
Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 28–36,
Dublin, Ireland, August 23-29 2014.

A Framework for Learning Morphology using Suffix Association
Matrix

Shilpa Desai
Department of Computer
Science and Technology

Goa University, Goa,
India

sndesai@gmail.com

Jyoti Pawar
Department of Computer
Science and Technology

Goa University, Goa,
India

jyotidpawar@gmail.com

Pushpak Bhattacharyya
Department of Computer
Science and Engineering

IIT, Powai,
Mumbai India

pb@cse.iitb.ac.in

|| �ी गणेशाय नम: ||

Abstract

Unsupervised learning of morphology is used for automatic affix identification, morphological segmentation of
words and generating paradigms which give a list of all affixes that can be combined with a list of stems.
Various unsupervised approaches are used to segment words into stem and suffix. Most unsupervised methods
used to learn morphology assume that suffixes occur frequently in a corpus. We have observed that for
morphologically rich Indian Languages like Konkani, 31 percent of suffixes are not frequent. In this paper we
report our framework for Unsupervised Morphology Learner which works for less frequent suffixes. Less
frequent suffixes can be identified using p-similar technique which has been used for suffix identification, but
cannot be used for segmentation of short stem words. Using proposed Suffix Association Matrix, our
Unsupervised Morphology Learner can also do segmentation of short stem words correctly. We tested our
framework to learn derivational morphology for English and two Indian languages, namely Hindi and Konkani.
Compared to other similar techniques used for segmentation, there was an improvement in the precision and
recall.

1 Introduction

Learning morphology by a machine is crucial for tasks like stemming, machine translation etc. Rule
based affix stripping approach, semi-supervised, unsupervised learning of morphology and finite state
approach as some of the well known methods used to learn morphology by a machine. Rule based
affix stripping approaches (Lovins, 1968; Porter, 1980; Paice, 1990; Loftsson, 2008; Maung et. al,
2008) depend heavily on linguistic input and require a lot of human effort, especially for
morphologically rich languages. Pure unsupervised approaches learn morphology from a corpus
(Freitag, 2005; Goldsmith, 2001; Hammarström, 2011). The accuracy of pure unsupervised methods is
relatively low. Semi-supervised approaches use minimal linguistic input and unsupervised methods to
automate morphology learning process (Forsberg, 2007; Lindén, 2008; Chan, 2008; Dreyer, 2011).
Semi-supervised approaches perform better than pure unsupervised approaches. Finite state
approaches (Koskenniemi, 1983; Beesley & Kartunnen, 2003) represent morphology using finite state
machines. Finite state approaches require linguistic input in the form of paradigm identification.
Unsupervised and semi-supervised methods can provide input to build finite state based morphology
systems reducing the time taken to build such systems.

In this paper we report the framework for an Unsupervised Morphology Learner. Most
unsupervised segmentation techniques (Freitag, 2005; Goldsmith, 2001; Hammarström, 2011) which
learn morphology from a corpus assume that suffixes are frequent in a corpus. We observed that for
morphologically rich Indian languages like Hindi and Konkani, the assumption that suffixes are
frequent does not hold true. These languages are morphologically rich and 31 percent of verb suffixes
are not frequent in the corpus. Thus, we choose not to make any such assumption about the frequency
of suffix occurrence in our unsupervised learning of morphology. One promising methodology for
unsupervised segmentation which does not make any suffix frequency assumptions is p-similar

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

28

technique for morpheme segmentation first proposed by Gaussier (1999). Researchers have used this
method for suffix identification and not for segmentation (Gaussier, 1999; Sharma, 2006). We
extended this less studied technique to segment words by introducing the concept of suffix association
matrix, thus giving us an unsupervised method which correctly identifies suffixes irrespective of their
frequency of occurrence in the corpus and also segments short stem words. To the best of our
knowledge, most reported work which uses p-similar technique for suffix identification (Gaussier,
1999; Sharma, 2006) enforce a restriction on stem-length that it should be at least five. This restriction
works well for suffix identification but not for segmentation. For Indian languages like Hindi and
Konkani, we observed that the restriction leads to an inability to segment many words with short stem-
length. Especially many verb stems in Indian languages have stem-length less than five. To overcome
this shortcoming, we have proposed an Unsupervised Morphology Learner (UML) framework.

We implemented UML framework for derivational morphology and tested our method for English
language and two Indian languages namely Konkani and Hindi. The rest of the paper is organized as
follows; section 2 is on related work. Section 3 provides the terminology used in the paper. The
motivation for this work is presented in section 4. Unsupervised Morphology Learner (UML)
framework is presented in section 5. Experimental results are discussed in section 6 and finally we
conclude the paper in section 7.

2 Related Work

Unsupervised learning of morphology is done at different levels, namely, affix list identification,
segmenting word into stem and affix, and generating a list of paradigms i.e. a list of all stems with
information of the suffixes that each stem combines with (Hammarström, 2011). In his survey paper,
Hammarström (2011) summarizes work related to unsupervised morphology. Most recent work in
morphology learning is semi-supervised. Such methods use a small set of example paradigms as input
to train the system and classify unseen words into paradigms or learn new paradigms (Lindén, 2009;
Dreyer, 2011).

A popular pure unsupervised morphology technique was first proposed by Goldsmith (2001) which
does not assume any linguistic input. Goldsmith (2001) introduced a set of heuristics that develops a
probabilistic morphological grammar, and used Minimum Description Length (MDL) as a tool to
evaluate it. The technique used for affix and paradigm identification was based on affix occurrence
frequency. Several different authors have appreciated MDL as the motivation for segmentation. Some
authors (Gelbukh et. al., 2004; Bacchin, 2005) have used random segmentation and picked the best
segmentation to minimize size or find splits where constituent morphemes occur in multiple splits.

Our work is inspired by a less studied p-similar technique proposed by Gaussier (1999). p-similar
techniques have been used for suffix identification rather than segmentation in most related
unsupervised morphology learners (Sharma, 2006). Here the restriction on stem-length first proposed
by Gaussier is upheld. Sharma’s (2006) work deals with neutral suffix only and does not capture non-
neutral suffixes. These studies are limited to suffix identification and do not generate paradigms.

3 Terminology Used

Let L be a language with alphabet set ∑.
W= {w| w ⊂ ∑*} be set of valid words in language L.
Let d: W→W denote a derivation function where d(wx)=wy iff words wx and wy are derivationally
related to each other in L.
Let wxsy denote concatenation of strings wx and sy where wx, sy ∈ ∑*.
Let SN be set of neutral derivational suffixes.
SN = {s|w2=w1s and w2,w1∈W and d(w1)=w2 and s∈ ∑*}
For example, when s=er, w1=farm and w2=farmer
Let SB be set of non-neutral derivational suffixes.
SB = {sx,sy|wsx=wsy and d(wsx)=wsy and w, sx, sy∈ ∑* and w∉W }
For example, when sx=ify, sy=ity and w=quant suffixes ify, ity are non neutral suffixes.

29

4 Motivation

Primarily, frequency based suffix identification techniques (Goldsmith, 2001; Hammarström, 2011)
commonly used in recent times, fail to identify suffixes with low frequency. We explored suffix
identification techniques which could identify suffixes irrespective of frequency of occurrence in the
corpus. We chose one such method p-similar technique. However p-similar technique (Gaussier, 1999)
cannot be used directly for segmentation as it results in a high number of false positives. Hence we
proposed a suffix association matrix to avoid the false positives. According to p-similar technique,
given two words x, y ∈ W, if ∃ b1 such that x=b1s1 and y=b1s2 where b1, s1, s2 ∈ ∑+, then b1 is a stem
and s1, s2 are suffixes, provided they satisfy the following conditions:

a. A suffix is valid only when it occurs with at least two different stems
b. A stem is valid when it occurs with at least two identified suffixes
c. Stem length should be five or more

The third condition on stem length was introduced to improve the precision of the suffix list
generated. However the aim was to only generate a suffix list and not segment word into stem + suffix.
We probed the possibility of applying this effective p-similar technique to segment words. We faced
the following issues when trying to use p-similar technique for segmentation:
• The technique failed for short-stem length words because of the restriction placed on stem-length.

Example words with stem like walk, talk are not segmented.
• When words like addiction, addictive, aggression and aggressive are part of the input, suffixes

identified are “on” and “ve” in place of “ion” and “ive” . This problem is called over-stemming.
• When words like cannon, cannot, America, American, agent, agency are part of the input, “n” and

“t” are identified as suffix. Although “n” and “t” are valid suffix for some words,
cannon=canno+n and cannot=canno+t are wrong segmentation.

We realize that the candidate stem-suffix pair bi+si identified using the p-similar technique falls under
one of the following cases:

Case 1: bi is a valid stem and si is a valid suffix for stem bi. For example, mistake+NULL,
mistake+n are valid. Suffixes NULL and n are valid for stem mistake.
Case 2: bi is an invalid stem and si is a invalid suffix. Example addicti+on and addicti+ve and
aggressi+on and aggressi+ve are invalid; addict+ion and addict+ive and aggress+ion and
aggress+ive are valid.
Case 3: bi is a valid stem and si is a invalid suffix for stem bi. For example year+n is invalid.
Suffix n is invalid for stem year while suffix NULL and ly are valid for stem year.
Case 4: bi is an invalid stem for any suffix and si is valid for some other stem. Example canno+n
and canno+t are invalid pairs; absen-ce and absen-t and valid; mistake+NULL and mistake+n are
valid.

To overcome the problems faced in cases 2, 3 and 4 we have proposed the following framework

5 Unsupervised Morphology Learner Framework

UML can be used to learn derivational morphology or inflectional morphology. When the input given
is a lexicon, the framework will learn derivational morphology. If a corpus is used as input it will learn
both derivational and inflectional morphology and not distinguish between the two. We have tested
our framework with lexicon as input to learn derivational morphology. The framework for the
proposed UML is shown below in Figure 1. UML has five modules. It uses a lexicon resource or a
corpus as input. It generates three final resources and two intermediate resources which are enhanced
into the final resources.
The resource used as input could be:
• Lexicon L: It is list of dictionary words found in the language. This resource is generated from a

WordNet of a language used to learn derivational morphology or
• Corpus C: A collection of un-annotated text used to learn both inflectional and derivational

morphology.

30

The intermediate resource generated:
• Candidate Stem-Suffix List: It is the initial list of stems and suffixes identified for an input

language using the p-similar technique. It consists of two sets namely set of suffix Ssuffix and set of
stem Sstem. Sample entries in these set for English language are Ssuffix = { er, ic, ly, ness, ment, …}
and Sstem= {adorn, attack,….}

• Initial Paradigms: This is a list of all stems with information of which suffixes combine with
which stems in the input lexicon L or Corpus. Sample entry in Initial Paradigms List is ic.y=
academ + allerg + geometr + homeopath + horrif + letharg + majest + prehistor + specif +
strateg where “ic” and “y” are suffixes which combine with the stems like adadem.

The final resources generated:
• Stem-Suffix List: This resource is generated from the Candidate Stem-Suffix List resource by

pruning invalid suffixes. It is a useful resource as it gives the stems of words from a lexicon which
could later be used for identifying stems in a corpus for stemming inflectional words.

• Suffix-Association Matrix: This resource helps us identify for how many instances a suffix s1 has
occurred with a suffix s2 in the Lexicon/Corpus. It is a crucial resource in eliminating the
shortcoming of p-similar technique to morphologically segment words with short stem length as
well as overcome chance association of suffix found.

• Morphology Paradigms: This resource contains paradigms extracted from the words found in the
input lexicon/corpus. It is a refined version of Initial Paradigm resource.

Figure 1: Unsupervised Morphology Learner (UML) Framework

UML comprises of five main modules, a brief description and algorithm for each of the module is
given below:

Module 1 - Suffix Identifier
Description: Identifies the Candidate suffixes using p-similar technique. It generates a temporary
resource namely Candidate Stem-Suffix List. For every word in the corpus, it checks if there is another
word with a common stem, adds common stem to stem list and rest to suffix list, provided that a stem
occurs with more than one suffix and a suffix occurs with more than one stem.

Input: Lexicon /Corpus

Suffix
Identifier

Output: Morphology Paradigms

Morphology Paradigm Generator

Stem-Suffix
Pruner

Suffix Association Matrix
Generator

Candidate Stem-Suffix
List

Stem-Suffix List

Primary Paradigm
Generator

Initial Paradigms

Suffix Association Matrix

31

Input: Lexicon of the language L (or raw un-annotated corpus for inflectional morphology C)
Output: Candidate Stem-Suffix List resource
Algorithm:

For each input word p ∈ L,
find q, r, s ∈ L, such that ∃ b1, b2, b3
where p=b1s1, q=b1s2, r=b2s1, s= b2s3 where b1, b2, b3, s1, s2, s3 ∈ ∑*..
Add b1 to set of stems Sstem,
Add s1 to set of suffixes Ssuffix,

EndFor

Module 2 - Stem-suffix pruner:
Description: This module applies heuristic H1 stated below. H1 is framed to correct the stem-suffix
list to fix the problem of over-stemming.
H1: Given suffix si for stem bi if ∃ a ∈ ∑* such that asi ∈ Ssuffix and bja=bi and bj∈ Sstem where Sstem is
set of stems and Ssuffix is set of suffixes then replace bi by bj and si by asi
Input: Candidate Stem-Suffix List resource
Output: Stem-Suffix List resource
Algorithm:

For each suffix s1 from suffix list,
If ∃ a ∈ ∑* such that as1 ∈ Ssuffix and b2a=b1 and b1, b2∈ Sstem then
replace b1 by b2 and s1 by as1.

EndIf
EndFor

Module 3 - Primary Paradigm Generator:
Description: Using Stem-Suffix List this module generates the Initial Paradigms list. A paradigm
is composed of suffixes that go together for a list of stems in the input lexicon/corpus.
Input: Stem-Suffix List resource
Output: Initial Paradigms resource
Algorithm:

For each input word p ∈ L, if p=b1s1 where b1∈ Sstem and s1∈ Ssuffix.
Set paradigm-string= s1.
For every q ∈ L such that q= b1s2 where b1∈ Sstem and s2 ∈ Ssuffix ,

Set paradigm-string = paradigm-string.s2.
Add paradigm-string to Sparadigm, set of paradigm.

EndFor
EndFor
For each paradigm-string p1 ∈ Sparadigm where p1 =”sx1.sx2 …sxn=b1”
 and sx1,sx2 , …, sxn∈ Ssuffix and b1∈ Sstem

Set collapse-paradigm-string = sx1.sx2 …sxn=b1
If ∃ paradigm-string p2∈ Sparadigm such that p2 =” sx1.sx2 …sxn =b2” and b2∈ Sstem

Set collapse-paradigm-string = collapse-paradigm-string + b2

Add collapse-paradigm-string to Sinitial-paradigm, set of Initial Paradigms
EndIf

EndFor

Module 4- Suffix Association Matrix Generator:
Description: From the Initial Paradigms, this module computes the Suffix Association Matrix
resource. Suffix association matrix is a square matrix where each row and column corresponds to a
suffix in suffix list. An entry in this matrix gives how many times a particular suffix occurs with
another suffix in the Initial Paradigms resource.
Input: Initial Paradigms resource
Output: Suffix Association Matrix resource

32

Algorithm:
Let M be suffix association matrix which is | Ssuffix| * | Ssuffix|. If Ssuffix = {s1, s2, …..sp} M
has dimension p X p.

Initialize M=0;
For each paradigm-string p1 ∈ Sinitial-paradigm where p1 =”sx1.sx2 …sxn=b1+ b2+ b3+…+ bm”

For i= 1 to n
For j= i+1 to n

 M[sxi][sxj]= M[sxi][sxj] + m; where sxi = sq and sxi = sr and 1<= q, r <=p
EndFor

 EndFor
EndFor

Module 5 - Morphology Paradigm Generator:
Description: Using Stem-Suffix List and Suffix Association Matrix this module generates
Morphology Paradigms List resource. It is a pruned version of Initial Paradigms resource which
uses Suffix Association matrix to remove less likely suffix combination in Initial Paradigms
Input: Stem-Suffix List resource
Output: Initial Paradigms resource
Algorithm:

For each input word p ∈ L, if p=b1s1 where b1∈ Sstem and s1∈ Ssuffix.
Set paradigm-string= s1.
For every q ∈ L such that q= b1s2 where b1∈ Sstem and s2 ∈ Ssuffix ,

If M[s1][s2] > threshold value
Set paradigm-string = paradigm-string.s2.
Add paradigm-string to Sparadigm, set of paradigm.

EndIf
EndFor

EndFor
For each paradigm-string p1 ∈ Sparadigm where p1 =”sx1.sx2 …sxn=b1”
 and sx1,sx2 , …, sxn∈ Ssuffix and b1∈ Sstem

Set collapse-paradigm-string = sx1.sx2 …sxn=b1
If ∃ paradigm-string p2∈ Sparadigm such that p2 =” sx1.sx2 …sxn =b2” and b2∈ Sstem

Set collapse-paradigm-string = collapse-paradigm-string + b2

Add collapse-paradigm-string to Sinitial-paradigm, set of Initial_Paradigms
EndIf

EndFor

5.1 Significance of Suffix Association Matrix

Suffix association matrix is a measure of how many times a particular suffix is associated with
another suffix in the input resource. It is an important contribution as it provides us an alternate
way to prune invalid stem-suffix pairs identified, rather than a restriction on the stem-length.
Suffixes which are associated with each other more frequently are more likely to provide a correct
paradigm than those where we find only a few chance instances of suffix associations.
Figure 2 illustrates an instance of suffix association matrix for the English language

 NULL er ing ly
NULL - 46 225 129

er 46 - 22 15
ing 225 22 - 0
ly 129 15 0 -

Figure 2: Instance of Suffix Association Matrix

This matrix helps handle valid stem with invalid suffix case. For instance wrong segmentation of
the word “bother” as “both+er” . From the Suffix Association Matrix we check with which

33

suffixes er is commonly associated. We then make a list of words with stem “both” and other
suffix which commonly associate with suffix “er” like suffix “ing” We search a corpus for
existence of such words like “bothing” . Thus rejecting the segmentation bother=both+er. This
matrix also provides a solution to invalid stem with valid suffix. For instance canno+n and
canno+t are invalid segmentations although the suffix “n” and “t” are valid in some other
context. In such a rare association of a suffix “n” and “t” the corresponding entry in the suffix
association matrix is found to be very low. We ran our algorithm for various values of threshold
and found five as an optimal value. Any suffix association below five were pruned as chance
associations.

5.2 Significance of heuristic H1

This heuristic is used to handle the problem of over-stemming that occurs in p-similar technique. For
example the p-similar technique identifies both “ion” and “on” as suffix. While segmenting a word
like “addiction” we need to decide if “addicti+on” or “addict+ion” is correct. H1 helps us in
correctly segmenting the word as “addict+ion” .

5.3 Limitations of UML

UML is restricted to identify concatenative morphology paradigms only. Presently it identifies
suffixes only and does not support irregular morphology wherein the stem undergoes a change before
suffixation.

6 Experimental Results

The implementation of UML is done in Java. After applying our method, the paradigms obtained were
compared to the paradigms obtained using p-similar method with minimum stem-size five. The
precision was computed as ratio of number of words correctly segmented to total number of words
segmented. Recall is computed as ratio of number of words correctly segmented to number of words
in given input which could be segmented. The results have been tabulated in Table 1 below.

Method Number of

Paradigms
Recall Precision F-Score

Language : English

Data Set: English lexicon with 21813 entries was obtained from the English WordNet1

p-similar with stems size >5 1163 0.85 0.93 0.89

UML for derivational morphology 413 0.92 0.93 0.92

Language : Hindi
Data Set: Hindi lexicon with 23807 entries was extracted from the Hindi WordNet2

p-similar with stems size >5 1127 0.83 0.87 0.85

UML for derivational morphology 332 0.87 0.94 0.90

Language : Konkani
Data Set: Konkani lexicon with 25838 entries was extracted from the Konkani WordNet3
p-similar with stems size >5 1088 0.75 0.77 0.75
UML for derivational morphology 274 0.87 0.87 0.87

Table 1: Results for English, Hindi and Konkani Language

1 http://wordnet.princeton.edu/wordnet/download/
2 http://www.cfilt.iitb.ac.in/wordnet/webhwn/
3 http://konkaniwordnet.unigoa.ac.in

34

6.1 Effect of stem length on recall

We list below in Table 2, a few examples of how recall is reduced as words with short stem length
are not segmented, when the minimum stem size is five.

Language Suffix for which
word not
segmented

Number of
words not
segmented

Few examples of words not segmented

English er 9 eater, farmer, owner...
Hindi ◌ी4

(I;;Hindi suffix)

35 अरबी (arabic; arab; name of a country),

आलसी (aalas; lazy;), आसानी (aasani;

easiness;)
Konkani ◌ी

(I;;Konkani
suffix)

43 आनदं� (anandi; being happy;), आरोपी

(aaropi; accused;)

Table 2: Effect of stem length

We observe that number of words not segmented in English is relatively very less as compared to the
Indian languages Hindi and Konkani. Thus the restriction on stem-length works efficiently for English
as compared to the Indian languages Hindi and Konkani.

6.2 Effect of stem length on precision

When we restrict the stem-length to five we observe that some wrong segmentation of words are
pruned. Listed below in Table 3, are some examples

Language Suffix for
which word not
segmented

Number of
words not
segmented

Few examples of words not segmented
(wrongly)

English er 32 bother, boxer, cater, sober …

Hindi ◌ी (I;;Hindi

suffix)

8 चाँद� (chandi; silver;), चोट� (choti;

peak;)

Konkani ◌ी (I;;Konkani

suffix)

6 आजी (Aaji; grandmother;), काळ�

(kaalli; black;)

Table 3: Effect of stem-length on precision

We observe that for English, many word segmentations with stems-length less than five, identified
by p-similar technique are correctly pruned by applying the restriction. We observe that wrong
segmentations in case of Indian languages Hindi and Konkani are less when compared to English.

7 Conclusion

Unsupervised Morphology Learner framework thus can be effectively used to generate paradigms for
Indian languages which have low frequency suffixes and words with short stem lengths. Suffix
Association Matrix and heuristics H1 is advantageous over p-similar technique with stem length
restriction for languages like Konkani and Hindi which have many short length valid stems. The
derivational suffixes obtained from UML with Lexicon as input can be used to distinguish from
inflectional morphology suffixes when the framework is used with a corpus as input.

4 A word in Indian language is followed by transliteration in Roman Script, translation in English and gloss in brackets

35

Reference

Bacchin, M., Ferro, N., and Melucci, M. (2005). A probabilistic model for stemmer generation. Information
Processing and Management, 41(1):121–137.

Beesley K & Karttunen Lauri. 2003. Finite State Morphology. Stanford, CA: CSLI Publications.

Chan, E. 2008. Structures and Distributions in Morphology Learning. Ph.D thesis, University of Pennsylvania.

Dreyer, M. 2011. A non-parametric model for the discovery of inflectional paradigms from plain text using
graphical models over strings. Ph.D thesis, The Johns Hopkins University, Baltimore, Maryland

Freitag, D. 2005. Morphology induction from term clusters. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), pages 128–135, Ann Arbor, Michigan.
Association for Computational Linguistics.

Gaussier Eric. 1999. Unsupervised learning of derivational morphology from inflectional lexicons. In ACL’99
Workshop Proceedings: Unsupervised Learning in Natural Language Processing : 24–30 ACL

Gelbukh, A. F., Alexandrov, M., and Han, S.-Y. (2004). Detecting inflection patterns in natural language by
minimization of morphological model. In Sanfeliu, A., Trinidad, J. F. M., and Carrasco-Ochoa, J. A., editors,
Proceedings of Progress in Pattern Recognition, Image Analysis and Applications, 9th Iberoamerican Congress
on Pattern Recognition, CIARP ’04, volume 3287 of Lecture Notes in Computer Science, pages 432–438.
Springer-Verlag, Berlin.

Goldsmith J A. 2001. Unsupervised learning of the morphology of a natural language. Computational
Linguistics 27(2): 153–198

Hammarstrom Harald and Lars Borin. 2011. Unsupervised learning of morphology. Computational Linguistics,
(2):309–350.

Koskenniemi, K. 1983. Two-level morphology: a general computational model for word-form recognition and
production. Helsinki, Department of General Linguistics, University of Helsinki.

Koskenniemi, K. 1996. Finite-state morphology and information retrieval. Proceedings of the ECAI-96
Workshop on Extended Finite State Models of Language ECAI, Budapest, Hungary : 42-56

Lindén, K. 2008. A probabilistic model for guessing base forms of new words by analogy. In Proceedings of
CICLing-2008: 9th International Conference on Intelligent Text Processing and Computational Linguistics,
volume 4919 of Lecture Notes in Computer Science, pages 106–116. Springer.

Lindén, K. and Tuovila, J. 2009 Corpus-based Paradigm Selection for Morphological Entries. In Proceedings of
NODALIDA 2009, Odense, Denmark, May 2009

Loftsson, H. 2008. Tagging Icelandic text: A linguistic rule-based approach. Nordic Journal of Linguistics 31(1).
47–72.

Lovins J. B. 1968. Development of a stemming algorithm. Mechanical Translation and Computer Linguistic.,
vol.11, no.1/2: 22-31.

Maung, Zin Maung & Yoshiki Mikami. 2008. A rule-based syllable segmentation of myanmar text. In
Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, 51–58. Hyderabad, India:
Asian Federation of Natural Language Processing.

Paice, C.D. 1990. Another stemmer. SIGIR Forum, 24: 56-61

Porter, M. F. 1980. An algorithm for suffix stripping. Program 14 : 130-7.

Sharma U, (2006). Unsupervised Learning of Morphology of a Highly Inflectional Language, Ph.D. thesis,
Tezpur University, Assam, India

36

