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Abstract

While there continues to be a debate in
linguistics and speech processing as to
the nature of an atomic unit, in com-
putational approaches the atomic unit is
universally taken to be the orthographic,
space-demarcated “word”. We argue that
for many richly inflected languages such
as Indo-European languages, syllable-
based approaches together with seman-
tic grounding may provide certain advan-
tages. As a demonstration, we consider
a language-acquisition system for Hindi,
and propose a text syllabification tech-
nique, and show that syllable-based mod-
els perform somewhat better than the tra-
ditional word-based approach in building
up a noun lexicon based on unannotated
commentaries on video. We suggest fur-
ther exploration of this potentially impor-
tant idea in other domains.

1 Introduction

For resource-poor languages that are also morpho-
logically complex - which applies to most of the
languages in India - we suggest that instead of the
orthographic word, the syllable may provide some
advantages in terms of discovering structures in
the language. This is motivated by the fact that
the high number of morphological variants make it
difficult to align verbs if we consider orthographic
word boundaries. However, a syllabic approach
is more likely to find overlaps with alternately in-
flected forms.

While a number of approaches seeking to dis-
cover morphological structure have worked with
syllable-like structures (Creutz and Lagus, 200275,8
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Clark, 2001), these approaches, like the rest of
NLP, assume that the linguistic input occurs iso-
lated from the extra-linguistic situation of the ut-
terance. Thus, while the term “morpheme” is
usually defined based on semantics (the smallest
meaning-bearing unit), past work in NLP at the
syllabic level are almost invariably based solely on
linguistic input.

The primary contribution of this work is that to
our knowledge this may be among the early works
on syllabic-unit approach to text analysis that also
operates in a grounded manner for discovering se-
mantic codes in NLP. The main difference with
traditional parsing driven models is that here se-
mantics, in the form of visual or non-textual in-
puts, is used to segment the input into maximal
syllable-sequences. Thus, semantics is being in-
voked from the very earliest stages. Later inter-
pretations can then fall back on such sensorimo-
tor models of meaning for interpreting novel struc-
tures such as metaphor, etc. Here we consider the
language acquisition problem, where we attempt
to map a lexical item from a textual description
stream to its referent in a visual input stream. The
proposal involves three steps:

1. Syllabification from text input without the
knowledge of word-boundary. This is known
to be relatively simpler in most Indian lan-
guages (Kishore et al., 2002; Patil et al.,
2013) than some others (e.g. English (Marc-
hand et al., 2009)).

2. Association of syllables with concept struc-
tures that are learned independently, e.g. us-
ing contrasting concepts. (Nayak and Muk-
erjee, 2012; Semwal et al., 2014).

3. Attention to relations between patterns of syl-
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lables across different utterances (e.g. object
verb agreement).

1.1 Problem with POS tags

We observe that while the semantics in this present
approach is based on visual input, the same can
also apply to formal semantic models for the data.
However, annotating an input with such seman-
tic labels is as difficult a problem as creating a
treebank, and possibly subject to even greater am-
biguities and disagreements. Also, a formal se-
mantic tagger is based on some kind of a parse
structure (typically a constituency tree or a depen-
dency graph) - and the accuracy of such semantic
models is dependent on the parse. The best POS
taggers today perform at approx. 97%, but at a
phrasal level, POS tags are accurate for only 50%
of the sentences (Manning, 2011). Further, dis-
crete, atomic word sense categories cannot diffuse
into one another like a continuum model based
on sensorimotor abstraction. Thus, the disjoint
word senses often have conceptual overlaps which
restrict accuracy severely (Jurgens and Stevens,
2011). Another difficulty is that standardizing on
a single tag-set seems impossible, with each group
suggesting its own set of tags; this is because
all intermediate level tagsets constitute a compro-
mise. Also, discrete partitions on the input space,
hide the overlaps and similarities that actually ex-
ist across concepts, and are disambiguated by con-
sidering other information such as that from per-
ception or other modalities (Fig. 1) (Pezzulo et al.,
2011).

Just as continuum models of semantics provide
a finer decomposition of the meaning space, so
also a syllabic-unit model of the input itself pro-
vides a finer discrimination of the target map.

1.2 Grounded language models

The traditional ideas of formal semantics has also
been applied to the notion of “grounding” linguis-
tic structures. Grounding as used in computational
modelling may define “meaning” in terms as an in-
termediate level of formal descriptions (Matuszek
etal., 2012; Liang et al., 2009; Chen and Mooney,
2011), or it may attempt to relate the elements of
language directly to clusters discovered on percep-
tual or motor data (Steels and Loetzsch, 2012).
The former, in which good results have been ob-
tained for sentential data, require rich training
databases of sentence/meaning pairs, as well as su-
pervised training datasets for learning classifier?
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Figure 1: Boolean vs. Continuous models of
meaning. Formal descriptions use boolean pred-
icates to partition the world. Continuous models
discover distributions in the input. The latter per-
mits notions of similarity and conceptual overlap
which are extremely difficult in boolean models.

that will work on visual input (Matuszek et al.,
2012). The deeper problem with such systems is
that the set of predicates used often have overlaps
or gaps and just as with intermediate levels in other
NLP situations, may not scale well to discourse
modelling.

When mapping language directly to sensori-
motor data, the scenes are often isolated for a
particular concept, and the description may be
short or even a single word (Stramandinoli et al.,
2013; Steels and Loetzsch, 2012). At other times,
the scenes may have many concepts marked al-
ready (Reckman et al., 2011). Unconstrained
sentential commentary, together with dynamically
changing scenes, make for considerable ambiguity
in association, and have been investigated very lit-
tle. Yet, this is the type of input that children learn
language from.

In theory, approaches based on grounding
should work with any language. However, in prac-
tice, many approaches use knowledge of parsers
or other intermediate levels (Chen and Mooney,
2011). At the very least, most approaches use mor-
phological knowledge in the form of stemmers;
even this can be problematic for richly-inflected
languages.

Drawing on ideas in developmental cognition
which indicate that infants are aware of concep-
tual distinctions well before they come to lan-
guage (Mandler, 2007), our goal in this paper is to
investigate the present-day limits of what we call
Uninformed symbol grounding for morphologi-
cally rich languages. The attempt is to discover
grounded lexemes in a system that associates an
unparsed video and a set of unconstrained raw
commentaries (sentential text).
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Figure 2: Stills from the video. The big triangle is pulling the little one, trying to get it outdoors. Even-
tually the big one pushes it out, and blocks it from coming back in. Finally, the two circle around each
other playfully. The blocks are clustered by shape into C1(big red triangle) and C2(small blue triangle).

1.3 Grounding of syllable sequence

When using syllables, we search for maximal
syllable sequences that associate strongly with a
chunk of extra-linguistic context. Later, when the
same syllable-gram occurs in a slightly different
context, its semantics is broadened to include the
new situation. Thus, the lexicon is a dynamic en-
tity that changes with experience.

In this work, we attempt to ground syllable-
grams from the input to structures in the video.
Given the ambitious nature of the project, we
chose a simple schematic video, one that has been
developed for psychological experiments to detect
autism (Sarah J. White and Frith, 2011)(Fig 2).

The only perceptual priors we assume are for
identifying objects as coherently moving con-
nected blobs. We use no other priors in either the
visual or the linguistic processing. Thus, we use
no knowledge of objects or shapes or actions, nor
any language model. In order to be able to handle
richly-inflected or agglutinative languages, we ig-
nore word boundaries and start from syllable level
and discover putative words that may be matched
with the various concepts.

These perceptual priors are then mapped to
syllable-clusters in the language stream. Hindi is
a richly inflected language, with rich inflectional
paradigms. We try to find descriptors for objects
using a number of association measures.

Owing to lack of other experimentation in sim-
ilar processes, we are not able to compare the re-
sults with other work. The commentaries are being
made available at (Jalan, 2012).

The rest of the paper is organised as follows: in
the next section we present the idea of using syl-
lables as linguistic units followed by the explana-
tion of the psychological video, the commentaries
collected and the process of finding syllables in a
sequence. Later, we present the noun discovery
model followed by the results obtained. 260
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Figure 3: Word vs. syllable. Linguists are not
sure if the morphology-syntax boundary can be
defined clearly enough. Possibly a better place for
starting the analysis may lie near the phonology-
morphology boundary, where syllables occur.
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2 Syllables as Units for NLP

A syllable is the segment of speech uttered in a
single impulse of air. The nucleus of a syllable is
usually the high-energy vowel sound, surrounded
by co-articulations of lower energy occurring near
the syllable boundary. As with all aspects of lan-
guage, there is no single best mechanism for iden-
tifying syllables in text. However, for languages
such as Hindi, syllabification is relatively easier
than for other systems.

While linguists have been very careful in ana-
lyzing what is a ”unit” for different levels of anal-
ysis, computational approaches have overwhelm-
ingly gone with the orthographic word as its dom-
inant unit. What some linguists (Cahill and Gaz-
dar, 1997) said more than two decades ago - “mor-
phemes also exist, but only as second class cit-
izens” - holds even more strongly today. This
word-focus obscures the structures hidden within
words and makes it particularly difficult for highly
inflected languages. However, as “word” is diffi-
cult to define for linguists, so also is “morpheme”.
A typical word in computational linguistics today
(e.g. “boys” or frar (kiya)) often has some struc-
ture hidden inside it.
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Figure 4: Association approach for grounded noun learning. The syllable sequences are potential
words. Syllables AT (/a), o (la) will form a syllable sequence @TeT (lala). All three of these would be
strongly associated with the extra-linguistic context “color: red”, but since ®TeT is a superset of the
other two, we take this to be a word.

The morpheme-level syntax is hard to distin-
guish from word-level syntax (is “was clean” two
words and “cleaned” only one?). Thus, linguists
prefer to look at morphosyntax rather than word-
level syntax (Fig 3). In lightly-inflected lan-
guages like English - only eight inflective varia-
tions, mostly at start or end of a “word” - one can
get by with “stemmers” to identify a root. Some
computational morphologists have pointed to the
emphasis on English for the very poor develop-
ment of morphological approaches in NLP (Clark,
2001). However, in Hindi, f¥dTHT (karavaya) is
much harder to relate to f3T (kiya). The main
idea here is that in such situations, syllables may
be a better place to start than at word boundaries.

Morphemes arise at a level of segmentation that
is smaller than the word, but larger than a let-
ter (Goldsmith, 2010). This is also the space oc-
cupied by syllables. However, morpheme bound-
aries need not coincide with syllable boundaries,
but in this work, our primary goal is not to dis-
cover morphemes per se, but words, so we assume
an edge constraint, for which syllables are appro-
priate. Another model for this analysis could have
been at the level of larger structures called feet, but
since analysis of feet usually involves stress, and
our work is based on text, we have kept it at the
syllable level.

While syllables are not free from debate, they
are certainly easier to identify than words, and also
more useful as atomic constituents than phonemes
(or in orthography, characters). Syllables are
phonological clusters that may combine to make
morphemes. While syllable boundaries are L

aligned with morpheme boundaries, the more de-
tailed analysis is still useful for identifying famil-
ial relations between a group of words. Thus, in-
flectional variants may retain some core syllables
while changing others, enabling a syllable-based
n-gram approach to identify these core elements.
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Figure 5: Syllabic analysis of text. The text is re-
segmented based on meaning associations rather
than on orthographic cues. The last two sen-
tences show the two and three syllable grams. The
numbers shown are the mutual information score
evaluated only for the narration shown in fig: 6.
The process discovers structures such as T (ni)
which can now be related to other forms such as
T (nile) and AT (nila). 3-syllable-grams such
as IHY (ghitmara) would have a strength almost
same as the 5-syllable-gram ¥HYET (ghitmaraha)
and hence only the latter would be taken as an unit,
not the shorter fragment.

In the following, we begin by removing all word
boundaries in the text, (preserving gaps at punctu-
ations) and describe the input as a sequence of syl-
lables. This is similar to the analysis in Chinese or
Thai, which do not use spaces in orthography. The
linguistic units then emerge as meaning-mapped
substrings on the syllable space. Because similar-
ity in meaning is used to learn these syllable se-
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14-46 e ﬂ@‘j\_ﬂ i ar a"iﬁ % There are two triangles in one square.”
47-55
56-72 er: ) agﬁf AT “One triangle is red”
73-102 erc ) ﬁ"ﬂﬁf I W T % “One triangle is of blue colour"
103-160 I BT E g A asA F PR FT @ §
“Both triangles are trying o fight each other”
161-201  &fR et e ame smT ey &
‘and red triangle has gone outside”
202-249 T T & 317 Ty FTET
(again trying to come back into the square)
250-311 <ol el ot ofef e o gel Y e @ &
“blue triangle and red triangle are hilting each other”
312388 e Bfa Aol Y &) aTET e TET 8
“red triangle is pushing the blue Iriangle outside”
380-466  <AielT B wiel B & wre & forg GO 8 T d
"blue triangle is getting ready to fight the red triangle”
467-500 el By e & A W@ E
“blue triangle is roaming oulside”
501-552 @t e Ior Gty W o AT Y w1
‘red triangle is trying to run after it”
553-598 I UH g H THUFTIH E &

(“both are circling around by touching/hitting each other”)

Figure 6: Samples from narratives in Hindi.

quences, they are closer in spirit to the definition
of morpheme in linguistics. Fig 4 represents the
model for grounded noun learning.

We demonstrate this process on a small exam-
ple of lexeme acquisition from an unparsed unan-
notated corpus (fig. 5). Note that some forms
such as Y&T8 (rahd-hai) has a strong semantic
relevance and is suggested as an unit, which is
plausible, (and so are m‘@‘ (kar-raha-hai) and
some larger strings). Also, syllable-grams such as
%rg (tribhu) which are appearing as frequently as
the longer syllable-gram ﬁ‘{-ﬁr (tribhuj) would be
discarded as candidate units. On the other hand,
ATATRIST (laltribhuja) is not an unit because
AT (lal) and ﬁ‘tﬁl‘ (tribhuj) are independently
associated with items “red” and “triangle” in the
semantic inventory. Thus, (T‘I'I'c'frﬁ"i'ﬂ' (laltribhuja)
is recognized as a compound of two words.

3 Video and Co-occurring Narrative
Dataset

For the lexeme semantics acquisition task, extra-
linguistic context is obtained from a short video
(Fig 2). Language commentaries were recorded
from university students (ages 21-24), by showing
them the Frith-Happe video, in which two abstr&@?

shapes (triangles) engage in what may be called
coaxing (Sarah J. White and Frith, 2011)(Fig 2).
The two agents are a big red triangle (ST ®TcT
%Dﬁ; bara lala tribhuja) and a small blue trian-
gle (BT AT BRI, chota nila tribhuja). A
total of 21 commentaries were collected.

Each subject was given the following instruc-
tions:

You will be shown this 39 seconds video thrice.

For the first two times you can just see the video
and gain an understanding of what is happening
in the scene.

The third time you have to describe whatever is
going on in the video in Hindi without involving
yourself in the description.

You should not metaphorize the objects in the
video.

A small, variable time lag between the action
shown on screen and the subjects description can
be introduced. Being familiar with the video
(showing it thrice) reduced this time lag.

Three corrupt narratives with extensive En-
glish and Hindi code-mixing were removed
from the dataset for instruction non-following.
The last instruction was added after a subject
metaphorized the triangles, describing the small
one as ¥ (thief) and the big as gﬁ'ﬂ‘ (police).

The spoken narratives were manually tran-
scribed as text, maintaining a standardised
spelling. The sentences were manually time-
stamped, and sentences were broken at pauses,
roughly longer than 10 frames (0.67 seconds), or
non-language sounds or breathing breaks.

Another difficulty was that the two main ob-
jects were a large red triangle (C1) and a small
blue triangle (C2). Our speakers divided into three
groups - one described the triangles predominantly
in terms of size (six narratives), other in terms of
colour (ten narratives) and few of them described
in terms of both size and color or very vaguely
without ample information (five narratives). Given
the lack of prior knowledge of any kind, it is im-
portant that we have a coherent narrative for lex-
icon discovery. So the results are reported here
only for the larger of these two sets - the colour
distinguishing narratives.

3.1 Syllabic Analysis of Commentary corpus

The morphological root (lemma or stem) may be
difficult to identify owing to variations. Associ-
ations are then diluted across a large number of



Figure 7: FSM to identify syllables in Hindi. Here
{Up} = set of all unicode characters; {C'} = con-
sonants (&, &, 1T,...); {V'} = set of all vowels (2T,
AT, §, T, ...); {M} = vowels on consonants (mA-
trAs) (@T, &, ...); {O} = character 2% ; {N} =
nasals (:") ; {H} =halant; { D} = digits.

morphological variants. To avoid this, it may be
useful to discover smaller units driven by the as-
sociation itself.

A character in Indian language scripts is close
to syllable and can be typically of the following
form: C, V, CV, CCV and CVC, where C is a con-
sonant and V is a vowel (Kishore et al., 2002).

In our syllabic analysis, we consider the narra-
tives without any knowledge of the word bound-
aries, and discover syllable sequences with good
correlation with the concepts. The syllables are
based on the orthography and are defined as a unit
of speech having one vowel sound, with or without
surrounding consonants - implemented as a Finite
State Machine (Fig. 7), based on the automata de-
fined by Nikhil Joshi (Mukerjee and Joshi, 2011).
We made a few modifications to include the nasal
sounds and other characters such as digits and the
character 23. S to S7 are the intermediate states
with ‘Reject’ and ‘Final’ as two accept states. At
the ‘Reject’ state the scanned input till now is re-
jected and the machine goes back to the ‘Initial’
state. At the ‘Final’ state, we declare the whole se-
quence of Unicode characters except the last one
as a syllable and start searching for next syllable
with the last character observed. Note that punc-
tuation symbol, non recognised foreign characters
and illegal Hindi characters are rejected (‘Reje@é3

state).

Finally, the learning agent is not operating in a
linguistic void. This enables it to identify the very
common words that occur in a wide range of con-
texts. This is done by computing the frequencies
on a large Hindi corpus (CFILT, 2010). The top
1000 words are considered frequent, and not anal-
ysed.

4 Object name association : Noun
discovery

The object concepts being associated here are the
two objects that are the primary agents in the
scene. Itis assumed that at any time, only the mov-
ing objects will be in attentive focus, and are more
likely to be spoken about. Thus, the sentences
that are spoken when the big red triangle (C1) is
moving are associated with it, whereas those that
are associated with the small blue triangle (C2)
are considered as the contrastive set. We consider
all lexical candidates occurring in sentences that
overlap with the interval when either C1 or C2 is
in motion as candidates for association with these
concepts.

4.1 Association measures

For a label (lexeme) [, concept ¢, speaker s and
time ¢, we define following probabilities.

Attention probability of the concept ¢ for the
speaker s at time ¢

1 if cis attended by speaker s

P(c|s,t) = at time ¢
0 otherwise

1 if [ is uttered by speaker s
P(ls,t) = at time ¢

0 otherwise

We define the Joint probability of a label [ and
an object category c as

T

* Z Z P(c|s,t) = P(l|s,t)

t=1seS

J(Z,C) = TT’S”

Similarly, we define the concept probability of a
concept ¢ as

1 T
P(c) = T3] *ZZP(c\s,t)

t=1seS




Relative
(Syllabic)

Frequency

Contrastive ~ Mutual
Information (Word)

Relative
(Word)

Frequency

Contrastive Mu-
tual Information
(Syllabic)

Cl &t (lala), “red” -
108.5
et (nilatri)

”’blue [frag]” - 28.9

(nilatribhuja) ~ “blue
triangle” - 27.6

AT (lala) “red” - 9.5

BRgst (tribhuja) “tri-
angle” - 6.0
Frertn=
(nilatribhuja) ~ “blue
triangle”- 4.5

T (abhi) “now” -
2.3

39 (usané) “helit” -
1.9

w (caturbhuja)
“square” - 1.4

AT (lala) “red” - 6.0

9H (ghitma) “‘roam”-
5.0

RISt (tribhuja) “tri-
angle” - 3.5

C2 TET (nila) “blue” -

AT (nila) “blue” -

ST (abhi) “now” -

FRpet (tribhuja) “tri-

423 7.3

ATt (lalatri) FATATIST

“red+[frag]” - 25.9 (lalatribhuja) “red
triangle”- 6.5

ATATST AT (lala) “red”- 6.0

(lalatribhuja) “red
triangle” - 25.2

4.9 angle” - 13.5
TH (bakseé) “box(s)” TAT (nila) “blue” -
-2.9 10.0

ST (andara) “in-
side” - 2.5

ar (ranga) “color” -
2.8

Table 1: Hindi lexeme association. The top three associated lexemes (ranked based on the score
obtained) for both the concepts (C1: big red triangle and C2: small blue triangle) are presented for
syllabic analysis and word analysis. Word analysis makes use of the word boundary knowledge.
Meaningful results are obtained in the syllabic analysis.

The label probability of a label [ is given as

f0)
P(l) =
=70
where f (1) is the frequency of label [ in the narra-

tive corpus.

Based on the above, we used three association
measures to identify the label maximally associ-
ated with a perceptual category.

1. Conditional Probability for a label | given a
concept ¢ is P(llc) = J(l,¢)/P(c). How-
ever, this fails to penalise labels which co-
occur with multiple categories; in practice it
gave poor results and is not being reported in
the results.

2. Contrastive Mutual Information. Mutual in-
formation is given as

J(l,¢) )
P(c)x P(l)
It favours rare concepts and rare labels hav-
ing sufficient degree of co-occurrence. Con-
trastive mutual information is the ratio of mu-

tual information between label and concept
for a binary contrastive situation. 264

MI(l,c) = J(l,¢) * log(

3. Relative Frequency: This is a ratio of the la-
bel frequency when concept c is in focus (ob-
ject is moving), versus the frequency (/) when
c is not in focus.

4.2 Results

We report the top three associated lexemes for the
concepts C1 (big red triangle) and C2 (small blue
triangle) for both syllable analysis and for space
demarcated orthographic words (Table 1). In syl-
lable analysis, only k-grams occurring more than
once are considered as candidate words, but for
whole words, all words are candidates.

We observe that the key discriminants, “red”
and “blue” are discovered as being more relevant
for the large red triangle or the small blue triangle
in the syllabic approach whereas such discovery is
not made for the word analysis. Both Relative fre-
quency and contrastive Mutual Information works
reasonably well for syllabic analysis. Plain con-
ditional probability results were poor and is not
reported.



5 Conclusion

The main intent of this work was to investigate the
possibility of computation with something smaller
than orthographic words. This was motivated by
the idea that in highly inflected languages such
as Hindi, such structures may hold certain ad-
vantages, particularly for finding stems etc. It is
certainly able to do this, but for our purposes,
it also finds structures such as ¥&T& (rahA-hai)
which may be considered as an compound auxil-
iary unit. While the empirical demonstration here
is very primitive and only scratches the surface of
the problem, the results do suggest that this is an
idea that deserves being investigated further as an
alternative approach that shifts the boundaries at
the very base of the model, and hence for the en-
tire computational superstructure.

Here we have attempted to learn lexical asso-
ciations with perceptual data, in an Uninformed
symbol grounding approach. This implies that we
discover any intermediate structures that arise, and
minimize priors for the visual data. This is an am-
bitious task, and we have attempted this based on a
meagre 39 second video, albeit a simple schematic
one.

This work derives from cognitive ideas, but we
do not consider many aspects such as shared atten-
tion, prosody and the simpler constructs in child-
directed speech. It is possible that if one could
collect corpora of this kind, we may obtain some-
what improved results. Nonetheless, it is surpris-
ing that even with such meagre input, many “cor-
rect” phrases emerge.

Once a few words are learned, the initial seman-
tic models corresponding to these (often called im-
age schema) become pivots around which other
words can be learned (Kuhl, 2004). The lex-
eme learned serves as an index or a handle, so
that future exposure to it invokes the same image
schema, which is thereby defined more crisply and
associated with a host of other concepts. Further, a
few pivot words in an utterance helps the recovery
of meaning for nearby elements.

This preliminary investigation suggests that the
conviction that the orthographic word can be the
only possible unit for computations in NLP may
be worth revisiting. Many of the processes in
language, particularly those involving acquisition
without prior biases such as grammars and parse
structures may be easier if we move down the scale
from a word to a syllable. It is hoped that {19i@3

preliminary exercise may induce others to take up
this exploration so that such a process may expand
and become an important part of NLP in times to
come.
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