Konkanverter - A Finite State Transducer based Statistical
Machine Transliteration Engine for Konkani Language

Vinodh Rajan
School of Computer Science
University of St Andrews
Scotland, UK
vrs30@st-andrews.ac.uk

Abstract

We have developed a finite state transducer based transliteration engine called Konkan-
verter that performs statistical machine transliteration between three different scripts
used to write the Konkani language. The statistical machine transliteration system con-
sists of cascading finite state transducers combining both rule-based and statistical ap-
proaches. Based on the limited availability of parallel corpora, this cascading approach is
found to perform significantly better than a pure rule-based approach or pure statistical
approach.

1 Introduction

Konkani is an Indian language spoken by approximately 2.5 million people (Gov. of India,
2001), mainly in the Indian state of Goa. It also has a substantial amount of linguistic minority
population living in neighboring states of Karnataka and Kerala. In Goa, Konkani uses the
Devanagari script and the Roman script (locally known as Romi). In Karnataka and Kerala,
the dominant regional scripts, Kannada and Malayalam, are being used to write the language.
Muslim sections of the Konkani population are also known to use a Perso-Arabic based alphabet.
This polygraphic scenario is unique to Konkani in contemporary Indian linguistic milieu.

Among these different orthographies, Devanagari, Kannada and the Roman script are the
mainstream orthographic systems. For all practical purposes, Konkani can therefore be consid-
ered to possess synchronic trigraphia. There are several important features that differentiate
these orthographies. Consonants of Indic scripts carry an inherent schwa, which is unmarked,
while other vowel combinations with a consonant are represented as combining signs. However,
absence of schwa in a consonant is marked by explicit orthographic consonantal clusters or using
a special sign called a Virama. All orthographies other than Devanagari universally show ex-
plicit schwa deletion. Devanagari and Kannada distinguish vowel lengths, but their distribution
and representation are very idiosyncratic to each orthography. In contrast to the Indic scripts,
Romi does not differentiate vowel length at all. Most importantly, the Romi orthography does
not distinguish schwa from vowel o. Both are represented using the same grapheme o. Several
Indic graphemic combinations are also rendered as vowel digraphs or trigraphs in Romi. As a
result, many Indic sequences are merged in Romi orthography. Table 1 lists some sample words
in various orthographies.

Synchronic trigraphia is a major issue of political contention inside the community, each group
favoring the usage of a particular script as the official orthography. Different orthographic
communities exist in isolation with minimal interaction and with its own literary tradition,
as very few people are fluent in multiple orthographies. A statistical machine transliteration
engine with reasonable accuracy would greatly enable cohesion and interaction among the greater
linguistic community. Facilitating the usage of multiple scripts would also encourage more
linguistic diversity among the community.

‘This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and

proceedings footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.

o/

11

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 11-19,
Dublin, Ireland, August 23-29 2014.

Devanagari Kannada Romi

SIATRT devanagart Be®zond devnagari | devnagri
Pl jhatako oyl jhatko zhottko
fCdo divamce &0s3, dimvce dinvche

cdiedq devadayena Bewoddx® devadayen | devadoien
HTIISAT sattevayalya | 38035 . sattevaylya | sat’tevoilea

Table 1: Sample Konkani words in various orthographies

2 Related Work

Machine transliteration frequently occurs within machine translation when either named entities
or out of vocabulary (OOV) words are encountered. Machine transliteration is also useful for
cross-language information retrieval (CLIR). Consequently, a significant amount of work has
been done in this field (Arbabi et al., 1994; Knight and Graehl, 1998). Machine transliteration
can generally be classified as rule-based or statistical depending on the approach.

Rule-based transliteration is typically performed through hand-crafted rules and is usu-
ally graphemic in nature. Within Indic transliteration, there have been several attempts on
rule-based approaches. Malik et al (2008) implemented a Hindi-Urdu transliteration system
with finite-state transducers using a universal intermediate transcription (UIT). It was based
on the graphemic equivalence between Perso-Arabic script and Devanagari script. Similarly,
Kishorjit (2011) developed a rule-based transliteration system also based on direct graphemic
correspondence between Meetei Mayek and Bengali script.

On the other hand, statistical machine transliteration systems typically use procedures familiar
from statistical machine translation, including character alignments and subsequent training on
the aligned data. Jia et al (2009) also developed a noisy channel model for the English-Chinese
language pair using Moses, an SMT tool. Malik et al (2013) evaluated 28 different kinds of statis-
tical models for Hindi-Urdu machine transliteration using GIZA++ and Moses. Similarly, Chin-
nakotla et al (2009) used the same tools for three language pairs - English-Hindi, English-Tamil
and English-Kannada, focusing on fine-tuning the character sequence model (CSM). Singh (2012)
evaluated both rule-based and statistical methods for bidirectional Bengali script and Meetei
Mayek transliteration. A hybrid approach combining FSM based techniques with a statistical
word language model with better performance was proposed by Malik et al (2009).

3 Initial Attempts

Konkani, being a minor language did not have any parallel corpora that could have been har-
nessed for statistical machine transliteration. The World Konkani Center, Mangalore had at-
tempted to manually mine transliteration rules by studying the three orthographies and ana-
lyzing the differences. They also developed schwa deletion and schwa insertion rules for the
orthographies, modeled on Hindi schwa deletion rules. For the initial machine transliteration
system, we refined and improved upon these rules and implemented a rule-based transliteration
system. In the absence of corpora, we iterated the rule-based system in an ardent attempt to
improve accuracy. However, the performance of the transliteration engine was not very satis-
factory and could not be improved beyond a certain limit. The performance of this rule-based
engine is discussed in section 5.

Even though significant effort had to be spent towards the creation of a parallel corpus, it was
finally decided to incorporate statistical models to improve accuracy. A monolingual untagged
text corpus was obtained for Konkani in Devanagari script. In liaison with linguistic experts, we
manually constructed a substantially sized corpus, despite several practical difficulties. Table 2
lists the word count of parallel word lists in each orthographic pair. This corpus will be released
into the public domain, after some revisions and proof-checking. Currently it is available on

12

Orthography Word Count
Devanagari - Kannada | 23 187
Devanagari - Romi 38 550
Kannada - Romi 14 396

Table 2: Word count of parallel corpora

request.

We initially contemplated using an interlingua-like approach by choosing Devanagari as the
intermediate script, thus reducing the need for a dedicated Kannada-Romi transliteration module
and parallel corpus. However, we were skeptical of the error propagation that might occur if the
conversion to the intermediate script itself is not very accurate.

4 Architecture

The implementation of the framework has been done entirely using OpenFst (Allauzen et al.,
2007). Thrax (Tai et al., 2011) was used to define context-dependent rewrite rules and compile
those rules into finite-state transducers compatible with Openfst. Thrax was also used to define
finite state acceptors. We found Thrax to be particularly robust and flexible in generating
various FSTs. Character alignments were performed using Phonetisaurus (Novak et al., 2011).
N-gram models were created with the OpenGrm Ngram library (Roark et al., 2012), which also
generates the models as FSTs.
Below, we describe the detailed architecture for each transliteration pair.

4.1 Devanagari to Kannada

Input text was first converted into an intermediate romanized encoding, where schwa is explicitly
denoted. This also results in converting the script from syllabic to alphabetic form. This
eases defining rules to a considerable extent, since independent vowels and dependent vowel
signs need not be dealt with separately. We have used a customized encoding which only uses
monographs and hence maintains a direct grapheme-to-grapheme correspondence with Indic
scripts. However, to increase readability standardized Indic romanization scheme ISO 15919 has
been used instead for presentation in this paper.

Before proceeding with schwa deletion rules, let us define the necessary sets. Let V stand for
the class of vowels, C for the class of consonants, C,; be a list of consonants that cannot occur
as a second element of a triconsonantal cluster and D for the dependent signs Chandrabindu,
Anusvara and Visarga. The morphemic boundary is denoted by M. The beginning of string and
end of string is denoted by s; and sy respectively. £ denotes a null character with ¥ denoting
the entire alphabet.

Let 8 be an orthographic syllable, while §_, is the set of syllables that do not contain schwa.
Sy is the set of syllables that do not start with C,;, while 8,;_, is the set that excludes the
syllables with schwa. Using regular expressions, these are defined as:

S —CxVD? | S ,—Cx(V—a)D? , 8,5« Cy7CVD? | 8,5 o Cpi?€(V —a)D?

The initial word boundary B; and final word boundary By are: B; « M|s; and By «— M]|s;.

The general schwa deletion rules have been given below as context dependent rewrite rules.
These rules are expressed in the form ¢ — ¥ /A___p. Here, ¢ is replaced by ¢ whenever it is
preceded by A and succeeded by p, A and p being the left and right contexts respectively. The
rules below are listed with a corresponding sample case. These rules were compiled as finite-state
transducers (Narasimhan et al., 2004)

We have produced a list of possible suffixes and prefixes from the collected corpus. Let P,
denote the set of prefixes and 8, the set of prefixes. We then mark the morphemic boundary

13

M as:
B =E—=>M/Pre_ 8y
The schwa deletion rules can be effectively summarized as follows.

Wr=a—E/(Bi§+C+)___ By | asata — asat
Ws=a— E/(B;SC)__ (§_4By) | amvado — amvdo
Wspy =a — E/(BiS(y|v)) _ (8By) | payasa — pays
Wi=a— E/(BiSC)__($,;8By) | adakatt — adkatt
Wiy =a— E/(Bi88y)__ (8,;By) | ulayatam — ulaytam
Wy, =a — E/(BiSS_4C) (8,;B¢) | vicarata — vicarta
Wpo=a— E/(B;SC)__ (8,;88 +By) | vacatakuca — vactakuc
Wp =a— E/(Bi88(y|llv))__ (8,88 +By) | vajayatalo — vajaytalo
Wps =a — E/(BiS—a8)__ (8,;88+ Bf) | juvanapana — juvanpan
Wi =a— E/(8C)___8,; | goyamtalya — goyamtlya
Worm = a — £/(Bi888 + (w|y))___ IVD?) | goyamtale — goyamtle

Let B, denote the removal of morphemic boundaries. The overall schwa deletion can be con-
structed by composing all of the above transducers:

Wy = By 0 W3 0 Wayy 0 Wyy 0 Wy, 0 Wpg 0 Wpp 0 Wpz 0 Wyri 0 Wy 0 Wy 0 B,

Devanagari has two additional vowels ¥ ¢ and 31T &, and two special conjunct characters < ry
and =8 rh. They were directly mapped to the Kannada characters & e, % o0, 03¢ ry and &€ rh
respectively. Let this mapping be R,.

In Kannada, 7 and u are used at word endings, where 7 and @ are found in Devanagari.
Ri=i—1i/(C+__ DBy | satl — sati
Ry=u—u/(C+___ DBy | vastu — vastu

The Devanagari sequence vamk corresponds to muvk in Kannada, let this be R,,,,x The overall
rule-based transduction is:

Rin = Wg o Rye 0 R 0 Ry 0 Ry

The precedence for the rule-based compositions were decided based on emperical observations.

The input word J is composed with the overall rule-based transducer. The second (output)
projection of this transducer is used for later operations.

:Rknp = 7T2(:Rkn o j)

When either 7 or « appears before a final schwa-consonant, with or without a preceding r or
m, it can retain its length or become short. Also, € and 0, which usually transform into short
vowels e and o, are retained in case of loan words. Additional arcs were added to the transducer
Rinp to reflect this. The new transducer Ry, contains multiple paths for a given input.

We then created a lexical acceptor Apg, from the Kannada words in the corpus. For a given
lattice, this removes all non-lexical entries.

Tinl = Rinm © ALkn

14

<s>i<8> S:S : ! : 5 : l:l Ti <\s>:<\s>

Figure 1: Transducer Ry, for the Devanagari input IRUSB sarapali

<\s>:<\s>/0.09499

k:k/0.45317

9
Kik/2.1108 @ <s>:<\5>/0.28196 1832288

k:k/-0.26705

m:m/1.3945

d:d/3.1051 m:m/2.8013

0:6/9.4242

<5>:<5>/2.1133e-05 tt/3.1532

m:m/2.8013
0:0/2.7203
d:d/2.7583

m:m/-0.52867

<\s>:<\5>/0.09499

Figure 2: Weighted Transducer Tg,25, for the Devanagari input Fﬂ@zﬁ todumka. Weights indicate
negative log n-gram probabilities

In case none of the outputs are present in the lexicon, or if multiple paths are lexically valid
(in case of several standard variants), we proceed to choose the best path by utilizing n-gram
probabilities. An n-gram word model Ny,, was generated based on the list of Kannada words in
the corpus.

If Tgpy is null then,

‘Idv2kn = kanm o Nkn
Else,
Tavzkn = Tknt © Ngn

Tavokn is the final transducer that transliterates Devanagari to Kannada. The best path was
chosen from the lattice as the most probable transliteration.

4.2 Kannada to Devanagari

Kannada to Devanagari transliteration is more complex than Devanagari to Kannada. Since
Kannada orthography shows explicit schwa deletion, schwa needs to be inserted in this case.
First, we inverted the schwa deletion transducer Wy, effectively making it perform schwa
insertion. However, reversing the schwa deletion results in multiple alternate paths, all of which
are theoretically viable. In order to prune the lattice, a cluster acceptor Acg, was created. Acgy
rejects all paths that contain non-standard consonantal clusters for the Devanagari orthography.
This list of non-standard clusters was manually created by analyzing the Devanagari corpus.
For example, the word 233),&° ciktun could hypothetically have resulted from schwa deletion of
ﬁw cikatuna or ﬁ?@? ciktina (ignoring additional hypotheses for word-internal u) . However,
the cluster &€ kt is a non-standard ligature and is highly unlikely to appear in Devanagari
orthography. The acceptor would prune any path that would result in the cluster kt. Similarly,
the word =33, vastu could have resulted from IH vasati or I vastu. But ¥ st being a
standard consonantal cluster, both are equally plausible. In this case, a lexicon lookup or n-
gram model is necessary to choose the most probable output.
Similarly, inverting Ry, also results in multiple alternate paths for 7 and 4 among others.
Since Devanagari only uses long € and 0, let R, be the transducer that replaces the short
vowels e and o with the corresponding long vowels.

15

<$>:<8>

<§>:<8>

Figure 4: Transducer Ry, for the Kannada input @&, vastu

The final rule-based transducer Ry, is,
Raw = :R];nl © (W(;l © -ACdv) o Reo

In case of non-standard input such as words which already have a schwa in a position where
none is possible, the composition fails. In this case we have a rule-based Schwa insertion trans-
ducer W;,. that inserts an additional arc that inserts schwa to non-standard consonantal clusters.
In this case,

j{d'u = :R];nl o Wir o :Reo

Similar to Tgyokn, the Kannada to Devanagari transducer Ty,o4, is formed with a Devanagari
lexical acceptor and if needed, a corresponding Devanagari n-gram word model.

Tin2dv = (m2(Rap 07) 0 Argy) o Ngy, or
‘Ilchdv = T2 (Rdv o J) o Ndv

4.3 Kannada to Romi

As in previous transliterations, we romanized the input. Since Romi and Kannada share different
graphemic sets, we proceed with performing a character alignment with a Kannada-Romi par-
allel wordlist. Romanizing the input very marginally improves the character alignment process,
since both input and output are then alphabetic scripts (as compared to syllabic to alphabetic
alignment). We initially experimented with tools such as GIZA++, but found Phonetisaurus
produced better alignments compared to other tools as it uses many-to-many alignments devel-
oped specifically for grapheme to phoneme systems (Jiampojamarn et al., 2007).
A sample alignment sequence from Phonetisaurus is given below:

melillem | mellil'lem — m}m e}e 1}l i}i 1}’ 1}l e}e m}m

gadyemtlyan | gaddientlean — g}g a}a d}d|d y}i efe min t}t 1}l y}e ata n}n
bharatasarkya | bharotasarkea — bh}blh a}a r}r a}o t}t ata s}s ata rjr ktk y}e ata
bhiyeli | bhieli — bh}b|h i|y}i e}e 1} i}i

Where } denotes individual character alignment, | between characters indicates grapheme
chunks, and d}d|d implies that the source grapheme «d» is mapped to the target graphemic
chunk «dd».

16

0:0/3.7373 i:i/8.297

§:i/6.673
i:/6.6737 </s>:</s>/-2.3985

</s>:</s$>/2.7255

Figure 5: 5 best paths of £, for Kannada input @E%"" aiky

This alignment lattice was then used to create a joint sequence n-gram model (Galescu and
Allen, 2002) Ngyprm- This is then composed with the input word J, whose output projection
we use. We also modify the resulting transducer by removing edges with grapheme chunks and
replacing it with succeeding edges with the individual graphemes of the chunk. This is necessary
for later operations.

Some graphemic sequences such as geminate vowel graphemes aa, 7 etc. do not occur in the
orthography. We construct a transducer A,,,, which accepts only paths with standard graphemic
sequences. Thus effectively creating a pruned lattice L,,.

L‘p = W?(j © Nk'm‘m) o Arm

We created a Romi lexical acceptor Ay, which is composed with £,. If all the paths are
non-lexical, we select the cheapest path from L.

Tin2rm = Lp 0 ALrm o1 Tinrorm = shortest(L,)

4.4 Romi to Kannada

We produced a similar set of transducers as in Kannada — Romi. The lattice pruner here rejects
non-standard Indic forms like digraphic vowel sequences. We generated a new joint sequence n-
gram model by swapping the original training data and retraining it. We initially attempted to
invert Ny,,rm, to avoid re-training, but the accuracy was found to be 18% lower than a retrained
model.

Lp = m2(J © Nymkn) © Aind
Tknzrm = LpoArkn or Tipopm = shortest(Ly)

4.5 Devanagari to Romi

We performed an initial schwa deletion on the input using Wy. We found that schwa-deleted
input improves the joint sequence n-gram model. Schwa deletion being a grammatical process,
removing one of the underlying uncertainties effectively improves the performance. As a result
of this, the joint sequence n-gram model performs better with preprocessed input.

Following Schwa deletion, a similar process to that described in section 4.3 is performed, to
generate the transducer T g,9.m -

Lp = 7T'2((\/\703 o j) o Ndvrm) oArm
Tavorm = Lp o Arrm o Tayorm = shortest(Ly)

4.6 Romi to Devanagari

We performed a rule-based schwa insertion on the input here. However, we did not see any
substantial improvement in the performance in terms of accuracy, as compared to the raw input.
However, we retained the preprocessing, to take advantage of even the marginal improvement.
Also, the preprocessing model could be improved in the future. We performed a similar set of

17

Script Pair Rules-bases System | Statistical System | Cascading System
Devanagari - Kannada | 83.9% 84.59% 90.383%
Kannada - Devanagari | 79.49% 90.16% 96.66%
Devanagari - Romi 74.88% 78.02% 95.39%

Romi - Devanagari 54.02% 74.04% 83.41%

Kannada - Romi 81.29% 87.63% 96.12%

Romi - Kannada 68.01% 82.21% 97.87%

Table 3: Accuracy of three different systems

transductions as in section 4.4.

Lp = 772((Wir o j) o Nrmdv) o Aina
Trmadv = LpoArgy or Tpmade = shortest(Lp)

5 Evaluation

For the procedures involving statistical methods, we split the corpus with 90% being used for
training and the remaining 10% for testing. The accuracy results for the orthographies are
reported in table 3. For the rule-based system, the initial system developed was used for the
evaluation. For the pure statistical approach, we used Phonetisaurus’s in-built g2p system. The
cascading system was that discussed in this paper.

As expected, the initial rule-based system has the least accurate performance. Although it is
theoretically possible to mine all rules that can apply to a system, in practice the rule-mining
process is highly inefficient and user-dependent. The statistical system performs better than the
rule-based system. The mediocre performance of the statistical system can be mainly attributed
to the limited corpora that we possess. Konkani being an inflectional language, the effective
number of unique words in the corpus is considerably lower than the absolute word count. The
hybrid system performs best when compared to others.

Of all the transliteration pairs, Romi to Devanagari appears to have the lowest accuracy of
all the three systems. Compared to other transliteration pairs, Romi to Devanagari is the most
complex system as it involves both schwa insertion and disambiguation of confounded graphemic
sequences. The poor performance of the hybrid system can be attributed to the fact that we
had used a rule-based schwa insertion as a part of preprocessing. While this system worked well
for an Indic system such as Kannada, it turned out to be not very efficient for Romi, where
consonantal sequences are rendered as vowel digraphs or trigraphs.

6 Conclusion

We have developed a finite state transducer based transliteration engine called Konkanverter
which performs statistical machine transliteration between three different scripts used to write
the Konkani language. We have explained the detailed architecture of this statistical machine
transliteration system, which consists of cascading finite state transducers combining both rule-
based and statistical approaches. The transliteration engine was evaluated and its performance
was reported. This cascading approach is found to perform significantly better than a pure
rule-based approach or pure statistical approach.

Acknowledgements

This work was supported by the World Institute of Konkani Language (WIKL) part of the
World Konkani Centre, Mangalore, India. The author would also personally like to thank
Mr Gurudath Bantwalkar, Asst Director of WIKL for all his linguistic expertise regarding the
Konkani language.

18

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer library. In Proceedings of the Ninth International
Conference on Implementation and Application of Automata, (CIAA 2007), volume 4783 of Lecture
Notes in Computer Science, pages 11-23. Springer. http://www.openfst.org.

Mansur Arbabi, Scott M Fischthal, Vincent C Cheng, and Elizabeth Bart. 1994. Algorithms for Arabic
name transliteration. IBM Journal of research and Development, 38(2):183-194.

Manoj Kumar Chinnakotla and Om P Damani. 2009. Experiences with English-Hindi, English-Tamil
and English-Kannada transliteration tasks at news 2009. In Proceedings of the 2009 Named Entities
Workshop: Shared Task on Transliteration, pages 44-47. Association for Computational Linguistics.

Lucian Galescu and James F Allen. 2002. Pronunciation of proper names with a joint n-gram model for
bi-directional grapheme-to-phoneme conversion. In INTERSPEECH.

Ministry of Home affairs Gov. of India. 2001. Abstract of speakers’ strength of languages
and mother tongues — 2001. http://www.censusindia.gov.in/Census_Data_2001/Census_Data_
Online/Language/Statementl.aspx. Accessed: 2014-05-30.

Yuxiang Jia, Danqging Zhu, and Shiwen Yu. 2009. A noisy channel model for grapheme-based machine
transliteration. In Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration,
pages 88-91. Association for Computational Linguistics.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme conversion. In HLT-NAACL, volume 7, pages 372-379.

N Kishorjit. 2011. Manipuri transliteration from Bengali script to Meitei Mayek: A rule based approach,
c. singh et al.(eds.): Icisil 2011, ccis vol. 139, part 2.

Kevin Knight and Jonathan Graehl. 1998. Machine transliteration. Computational Linguistics,
24(4):599-612.

M. G. Abbas Malik, Christian Boitet, and Pushpak Bhattacharyya. 2008. Hindi Urdu machine translit-
eration using finite-state transducers. In Proceedings of the 22nd International Conference on Com-
putational Linguistics-Volume 1, pages 537-544. Association for Computational Linguistics.

M. G. Abbas Malik, Laurent Besacier, Christian Boitet, and Pushpak Bhattacharyya. 2009. A hybrid
model for Urdu Hindi transliteration. In Proceedings of the 2009 Named Entities Workshop: Shared
Task on Transliteration, pages 177-185. Association for Computational Linguistics.

M. G. Abbas Malik, Christian Boitet, Laurent Besacier, and Pushpak Bhattcharyya. 2013. Urdu Hindi
machine transliteration using SMT. In the Proceedings of the 4th Workshop on South and Southeast

Asian Natural Language Processing, International Joint Conference on Natural Language Processing,
pages 43—57.

Bhuvana Narasimhan, Richard Sproat, and George Kiraz. 2004. Schwa-deletion in Hindi text-to-speech
synthesis. International Journal of Speech Technology, 7(4):319-333.

Josef Novak, Dong Yang, Nobuaki Minematsu, and Keikichi Hirose. 2011. Initial evaluations of an open
source WFST-based phoneticizer. The University of Tokyo, Tokyo Institute of Technology.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar software libraries. In Proceedings of the ACL 2012 System
Demonstrations, pages 61-66, Jeju Island, Korea, July. Association for Computational Linguistics.

Thoudam Doren Singh. 2012. Bidirectional bengali script and meetei mayek transliteration of web based
manipuri news corpus. In the Proceedings of the 3rd Workshop on South and Southeast Asian Natural
Language Processing (SANLP) of COLING, pages 181-189.

Terry Tai, Wojciech Skut, and Richard Sproat. 2011. Thrax: An open source grammar compiler built
on openfst. ASRU.

19

