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Abstract

The Discriminating between Similar Languages (DSL) shared task at VarDial challenged partici-
pants to build an automatic language identification system to discriminate between 13 languages
in 6 groups of highly-similar languages (or national varieties of the same language). In this
paper, we describe the submissions made by team UniMelb-NLP, which took part in both the
closed and open categories. We present the text representations and modeling techniques used,
including cross-lingual POS tagging as well as fine-grained tags extracted from a deep grammar
of English, and discuss additional data we collected for the open submissions, utilizing custom-
built web corpora based on top-level domains as well as existing corpora.

1 Introduction

Language identification (LangID) is the problem of determining what natural language a document is
written in. Studies in the area often report high accuracy (Cavnar and Trenkle, 1994; Dunning, 1994;
Grefenstette, 1995; Prager, 1999; Teahan, 2000). However, recent work has shown that high accu-
racy is only achieved under ideal conditions (Baldwin and Lui, 2010), and one area that needs further
work is accurate discrimination between closely-related languages (LjubeSié¢ et al., 2007; Tiedemann
and Ljubesi¢, 2012). The problem has been explored for specific groups of confusable languages, such
as Malay/Indonesian (Ranaivo-Malancon, 2006), South-Eastern European languages (Tiedemann and
Ljubesi¢, 2012), as well as varieties of English (Lui and Cook, 2013), Portuguese (Zampieri and Gebre,
2012), and Spanish (Zampieri et al., 2013). The Discriminating Similar Language (DSL) shared task
(Zampieri et al., 2014) was hosted at the VarDial workshop at COLING 2014, and brings together the
work on these various language groups by proposing a task on a single dataset containing text from 13
languages in 6 groups, drawn from a variety of news text datasets (Tan et al., 2014).

In this paper, we describe the entries made by team UniMelb NLP to the DSL shared task. We took
part in both the closed and the open categories, submitting to the main component (Groups A-E) as well
as the separate English component (Group F). For our closed submissions, we focused on comparing a
conventional LangID methodology based on individual words and language-indicative letter sequences
(Section 2.1) to a methodology that uses a de-lexicalized representation of language (Section 2.3). For
Groups A-E we use cross-lingual POS-tagger adaptation (Section 2.3.1) to convert the raw text to a
POS stream using a per-group tagger, and use n-grams of POS tags as our de-lexicalized representation.
For English, we also use a de-lexicalized representation based on lexical types extracted from a deep
grammar (Section 2.3.2), which can be thought of as a very fine-grained tagset. For the open submissions,
we constructed new web-based corpora using a standard methodology, targeting per-language top-level
domains (Section 2.4.2). We also compiled additional training data from existing corpora (Section 2.4.1).
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2 Overview

Our main focus was to explore novel methods and sources of training data for discriminating similar
languages. In this section, we describe techniques and text representations that we tested, as well as the
external data sources that we used to build language identifiers for this task.

2.1 Language-Indicative Byte Sequences

Lui and Baldwin (2011) introduced the £D feature set, a document representation for LangID that is
robust to variation in languages across different sources of text. The LD feature set can be thought of as
language-indicative byte sequences, i.e. sequences of 1 to 4 bytes that have been selected to be strongly
characteristic of a particular language or set of languages regardless of the text source. Lui and Baldwin
(2012) present langid. py,!' an off-the-shelf LangID system that utilizes the LD feature set. In this
work, we re-train langid.py using the training data provided by the shared task organizers, and use
this as a baseline result representative of the state-of-the-art in LangID.

2.2 Hierarchical LangID

In LangID research to date, systems generally do not take into account any form of structure in the
class space. In this shared task, languages are explicitly grouped into 6 disjoint groups. We make use
of this structure by introducing a two-level LangID model. The first level implements a single group-
level classifier, which takes an input sentence and identifies the language group (A-F) that the sentence
is from. The output of this group-level classifier is used to select a corresponding per-group classifier,
that is trained only on data for languages in the group. This per-group classifier is applied to the input
sentence and the output thereof is the final label for the sentence.

2.3 De-Lexicalized Text Representation for DSL

One of the challenges in a machine learning approach to discriminating similar languages is to learn
differences between languages that are truly representative of the distinction between varieties, rather
than differences that are merely representative of peculiarities of the training data (Kilgarriff, 2001). One
possible confounding factor is the topicality of the training data — if the data for each variety is drawn
from different datasets, it is possible that a classifier will simply learn the topical differences between
datasets. Diwersy et al. (2014) carried out a study of colligations in French varieties, where the variation
in the grammatical function of noun lemmas was studied across French-language newspapers from six
countries. In their initial analysis the found that the characteristic features of each country included the
name of the country and other country-specific proper nouns, which resulted in near 100% classification
accuracy but do not provide any insight into national varieties from a linguistic perspective.

One strategy that has been proposed to mitigate the effect of such topical differences is the use of
a de-lexicalized text representation (Lui and Cook, 2013). The de-lexicalization is achieved through
the use of a Part-Of-Speech tagger, which labels each word in a sentence according to its word class
(such as Noun, Verb, Adjective etc). De-lexicalized text representations through POS tagging were first
considered for native language identification (NLI), where they were used as a proxy for syntax in order
to capture certain types of grammatical errors (Wong and Dras, 2009). Syntactic structure is known to
vary across national dialects (Trudgill and Hannah, 2008), so Lui and Cook (2013) investigated POS plus
function word n-grams as a proxy for syntactic structure, and used this representation to build classifiers
to discriminate between Canadian, British and American English. They found that classifiers using such a
representation achieved above-baseline results, indicating some systematic differences between varieties
could be captured through the use of such a de-lexicalized representation. In this work, we explore this
idea further — in particular, we examine (1) the applicability of de-lexicalized text representations to
other languages using automatically-induced crosslingual POS taggers, and (2) the difference in accuracy
for discriminating English varieties between representations based on a coarse-grained universal tagset
(Section 2.3.1) as compared to a very fine-grained tagset used in deep parsing (Section 2.3.2).

"http://github.com/saffsd/langid.py
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Sandy quit on Tuesday Sandy  quit Tuesday

UT NOUN VERB ADP NOUN NOUN VERB NOUN
LTT n_—_pn V_np* p-np_i-tmp n_-_c-dow n_—_pn v_np* n_—_c—dow
British English American English

Table 1: Example of tags assigned with coarse-grained Universal Tagset (UT) and fine-grained lexical
type tagset (LTT).

2.3.1 Crosslingual POS Tagging

A key issue in generating de-lexicalized text representations based on POS tags is the lack of availability
of POS taggers for many languages. While some languages have some tools available for POS tagging
(e.g. Treaties (Schmid, 1994) has parameter files for Spanish and Portuguese), the availability of POS
taggers is far from universal. To address this problem for the purposes of discriminating similar lan-
guages, we draw on previous work in unsupervised cross-lingual POS tagging (Duong et al., 2013) to
build a POS tagger for each group of languages, a method which we will refer to hereafter as “UMPOS”.

UMPOS employs a 12-tag Universal Tagset introduced by Petrov et al. (2012), which consists of the
tags NOUN, VERB, ADJ (adjective), ADV (adverb), PRON (pronoun), DET (determiner or article), ADP
(preposition or postposition), NUM (numeral), CONJ (conjunction), PRT (particle), PUNCT (punctua-
tion), and X (all other categories, e.g., foreign words or abbreviations). These twelve basic tags constitute
a “universal” tagset in that they can be used to describe the morphosyntax of any language at a coarse
level.

UMPOS generates POS taggers for new languages in an unsupervised fashion, by making use of
parallel data and an existing POS tagger. The input for UMPOS is: (1) parallel data between the source
and target languages; and (2) a supervised POS tagger for the source language. The output will be the
tagger for the target language. The parallel data acts as a bridge to transfer POS annotation information
from the source language to the target language.

The steps used in UMPOS are as follow. First, we collect parallel data which has English as the source
language, drawing from Europarl (Koehn, 2005) and EUbookshop (Skadins et al., 2014). UMPOS word-
aligns the parallel data using the Giza++ alignment tool (Och and Ney, 2003). The English side is POS-
tagged using the Stanford POS tagger (Toutanova et al., 2003), and the POS tags are then projected from
English to the target language based solely on one-to-one mappings. Using the sentence alignment score,
UMPOS ranks the “goodness” of projected sentences and builds a seed model for the target language on
a subset of the parallel data. To further improve accuracy, UMPOS builds the final model by applying
self-training with revision to the rest of the data as follows: (1) the parallel corpus data is divided into
different blocks; (2) the first block is tagged using the seed model; (3) the block is revised based on
alignment confidence; (4) a new tagger is trained on the first block and then used to tag the second block.
This process continues until all blocks are tagged. In experiments on a set of 8 languages, Duong et al.
(2013) report accuracy of 83.4%, which is state-of-the-art for unsupervised POS tagging.

2.3.2 English Tagging Using ERG Lexical Types

Focusing specifically on language Group F — British English and American English — we leveraged
linguistic information from the analyses produced by the English Resource Grammar (ERG: Flickinger
(2002)), a broad-coverage, handcrafted grammar of English in the HPSG framework (Pollard and Sag,
1994) and developed within the DELPH-IN? research initiative. In particular, we extracted the lexical
types assigned to tokens by the parser for the best analysis of each input string. In accordance with
the heavily lexicalized nature of HPSG, lexical types are the primary means of distinguishing between
different morphosyntactic contexts in which a given lexical entry can occur. They can be thought of as
fine-grained POS tags, containing subcategorisation information in addition to part of speech informa-
tion, and semantic information in cases that it directly impacts on morphosyntax. The version of the
ERG we used (the “1212” release) has almost 1000 lexical types.

Table 1 illustrates an example of the type of syntactic variation that can be captured with the finer-

http://www.delph—in.net
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Web Corpora Existing Corpora

Group  Language Code TLD # words # datasets  # words
A Bosnian bs .ba 817383 4 715602
A Croatian hr .hr 43307311 5 1536623
A Serbian sr .rs 1374787 4 1204684
B Indonesian id .id 23812382 3 564824
B Malaysian my .my 2596378 3 535221
C Czech cz .cz 17103140 8 2181486
C Slovakian sk .sk 17253001 8 2308083
D Brazilian Portuguese pt-BR .br 27369673 4 860065
D European Portuguese pt-PT .pt 22620401 8 2860321
E Argentine Spanish es—-AR .ar 45913651 2 619500
E Peninsular Spanish es-ES .es 30965338 9 3458462
F British English en-GB .uk 20375047 1 523653
F American English en-US .us 21298230 1 527915

Table 2: Word count of training data used for open submissions.

grained lexical types, that would be missed with the coarse-grained universal tagset. In American En-
glish, both Sandy resigned on Tuesday and Sandy resigned on Tuesday are acceptable whereas British
English does not permit the omission of the preposition before dates. In the coarse-grained tagset, the
American English form results in a sequence VERB : NOUN, which is not particularly interesting as we
expect this to occur in both English varieties, whereas the fine-grained lexical types allow us to capture
the sequence v_np+*_ntr : n_—_c-dow (verb followed by count noun [day of week]), which we expect
to see in American English but not in British English.

Since the ERG models a sharp notion of grammaticality, not all inputs receive an analysis — whether
due to gaps in the coverage of the grammar or genuinely ungrammatical input. The ERG achieved
a coverage of 86% over the training data across both British English and American English. Sentences
which failed to parse were excluded from use as input into the classifier. However the inability to classify
any sentence which we cannot parse is unsatisfactory. We solved this problem by generating lexical type
features for sentences which failed to parse using the ERG-trained iibertagger of Dridan (2013), which
performs both tokenisation and supertagging of lexical types and improves parser efficiency by reducing
ambiguity in the input lattice to the parser.

2.4 External Corpora

The DSL shared task invited two categories of participation: (1) Closed, using only training data provided
by the organizers (Tan et al., 2014); and (2) Open, using any training data available to participants. To
participate in the latter category, we sourced additional training data through: (1) collection of data
relevant to this task from existing text corpora; and (2) automatic construction of web corpora. The
information about the additional training data is shown in Table 2.

24.1 Existing Corpora

We collected training data from a number of existing corpora, as shown in Table 3. Many of the cor-
pora that we used are part of OPUS (Tiedemann, 2012), which is a collection of sentence-aligned text
corpora commonly used for research in machine translation. The exceptions are: (1) debian, which
was constructed using translations of message strings from the Debian operating system,’; (2) BNC —
the British National Corpus (Burnard, 2000); (3) OANC — the open component of the Second Release
of the American National Corpus (Ide and Macleod, 2001), and (4) Reuters Corpus Volume 2 (RCV2);*
a corpus of news stories by local reporters in 13 languages. We sampled approximately 19000 sentences
from each of the BNC and OANC, which we used as training data to generate ERG lextype features (Sec-
tion 2.3.2) for British English (en-GB) and American English (en-US), respectively. From RCV2 we

*http://www.debian.org
*nttp://trec.nist.gov/data/reuters/reuters.html
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Table 3: Training data compiled from existing corpora.

used the Latin American Spanish news stories as a proxy for Argentine Spanish (es-AR). Note that, for
a given text source, we didn’t necessarily use data for all available languages. For example, debian
contains British English and American English translations, which we did not use.

2.4.2 Web Corpus Construction

Each existing corpus we describe in Section 2.4.1 provides incomplete coverage over the set of languages
in the shared task dataset. In order to have a resource that covers all the languages in the shared task
drawn from a single source, we constructed web corpora for each language. Our approach was strongly
inspired by the approach used to create ukWaC (Ferraresi et al., 2008), and the creation of each sub-
language’s corpus involved crawling the top level domains of the primary countries associated with
those sub-languages. Based on the findings of Cook and Hirst (2012), the assumption underlying this
approach is that text found in the top-level domains (TLDs) of those countries will primarily be of
the sub-language dominant in that country. For instance, we assume that Portuguese text found when
crawling the . pt TLD will primarily be European Portuguese, while the Portuguese found in .br will
be primarily Brazilian Portuguese.

The process of creating a corpus for each sub-language involved translating a sample of 200 of the
original ukWaC queries into each language using Panlex (Baldwin et al., 2010).% These queries were then
submitted to the Bing Search API using the BootCaT tools (Baroni and Bernardini, 2004), constraining
results to the relevant TLD. For each query, we took the first 10 URLs yielded by Bing and appended
them to a list of seed URLs for that language. After deduplication, the seed URLs were then fed to a
Heritrix 3.1.1° instance with default settings other than constraining the crawled content to the relevant
TLD.

Corpora were then created from the data gathered by Heritrix. Following the ukWaC approach,
only documents with a MIME type of HTML and size between 5k and 200k bytes were used. Jus-
text (Pomikélek, 2011) was used to extract text from the selected documents. langid.py (Lui and
Baldwin, 2012) was then used to discard documents whose text was not in the relevant language or lan-
guage group. The corpus was then refined through deduplication. First, near-deduplication was done at
the paragraph level using Onion (Pomikélek, 2011) with its default settings. Then, exact-match sentence-
level deduplication, ignoring whitespace and case, was applied.

3 Results and Discussion

Table 4 summarizes the runs submitted by team UniMelb NLP to the VarDial DSL shared task. We
submitted the maximum number of runs allowed, i.e. 3 closed runs and 3 open runs, to both the “general”
Groups A-E subtask as well as the English-specific Group F subtask. We applied different methods to
Group F, as some of the tools (the ERG) and resources (BNC/OANC) were specific to English. For clarity
in discussion, we have labeled each of our runs according to a 3-letter code: the first letter indicates the

5 A sample of the queries was used because of time and resource limitations.
*https://webarchive. jira.com/wiki/display/Heritrix
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.. Macro-avg F-Score
Run  Description g

dev tst
Grp A-E closed
ACl1 langid.py 13-way 0.822 0.817
AC2 langid.py per-group 0.923 0.918
AC3  POS features 0.683 0.671
Grp F closed
FC1 Lextype features 0.559 0.415
FC2 langid.py per-group 0.548 0.403
FC3  POS features 0.545 0.435
Grp A-E open
AO1 Ext Corpora (word-level model) 0.705 0.703
AO2 Web Corpora (word-level model) 0.771 0.767
AO3 5-way voting 0.881 0.878
Grp F open
FO1 Lextype features using BNC/OANC training data  0.491 0.572
FO2 Web Corpora (word-level model) 0.490 0.581
FO3 5-way voting 0.574 0.442

Table 4: Summary of the official runs submitted by UniMelbNLP. “dev” indicates scores from our
internal testing on the development partition of the dataset.

subtask (A for Groups A-E, F for Group F), the second indicates Closed (“C”) or Open (“O”), and the
final digit indicates the run number.

ACI represents a benchmark result based on the LangID system (Lui and Baldwin, 2012). We used
the training tools provided with 1angid. py to generate a new model using the training data provided
by the shared task organizers, noting that as only data from a single source is used, we are not able to
fully exploit the cross-domain feature selection (Lui and Baldwin, 2011) implemented by 1angid. py.
The macro-averaged F-score across groups is substantially lower than that on standard LangID datasets
(Lui and Baldwin, 2012).

AC2 and FC2 are a straightforward implementation of hierarchical LangID (Section 2.2), using
mostly-default settings of 1angid.py. A 6-way group-level classifier is trained, and well as 6 different
per-group classifiers. We increase the number of features selected per class (i.e. group or language) to
500 from the default of 300, to compensate for the smaller number of classes (lLangid.py off-the-
shelf supports 97 languages). In our internal testing on the provided development data, the group-level
classifier achieved 100% accuracy in classifying sentences at the group level, essentially reducing the
problem to within-group disambiguation. Despite being one of the simplest approaches, overall this
was our best-performing submission for Groups A-E. It also represents a substantial improvement on
AC1, further emphasizing the need to implement hierarchical LangID in order to attain high accuracy in
discriminating similar languages.

AC3 and FC3 are based solely on POS-tag sequences generated by UMPOS, and implement a hierar-
chical LangID approach similar to AC2/FC2. Each sentence in the training data is mapped to a POS-tag
sequence in the 12-tag universal tagset, using the per-group POS tagger for the language group. Each tag
was represented using a single character, allowing us to make use of 1langid.py to train 6 per-group
classifiers based on n-grams of POS-tags. We used n-grams of order 1-6, and selected 5000 top-ranked
sequences per-language. To classify test data, the same group-level classifier used in AC2 was used to
map sentences to language groups, and then the per-group POS tagger was applied to derive the corre-
sponding stream of POS tags for each sentence. The corresponding per-group classifier trained on POS
tag sequences was then applied to produce the final label for the sentence. For Groups A-E, we find that
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bs hr sr id my cz sk

T 53.0 232 60.0 VHN 0.9 1.3 1.1 1.0 1.2

vV 324 132 433 DHN 0.1 0.1 1.1. 2.0 2.2

NT 315 139 432 N.1. 121 3.1 1.1 4.0 4.4

TVN 24.8 9.8 343 N.N 63.3 48.0 .N.1 0.5 0.7

VT 19.4 6.1 27.1 .DNV 1.8 1.1 .C 39.0 335

TN 29.1 109 29.6 DH 1.7 2.1 1 0.7 1.0

NTV 18.6 84 294 N.DN 32 2.0 .P 512 41.8

TVNN  16.8 6.9 23.7 VH 11.3 149 1. 140 139

NVT 11.2 29 155 PNV1 0.5 0.4 1.. 1.2 1.6

VIV 11.0 32 170 1. 13.2 3.8 .R 44.0 30.0
pt-BR pt-PT es—AR es-ES en-GB en-US
X 34 2.8 .. 22.6 433 NNN 48.2 43.2
N.NN 22.2 15.3 N.. 16.4 31.7 HV 41.5 46.4
.NN 29.9 22.9 .P 52.2 68.3 NN 86.3 83.0
XN 0.4 0.4 P. 6.6 16.8 H 61.8 65.9
NNNN 6.2 32 D. 44 12.6 R 61.5 65.5
D 99.2 99.5 .8 0.0 0.0 RR 7.2 9.4
NNN 28.3 18.6 J.. 5.0 12.6 NNNN 21.7 18.5
. NNN 6.7 4.0 .. VV 0.9 5.2 .C 15.8 18.8
N.D 58.6 47.8 DN. . 4.2 11.0 ... 0.8 0.3
NX 0.8 0.5 .PD 24.5 36.3 N.C 11.3 13.6

Table 5: Top 10 POS features per-group by Information Gain, along with percentage of sentences in each
language in which the feature appears. The notation used is as follows: . = punctuation, J = adjective,
P = pronoun, R = adverb, C = conjunction, D = determiner/article, N = noun, 1 = numeral, H = pronoun,
T = particle, V = verb, and X = others

the POS-tag sequence features are not as effective as the character n-grams used in AC2. Nonetheless,
the results attained are above baseline, indicating that there are systematic differences between languages
in each group that can be captured by an unsupervised approach to POS-tagging using a coarse-grained
tagset. This extends the similar observation made by Lui and Cook (2013) on varieties of English, show-
ing that the same is true for the other language groups in this shared task. Also of interest is the higher
accuracy attained by the POS-tag features on Groups A-E (i.e. AC3) than on English (Group F, FC3).
The top-10 sequences per-group are presented in Table 5, where it can be seen that the sequences are
often slightly more common in one language in the group than the other language(s). One limitation of
the Information Gain based feature selection used in 1angid.py is that each feature is scored inde-
pendently, and each language receives a binarized score. This can be seen in the features selected for
Group A, where all the top-10 features selected involve particles (labelled T). Overall, this indicates that
Croatian (hr) appears to use particles much less frequently than Serbian (sr) or Bosnian (bs), which is
an intriguing finding. However, most of the top-10 features are redundant in that they all convey very
similar information.

Similar to FC3, a hierarchical LangID approach is used in FC1, in conjunction with per-group classi-
fiers based on a sequence of tags derived from the original sentence. The difference between the taggers
used for FC3 and FC1 is that the FC3 tagger utilizes the 12-tag universal tagset, whereas the FC1 tagger
uses the English-specific lexical types from the ERG (Section 2.3.2), a set of approximately 1000 tags.
There is hence a trade-off to be made between the degree of distinction between tags, and the relative
sparsity of the data — having a larger tagset means that any given sequence of tags is proportionally less
likely to occur. On the basis of the results of FC1 and FC3 on the dev data, the lexical type features
marginally outperform the coarse-grained universal tagset. However, this result is made harder to inter-
pret by the mismatch between the dev and t st partitions of the shared task dataset. We will discuss
this issue in more detail below, in the context of examining the results on Group F for the open category.

In the open category, we focused primarily on the effect of using different sources of training data.
AO1 and AO2 both implement a hierarchical LangID approach, again using the group-level classifier
from AC2. For the per-group classifiers, runs AO1 and AO2 use a naive Bayes model on a word-level
representation, with feature selection by Information Gain. The difference between the two is that AO1
uses samples from existing text corpora (Section 2.4.1), whereas A02 uses web corpora that we prepared
specifically for this shared task (Section 2.4.2). In terms of accuracy, both types of corpora perform
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substantially better than baseline, indicating that at the word level, there are differences between the
language varieties that are consistent across the different corpus types. This result is complementary to
Cook and Hirst (2012), who found that web corpora from specific top-level domains were representative
of national varieties of English. AO2 (web corpora) outperforms AO1 (existing corpora), further high-
lighting the relevance of web corpora as a source of training data for discriminating similar languages.
However, our models trained on external data were not able to outperform the models trained on the
official training data for Groups A—E. A03 consists of a 5-way majority vote between results AC1, AC2,
AC3, AO1 and AO2. Including the predictions from the closed submissions substantially improves the
result with respect to AO1/AO2, but overall our best result for Groups A—E was obtained by run AC2.

For Group F, FO1 utilizes ERG lexical type features in the same manner as FC1, the difference being
that FC1 uses the shared task t rn partition, whereas FO1 uses sentences sampled from existing corpora,
specifically BNC for en-GB and OANC for en-US. FO2 implements the same concept as AO2, namely a
word-level naive Bayes model trained using web corpora. For the Group F (i.e. English) subtask, this was
our best-performing submission overall. FO3 is a 5-way vote between FC1, FC2, FC3, FO1 and FO2,
similar to AO3. Notably, our Group F submissions based on the supplied training data all performed
substantially better on the dev partition of the shared task dataset than on the t st partition. The inverse
is true for our submissions based on external corpora, where all our entries performed substantially better
on the t st partition than on the dev partition. Furthermore, the differences are fairly large, particularly
since Group F is a binary classification task with a 50% baseline. This implies that, at least under our
models, the en-GB portion of the t rn partition is a better model of the en-US portion of the t st partition
than the en-GB portion thereof. This is likely due to the manual intervention that was only carried out
on the test portion of the dataset (Zampieri et al., 2014).

Our Group F results appear to be inferior to previous work on discriminating English varieties (Lui
and Cook, 2013). However, there are a number of differences that make it difficult to compare the
results: Lui and Cook (2013) studied differences between Australian, British and Canadian English,
whereas the shared task focused on differences between British and American English. Lui and Cook
(2013) also draw on training data from a variety of domains (national corpora, web corpora and Twitter
messages), whereas the shared task used a dataset collected from newspaper texts (Tan et al., 2014).
Consistent with Cook and Hirst (2012) and Lui and Cook (2013), we found that web corpora appear to be
representative of national varieties, and consistent with Lui and Cook (2013) we found that de-lexicalized
representations of text are able to provide better than baseline discrimination between national varieties.
Overall, these results highlight the need for further research into discriminating between varieties of
English.

4 Conclusion

Discriminating between similar languages is an interesting sub-problem in language identification, and
the DSL shared task at VarDial has given us an opportunity to examine possible solutions in greater
detail. Our most successful methods implement straightforward hierarchical LangID, firstly identifying
the language group that a sentence belongs to, before identifying the specific language. We examined a
number of text representations for the per-group language identifiers, including a standard representation
for language identification based on language-indicative byte sequences, as well as with de-lexicalized
text representations. We found that the performance of de-lexicalized representations was above baseline,
however we were not able to fully investigate approaches to integrating predictions from lexicalized
and de-lexicalized text representations due to time constraints. We also found that when using external
corpora, web corpora constructed by scraping per-country top-level domains performed as well as (if
not better than) data collected from existing text corpora, supporting the hypothesis that web corpora
are representative of national varieties of respective languages. Overall, our best result was obtained by
applying two-level hierarchical LangID, firstly identifying the language group that a sentence belongs
to, and then disambiguating within each group. Our best result was achieved by applying an existing
LangID method (Lui and Baldwin, 2012) to both the group-level and the per-group classification tasks.
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