
Proceedings of the Workshop on Open Infrastructures and Analysis Frameworks for HLT, pages 44–52,
Dublin, Ireland, August 23rd 2014.

Significance of Bridging Real-world Documents and NLP Technologies

Tadayoshi Hara Goran Topić Yusuke Miyao Akiko Aizawa
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
{harasan, goran topic, yusuke, aizawa }@nii.ac.jp

Abstract

Most conventional natural language processing (NLP) tools assume plain text as their input,
whereas real-world documents display text more expressively, using a variety of layouts, sentence
structures, and inline objects, among others. When NLP tools are applied to such text, users
must first convert the text into the input/output formats of the tools. Moreover, this awkwardly
obtained input typically does not allow the expected maximum performance of the NLP tools to
be achieved. This work attempts to raise awareness of this issue using XML documents, where
textual composition beyond plain text is given by tags. We propose a general framework for
data conversion between XML-tagged text and plain text used as input/output for NLP tools and
show that text sequences obtained by our framework can be much more thoroughly and efficiently
processed by parsers than naively tag-removed text. These results highlight the significance of
bridging real-world documents and NLP technologies.

1 Introduction

Recent advances in natural language processing (NLP) technologies have allowed us to dream about
applying these technologies to large-scale text, and then extracting a wealth of information from the text
or enriching the text itself with various additional information. When actually considering the realization
of this dream, however, we are faced with an inevitable problem. Conventional NLP tools usually assume
an ideal situation where each input text consists of a plain word sequence, whereas real-world documents
display text more expressively using a variety of layouts, sentence structures, and inline objects, among
others. This means that obtaining valid input for a target NLP tool is left completely to the users, who
have to program pre- and postprocessors for each application to convert their target text into the required
format and integrate the output results into their original text. This additional effort reduces the viability
of technologies, while the awkwardly obtained input does not allow the expected maximum benefit of
the NLP technologies to be realized.

In this research, we raise awareness of this issue by developing a framework that simplifies this con-
version and integration process. We assume that any textual composition beyond plain text is captured by
tags in XML documents, and focus on the data conversion between XML-tagged text and the input/output
formats of NLP tools. According to our observations, the data conversion process is determined by the
textual functions of the XML-tags utilized in the target text, of which there seem to be only four types.
We therefore devise a conversion strategy for each of the four types. After all tags in the XML tagset of
the target text have been classified by the user into the four types, data conversion and integration can be
executed automatically using our strategies, regardless of the size of the text (see Figure 1).

In the experiments, we apply our framework to several types of XML documents, and the results show
that our framework can extract plain text sequences from the target XML documents by classifying only
20% or fewer of the total number of tag types. Furthermore, with the obtained sequences, two typical
parsers succeed in processing entire documents with a much greater coverage rate and using much less
parsing time than with naively tag-removed text.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details:http://creativecommons.org/licenses/by/4.0/44

Formatted Input
(e.g. plain text)

Output analysis
(e.g. parse trees)

<p> A user task is a scenario of use of the UI, … the UML
notation. In our case, we use the CTT (Concur Task Tree)
<cite>[<bibref bibrefs="paterno-ctte-2001,paterno-ctt-2001"
separator="," show="Number" yyseparator=","/>]</cite></p>

A user task is a scenario of use
of the UI, … the UML notation.
In our case, we use the CTT
(Concur Task Tree) [1]

<sentence id=“s0”><cons>…</cons></sentence>
<sentence id=“s1”>…<cons><tok>[</tok>
</cons><cons><cons><tok>1</tok></cons> …
<cons><tok>]</tok></cons>…</sentence>

Independent

Decoration

Object

Meta-info

Tag1

Tag2

… (Classify
into 4 types)

Text
structured

by
XML

Text
structured

by
XML

Text
structured
by XML

Tagset

Data
conversion

NLP
tools

(Parser)

Figure 1: Proposed data conversion framework for applying NLP tools to text structured as XML

Tag type Criteria for classification Strategies for data conversion
Independent To represent a region syntactically Remove the tag and tagged region

independent from the surrounding text→ (apply tools to the tagged region independently)
→ recover the (analyzed) tagged region after applying the tools

Decoration To set the display style of Remove only the tag
the tagged region at the same level as→ recover the tag after applying the tools
the surrounding text

Object To represent the minimal object Replace the tag (and the tagged region) with a plain word
unit that should be handled in the → (do not process the tagged region further)
the same level as the surrounding text→ recover the tag (and region) after applying the tools

Meta-info To describe the display style Remove the tag and tagged region
setting or additional information → (do not process the tagged region further)

→ recover the tag and region after applying the tools

Table 1: Four types of tags and the data conversion strategy for each type

The contribution of this work is to demonstrate the significance of bridging real-world documents and
NLP technologies in practice. We show that, if supported by a proper framework, conventional NLP tools
already have the ability to process real-world text without significant loss of performance. We expect the
demonstration to promote further discussion on real-world document processing.

In Section 2, some related research attempts are introduced. In Section 3, the four types of textual
functions for XML tags and our data conversion strategies for each of these are described and imple-
mented. In Section 4, the efficiency of our framework and the adequacy of the obtained text sequences
for use in NLP tools are examined using several types of documents.

2 Related Work

To the best of our knowledge, no significant work on a unified methodology for data conversion between
target text and the input/output formats of NLP tools has been published. Some NLP tools provide
scripts for extracting valid input text for the tools from real-world documents; however, even these scripts
assume specific formats for the documents. For example, deep syntactic parsers such as the C&C Parser
(Clark and Curran, 2007) and Enju (Ninomiya et al., 2007) assume POS-tagged sentences as input, and
therefore the distributed packages for the parsers1 contain POS-taggers together with the parsers. The
POS-taggers assume plain text sentences as their input.

As the work most relevant to our study, UIMA (Ferruci et al., 2006) deals with various annotations
in an integrated framework. However, in this work, the authors merely proposed the framework and did

1[C&C Parser]: http://svn.ask.it.usyd.edu.au/trac/candc/wiki / [Enju]: http://kmcs.nii.ac.jp/enju/45

New UI is shown. The UI is more useful than XYZ , and

text indexmark

Cite1

Notice that … . notecite

<text>New UI</text> is shown. The UI is more useful than XYZ <indexmark>
… </indexmark> in <cite>[…]</cite><note>Notice that … .</note>, and … .

sentence sentence

New UI is shown. The UI is more useful than XYZ , andCite1 sentence

<sentence><text>New UI</text> is shown.</sentence> <sentence>The UI is more useful than XYZ<indexmark>
… </indexmark> in <cite>[…]</cite><note><sentence>Notice that … . </sentence></note>, and … .</sentence>

(a)

(c)

(d)

(b)

text indexmark notecite Notice that … .

Meta-infoDecoration

IndependentObject

Figure 2: Example of executing our strategy

not explain how the given text can be used in a target annotation process such as parsing. Some projects
based on the UIMA framework, such as RASP4UIMA (Andersen et al., 2008), U-compare (Kano et
al., 2011), and Kachako (Kano, 2012)2, have developed systems where the connections between various
documents and various tools are already established. Users, however, can utilize only the text and tool
pairs that have already been integrated into the systems. GATE (Cunningham et al., 2013) is based on
a similar concept to UIMA; it supports XML documents as its input, while the framework also requires
integration of tools into the systems.

In our framework, although availability of XML documents is assumed, a user can apply NLP tools to
the documents without modifying the tools; instead, this is achieved by merely classifying the XML-tags
in the documents into a small number of functional types.

3 Data Conversion Framework

We designed a framework for data conversion between tagged text and the input/output formats of NLP
tools based on the four types of textual functions of tags. First, we introduce the four tag types and
the data conversion strategy for each. Then, we introduce the procedure for managing the entire data
conversion process using the strategies.

3.1 Strategies for the Four Tag Types

The functions of the tags are classified into only four types, namely,Independent, Decoration, Object,
andMeta-info, and for each of these types, a strategy for data conversion is described, as given in Table
1. This section explains the types and their strategies using a simple example where we attempt to apply
a sentence splitter to the text given in Figure 2(a). The target text has four tags, “<note>”, “ <text>”,
“<cite>”, and “<indexmark>”, denoting, respectively,Independent, Decoration, Object, andMeta-
info tags. We now describe each of the types.

Regions enclosed byIndependent tags contain syntactically independent text, such astitles, sections,
and so on. In some cases, a region of this type is inserted into the middle of another sentence, like
the “<note>” tags in the example, which represent footnote text. The data conversion strategy for text
containing these tags is to split the enclosed region into multiple subregions and apply the NLP tools
separately to each subregion.

2[U-compare]: http://u-compare.org/ / [Kachako]: http://kachako.org/kano/46

<?xml …>
<document …>

<title>Formal approaches … </title>
<creator> … </creator>
<abstract>This research … </abstract>
<section><title>Introduction</title>

<para><p><text>New UI</text> is shown. The
UI is more useful than XYZ<indexmark> …
</indexmark> in <cite>[…]</cite><note>Notice
that … </note> and … .</p></para>

</section>
<bibliography> … </bibliography>

</document>

(a) XML document

?xml document

creator section bibliographytitle abstract
This research … Formal …

paratitle

Introduction

p

text

New UI

indexmark

…

cite

[…]

note

Notice … .

and … .inis … XYZ

(b) Structure of XML document

Figure 3: Example XML document

Decoration tags, on the other hand, do not necessarily guarantee the independence of the enclosed
text regions, and are utilized mainly for embossing the regions visually, such aschanging the font or
color of the text(“<text>” in the example),paragraphing sections3, and so on. The data conversion
strategy for text containing these tags is to remove the tags before inputting the text into the NLP tools,
and then to recover the tags afterwards4.

Regions enclosed byObject tags contain special descriptions for representing objects treated as single
syntactic components in the surrounding text. The regions do not consist of natural language text, and
therefore cannot be analyzed by NLP tools5. The data conversion strategy for text containing this tag is
to replace the enclosed region with some proper character sequence before inputting the text into NLP
tools, and then to recover the replaced region afterwards.

Regions enclosed byMeta-info tags are not targets of NLP tools, mainly because the regions are not
displayed, but utilized for other purposes, such as creating index pages (like this “<indexmark>”)6. The
data conversion strategy for text containing these tags is to delete the tagged region before inputting the
text into NLP tools, and then to recover the region afterwards.

According to the above strategies, which are summarized in Table 1, conversion of the example text
in Figure 2(a) is carried out as follows. In the first step, tags are removed from the text, whilst retaining
their offsets in the resulting tag-less sequence shown in (b). “Cite1” in the sequence is a plain word
utilized to replace the “<cite>” tag region. For the “<note>” tag, we recursively apply our strategies
to its inner region, with two plain text regions “New UI ...” and “Notice that ...” consequently input into
the sentence splitter. Thereafter, sentence boundary information is returned as shown in (c), and finally,
using the retained offset information of the tags, the obtained analysis and original tag information are
integrated to produce the XML-tagged sequence shown in (d).

3.2 Procedure for Efficient Tag Classification and Data Conversion

In actual XML documents as shown in Figure 3(a), a number of tags are introduced and tagged regions
are multi-layered as illustrated in Figure 3(b) (where black and white boxes represent, respectively, XML
tags and plain text regions, and regions enclosed by tags are placed below the tags in the order they
appear.). We implemented a complete data conversion procedure for efficiently classifying tags in text
documents into the four types and simultaneously obtaining plain text sequences from such documents,

3In some types of scientific articles, one sentence can be split into twoparagraphregions. It depends on the target text
whether aparagraphtag is classified asIndependent or Decoration.

4The tags may imply that the enclosed regions constitute chunks of text, which may be suitable for use in NLP tools.
5In some cases, natural language text is used for parts of the descriptions, for example,itemizationor tablesin scientific

articles. How the inner textual parts are generally associated with the surrounding text would be discussed in our future work.
For the treatment of list structures, we can learn more from Aı̈t-Mokhtar et al. (2003).

6If the tagged region contains analyzable text, it depends on the user policy whether NLP tools should be applied to the
region, that is, whether to classify the tag asIndependent.47

@plain_text_sequences = (); # plain text sequences input to NLP tools

@recovery_info = (); # information for recovering original document after applying NLP tools

@unknown = (); # unknown tags

function data_convert ($target_sequence, $seq_ID) {

if ($target_sequence contains any tags) { # process one instance of tag usage in a target sequence

$usage = (pick one instance of top-level tag usage in $target_sequence);

$tag = (name of the top-level tag in $usage);

@attributes = (attributes and their values for the top-level tag in $usage);

$region = (region in $target_sequence enclosed by tag $tag in $usage);

$tag_and_region = (region in $target_sequence consisting of $region & tag $tag enclosing it);

if ($tag ∈ @independent) { remove $tag_and_region from $target_sequence;

add [“independent”, $tag, @attributes, $seq_ID, $seq_ID + 1,

(offset in $target_sequence where $tag_and_region should be inserted)] to @recovery_info;

data_convert($region, $seq_ID + 1); } # process the tagged region separately

else if ($tag ∈ @decoration) { remove only tag $tag enclosing $region from $target_sequence;

add [“decoration”, $tag, @attributes,

(offsets in $target_sequence where $region begans and ends)] to @recovery_info; }

else if ($tag ∈ @object) { replace $tag_and_region in $target_sequence with a unique plain word $uniq;

add [“object”, $uniq, $tag_and_region] to @recovery_info; }

else if ($tag ∈ @meta_info) { remove $tag_and_region from $target_sequence;

add [“meta_info”, $tag_and_region,

(offset in $target_sequence where $tag_and_region should be inserted)] to @recovery_info; }

else { replace $tag_and_region in $target_sequence with a unique plain word $uniq;

add [“unknown”, $uniq, $tag_and_region] to @recovery_info;

if ($tag ∉ @unknown) { add $tag to @unknown; } }

data_convert($target_sequence, $seq_ID); # process the remaining tags

}

else { # a plain text sequence is obtained

add [$seq_id, $target_sequence] to @plain_text_sequences;

}

}

function main ($XML_document) {

data_convert ($XML_document, 0);

return @plain_text_sequences, @recovery_info, @unknown;

}

Figure 4: Pseudo-code algorithm for data conversion from XML text to plain text for use in NLP tools

as given by the pseudo-code algorithm in Figure 4. In the remainder of this section, we explain how the
algorithm works.

Our data conversion procedure applies the strategies for the four types of tags recursively from the
top-level tags to the lower tags. The@independent, @decoration, @object and@meta info lists
contain, respectively,Independent, Decoration, Object, andMeta-info tags, which have already been
classified by the user. When applied to a target document, the algorithm uses the four lists and strategies
given in the previous section in its first attempt at converting the document into plain text sequences,
storing unknown (and therefore unprocessed) tags, if any, in@unknown. After the entire document has
been processed for the first time, the user classifies any reported unknown tags. This process is repeated
until no further unknown tags are encountered.

In the first iteration of processing the document in Figure 3(a) the algorithm is applied to the target
document with the four tag lists empty. In the function “data convert”, top-level tags in the document,
“ <?xml>” and “ <document>” , are detected as yet-to-be classified tags and added to@unknown.
The tags and their enclosed regions in the target document are replaced with unique plain text such as
“UN1” and “UN2”, and the input text thus becomes a sequence consisting of only plain words like “UN1
UN2”. The algorithm then adds the sequence to@plain text sequences and terminates. The user then
classifies the reported yet-to-be classified tags in@unknown into the four tag lists, and the algorithm48

Article # ar- # total tags # classified tags (# types) #obtain-
type ticles (# types) I D O M Total ed seq.
PMC 1,000 1,357,229(421) 32,109(12) 62,414(8) 48205(9) 33,953(56)176,681(85) 25,679
ArX. 300 1,969,359(210∗) 5,888(15) 46,962(12) 60,194(8) 7,960(17)121,004(52) 4,167
ACL 67 130,861(66∗) 3,240(24) 14,064(29) 4,589(15) 2,304(19) 24,197(87) 2,293
Wiki. 300 223,514(60∗) 3,530(12) 11,197(8) 1,470(28) 11,360(67) 27,557(115) 2,286

(ArX. : arXiv.org,Wiki. : Wikipedia,I: Independent, D: Decoration, O: Object, M: Meta-info)

Table 2: Classified tags and obtained sequences for each type of article

Treat- Parsing with Enju parser Parsing with Stanford parser
Article ed tag * # sen- ** Time Avg. # failures * # sen- ** Time Avg. # failures
type classes tences (s) (**/*) (rate) tences (s) (**/*) (rate)

None 159,327 209,783 1.32 4,721 (2.96%)170,999 58,865 0.39 18,621 (10.89%)
PMC O/M 112,285 135,752 1.21 810 (0.72%)126,176 50,741 0.44 11,881 (9.42%)

All 126,215 132,250 1.05 699 (0.55%)139,805 63,295 0.49 11,338 (8.11%)
None 74,762 108,831 1.46 2,047 (2.74%) 75,672 27,970 0.43 10,590 (13.99%)

ArX. O/M 41,265 89,200 2.16 411 (1.00%) 48,666 24,630 0.57 5,457 (11.21%)
All 43,208 87,952 2.04 348 (0.81%) 50,504 26,360 0.58 5,345 (10.58%)

None 19,571 15,142 0.77 115 (0.59%) 17,166 5,047 0.29 1,095 (6.38%)
ACL O/M 9,819 9,481 0.97 63 (0.64%) 11,182 4,157 0.37 616 (5.51%)

All 11,136 8,482 0.76 39 (0.35%) 12,402 4,871 0.39 587 (4.73%)
None 10,561 14,704 1.39 1,161 (10.99%) 14,883 3,114 0.24 1,651 (11.09%)

Wiki. O/M 5,026 6,743 1.34 67 (1.33%) 6,173 2,248 0.38 282 (4.57%)
All 6,893 6,058 0.88 61 (0.88%) 8,049 2,451 0.31 258 (3.21%)

(ArX. : arXiv, Wiki. : Wikipedia,O/M: Object andMeta-info)

Table 3: Impact on parsing performance of plain text sequences extracted using classified tags

starts its second iteration7.
In the case ofIndependent/Decoration tags, the algorithm splits the regions enclosed by the

tags/removes only the tags from the target text, and recursively processes the obtained text sequence(s)
according to our strategies. In the splitting/removal operation, the algorithm stores in@recovery info,
the locations (offsets) in the obtained text where the tags should be inserted in order to recover the tags
and textual structures after applying the NLP tools. In the case ofObject/Meta-info tags, regions en-
closed by these tags are replaced with unique plain text/omitted from the target text, which means that the
inner regions are not unpacked and processed (with relevant information about the replacement/omitting
process also stored in@recovery info). This avoids unnecessary classification tasks for tags that are
utilized only in the regions, and therefore minimizes user effort.

When no further unknown tags are reported, sufficient tag classification has been done to obtain plain
text sequences for input into NLP tools, with the sequences already stored in@plain text sequences.
After applying NLP tools to the obtained sequences,@recovery info is used to integrate the anno-
tated output from the tools into the original XML document by merging the offset information8, and
consequently to recover the structure of the original document.

4 Experiments

We investigated whether the algorithm introduced in Section 3.2 is robustly applicable to different types
of XML documents and whether the obtained text sequences are adequate for input into NLP tools. The
results of this investigation highlight the significance of bridging real-world text and NLP technologies.

4.1 Target Documents

Our algorithm was applied to four types of XML documents: three types of scientific ar-
ticles, examples of which were, respectively, downloaded from PubMed Central (PMC)
(http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/), arXiv.org (http://arxiv.org/) and ACL Anthology

7The user can delay the classification for some tags to later iterations.
8When crossover of tag regions occur, the region in the annotated output is divided into subregions at the crossover point.49

(http://anthology.aclweb.org/)9, and a web page type, examples of which were downloaded from
Wikipedia (http://www.wikipedia.org/). The articles obtained from PMC were originally given in an
XML format, while those from arXiv.org and ACL Anthology were given in XHTML (based on XML),
and those from Wikipedia were given in HTML, with the HTML articles generated via intermediate
XML files. These four types of articles were therefore more or less based on valid XML (or XML-like)
formats. For our experiments, we randomly selected 1,000 PMC articles, randomly selected 300
arXiv.org articles, collected 67 (31 long and 36 short) ACL 2014 conference papers without any
conversion errors (see Footnote 9), and randomly downloaded 300 Wikipedia articles.

Each of the documents contained a variety of textual parts; we decided to apply the NLP tools to the
titles of the articles and sections, abstracts, and body text of the main sections in the scientific articles,
and to the titles of the articles, body text headings, and the actual body text of the Wikipedia articles.
According to these policies, we classified the tags appearing in all articles of each type.

4.2 Efficiency of Tag Classification

Table 2 summarizes the classified tags and obtained sequences for each type of document. The second
to ninth columns give the numbers of utilized articles, tags (in tokens and types) in the documents, each
type of tag actually classified and processed, and obtained text sequences, respectively10. Using simple
regular-expression matching, we found no remaining tagged regions in the obtained sequences. From
this we concluded that our framework at least succeeded in converting XML-tagged text into plain text.

For the PMC articles, we obtained plain text sequences by classifying only a fifth or less of the total
number of tag types, that is, focusing on less than 15% of the total tag occurrences in the documents
(comparing the third and eighth columns). This is because the tags within the regions enclosed by
Object andMeta-info tags were not considered by our procedure. For each of the arXiv.org, ACL and
Wikipedia articles, a similar effect was implied by the fact that the number of classified tags was less
than 20% of the total occurrences of all tags.

4.3 Adequacy of Obtained Sequences for Use in NLP Tools

We randomly selected several articles from each article type, and confirmed that the obtained text se-
quences consisted of validsentences, which could be directly input into NLP tools and which thoroughly
covered the content of the original articles. Then, to evaluate the impact of this adequacy in a more prac-
tical situation, we input the obtained sequences (listed in Table 2) into two typical parsers, namely, the
Enju parser for deep syntactic/semantic analysis, and the Stanford parser (de Marneffe et al., 2006)11 for
phrase structure and dependency analysis12. Table 3 compares the parsing performance on three types
of plain text sequences obtained by different strategies: simply removing all tags, processingObject
andMeta-info tags using our framework and removing the remaining tags, and processing all the tags
using our framework. For each combination of parser and article type, we give the number of detected
sentences13, the total parsing time, the average parsing time per sentence14, and the number/ratio of
sentences that could not be parsed15.

For all article types, the parsers, especially the Enju parser, succeeded in processing the entire article
with much higher coverage (see the fourth column for each parser) and in much less time (see the third

9The XHTML version of 178 ACL 2014 conference papers were available at ACL Anthology. Each of the XHTML files
was generated by automatic conversion of the original article using LaTeXML (http://dlmf.nist.gov/LaTeXML/).

10For Wikipedia, arXiv.org and ACL articles, since HTML/XHTML tag names represent more abstract textual functions,
the number of different tag types was much smaller than for PMC articles (see∗ in the table). To better capture the textual
functions of the tagged regions, we used the combination of the tag name and its selected attributes as a single tag. The number
of classified tags for Wikipedia, arXiv.org and ACL given in the table reflects this decision.

11http://nlp.stanford.edu/software/lex-parser.shtml
12The annotated output from the parsers was integrated into the original XML documents by merging the offset information,

and the structures of the original documents were consequently recovered. The recovered structures were input toxmllint, a
UNIX tool for parsing XML documents, and the tool succeeded in parsing the structures without detecting any error.

13For the Enju parser, we split each text sequence into sentences using GeniaSS [http://www.nactem.ac.uk/y-matsu/geniass/].
14For the Enju parser, the time spent parsing failed sentences was also considered.
15For the Stanford parser, the maximum sentence length was limited to 50 words using the option settings because several

sentences caused parsing failures, even after increasing the memory size from 150 MB to 2 GB, which terminated the whole
process. 50

column for each parser) using the text sequences obtained by treating some (Object and Meta-info)
or all tags with our framework than with those sequences obtained by merely removing the tags. This
is mainly because the text sequences obtained by merely removing the tags contained some embedded
inserted sentences (specified byIndependent tags), bare expressions consisting of non natural language
(non-NL) principles (specified byObject tags), and sequences not directly related to the displayed text
(specified byMeta-info tags), which confused the parsers. In particular, treatingObject andMeta-info
tags drastically improved parsing performance, since non-NL tokens were excluded from the analysis.

Compared with treatingObject/Meta-info tags, treating all tags, that is, additionally treatingInde-
pendent tags and removing the remaining tags asDecoration tags, increased the number of detected
sentences. This is becauseIndependent tags provide solid information for separating text sequences
into shorter sequences and thus prompting the splitting of sequences into shorter sentences, which de-
creased parsing failure by preventing a lack of search space for the Enju parser and by increasing target
(≤ 50 word) sentences for the Stanford parser. Treating all tags increased the total time for the Stanford
parser since a decrease in failed (> 50 word) sentences directly implied an increase in processing cost,
whereas, for the Enju parser, the total time decreased since the shortened sentences drastically narrowed
the required search space.

4.4 Significance of Bridging Real-world Documents and NLP Technologies

As demonstrated above, the parsers succeeded in processing the entire article with much higher coverage
and in much less time with the text sequences obtained by our framework than with those sequences
obtained by merely removing the tags. Then, what does such thorough and efficient processing bring
about? If our target is shallow analysis of documents which can be achieved by simple approaches such
as counting words, removing tags will suffice; embedded sentences do not affect word count, and non-NL
sequences can be canceled by a large amount of valid sequences in the target documents.

Such shallow approaches, however, cannot satisfy the demands on more detailed or precise analysis
of documents: discourse analysis, translation, grammar extraction, and so on. In order to be sensitive to
subtle signs from the documents, information uttered even in small parts of text cannot be overlooked,
under the condition that sequences other than body text are excluded.

This process of plain text extraction is a well-established procedure in NLP research; in order to
concentrate on precise analysis of natural language phenomena, datasets have been arranged in the format
of plain text sequences, and, using those datasets, plenty of remarkable achievements have been reported
in various NLP tasks while brand-new tasks have been found and tackled.

But what is the ultimate goal of these challenges? Is it to just parse carefully arranged datasets? We all
know this to be just a stepping stone to the real goal: to parse real-world, richly-formatted documents. As
we demonstrated, if supported by a proper framework, conventional NLP tools already have the ability
to process real-world text without significant loss of performance. Adequately bridging target real-world
documents and NLP technologies is thus a crucial task for taking advantage of full benefit brought by
NLP technologies in ubiquitous application of NLP.

5 Conclusion

We proposed a framework for data conversion between XML-tagged text and input/output formats of
NLP tools. In our framework, once each tag utilized in the XML-tagged text has been classified as one
of the four types of textual functions, the conversion is automatically done according to the classification.
In the experiments, we applied our framework to several types of documents, and succeeded in obtaining
plain text sequences from these documents by classifying only a fifth of the total number of tag types
in the documents. We also observed that with the obtained sequences, the target documents were much
more thoroughly and efficiently processed by parsers than with naively tag-removed text. These results
emphasize the significance of bridging real-world documents and NLP technologies.

We are now ready for public release of a tool for conversion of XML documents into plain text se-
quences utilizing our framework. We would like to share further discussion on applying NLP tools to
various real-world documents for increased benefits from NLP.51

Acknowledgements

This research was partially supported by “Data Centric Science: Research Commons” at the Research
Organization of Information and Systems (ROIS), Japan.

References

Salah Äıt-Mokhtar, Veronika Lux, and́Eva B́anik. 2003. Linguistic parsing of lists in structured documents. In
Proceedings of Language Technology and the Semantic Web: 3rd Workshop on NLP and XML (NLPXML-2003),
Budapest, Hungary, April.

Ø. Andersen, J. Nioche, E.J. Briscoe, and J. Carroll. 2008. The BNC parsed with RASP4UIMA. InProceedings
of the 6th Language Resources and Evaluation Conference (LREC 2008), pages 865–869, Marrakech, Morocco,
May.

Stephen Clark and James R. Curran. 2007. Wide-coverage efficient statistical parsing with CCG and log-linear
models.Computational Linguistics, 33(4):493–552.

H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva. 2013. Getting more out of biomedical documents with
GATE’s full lifecycle open source text analytics.PLoS Comput Biol, 9(2).

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. 2006. Generating typed dependency
parses from phrase structure parses. InProceedings of the 5th Language Resources and Evaluation Conference
(LREC 2006), pages 449–454, Genoa, Italy, May.

David Ferruci, Adam Lally, Daniel Gruhl, Edward Epstein, Marshall Schor, J. William Murdock, Andy Frenkiel,
Eric W. Brown, Thomas Hampp, Yurdaer Doganata, Christopher Welty, Lisa Amini, Galina Kofman, Lev Koza-
kov, and Yosi Mass. 2006. Towards an interoperability standard for text and multi-modal analytics. Technical
Report RC24122, IBM Research Report.

Yoshinobu Kano, Makoto Miwa, Kevin Cohen, Larry Hunter, Sophia Ananiadou, and Jun’ichi Tsujii. 2011.
U-Compare: a modular NLP workflow construction and evaluation system.IBM Journal of Research and
Development, 55(3):11:1–11:10.

Yoshinobu Kano. 2012. Kachako: a hybrid-cloud unstructured information platform for full automation of service
composition, scalable deployment and evaluation. InProceedings in the 1st International Workshop on Analyt-
ics Services on the Cloud (ASC), the 10th International Conference on Services Oriented Computing (ICSOC
2012), Shanghai, China, November.

Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2007. A log-linear model with an
n-gram reference distribution for accurate HPSG parsing. InProceedings of the 10th International Conference
on Parsing Technologies (IWPT’07), Prague, Czech Republic, June.

52

