is applied to which entry in what form
and see what modification an entry will receive.abhieve this transparency our data processing tool
collects information about all modifications apglieoe each individual data record and presents them
in a large list that can be filtered by some cidterhus our tool aids in debugging by allowingigs
into every details of the tasks a researcher isggtm perform.

4 Processing of Pali Dictionary Data

Prior to any processing we converted the origingitided dictionary entries we received from the
University of Chicago into JSON data structures arsaérted them into our dictionary server. In the
next sections we present our processing stepseapiithe individual dictionary data records within
the infrastructure described above.

4.1 Transliteration of Lemmas

As it turned out the digitized version of the Haictionary we received was not entirely in accoan
with the current transliteration conventions. Tliere to be able to use the Pali dictionary for agske
the lemmas had to be adjusted.

To achieve a valid transformation we first had trify that no accidental errors had been
introduced by the original digitization process doby the Pali Text Society. We therefore
implemented an alphabet model that follows theti@dsliteration schema used to represent glyphs of
the Sinhalese alphabet. For these single lettegsooriwo Latin ligatures (with diacritics) are used
today. Modelling each word with the original alpkalis mandatory to be able to identify possible
errors. We checked all lemmata against our modélveere able to identify 14 of 16280 lemmata
violating our model. The errors could be identifi@dbe printing errors or misinterpretation during
digitalization and were then corrected manuallyobeftontinuing processing.

The next step was to perform substitutions of #ieets)’. To ensure correct processing this was
not done on the Unicode based character representstthe data directly but on the original lester
modelled by our alphabet model. Substitution ifgrared on that basis taking the phonetic context
into account as necessary:

y followed by j, c, hore => i

y followed by k or kh => n

p followed by d, dh orn=>n

n followed by m, p, bhorb=>m

y followed by s => m

n followed by t, th=> n

n followed by | => |

n followed by v, y or r => m

n followed by a, e, i, 0, u, a, 1, a=> m
n not followed by any character => m

67

5 Pattern Recognition and Enriching Dictionary Entries

5.1 Pattern Matcher

In processing Pali we had to take our own patteatching approach in order to avoid problems
encountered with regular expressions in C#. We dailmat some Pali specific diacritics did not get
processed as the official regular expression symgecification suggested. To overcome these
limitations we implemented an own pattern matcher.

Nevertheless we were not interested in dealing sfitace characters as they do not provide any
valuable information to our pattern recognitiorkiasAnd for easy communication with Indologists a
pattern syntax was required that would be easyntierstand. So these requirements specific to our
field of application were taken into account inlding the pattern matcher.

The pattern matching system we designed does woegs character streams but token streams.
The system can distinguish between the followingcepts:

. A whitespace — which is automatically left outidg tokenizing the dictionary articles
. A word — which is an alphanumeric character ideig all diacritics
. A delimiter — which is any kind of character m&ing to a word or whitespace

As we aimed for an iterative process in order entdy relevant pattern it helped greatly to besabl
to express patterns to be matched in the form pfessions that are easy readable by non-computer
experts. Our syntax supports the following forms:

. Match a specific word token

. Match any word token

. Match a specific delimiter token
. Match any delimiter token

Examples of this syntax are given in the next sastiwhich address specific pattern recognition
tasks individually.

5.2 Cross References

As PRali grammar is not standardized to the same extenea., Sanskrit, various alternative word
forms occur. The Pali dictionary at hand addresisissproblem to some extent by containing several
versions of some lemmas. These entries then coptaigly textual information of a reference to the
dictionary entry having more information about thelected lemma. In the Pali dictionary this is
expressed in forms like this:

... in general see buddha ...
Such a form is matched by a pattern like this:
'in' 'general' 'see' < 'b' > W*l </ 'b' >

The pattern specified is easy to understand: Thia sequence of individual patterns matching
specific tokens. Words in inverted commas expressxact match of a single word*!” indicates
that a word of any kind is expected here (and augh be available for further use after a match has
been found). Other characters match specific demokens.

Two real world examples of dictionary entries:

anumatta
see a nu° .

ano
is a frequent form of comp<superscript>n.

68

</superscript>an--ava , see ava .

As there exist various different forms of pattefik® this in the dictionary specifying multiple
possible variants was required. Within an iterapvecess we were able to identify 46 different kind
of patterns which we could make use of for autoeiaentification.

To further help manual processing of the dictionaeyimplemented a verifier that tries to identify
the lemmas each cross reference refers to wittendibtionary. This is done by direct dictionary
lookup. References that do not seem to point talal vemma are listed together with candidates
based on Levenshtein distance for manual procetsigigby Indologists.

5.3 Extracting word class information

As we aim for lemmatizing and part of speech taggdh the Pali Canon, in the long run having
information about the word class of each lemmaasdatory. Therefore we used pattern matching to
aid the generation of data for this purpose.
Our algorithmic approach of classification is ba#licperformed in three steps described next.
Word class information mainly manifests itself kpeessions enclosed in rounded brackets. E.g.:

ap ara
(nt)[a+p ara] 1. the near bank of a river ...

s 1hala
Ceylon; (adj.) Singhalese ...

susira
(adj.--nt.) [Sk. Susira] perforated, full
of holes, hollow ...
p itika
(--°) (adj.) [fr. p 1ti] belonging to joy; ...

Unfortunately round bracket expressions are usedifiarent semantic contexts within dictionary
entries. In a first step we therefore extractedcalitent enclosed in round brackets and identified
expressions that represent word class informafitiough an old printed edition of the dictionary
contained a clear definition of these word claspressions used we encountered some variety of
writing, of combination and of misspelling: Buildjra list of relevant expressions was the only veay t
address all phenomena in sufficient quality.

Secondly we know from Pali grammars that verb letangpically end with “-ti” in the dictionary.
But not all lemmata ending with “-ti” are verbs. &rkfore we implemented the following algorithm
that was able to clearly identify lemmata correebyverbs:

for all lemmas do
if lemma does not end with “-ti" -> reject it

if bracket expression in data matches a pattern cl early
classifiable as non-verb -> reject it
if entry does not contain the (English) word “to” -> reject it

otherwise -> recognize this lemma as being a verb

After having identified verbs successfully we theere able to address dictionary entries of other
word forms purely according to expressions in robratkets. The following list gives an overview of
how many kinds of patterns have been identifiedwaeck involved in this process:

Word Class Number of Patterns
adjective 26 incl. one misspelling
indeclinable 1

adverbs 4 incl. one misspelling

69

pronouns 1

numerals and ordinals 2

nouns 8

6 Word class recognition

In order to evaluate the importance of the dictigneve designed the following task: for each ward i
a manually tagged subset of the Pali Canon, wd tdeecognize the word class using a generation-
based and a heuristic approach. We then compaeaeshlts of both approaches.

For the generation-based approach, we generatpdssible word forms, including morphological
information, for every word in the dictionary usitfte morphological generator. The generator uses
paradigms to generate regularly inflected word farfurthermore, the generator uses the dictionary
to look up morphological information about a wordlaif present, uses this information to restiiet t
generation to grammatically adequate forms. Howesgrce the dictionary entries do not always
present this information, or because it's not alsvagssible to easily extract this information, were
generated in cases where no information can bievett from the dictionary. We also generated rare
forms according to information presented in avddagrammars on Pali. In total, we were able to
generate 11447206 word forms for all words. Thigrages to about 702 word forms per dictionary
entry. In compact notation, this resulted in akib6tGByte of data.

As we generated possible morphological forms fremrhas, we then reversed the data structure to
arrive at a morphological form lookup table. Weeshthese results locally for later efficient lookup

As a test corpus for our word class recognitiork tae used a manually annotated set of 500
sentences (about 4600 words). These sentencedbbameextracted earlier in the SeNeReKo project,
choosing three consecutive sentences at randomtfrenvhole Pali corpus. This preparatory step has
been started about a year ago to assist futureutatigmal linguistic tasks (a further 500 senteraes
work in progress). Thus, the data is representativke whole corpus and is not biased.

We then stepped through our corpus and checkeatdoh word whether one or more of the
generated forms corresponded to the word at hdintlisl was the case, we retrieved the relevant
entries including all attached morphological infatian. From these entries, we then retrieved the
word class information for the word.

For the heuristic approach, we built a morpholdgaralyzer. The analyzer can only rely on its
internal heuristic for guessing the word class ofv@d. The heuristic is ending based and uses
paradigms to determine to which word class a wanadd:belong. The analyzer tries to identify and
separate possible endings occurring in differenagigms. Based on these analyses, the word class is
guessed.

Before we could start the experiment, we had to nthp word classes used by the
generator/analyzer and the word classes used iarthetated corpus onto a common set of classes.
The reference corpus uses a fine-grained tag aes ttandardized for use in more than one conpus i
the SeNeReKo project. The dictionary uses a singgeset, which has been created independently of
the SeNeReKo tag set many decades ago. The tadoHetg different principles and goals. It is
therefore not always straightforward to map onesttgonto the other.

We tried to assign each word of the reference ®gword class and checked the results against
the manual annotations. The results of this alnic output are evaluated in the result sectionweel

7 Discussion

7.1 Performance of the processing environment

As a server we use an older 32 bit Linux machirth an Intel Core Duo at 2.4 GHz and 4 GByte of
memory which runs the dictionary server with itsadaase.

Due to bulk processing of requests we were ablaitay down the average time for a single write
operation to about 0.7ms per dictionary entry failient’s point of view under ideal circumstances.
In a real world application such as our data prsiogstool this enables us to process all 16280
dictionary entries within about 10 seconds if naraes are applied and to about 20 seconds if all

70

entries must be read and written back to serverfdliied this delay very acceptable during our design
and implementation of individual processing unitsthe dictionary data.

The following performance measurement chart foadatite requests gives an insight into how
performance is affected by network latency:

2
18
16
14
12

1 ——awg cl dur per (operation)
08 ——avg swv dur (operation)
06
04
02

0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Durationinms

Chunk size

(If the above chart is displayed in black and whitée top line represents the client duration
measured per operation, the bottom line measueesettver duration per individual insert operation.)

This measurement is taken by inserting all Paliiohary data 10 times with different chunk sizes
and averaging the duration as measured by thestdistare. For convenience the server performs
performance measurements on his own and sendsshiks 9together with the response to the client,
so that such a kind of analysis can be performadyed he difference between both measurements
indicate the overhead introduced (mainly) by neknatencies.

Please note that the chart starts at a chunk §i28.drhis is for a reason: It turned out that lowe
values will introduce significantly more delay.

7.2 Results of pattern matching

Our attempts to process the 16280 dictionary entdsulted in being able to recognize word forms in
10016 of all entries. This is about 61.5% of aitidinary data.

Regarding cross references we were able to exdfacross references to existing lemmas within
the dictionary, 52 references to lemmas not in didionary and 75 references containing only
incomplete information and cannot be resolved aataally.

At first hand these values do not seem to be végyh.hBut as we can only rely on clearly
identifiable patterns within the dictionary entrigese values are even better than we hoped at the
beginning of our work. It has been clear right frima start that a greater amount of dictionaryiestr
would need to be the centre of manual work in tharé by Pali experts: Many entries simply do not
contain any information that can be recognizedhayaigorithmic approaches taken.

As Pali is a largely dead language we have to denghat our data processing described in this
paper is a one-time task. The only relevant dietigrat hand is the one we used, containing exactly
those words we have. We successfully identifieddndasses for lemmas leaving 6264 for manual
processing for our Indological colleagues. If eveare time would be spent in finding even more
patterns within the dictionary entries, we mighpinave our performance by a few percent, but there i
no real reason to do this: We have come to a pdietre finding more patterns will take considerably
more time than identifying word classes and assigttiem manually to the dictionary entries.

7.3 Results of Word Class recognition

We tried to recognize word classes based on thergion-based approach and on the heuristic
approach as described above. We faced the probigmvord forms can be analysed in more than one
way, even by using paradigms, which represent aegoflections. This degree of ambiguity cannot
be resolved currently due to the particularities R#li, such as a high degree of homonymy.
Furthermore, different paradigms yield the samdaser form, even though they belong to totally
different word classes.

Therefore, we evaluated the resulting data in tiffergnt ways. First, we used “is-any” matching.
If a test corpus word has been assigned more thaword class by our algorithms, we consider the

71

word classes to match if the two sets share at @& common element. This way we address the
problem of ambiguities. Second, we used “exact’cmag. In this case, we consider the result to be a
positive match if and only if the proposed wordssl@orresponds exactly to the assigned word class.
By using this approach, we try to determine thergegf unambiguousness with which we can
propose a word class. If a word is assigned a wiask and the program suggests two word classes, of
which one corresponds to the assigned word classownt this as a failure.

Please note that, since it's not always possibldigtinguish clearly between nouns and adjectives
in Pali, we aggregated these word classes int@iass. To this class we also counted words tagged a
ordinal adjectives, since they are inflected liggular adjectives.

The following tables illustrate our results:

“is any” matching
Generation based Heuristic

Noun-adjective- 63.30% 99.96%
ordinalAdjective

Numeral 61.04% 76.62%
Pronoun 82.75% 88.57%
Verb 51.24% 63.37%

As you can gather from the table, the performaridheoword form generation based approach did
not match the performance of our heuristic appraacthe first experiment. Further investigation
showed that this is mainly due to the fact that albtnecessary word forms encountered in the
reference corpus could be generated. There areasaewasons for this: First, the exact ways to
generate word forms are not yet completely covéngditerature and in some areas are still under
research: e.g. at least regarding verb forms, tleestill ongoing research. Second, our generation
process was not able to handle irregular forms hedlause this information is not yet represented in
the dictionary. This data will probably be entetgdPali experts next year. Third, most of the forms
we could not recognize are sandhi and other congpdomms. This is a task the generation process
cannot handle well in general. A heuristic approdobs not encounter these problems.

To better judge our algorithms, we therefore evaldizhe results only for word forms that could be
addressed by these algorithms. The following tadpies an overview about these results:

“is any” matching (processable words)
Generation based Heuristic

Noun-adjective- 97.31% 99.96%
ordinalAdjective

Numeral 81.03% 76.62%
Pronoun 86.61% 88.57%
Verb 76.25% 63.37%

As you can see, on word forms that could be preckdmth approaches work similarly well.

With the current state of the dictionary, thesailtesare as good as can be. Please note that while
the heuristic approach must be considered to la¢ e generation based approach will improve over
time as the dictionary will be improved by the Redperts in the next years.

Our “exact” evaluation operator revealed that wimtns in the reference corpus that uniquely
belong to a single word class can be recognizechrhatter by the generation based approach than by
the heuristic approach. Interestingly, though we still lacking information about irregular verb
forms in the dictionary, we achieved up to 60.37#cjsion on verbs in exact word class recognition,
while the heuristic approach surprisingly did natseed very well.

The approaches we took can surely be improved. Menvehese approaches rely heavily on a
dictionary, which is more detailed and even mommglete. Pali experts will provide this data in the
future but this is an ongoing process which witlsta few years.

72

7.4 Conclusion and Future Work

In this paper we have addressed the task of ektigactoss references and word class information
from dictionary entries in a Pali dictionary. Fborsttask as well as for future computer linguistisks,

we have built an infrastructure suitable for da@nagement and processing. We have experienced
that even if the individual articles are not writi@ a consistent and clear way, some informatth s
can be extracted. We therefore propose that siraparoaches might be taken with dictionaries of
other dead languages as well in the future basedeostechnical infrastructure we created.

We tried to complement our approach with takingEnglish translations, contained in most of the
dictionary entries, into consideration. Unfortuatinis did not work well due to the nature of our
data: Most of the dictionary entries do containiscassion of a lemma in English, but as the
individual dictionary entries don’t follow a clegrtiefined structure and even discuss various iklate
words within these entries it turned out this appfois too incomplete and too error prone to be
usable in practice.

We found the processing environment to be of ghe#t in order to shorten the time consuming
manual processing of data. Three aspects we ligeitd out in this context: The concept of havimg a
integrated development environment that takes miat@agement work off the shoulders of researchers
and allows writing small units of code for procesgsiurned out to aid in this process. Furthermbee t
transparency given by the system about processtailsifor every single word helps greatly to avoid
mistakes and therefore saves time of researchers.

Our experiment concerning word class recognitiamwsd that the dictionary is essential. While the
dictionary data is still relatively incomplete, were able to get good results. Future work needie to
done in this area, especially the correction ofntem and part of speech tags in the future. However,
this is a future task that goes beyond the scopiei®paper.

A custom dictionary editor has been built that aris to the dictionary infrastructure at hand. With
this tool our Indological collegues intend to penficthe unavoidable manual improvement in the next
years. If this process is completed at some pairthé future we intend to address lemmatizing and
part of speech tagging again, something that caryetobeen done to a fully satisfying extent right
now. Nonetheless, as our word class experiment athowe were able to achieve good results despite
the problems encountered. It is to be expectedwiiatthe improvement of the dictionary, the result
will also improve in the future.

Reference

Alfter, David. 2014 Morphological analyzer and generator for Pali.

Critical Fali Dictionary. Web.

Collins, Steven. 2006\ Pali grammar for students. Chiang Mai: Silkworm Books. Print.

Geiger, Wilhelm. 1943A Pali Grammar. Pali Text Society. Print.

Helwig, Oliver. 2009 SanskritTagger, a stochastic lexical and POStagger for Sanskrit.

Stede, William and Davids , Rhys. 19%&li-English Dictionary. 2" ed, Motilal Banarsidass. Print.
Pali Text Society. Web.

Thera, Nirada. 1953.An elementary Pali course. 2" ed. Colombo: Associated Newspapers of Ceylon.
BuddhaNet eBooks. Web. N.d.

73

