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Abstract

A robust voice activity detection (VAD) is

a prerequisite for many speech based ap-
plications like speech recognition. We in-
vestigated two VAD techniques that use
time domain and frequency domain char-
acteristics of speech signal. The temporal
characteristic of the autocorrelation lag is
able to discriminate speech and nonspeech
regions. In the frequency domain, peak
value of the magnitude spectrum in differ-
ent sub-bands is used for VAD.

Performance of the proposed methods
are evaluated on TIMIT database with
noises from NOISEX-92 database at var-
ious signal-to-noise ratio (SNR) levels.
From the experimental results, it is ob-
served that VAD based on autocorrelation
lag is working consistently better than the
maximum peak value of the autocorrela-
tion function based method. However,
it performs inferior compared to our sec-
ond approach and AMR-VAD2. Our sec-
ond approach i.e., VAD based on maxi-
mum spectral amplitude in sub-bands out-
performs AMR-VAD2 and Sohn VAD for
some noise conditions. Moreover, it is
shown that a threshold independent of
noises and their levels can be selected in
the proposed method.

I ntroduction

2013), wireless communications (Beritelli et al.,
1998), speech enhancement for hearing aids (ltoh
and Mizushima, 1997), etc. So, there has been
growing interest for developing a robust VAD in
low signal-to-noise ratio (SNR) conditions.

Approaches to VAD can be broadly classified
as model-based and non-model based (signal pro-
cessing) methods. One of the recent model-based
approaches is based on using non-negative sparse
coding (Teng and Jia, 2013). In this, a dictio-
nary is trained for speech and noise separately and
are concatenated to form a global dictionary. The
noisy signals are represented as linear combina-
tion of elements of global dictionary. One inherent
drawback of this technique is that it assumes noise
during the test time to be known apriori.

In addition, there are also statistical model-
based VADs (Sohn et al., 1999) (Ramirez et al.,
2005) (Tan et al., 2010). Here, typically the noisy
speech complex spectrum is assumed to follow a
distribution like Gaussian and the parameters are
estimated using various methods. This is followed
by a likelihood ratio test on each frame to declare
the signal frame to be speech absent or speech
present. Improvements to incorporate continuity
(Ramirez et al., 2005) and robustness (Tan et al.,
2010) have also been proposed. Most of these
techniques assume the noise statistics like variance
to be known apriori. In general, these techniques
perform poorly in low SNR conditions (You et al.,
2012).

On the other hand, there are signal processing
based approaches like using long-term signal vari-

Voice activity detection (VAD) aims at separating ability (Ghosh et al., 2011), spectral flux (Sad-
the background noise and speech. VAD plays afadi and Hansen, 2013), time-domain autocorrela-
important preprocessing role in applications liketion function (Ghaemmaghami et al., 2010), sub-
automatic speech recognition (Karray and Martinband order statistic filters (Ramirez et al., 2004)

2003), speaker verification (Kinnunen and R&janto the VAD problem. These primarily involve ex-
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tracting a feature which is specific to speech andire considered. Approximately, each test signal
robust to various noises. For example, methodhas 40 % of noisy speech part and 60 % of noise
based on time autocorrelation function proposegbart. The ground truth is generated by consider-
in (Ghaemmaghami et al., 2010), uses maximuning the appended silence along with labels of * h#
peak of autocorrelation function (at non-zero lag), ‘ pau ' and ‘ epi ' in the TIMIT phone file as

as the feature along with quasi periodicity prop-nonspeech and the other regions as speech. False
erty of speech to improve the robustness of VAD.alarm rate (% FAR) and miss rate (% MR) are used
In our time domain approach, we compare the peras evaluation metrics, and are given by,

formance of VAD using maximum peak of auto-
g p %FAR = nonspeech samples detected as spedch

correlation function (at non-zero lag) as a feature total number of nonspeech samples

against the corresponding lag of autocorrelatiorfL00

function. The method using maximum peak of au-

tocorrelation function (at non-zero lag) is referred  o\VR = ( Speechl Samrt))les ?etecte?] as norIISpe%hx

to as ACF-MAX and that using corresponding fotal number of speech samples

lag is referred to as ACF-LAG hereafter. In fre-

guency domain, the maximum amplitude of mag-

nitude spectrum in sub-bands is used as a feature The hglf total erro_r rate (HTER) (Ghaem-

for VAD, we refer to this method as MSA-SB. maghami et al., 2010) is computed as_ the mean of

While ACF-LAG method can be looked upon asFAR and MR. For a good VAD algorlthm, FAR,

an excitation based method, the MSA-SB can bR and HTER must be as low as possible.

a_ccounted as a system bas&_ed technique. Our tecB- The Time Domain M ethod

niques use speech production based features and

are expected to be robust to a wide variety of r "7 -

conditions. 0
Our contributions in this paper are, investi 200

ing robustness of autocorrelation lag over ;mg:'

method, proposing the use of maximum spe 2o0—

amplitudes in speech specific sub-bands and _, 21"

bining these contours along with mean, varii 1

normalizations to get a threshold independe °?[

noises and their dBs. 1
Rest of the paper is organized as follows. _i

database and evaluation metrics used are des (1)

in Section 2. The detailed description of time _;

main approach is given in Section 3. Sectic time (sec)

discusses the frequency domain technique. Con-

clusions follow in Section 5. Figure 1:lllustration of ACF-LAG and ACF-MAX
methods; (a) Noisy speech signal (white noise at

2 Database and Evaluation Metrics -10 dB), (b) Lag at the maximum in ACF plot, (c)

Difference of (b), (d) Maximum peak of normal-
The test signals are created by taking clearized ACF, (e) VAD from ACF-LAG method (dis-
speech signals from TIMIT (tim, 1993) corpus andplayed on clean speech signal for reference), (f)
synthetically adding noise from the NOISEX-92 VAD from ACF-MAX method (displayed on clean
(Varga and Steeneken, 1993) corpus. Around 88peech signal for reference)
signals from TIMIT corpus sampled at 16000 Hz
are taken. 10 signals from each of eight dialects The time domain autocorrelation function has
with 7 male and 3 female sentences are randomligeen used in the past for many basic speech pro-
selected. Every signal is appended with approxeessing tasks like pitch extraction (de Cheveign
imately 2 sec silence before and after the speecand Kawahara, 2002). These methods exploit two
signal and then noise is added to it at desired SNRkey features associated with the autocorrelation
Seven different noises are used from NOISEX-9Zunction, one is the lag of the maximum peak
database and SNRs at -10dB, -5dB, 0dB arft 5dBvhich is usually used to compuf& and the other



is the amplitude of maximum peak which is usedthat for unvoiced/noise regions the values of in-
to decide whether a speech frame is voiced or undex vary randomly where as in voiced regions, it
voiced. The maximum amplitude of autocorrela-varies smoothly. This characteristic of the con-
tion function (ACF-MAX) is not a robust feature tour is used to detect voiced and unvoiced/noise
in low SNR conditions. So, in (Ghaemmaghami etregions in speech. The difference operation on
al., 2010), along with ACF-MAX, the quasi peri- contour, will give its slope and slope should be
odicity property of speech is incorporated as a feaminimal when the contour is slowly varying. VAD
ture by using the cross-correlation to take the VADdecision is taken by setting a threshold on differ-
decision. To exploit quasi-periodicity of speech,enced vector. Fig. 1 (e) and (f), shows VAD de-
we propose to use the lag of the autocorrelatiortisions from ACF-LAG and ACF-MAX methods
function (ACF-LAG) as a feature for VAD. The respectively. It can be seen that ACF-LAG method
basis for our method comes from the observatiomperforms better than ACF-MAX method.

that the pitch period of speech signals is locally

stationary and varies smoothly in voiced regionsl.able 1:FAR and MR for various noises in differ-
(e.g., Fig. 1(b) region around 2-2.5 sec) where as i

) . . . . ent SNRs for ACF-LAG and ACF-MAX methods
in noise or unvoiced regions the lag varies errat

White 5dB 0dB -5dB -10dB

i i i - Noiss |[MR% FAR%|MR% FAR%|MR% FAR%|MR% FAR%
Ica”y (e'g" Flg' l(b) region around 0-1 sec). It ACF-ILAG 5290 0.05 | 5861 004 | 6764 004 | 8196 0.01

is this speech specific feature which is exploited ACFMAX [ 7121 000 [ 8282 000 | 9379 000 | 9924 0.00
here to detect speech and noisy regions in a givemn pink 5dB 0dB 5dB -iode

. . Noise MR% FAR%|MR% FAR%|MR% FAR%|MR% FAR%
signal. To the best of authors knowledge, pitch peracrias 75780 o007 [ 656z 004 | 7822 0.04 [ 6105  0.09

riod or lag has not been solely used for VAD prevj--“c-¥ LS80 000 [ 8141 000 [ 9262 000 | 3059 000

H HFch el 5dB 0dB -5dB -10dB
ously. Hence, ACF-LAG performance is analysed " | o0 O e R o AR 06 TR o xR %%
for VAD |n th|S Sectlon ACF-LAG | 55.49 0.09 | 63.38 0.09 | 75.44 0.16 | 89.96 0.09

ACF-MAX | 70.40 0.00 | 82.01 0.00 | 93.70 0.00 | 98.94  0.00

In our method, the input speech is segmente
Factoryl 5dB 0dB -5dB -10dB

into frames with frame size of 20 ms and shift of| s [MR% FAR%|MR% FAR%|MR% FAR%|MR% FAR%
th . ACF-LAG 55.52 3.29 63.46 4.70 76.03 3.83 88.07 3.62
10 ms. Letrp [n} be thep S|gnal frame, the NOr- acewvax | es96 002 [ 8125 001 | 9203 000 | 98.00 000

malised autocorrelation function for the frame iSgmest =dB odB a5 548
Noise MR% FAR%|MR% FAR%|MR% FAR%| MR% FAR%
CompUted a.S, ACF-LAG 57.17 0.21 65.16 0.26 78.23 0.19 90.99 0.28

ACF-MAX | 70.73 0.00 | 83.04 0.00 | 94.25 0.00 | 99.29 0.00

Volvo 538 03B 5B 008
> xp[n]apn+1] Noise |MR% FAR%|MR% FAR%| MR% FAR% | MR% FAR%
n=0 ACF-LAG | 5661 007 | 6399 004 | 7532 00L | 8707  0.00
Ryll] = =) QD) ACF-MAX | 6370 001 | 7207 001 | 8325 000 | 92.36  0.00
> T [n}xp [n] Babble 5d8 0dB 5dB 1008
=0 Noiss |MR% FAR%|MR% FAR%|MR% FAR%|MR% FAR%

ACF-LAG | 51.25 19.28 | 5945 16.71 | 7041 17.81 | 7793 17.27
ACF-MAX | 66.33 3.58 | 77.52 3.07 | 89.15 3.93 | 95.17 3.51

wherel! is the autocorrelation lag anb is the
length of the signal frame. Usuallys limited be-
tween 2 ms and 20 ms because any value of pitcg 1 Results

outside this range is considered to be spurious.
Table 1 reports MR and FAR of ACF-LAG and

V(p) = max R,(l) (2) ACF-MAX methods. FAR is low for both the
methods across all the noises at different SNRs.
I(p) = argmax R, (1) (3) This implies that rejection of nonspeech by both

! the algorithms is equally good. It can also be ob-

whereV (p) is the peak of autocorrelation func- served from the Table 1 that ACF-LAG method
tion at non-zero lag anfl(p) is the corresponding has relatively lower MR than the ACF-MAX
lag at which the peak occurs per frame. method. Hence, our hypothesis that lag of the

In ACF-MAX method, peak of autocorrelation autocorrelation function at the maximum is a ro-
function (eq. 2) is thresholded to get the VAD bust feature compared to the peak value itself is
decision. In ACF-LAG method, VAD decision is evident. The MR is high in both the methods in-
made using the lag (eq. 3) corresponding to maxeicating that actual speech is missed in most of
imum of autocorrelation function./(p) is plot- the cases. This is due to the fact that proposed
ted in Fig. 1(b). From the plot, it can be Lenmethods work only for voiced regions but ground



truth includes both voiced and unvoiced regiongrom the Fig. 3 (b) and (c), for pink noise (at -5 dB
as speech. Thus both the techniques are far frol8NR), passing the maximum contour through the
being useful as a practical VAD and hence we exiow-pass filter, even the noisy region has a slowly

plore the frequency domain approach. varying maximum amplitude. This is because of
_ the high concentration of low frequency energy in
4 TheFrequency Domain Method pink noise.

The resonances of the vocal tract are high ersr
regions in the spectrum and are hence exp o
to be robust to noisy conditions. Due to inhe ™

1 T T T T T T T
constraints in the human speech production "O'S;WWWW ®
o \

anism, the variation of spectrum is slow as ¢ ;|

pared to noisy regions. This facthasbeenusesr A~ .. . ~ = 10O

the literature for VAD, by utilizing feature such §

spectral flux. However, our technique differs fio-5- JWWW 1@

all the previous techniques by making use of r :

imum of the magnitude spectrum alone as the®5; AN 1@

ture. The maximum in magnitude spectrum : : : : : : : |
responds to the strength of a resonance of _2—EWWW ‘ 10
tract in speech regions and is used as a feat: 1 2 3 ime(sec) 5 6 !
distinguish speech from nonspeech.

The given noisy signal is first segmented intoFigure 2:The maximum contours of the DFT spec-
frames with frame size of 25 ms and hop of 5 mstrum in white noise at -5 dB; (a) Noisy signal, (b)
Each frame is windowed with a hamming win- Maximum amplitude in the magnitude spectrum,
dow. The discrete Fourier transform (DFT) fgf (c) Low-pass filtered signal of (b), (d) Maximum
frame of the signal is computed as, amplitude in the resonance 1 sub-band of magni-
tude spectrum, (e) Low-pass filtered signal of (d),

(@

pley 2k (f) VAD from MSA-SB method (displayed on clean
X, [k] = N 4 )
plk] Z% wplnje™ N () speech signal for reference)

where N is the number of DFT points and
ranges from),--- , N —1. N issetto 2048 inol |
experiments. Then the maximum of the magni -
part of the complex spectrum for each frame i:o_;
desired spectral feature. 0

1

M(p) = max |X,(k)|; k=0,1,--- ,N—1 (5:0',5)7
In Fig. 2, noisy signal (signal corrupted w2}
white noise at -5 dB) is shown in (a) and the :
responding maximum of the DFT spectrum"'i’
tracted per frame is plotted in (b). It is obser *
that in the noise part, there is a high frequenc;_f
ple (e.g., Fig. 2(b) region around 0-1 sec) ar time(sec)
the speech region the variation of maximum over
time is slow and smooth (e.g., F|g 2(b) regionFigure 3:The maximum contours of the DFT spec-
around 2-3 sec). So, an FIR filter is used for low-trum in pink noise at -5 dB; (a) Noisy signal, (b)
pass filtering to remove the ripple. The low-pasgMaximum amplitude in the magnitude spectrum,
filtered version of the maximum contour is plotted (C) Low-pass filtered signal of (b), (d) Maximum
in (c) which is then thresholded to take the VAD amplitude in the resonance 1 sub-band of magni-
decision. tude spectrum, (e) Low-pass filtered signal of (d),
While this method works for white noise, it fails (f) VAD from MSA-SB method (displayed on clean
for few noises like pink and volvo. As can beYeenspeech signal for reference)




This motivated us to experiment with maximum This is due to combination of three sub-bands, fol-
contours in sub-bands that are specific to vocalowed by mean and variance normalization that is
tract resonances. The entire spectrum, is dividedanceling the effect of noise level through out the
into three sub-bands, which were chosen to basignal. Sohn method (Sohn et al., 1999) for VAD
300-900Hz , 600-2800 Hz and 1400-3800 Hz corprovides an option to vary thresholds. False alarm
responding to ranges of first three vocal tract resorate (FAR) and correct detection rate (CDR) varies
nances (Deng et al., 2006). The maximum in eaclaccording to threshold. ROCs are plotted by tak-
sub-band of the spectrum is then computed. Figing FAR on x-axis and CDR on y-axis for vari-
2 (d) and 3 (d) show the maximum contour in res-ous thresholds. ROCs of our method are compared
onance 1 sub-band corresponding to speech signaith VAD using Sohn (Sohn et al., 1999) method
with white and pink noise at -5 dB. These maxi-as shown in fig. 4. It is observed that our method
mum contours are then low-pass filtered (Figs. dutperforms Sohn for all the tested noises at differ-
(e) and 3 (e)). Thus, it can be seen that maximunent dBs. After selecting an appropriate threshold
contours in a sub-band specific to speech, is able ttom ROC, our method is compared with AMR-
robustly discriminate speech and noise regions, agAD2 (AMR, 1998) in the results section.
opposed to the full-band maximum contours. This

is because maximum picked in sub-band 1 corerype 2: FAR and MR for various noises in differ-

sponds to vocal tract resonance in speech regiog: sNRs for MSA-SB and AMR2 methods
and to an arbitrary maximum in noise regions. AS—yie =dB 0B =8 08

transition of vocal tract is a continuum, the varia-— s R R TR Y

tion of maximum contour is smooth in speech re- AMRz | 692 239 [ 2083 149 [ 4780 063 | 8338 032
gions and is otherwise in noise regions. And alsg Pink 5dB 0dB 5dB -10d8

) . . . Noise MR% FAR%|MR% FAR%|MR% FAR%|MR% FAR%
in this sub-bands maximum of speech has higherwsass [ 1470 185 | 1924 fe1 | 2657 146 | 3950 2.28

. . AMR2 5.84 2.80 | 21.32 1.83 | 50.83 0.72 | 83.24 0.48
amplitude than that of noise.

HFchannel 5dB 0dB -5dB -10dB
Noise MR% FAR%| MR% FAR%|MR% FAR%| MR% FAR%

Experimental results show that maximum in_ugaee i 1g Hew 18 Faa io fun tn
sub-band 1 is sufficient for robust VAD. VAD deci-

. . . . Factoryl 5dB 0dB -5dB -10dB
sion is obtained by setting a threshold on the low: o [VMR% FAR% | MR% FAR%| MR% FAR%|MR% FAR%
pass filtered version of maximum contour. Figs| “aurs | 257 3761|1015 3625 2564 3770| 4547 3736
2 (f) and 3 (f) show the resulting VAD. One way gimrei =@ a8 =8 548
of setting threshold is by picking @ maximum in|_Nose__ WR% FARY MRY FARY | MRS FAR Y NR% FARY
first 50 ms from low-pass filtered version of thel AvRz | 717 3292436 205[5617 118 87.66 084
noisy signal assuming that it is devoid of speech[vov 5d8 0dB 5dB -10dB
This threshold automatically varies for different WSASE | 659 291 | 1056 213 | 1154 204 | 1564 168
noises and SNRs. Though, it is the simplest way—"-—-* 5571 0% 53 | 051 5% ] 0% 54
of selecting threshold, it might not be the appro- Foo e o o R o TR oo MR e
priate way in all cases. Thus, for a more efficient st 2s o Lo s Lioss mutone o
thresholding operation, we used the combined de-
cision of low-pass filtered versions of three bands#1 Results
Mean subtraction and variance normalization isThe proposed algorithms are compared against the
performed on low-pass filtered versions of threestandard ETSI AMR-VAD2 (AMR, 1998). The
selected bands. The output is summed up anBAR and MR of our methods along with the base-
again mean subtraction and variance normalizaline techniques in various noisy conditions in four
tion is performed to get a final contour on which different SNRs are reported in Table 2. The corre-
VAD decision is to be taken. The histogram for sponding HTER is plotted in Fig. 5. The lower
this final contour varies between -2 to 5. So,HTER indicates better performance of the algo-
threshold is varied between -0.5 to 0.8 to decideithm. We can observe from the bar graph that
upon a proper value for speech-nonspeech decfer most of the noise conditions, MSA-SB method
sion. ROC curves obtained are shown in fig. 4outperforms @"¢ bar (light yellow) from the left
We can observe that the same threshold that is irin every noise) all other methods at low SNR lev-
dependent of noise and SNR can be applied on fiels. For volvo noise, we can see that MSA-SB

nal contour to get an appropriate VAD decf¥on.method has lower FAR but higher MR compared
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Figure 4:ROC curves for different noises at -10, -5, 0 and 5 dB

to AMR2. This is because of the threshold set-5 Conclusionsand Future Work
ting, some unvoiced and stop sounds might have

been recognised as nonspeech in volvo. In bahy this paper, we investigated two methods for
ble noise, from the Table 2 one can observe thayap in low SNR conditions. We experimented on
the FAR is consistently lower for MSA-SB than geyen noise conditions under four different SNRs.
that of the AMR2 method. However in AMR2, The time domain analysis revealed that lag of
MR is lower than all the methods for all SNRs in the autocorrelation function at peak (ACF-LAG)
babble. This is attributed to the fact that our al-is more reliable than peak value (ACF-MAX) it-
gorithms rely on speech specific features and babse|f. The frequency domain MSA-SB method was
ble being speech like noise, shows a drop in th@ound to be very robust even under very low SNR
performance. In summary, for most noises MSA-conditions and justifies our motivation for choos-
SB outperforms AMR2, while in some it performs jg sub-bands specific to vocal tract resonance
comparable to it. ranges. The combination of sub-bands followed
by mean and variance normalization has resulted
53 in choosing a threshold independent of noise con-
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Figure 5:% HTER performance of the proposed algorithms along with the baselineodgefbr each
noise scenario at SNRs 5dB, 0 dB, -5dB, -10dB.

ditions and levels. In future, we plan to do ex- Houman Ghaemmaghami, Brendan J Baker, Robert J

tensive evaluation of the technique on real world Vogt, and Sridha Sridharan.  2010.  Noise ro-

speech signals. bust voice activity detectlc_)n using featl_Jres ex-
tracted from the time-domain autocorrelation func-
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