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Abstract

What if we had to work in language
with a semantic model that was shared
with robotics and vision? We con-
sider the question of bootstrapping
NLP based on an unified continuum
semantics for actions. We consider a
scenario with contrastive concepts —
objects (ball, square), actions (throw,
roll), colours, and agents. We first ac-
quire the semantics, then map these
to crowd-sourced adult Hindi commen-
taries without any parse or POS knowl-
edge.
commentaries, a small subset of high-
confidence labels is acquired with a
simple contrastive association measure.
This seed knowledge is used to itera-
tively bootstrap larger syntactic pat-
terns, starting with the noun phrase
and going on to the NP VP complex.
Using a syllabic model of the input,
we also discover morphological struc-
ture and agreement (“chaukor fenk-A”,
“ball fenk-1"). Since the approach is ag-
nostic to language, we can work just
as well with narratives in another lan-
guage; results are shown for English.
With this work, we are also releas-
ing the action videos and the Hindi /
English corpora, part of the planned
multi-lingual Videobabel corpus.

Despite wide variations across

1 Introduction

Do we use different models when we throw a
ball, see a ball thrown, or talk about throwing
a ball? Today each of these fields - robotics,
vision, and NLP, use machine learning ap-
proaches with isolated training sets, separate

models and differln% Baradlgms (robotics andd
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vision are continuous, NLP semantics is of-
ten discrete). As NLP gets integrated into the
whole agent, one should try to consider if it
may be more efficient if we could share some
of the semantic structure across such related
situations. This idea is also motivated by the
discovery of motor neurons which seems to re-
late

Secondly, suppose we have a unified model
such as this, would it be useful for learning
language? Clearly infants have some concep-
tual priors before they come to language, and
there is good reason to believe that these are
not modeled as crisp, boolean predicates. Can
we use such a model to learn words, morphol-
ogy, and syntax?

We discuss these two main contributions
next.

Mapping concepts multi-modally

Consider an AT agent which is in the following
situations:

(a) The agent recognizes [Sam throwing a ball
to Jane]

(b) The agent understands the sentence “Sam
threw the ball to Jane”

(c) The agent executes [throwing the ball to
Jane].

Classical AT divides up the problem of intel-
ligence into aspects that can be distinguished
based on the input and output. Thus the
task (a) above would typically be handled by
computer vision. Researchers would take a
large class of videos labelled as [throw]|, and
would build a classifier function, f,;s that
would distinguish it from other actions. For
the language input in task (b), one would use
a pre-trained parser and a semantic analyzer

trained on a very large set of POS-, %arse—
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and semantically- annotated sentences. Given
these tools, it may be able to map the input to
a formal structure such as throw(agent:Sam,
object: Ball, path: $p) Agoal ($p,
Sita). Let us call designate this mapping pro-
cess as fpp. For task (c) a robotic agent would
operate in a space where it can evaluate the re-
sult of a throwing action. It would do many
trials of throwing along different 3D paths (or
at goals), and come up with a function f.
that can throw the ball effectively along any
target path.

Now we observe that these three functions
are completely disjoint, and there can be no
synergy in terms of correlating knowledge be-
tween these modalities. For example, consider
an expert throwing robot - after lots of train-
ing, it has a very fine f,,, and can throw balls
very well. However, its f,;s is just about aver-
age. Now, when the agent is looking at Sam’s
throw, it cannot use it’s own f,op to determine
if the throw is good or bad, or make sugges-
tions for Sam to improve his throw; for that,
it would need to be trained on the image data
all over again.

This separation is even more critical when
it comes to language. Given a language state-
ment it cannot relate it to the seen or exe-
cuted throw. The area in NLP called grounded
language learning attempts to provide mecha-
nisms for learning the grounded meaning of a
symbol, but these are limited to linking up a
recognizing function f,;s as the semantic map
of the word “throw”. (Kwiatkowski et al., 2011)
But the actual throw depends on what is be-
ing thrown, and who is throwing it, and how
- so the actual f,;s will either fail for other
objects, or it will have to have a potentially
infinite set of arguments to handle all sorts of
contextual variations. That is, it runs into the
frame problem.

Now consider these two sentences:

(a) Sam threw a glance at Sita.

(b) Sam threw the flashlight beam into the
cave.

Indeed, primate brains seem to be oper-
ating in a more integrated manner. Mo-
tor behaviour invokes visual simulation to en-
able rapid detection of anomalies, while visual
recognition invokes motor responses to cheeRO

if they match. Linguistic meaning activates
this wide range of modalities (Binder and De-
sai, 2011). Such a cross-modal model also per-
mits affordance and intentionality judgments,
which our system can also achieve.

The first part of this work (section 2) is in-
spired by the observation that each time the
robot throws the ball for motor learning, it
also generates a visual trajectory from which
it can learn a visual model of the action. Fur-
ther, the motion parameters are correlated
with the visual feedback - both lie on matched
low-dimensional curved manifolds which can
be aligned.

We develop a unified approach for model-
ing actions, based on visual inputs (say tra-
jectories or paths) resulting from given mo-
tor commands. The model constitutes a low-
dimensional manifold that discovers the corre-
lations between visual and motor inputs. The
model can be applied to either visual recogni-
tion or to motor tasks.

Bootstrapping a lexicon and syntax

For the language task (section 3), we consider
the system which already has a rudimentary
model for [throw], being exposed to a set of
narratives while observing different instances
of throwing. The narratives are crowdsourced
from speakers for a set of synthetic videos
which have different actions (throw or roll),
agents (“dome” or “daisy” - male/female),
thrown object or trajector (ball or square),
colour of trajector (red or blue) and path (on
target, or short, or long). We work with tran-
scribed text, and not with direct speech, so we
are assuming that our agent is able to isolate
words in the input.

An important aspect of working with crowd-
sourced data is that for the very beginning
learner, we need a more coherent input where
similar phrases are used for similar situations.
This is difficult, given the diversity of our
crowdsourced input, so we first identify a small
coherent subset (called the family lect) on
which initial learning is done. This is then ex-
tended to the remaining narratives (the multi-
lect).

The system works on subsets of the nar-
ratives for each semantically distinct cate-
gory. The joint word-semantics probabilities
are computed. To learn the label for [ball], we



contrast the frequency of a word being uttered
when a [ball] is thrown or rolled, vs a [square].
Candidate labels are ranked based on the ratio
of these joint probabilities - p(word,concept)
/ p(word,non-concept). The high-confidence
matches - those significantly higher than the
next match (abt 20%) are taken as the ini-
tial bootstrapping map (fig. 4). This partial
lexicon is then used to learn a partial syn-
tax, which is ploughed back to learn more lex-
emes (and also synonyms and alternations).
When this interleaving stabilizes, we broaden
the semantic context to learn other struc-
tures. Finally, we find that we are able to
discover a good chunk of transitive verb syn-
The system is demonstrated on Hindi,
where we are also able to discover some mor-
phological agreement relations. Since we use
no knowledge of langauge, the same approach
also works for English.

This partial-analysis based approach is sub-
stantially different from other attempts at
grounded modeling in NLP, which have fo-
cused on demonstrating the acquisition of syn-
tax /morphosyntax (Madden et al., 2010),
(Kwiatkowski et al., 2011), (Nayak and Muk-
erjee, 2012). One may call this approach dy-
namic NLP, since it keeps learning from every
sentence, and does not generate a static model.
Also, after an initial bootstrapping phase
driven by this multi-modal corpus, learning
can continue to be informed by text alone, a
process well-known from the rapid vocabulary
growth after the first phase of language acqui-
sition in children (Bloom, 2000).

tax.

Figure 1: Set of trajectory images. Each tra-
jectory is associated with the motor parame-
ters of the throw.

2 Visuo-motor Pattern Discovery

Learning a few visuo-motor tasks are among
our agent’s very first achievements. Let us
consider the act of throwing a ball. Ol

learner knows the motor parameters of the
throw as it is being thrown - here we focus
not on the sequence of motor torques, but just
the angle and velocity at the point of release.

Each trajectory gives us an image (samples
- fig. 1). We are given a large set of im-
ages (say, N=1080), each with 100x100 pix-
els. Each image can be thought of as a point
in a 10*-dimensional space. The set of possible
images is enormous, but we note that if we as-
sign pixels randomly, the probability that the
resulting image will be a [throw] trajectory is
practically zero. Thus, the subspace of [throw]
images is very small.

Next we would like to ask what types of
changes can we make to an image while keep-
ing it within this subspace? In fact, since each
throw varies only on the parameters (6,v),
there are only two ways in which we can mod-
ify the images while remaining locally within
the subspace of throw images. This is the di-
mensionality of the local tangent space at any
point, and by stitching up these tangent spaces
we can model the entire subspace as a non-
linear manifold of the same intrinsic dimen-
sionality. The structure of this image mani-
fold exactly mimics the structure of the motor
parameters (the motor manifold). They can
be mapped to a single joint manifold, which
can be discovered using standard non-linear
dimensionality reduction algorithms such as
ISOMAP. In fig. 2, we show the resulting man-
ifold obtained using a hausdorff distance met-
ric (Huttenlocher et al., 1993): (h(A,B) =
mazqee Amingep ||a — b||).

a a

Figure 2: Variations in the manifold according
to a) angle of projection, and b) velocity. (low
values in yellow)

The same idea can be used to find correla-
tions in any system involving a motion or a
change of initial conditions, using this algo-
rithm:

Algorithm 1

rithm

Visuo-motor law discovery Algo-



No. of images 100 200 400 600 800 1000

SAE in velocity 3.69 3.57 3.85 2.71 2.38 1.93

Table 1: Sum Absolute Error (Velocity) falls
as IV increases

1: Input: Set  of high dimensional images
{I, Is,13,...In}, and corresponding control pa-
rameters.

2: Stepl: Obtain a low dimensional embedding for
the images using ISOMAP.

3: Step2: Train a regression model to acquire the
mapping from the low dimensional (curved) co-
ordinates to the control parameters.

4: Step3: For executing a new throw, use a (query)
image with desired path. Find a linear interpo-
lation J for this query image: J = Zle wjl;

5: Step4: Calculate the embedding points for the
query image using the weights learnt in Step3.
A k .

Q=>,_,w;d

6: Step5: Use the mapping learnt in Step2 to ob-
tain the corresponding parameters for the query
image J;.

end

This is a generic algorithm for discovering
patterns in visuo-motor activity. Initially, its
estimate of how to achieve a throw are very
bad, but they improve with experience. We
model this process in table 1 - as the number
of inputs N increases, the error in predicting a
throw decreases - at N=100, the error is nearly
twice that at N=1000.

Figure 3: Throwing darts. a) Two trajectores
that hit the board near the middle. b) 2D
manifold of projectile images, showing band
for “good throws”, and interpolated curve for
“best” throws.

The visuo-motor manifold model developed
here is not task-specific, but can be applied for
many tasks involving projectile motion, catch-
ing a ball, throwing at a basket, darts, tennis,
etc. As an example we can consider darts -
ignoring the lateral deviations, the successful
trajectories are those that intersect the dart-
board near its center (fig. 3a). This corre-
sponds to a “good zone” in the latent space
(central band in fig. 3b) Of these, one may2

wish to select those that are nearly orthogonal
to the board at contact (short curved axis).
Of course, actual task performance will im-
prove with experience (more data points in the
vicinity of the goal), resulting in better perfor-
mance. This model only provides a starting
point.

3 Bootstrapping Language

In order to learn language, we create a set of
15 situations involving the actions [throw]| and
[roll] (one of the agents is shown in fig. 1).
The videos of these actions are then put up for
commentary. Largely students on the campus
network contributed; we obtain 18 transcribed
narratives in Hindi. Later we also collected 11
English commentaries.

The compiled commentaries vary widely in
lexical and constructional choices. An exam-
ple description for of a video is ”daisy throws
a blue square”. Another subject describes the
same video as "now daisy threw the blue box
which fell right on the mark” . Both these nar-
ratives varies in terms of lexical units used as
well as the details incorporated in description.

As described earlier, we first select a more
coherent subset of narratives - those that have
a more consistent vocabulary from - and iden-
tify these as the family lect.

Given the [throw] model, the system can
identify the act of throwing, and also the agent
who throws, the object thrown, and its path.
Further, we assume similar capabilities (not
implemented) for [roll], and also the ability to
discriminate a square from a circle, red from
blue, and the two agents - [Dome] with a mous-
tache (fig. 1, male), and [Daisy] with a pony-
tail. Based on these distinctions, it tries to
find words that differ in their usage between
the two contrasting situations. (Note: we use
square brackets to indicate a concept, the se-
mantic pole of a linguistic symbol) This con-
trastive approach has been suggested as a pos-
sible strategy applied by child learners (Mark-
man, 1990). Given two contrasting concepts
c1,co, we compute the empirical joint proba-
bilities of word (or later, n-gram) w; and con-
cept c1,co, and compute their contrast score:

P (wi, Cl)
P (wj, c2)

We also compare the corpus of narratives

S‘Ui701 =



Schema | Top Hindi Lexemes Score |Fr9 | ratio
[circle] | & (ball) [ball] 199 |9 |143
Tt (gayi) [went] 139 |13
[square] | =R (chaukor) 251 |24 |5.00
[square]
fiRT (giraa) [fell] 501 |9

(daisy] | &5t (daisy) 275 |29 |10
I8! (uchaali) 215 (@
[toss]

[dome] | 21 (dome) 1356 (6 [176
Uz (pehley) [before] |7.67 |8

[throw] | =<t (pehley) [before] |6.95 |B 1.27
&7 (phenki) [throw] | 5.48 |10

[roll] TR (sarkaayaa) | 162 |15 |2.01
[roll]
w¥ed! (saraayi) gos |7
[roll]

[red] e (laal) [red] 108 |31 |353
& (ruki) [stopped] | 3.08 |2

[blug] teft (neeli) [blue] 146 |14 |1a7
el (neeley) [blue] 107 |10

Figure 4: High confidence lexeme discovery :
Contrastive scores and dominance ratio for top
lexemes in. Highlighted squares show high-
confidence lexemes (ratio more than twice)

here with that from a larger unannotated cor-
pus CIIL/IITB Corpus for Hindi. We look for
words that are more frequent in the input do-
main than in a general situation. This rules
out many frequent words like g, (hai,ke) [is,
of|. The small set of high confidence words
- whose contrastive probability is more than
twice the next best match - are highlighted in
Fig. 4.

3.1 Interleaving of Word / Syntax
learning

Once the system has a few grounded lexemes,
we proceed to discovering syntactic construc-
tions. At the start, we try to learn the struc-
ture of small contiguous elements. One as-
sumption we use here is that concepts that are
very tightly bound (e.g. object and its colour)
are also likely to appear in close proximity in
the text (Markman, 1990). Another assump-
tion (often called syntactic bootstrapping), is
used for mapping new phrases and creatiﬁg

et AR (laal chaukor) [red square]
RISAETICICIN
(laal rang ka chaukor) [red coloured-GEN square]

Table 2: Initial constructions learned from the
trajector delimited strings

ol 91T (laal ball) [red ball]
et I @1 ABR

(blue coloured-GEN square) [blue square]

Table 3: Syntax for trajector - iteration 1,
Family-lec

equivalence classes or contextual synonyms.
This says that given a syntactic pattern, if
phrase pl appears in place of a known phrase
p0, and if this substitution is otherwise im-
probable (e.g. the phrase is quite long), then
p0, pl are synonyms (if in the same semantic
class) or they are in the same syntactic lexical
category.

We find that one type of trajector (e.g.
“ball”) and its colour attribute (e.g. “lAl”,
[red]) have been recognized. So the agent
pays more attention to situations where these
words appear. Computationally this is mod-
elled by trying to find patterns among the
strings starting and ending with (delimited by)
one of these high-confidence labels (e.g. “red
coloured ball”). This delimited corpus con-
sistes of strings related to a known trajector-
attribute complex. Within these tight frag-
ments, we show that standard grammar induc-
tion procedures are able to discover prelimi-
nary word-order patterns which can be used
to induce broader regularities. We compare
two available unsupervised grammar induction
systems - Fast unsupervised incremental pars-
ing (Seginer, 2007) and ADIOS(Solan et al.,
2005); results shown here adopt the latter be-
cause of a more explicit handling of discovered
lexical classes.

The initial patterns learned for the trajector
in this manner are shown in Table 2. These are
generalized using the phrase substitution pro-
cess to yield the new lexeme a1 (ball), [ball]
(Table. 3). This is done based on the family-
lect (Figure 4), and the filtered sub-corpus is
used to learn patterns and equivalence classes.

The system now knows patterns for [red
square|, say, and it now pays attention to sit-
uations where the pattern is almost present,



[ DDA
i (rang ka chaukor)
([?)ll ey]) N [coloured square]
ot NEIEIS
(laal)[red] (rang ki ball)
= [coloured ball]
r et

(nili)[blue]
Tl

afet
%al()b[iiig - [ (ball)[ball] }
S
L (red)[red]
c :ﬁFﬁ
(nll%[éblue] '\"Tiﬁﬁ?{
(iteylbiuc] || (S
oflet
L (laal)[red]

Table 4: Learned constructions pertaining to
trajectors : The coloured units are the initially
grounded lexemes

except for a single substitution. It can look
into other semantic classes as well, (e.g. [blue
square], [red ball]). In most of these instances
(Fig. 4) we already have partial evidence for
these units from their contrastive scores. Now
if we discover new substitution phrases pl in
the position of p0, referring to a concept in the
same semantic class (e.g. [ball] for [square]),
and if pl is already partially acceptable for
[ball] based on contrastive probability, then pl
becomes an acceptable label for this semantic
concept. This process iterates - new lexemes
are used to induce new patterns, and then fur-
ther new lexemes, until the patterns stabilize.
This is then extended to the entire corpus be-
yond the small family lect; results are shown
in Table 4.

The table captures a reasonable diversity of
Noun Phrase patterns describing coloured ob-
jects. Note that words like “red” and “ball”
have also become conventionalized in Hindi.
We also observe that the token niley appears
in the 4-word pattern niley rang kaa chaukor
and is highly confident even from a single oc-
currence; this reflects the fast mapping process
observed in child language acquisition after the
initial grounding phase (Bloom, 2000). As the
iteration progresses, these patterns are used
for further enhancing the learners inventory
of partial grammar.

3.2 Verb phrases and sentence syntax

Having learned the syntax for a trajector, this
part of the input is now known with some cotn4

SCHEMA Top scoring Hindi score ratio
lexical units / cluster
[throw] Ugai (pehley) 6.89 | 1.49
[before]
=T, fir, Y 46
(gira, gir, giri)
[fall]
[roll] TR, AHRET 2366 | 7.78
(sarkaaya, sarkaayi)
[roll]
g&l (wahin) 3.04
[there]

Figure 5: Verb learning. Recomputed contrast
scores after morphological clustering. Note
that “threw” now appears as a high-confidence
label.

e 1l | S LD
[AGT] -NOM rolls [TRJ]

Table 5: Initially acquired sentence construc-
tions

fidence, and the learner can venture out to re-
late the agent to the action and path. In this
study, we failed to find any high-confidence
lexemes related to path, hence we were not
able to bootstrap that aspect. In the follow-
ing we restrict ourselves to patterns for the
semantic classes [agent], [action], [trajector].

At this stage, the agent notes that many
of the words seem rather similar (e.g.
“sarkAyA”, “sarkAyIl” (H); or “throwing”,
“thrown” (E)). A text-based morphological
similarity analysis reveals several clusters with
alterations at the end of words (Fig. 5). To
quantify this aspect, we consider normalised
Levenshtein distance and perform a morpho-
logical similarity analysis. Since our input is
text, we limit ourselves to analysis based on
the alphabetic patterns as opposed to phone-
mic maps. Similar words are clustered using
a normalized similarity index .Thus we have
twelve type instances of ( 31 -aa) - ( £ ii),
and seven types for (¥ -aa) - (5} -¢). We
find that these variants - e.g. “sarkaayaa”,
“sarkaayii” - appear in the same syntactic and
semantic context. These clusters are now used
to further strengthen the lexeme and action
association.



N

[ [AGT] 7 [TRJ] _, | (phenka)
([AGT] ne [TRJ]) et
(phenki)

[AGT] -NOM throws [TRJ]

Table 6: Sentence syntax discovered - iteration
1-FL

(

EF‘
3 g
=]
~
&
=

(phenki)
[AGT] 7 [TRJ] 5 [throws]
([AGT] ne [TRJ])
(sarkaayi)
TRBIT
(sarkaaya)

[rolls]

[AGT] ¥ el TR et
([AGT] ne nila chaukor phenka)
[[AGT] [throws a blue square]

Table 7: Learned constructions over trajector
phrases, The coloured units are the initially
grounded lexemes

Again, we use an iterative process, start-
ing with grounded unigrams, moving a level
up to learn simple word-order patterns, learn-
ing alternations and lexical classes through
phrase substitution, and so on to acquire a
richer lexicon and syntax. The learner has
the concept of agent and has associated the
words “daisy” and “dome”. One action word
is known (”sarkaaya”, roll) while the word for
“throw” is not discovered due to lexical varia-
tions. (Fig. 5). We now filter the corpus with
these known words and try to discover the verb
phrase syntax. Here the known trajector syn-
tax (table 4) is considered as a unit (denoted
as [TRJ], and the concept of agent ([daisy] or
[dome]) is denoted [AGT]. Results of initial
patterns, obtained based on the known action
lexeme, are shown in Table 5.

Next, we interleave this syntactic discov-
ery with lexical discovery, permitting also bi-
gram substitutions. This gives us the more
general results of Table 6. Again the system
iterates over the corpus till the discovery of
new patterns converges (Table 7). An inter-
esting observation is that the Hindi data finds
a phrase in the TRJ position - iefl DR (nilaa
chaukor) [blue square]. 'T'his had not been learned
in the trajector iteration, since nilaa was less
frequent. 255

Objects Abstract Fauna
ad, e R R
FRGA (naakhunon) [nails] | (drishti) (naag)
4 [bomb] [glance] [Cobra]
AT (rassa) [rope]

Table 8: Trajector classes for Hindi

Thus we see that with this approach we
are able to acquire several significant patterns.
These patterns apply to only a single action in-
put, and for a very limited set of other partic-
ipants. But it would be reasonable to say that
the agent may observe similar structures else-
where - e.g. in a context involving hitting, say,
if we have the sentence “Daisy hit Dome” then
the agent may use the syntax of [AGT] [verb]
[TRJ] to extend to this context and guess that
“hit” may be a verb and “Dome” the object of
this action (which it knows from the seman-
tics). Thus, once a few patterns are known,
it becomes easier to learn more and more pat-
terns, which is the fast mapping stage we have
commented upon earlier.

4 Expanding the selection set for
the verbs classes

In the grounded phase, we discovered that ob-
jects like [ball] can be thrown or pushed. Thus,

the verbs “Thahl (phenki)” would select for tra-

jectors such as “ball” or U gaind.

As the learner matures, she acquires a richer
ontology of actions and objects, and is of
course exposed to large amounts of language,
mostly without direct grounding. In the next
phase, we consider how this process enables an
expansion of the selection set for these verbs.
For this purpose, we consider the already fa-
miliar syntactic patterns. We use Hindi word-
Net as our knowledge base and analyse the
new situations with already familiar verbs and
syntaxes. We here consider the objects that
our known verbs take as arguments in a big-
ger Hindi CIIL/IITB corpus.

A total of 29 sentences for Hindi are ex-
tracted by filtering for the verb forms learned
for the actions in the grounded phase (“t\iv_cﬁ”
(phenki) etc .) While the syntax patterns for
these new sentences are much more complex,
we expect the trajector term to appear as the
noun that is closest to the verb; based on the
syntax learned we look at nouns before the
verb for Hindi language.



ball

square
box

Table 9: Learned trajector constructions

threw
has thrown
is throwing
has slid
is throwing
throws
pushed
rolled
is throwing
pushed

[AGT] — — E23 [TRJ]

[AGT] — { } — [TRJ]

Table 10: Learned constructions over trajector
phrases. E23 is the equivalence class learned
for a, the

We discover sentences such as “Scid drel
1Y, ACTE F TR R T TPt e
thepl” [ the stove man threw a sympathetic
glance at Motibhai’s face ], where the token
gf¥ (drishti) /glance] appears in the place of
[trajector]. Here it is as the object which
belongs to perception class and hence an
abstraction (see Table 8).

5 Acquiring another language:
English

Here we collected 11 commentaries, which
also vary widely. Again, starting with a
“family” corpus, we obtain a small set of
high-confidence labels (Figure 6, 7). At
the bigram discovery stage, “threw” and
“rolled” are found to be substitutable by has
thrown, is throwing; and has slid respectively.
Interestingly in expanding the corpus with
wordnet knowledge, we find that words such
as “glance”; “flashlight” etc. also appear as
throw-able in English, paralleling the Hindi
usage.

Note that our lexical categories differ widely
from syntactic categories, since they are in-
fluenced considerably by semantics. It is
quite possible that human language users also
use such mixed categories. At the same
time, several traditional structures (e.g. Adj-
N (red ball, laal chaukor),Art-N (E23 balBp0

Top English |score |F™0 | ratio
lexemes

ball 287 |27 |3.99
near [ 6
square 175 |17 |3.59
box 487 |4

daisy 236 |22 |7863
right 309 |2

dome 203 |29 |s.00
before 488 |4

threw 148 |14 191
throwing 17 (T

rolled g1z |7 1.12
slid 728 |6

red 810 |23 |395
slightly 205 |1

blue 567 |22 |143
which 395 i

Figure 6: High Confidence units

Top scoring score | ratio
English lexical
units / cluster
threw 14.86 | 2.36
Throwing, 6.29
thrown
rolled 8.07 [ 1.11
slid 7.27

Figure 7: High Confidence clusters

etc are also discovered (Table 9, 10). It
also discovers agreement between the unit
“chaukor”, [square, M| and verbs ending in
-aa. However, following the usage-based ap-
proach (Tomasello and Tomasello, 2009), we
would be inclined to view these constructions
as reducing the description length needed to
code for the strings arising in this context.
Thus the system has learned that the set
of objects (and words) selected by an action
such as “throw” may be broader than the ini-
tial set. This process actually broadens the



semantics of throw itself, from the initial in-
terpretation as a physical action, to something
broader. This broader semantics is actually
reflected in alternate word senses. One task
which we do not attempt here is to discover
this semantics as an extension of the original
semantics in the physical sense; this would also
be an important part of core NLP, but it is
quite a challenging topic in itself.

This work however lies in the space of vision
and action, and one may consider this process
in terms of discovering similarities between dif-
ferent actions in videos, an area that is other-
wise well-researched, but yet to reach this level
of analysis (e.g. (Efros et al., 2003)).

6 Conclusion

The above analysis provides a proof-of-concept
that a system starting with very few priors
can, a) combine motor, visual (and possibly
other modalities) into an integrated model,
and b) use this rudimentary concept knowl-
edge to bootstrap language. We also note that
such a system can then learn further refine-
ments to this concept space using language
alone.

From here work needs to proceed in two di-
rections. First would be to demonstrate scala-
bility by including actions other than [throw].
One of our main claims is that neither the
semantics nor the linguistic components had
any kind of annotation, so the training data
set needed for this should be relatively easy
to generate compared to tree banks and se-
mantically annotated data. The two linguistic
corpora and the videos are being released as
part of a multi-lingual, action centric corpus
that we call Videobabel. 1t is plausible that
with increasing availability of such unanno-
tated multi-modal corpora, along with motor-
enabled models of action, would permit the
rapid scaling of conceptual and linguistic mod-
els.
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