
INLG and SIGDIAL 2014

Proceedings of the INLG and SIGDIAL 2014 Joint Session

Organizers:
Margaret Mitchell, Kathleen McCoy, David McDonald, Aoife Cahill, Ani

Nenkova, and Helen Hastie

19 June 2014
Philadelphia, PA, USA

The first joint session of the ACL Special Interest Groups on
Natural Language Generation (SIGGEN) and Discourse and Dialogue

(SIGDIAL)

c
�2014 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-941643-23-5

ii

Introduction

Welcome to the first joint session of INLG and SIGDIAL! INLG is the biennial meeting of the ACL
Special Interest Group on Natural Language Generation (SIGGEN), and SIGDIAL is the annual meeting
of the ACL Special Interest Group on Discourse and Dialogue (SIGDIAL). 3 papers (2 long, 1 short)
were accepted for a special joint session on generation and dialogue, included in this document. This
marks the first year where researchers in SIGDIAL and SIGGEN will come together to discuss issues
relevant to both communities.

Margaret Mitchell, Kathleen McCoy, David McDonald, Aoife Cahill, Ani Nenkova, and Helen Hastie
INLG 2014 and SIGDIAL 2014 Program Chairs

iii

Organizers:

Margaret Mitchell, Microsoft Research (MSR)
Kathleen McCoy, University of Delaware
David McDonald, Smart Information Flow Technologies (SIFT)
Aoife Cahill, Educational Testing Service (ETS)
Ani Nenkova, University of Pennsylvania
Helen Hastie, Heriot Watt University

v

Table of Contents

INLG and SIGDIAL 2014 Joint Session Proceedings

Modeling Blame to Avoid Positive Face Threats in Natural Language Generation
Gordon Briggs and Matthias Scheutz . 1

Generating effective referring expressions using charts
Nikolaos Engonopoulos and Alexander Koller . 6

Crowdsourcing Language Generation Templates for Dialogue Systems
Margaret Mitchell, Dan Bohus and Ece Kamar . 16

Proceedings of the INLG and SIGDIAL 2014 Joint Session, pages 1–5,
Philadelphia, Pennsylvania, 19 June 2014. c�2014 Association for Computational Linguistics

Modeling Blame to Avoid Positive Face Threats in Natural Language
Generation

Gordon Briggs
Human-Robot Interaction Laboratory

Tufts University
Medford, MA USA

gbriggs@cs.tufts.edu

Matthias Scheutz
Human-Robot Interaction Laboratory

Tufts University
Medford, MA USA

mscheutz@cs.tufts.edu

Abstract
Prior approaches to politeness modulation
in natural language generation (NLG) of-
ten focus on manipulating factors such as
the directness of requests that pertain to
preserving the autonomy of the addressee
(negative face threats), but do not have a
systematic way of understanding potential
impoliteness from inadvertently critical or
blame-oriented communications (positive
face threats). In this paper, we discuss on-
going work to integrate a computational
model of blame to prevent inappropriate
threats to positive face.

1 Introduction
When communicating with one another, people
often modulate their language based on a variety
of social factors. Enabling natural and human-
like interactions with virtual and robotic agents
may require engineering these agents to be able
to demonstrate appropriate social behaviors. For
instance, increasing attention is being paid to the
effects of utilizing politeness strategies in both
human-computer and human-robot dialogue inter-
actions (Cassell and Bickmore, 2003; Torrey et
al., 2013; Strait et al., 2014). This work has
shown that, depending on context, the deployment
of politeness strategies by artificial agents can in-
crease human interactants’ positive assessments of
an agent along multiple dimensions (e.g. likeabil-
ity).

However, while these studies investigated the
human factors aspects of utilizing politeness
strategies, they were not concerned with the nat-
ural language generation (NLG) mechanisms nec-
essary to appropriately realize and deploy these
strategies. Instead, there is a small, but grow-
ing, body of work on natural language genera-
tion architectures that seek to address this chal-
lenge (Gupta et al., 2007; Miller et al., 2008;

Briggs and Scheutz, 2013). The common ap-
proach taken by these architectures is the opera-
tionalization of key factors in Brown and Levin-
son’s seminal work on politeness theory, in partic-
ular, the degree to which an utterance can be con-
sidered a face-threatening act (FTA) (Brown and
Levinson, 1987).

While this prior work demonstrates the abilities
of these NLG architectures to successfully pro-
duce polite language, there remain some key chal-
lenges. Perhaps the most crucial question is: how
does one calculate the degree to which an utter-
ance is a FTA1? This is a complex issue, as not
only is this value modulated by factors such as so-
cial distance, power, and context, but also the mul-
tifaceted nature of “face.” An utterance may be
polite in relation to negative face (i.e. the agent’s
autonomy), but may be quite impolite with regard
to positive face (i.e. the agent’s image and per-
ceived character).

In this paper, we investigate the problem of
modeling threats to positive face. First we discuss
how prior work that has focused primarily on miti-
gating threats to negative face, and examine a spe-
cific example, taken from the human subject data
of (Gupta et al., 2007), to show why accounting
for positive face is necessary. Next, we discuss
our proposed solution to begin to model threats to
positive face– specifically, integrating a computa-
tional model of blame. Finally, we discuss the jus-
tification behind and limitations of this proposed
approach.

2 Motivation

Brown and Levinson (1987) articulated a tax-
onomy of politeness strategies, distinguishing
broadly between the notion of positive and neg-
ative politeness (with many distinct strategies for
each). These categories of politeness correspond

1Less crucially, what is the appropriate notation for this
value? It is denoted differently in each paper: ⇥, W , and ⌘.

1

to the concepts of positive and negative face, re-
spectively. An example of a positive politeness
strategy is the use of praise (“Great!”), whereas
a common negative politeness strategy is the use
of an indirect speech act (ISA), in particular, an
indirect request. An example of an indirect re-
quest is the question, “Could you get me a cof-
fee?”, which avoids the autonomy-threatening di-
rect imperative, while still potentially being con-
strued as a request. This is an example of a con-
ventionalized form, in which the implied request
is more directly associated with the implicit form.
Often considered even less of a threat to negative
face are unconventionalized ISAs, which often re-
quire a deeper chain of inference to derive their
implied meaning. It is primarily the modulation of
the level of request indirectness that is the focus of
(Gupta et al., 2007; Briggs and Scheutz, 2013).

To provide an empirical evaluation of their sys-
tem, Gupta et al. (2007) asked human subjects
to rate the politeness of generated requests on a
five-point Likert scale in order of most rude (1)
to to most polite (5). The results from (Gupta et
al., 2007) for each of their politeness strategy cat-
egories are below:

1. Autonomy [3.4] (e.g. “Could you possibly do
X for me?”)

2. Approval [3.0] (e.g. “Could you please do X
mate?”)

3. Direct [2.0] (e.g. “Do X .”)

4. Indirect [1.8] (e.g. “X is not done yet.”)

This finding is, in some sense, counterintuitive,
as unconventionalized request forms should be
the least face-threatening. However, Gupta et al.
(2007) briefly often an explanation, saying that the
utterances generated in the indirect category sound
a bit like a “complaint or sarcasm.” We agree with
this assessment. More precisely, while negative
face is protected by the use of their unconvention-
alized ISAs, positive face was not.

To model whether or not utterances may be in-
terpreted as being complaints or criticisms, we
seek to determine whether or not they can be in-
terpreted as an act of blame2.

2What the precise ontological relationship is between
concepts such as complaining, criticizing, and blaming is be-
yond the scope of this paper.

3 Approach

Like praise, blame (its negative counterpart) is
both a cognitive and social phenomenon (Malle et
al., 2012). The cognitive component pertains to
the internal attitudes of an agent regarding another
agent and their actions, while the social compo-
nent involves the expression of these internal at-
titudes through communicative acts. To achieve
blame-sensitivity in NLG, we need to model both
these aspects. In the following sections, we briefly
discuss how this could be accomplished.

3.1 Pragmatic and Belief Reasoning
Before a speaker S can determine the high-level
perlocutionary effects of an utterance on an ad-
dressee (H) vis-á-vis whether or not they feel crit-
icized or blamed, it is first necessary to determine
the precise set of beliefs and intentions of the ad-
dressee upon hearing an utterance u in context c.
We denote this updated set of beliefs and inten-
tions H(u, c). Note that this set is a model of
agent H’s beliefs and intentions from the speaker
S’s perspective, and not necessarily equivalent to
the actual belief state of agent H . In order to per-
form this mental modeling, we utilize a reason-
ing system similar to that in (Briggs and Scheutz,
2011). This pragmatic reasoning architecture uti-
lizes a set of rules of the form:

[[U]]C := �1 ^ ... ^ �n

where U denotes an utterance form, C
denotes a set of contextual constraints that
must hold, and � denotes a belief update
predicate. An utterance form is specified
by u = UtteranceType(↵,�, X,M), where
UtteranceType denotes the dialogue turn type
(e.g. statement, y/n-question), ↵ denotes the
speaker of the utterance u, � denotes the addressee
of the utterance, X denotes the surface semantics
of the utterance, and M denotes a set of sentential
modifiers. An example of such a pragmatic rule is
found below:

[[Stmt(S,H,X, {})]]; := want(S, bel(H,X))

which denotes that a statement by the speaker
S to an addressee H that X holds should in-
dicate that, “S wants H to believe X ,” in all
contexts (given the empty set of contextual con-
straints). If this rule matches a recognized ut-
terance (and the contextual constraints are satis-

2

fied, which is trivial in this case), then the men-
tal model of the addressee is updated such that:
want(S, bel(H,X)) 2 H(u, c).

Of particular interest with regard to the Gupta
et al. (2007) results, Briggs and Scheutz (2011)
describe how they can use their system to un-
derstand the semantics of the adverbial modifier
“yet,” which they describe as being indicative of
mutually understood intentionality. More accu-
rately, “yet,” is likely indicative of a belief regard-
ing expectation of an action being performed or
state being achieved. Therefore, a plausible prag-
matic rule to interpret, “X is not done yet,” could
be:

[[Stmt(S,H,¬done(X), {yet})]]; :=

want(S, bel(H,¬done(X))) ^

expects(S, done(X))

Furthermore, in a cooperative, task-driven con-
text, such as that described in (Gupta et al., 2007),
it would not be surprising for an interactant to infer
that this expectation is further indicative of a belief
in a particular intention or a task-based obligation
to achieve X .3

As such, if we consider an utterance ud as being
a standard direct request form (strategy 3), and an
utterance uy as being an indirect construction with
a yet modifier (strategy 4), the following facts may
hold:

bel(S, promised(H,S,X, tp)) 62 H(ud, c)

bel(S, promised(H,S,X, tp)) 2 H(uy, c)

If S is making a request to H , there is no be-
lieved agreement to achieve X . However, if “yet,”
is utilized, this may indicate to H a belief that S
thinks there is such an agreement.

Having calculated an updated mental model of
the addressee’s beliefs after hearing a candidate ut-
terance u, we now can attempt to infer the degree
to which u is interpreted as an act of criticism or
blame.

3.2 Blame Modeling
Attributions of blame are influenced by several
factors including, but not limited to, beliefs about
an agent’s intentionality, capacity, foreknowledge,
obligations, and possible justifications (Malle et

3How precisely this reasoning is and/or ought to be per-
formed is an important question, but is outside the scope of
this paper.

al., 2012). Given the centrality of intentionality
in blame attribution, it is unsurprising that current
computational models involve reasoning within a
symbolic BDI (belief, desire, intention) frame-
work, utilizing rules to infer an ordinal degree of
blame based on the precise set of facts regarding
these factors (Mao and Gratch, 2012; Tomai and
Forbus, 2007). A rule that is similar to those found
in these systems is:

bel(S, promised(H,S,X, tp)) ^ bel(S,¬X) ^

bel(S, (t > tp)) ^ bel(S, capable of(H,X))

) blames(S,H, high)

that is to say, if agent S believes agent H
promised to him or her to achieve X by time
tp, and S believes X has not been achieved and
the current time t is past tp, and S believes H
is capable of fulfilling this promise, then S will
blame H to a high degree. Continuing our discus-
sion regarding the perlocutionary effects of ud and
uy, it is likely then that: blames(S,H, high) 62

 H(ud, c) and blames(S,H, high) 2 H(uy, c).

3.3 FTA Modeling
Having determined whether or not an addressee
would feel criticized or blamed by a particu-
lar candidate utterance, it is then necessary to
translate this assessment back into the terms of
FTA-degree (the currency of the NLG system).
This requires a function �() that maps the or-
dinal blame assessment of the speaker toward
the hearer based on a set of beliefs , de-
scribed in the previous section, to a numerical
value than can be utilized to calculate the sever-
ity of the FTA (e.g. blames(S,H, high) = 9.0,
blames(S,H,medium) = 4.5). For the purposes
of this paper we adopt the theta-notation of Gupta
et al. (2007) to denote the degree to which an ut-
terance is a FTA. With the � function, we can then
express the blame-related FTA severity of an utter-
ance as:

⇥blame(u, c) = �H(H(u, c))� ↵(c) · �S(S)

where �H denotes the level of blame the speaker
believes the hearer has inferred based on the ad-
dressee’s belief state after hearing utterance u with
context c (H(u, c))). �S denotes the level of
blame the speaker believes is appropriate given his
or her current belief state. Finally, ↵(c) denotes a

3

multiplicative factor that models the appropriate-
ness of blame given the current social context. For
instance, independent of the objective blamewor-
thiness of a superior, it may be inappropriate for a
subordinate to criticize his or her superior in cer-
tain contexts.

Finally, then, the degree to which an utterance is
a FTA is the sum of all the contributions of evalu-
ations of possible threats to positive face and pos-
sible threats to negative face:

⇥(u, c) =
X

p2P
⇥p(u, c) +

X

n2N
⇥n(u, c)

where P denotes the set of all possible threats
to positive face (e.g. blame) and N denotes the set
of all possible threats to negative face (e.g. direct-
ness).

We can see how this would account for the
human-subject results from (Gupta et al., 2007), as
conventionally indirect requests (strategies 1 and
2) would not produce large threat-value contri-
butions from either the positive or negative FTA
components. Direct requests (strategy 3) would,
however, potentially produce a large⇥N contribu-
tion, while their set of indirect requests (strategy
4) would trigger a large ⇥P contribution.

4 Discussion

Having presented an approach to avoid certain
types of positive-FTAs through reasoning about
blame, one may be inclined to ask some questions
regarding the justification behind this approach.
Why should we want to better model one highly
complex social phenomenon (politeness) through
the inclusion of a model of another highly complex
social phenomenon (blame)? Does the integration
of a computational model of blame actually add
anything that would justify the effort?

At a superficial level, it does not. The
criticism/blame-related threat of a specific speech
act can be implicitly factored into the base FTA-
degree evaluation function supplied to the sys-
tem, determined by empirical data or designer-
consensus as is the case of (Miller et al., 2008).
However, this approach is limited in a couple
ways. First, this does not account for the fact that,
in addition to the set of social factors Brown and
Levinson articulated, the appropriateness of an act
of criticism or blame is also dependent on whether
or not it is justified. Reasoning about whether or

not an act of blame is justified requires: a compu-
tational model of blame.

Second, the inclusion of blame-reasoning
within the larger scope of the entire agent ar-
chitecture may enable useful behaviors both in-
side and outside the natural language system.
There is a growing community of researchers in-
terested in developing ethical-reasoning capabili-
ties for autonomous agents (Wallach and Allen,
2008), and the ability to reason about blame has
been proposed as one key competency for such
an ethically-sensitive agent (Bello and Bringsjord,
2013). Not only is there interest in utilizing such
mechanisms to influence general action-selection
in autonomous agents, but there is also interest in
the ability to understand and generate valid expla-
nations and justifications for adopted courses of
action in ethically-charged scenarios, which is of
direct relevance to the design of NLG architec-
tures.

While our proposed solution tackles threats
to positive face that arise due to unduly
critical/blame-oriented utterances, there are many
different ways of threatening positive face aside
from criticism/blame. These include phenomena
such as the discussion of inappropriate/sensitive
topics or non-cooperative behavior (e.g. purpose-
fully ignoring an interlocutor’s dialogue contribu-
tion). Indeed, empirical results show that referring
to an interlocutor in a dyadic interaction using an
impersonal pronoun (e.g. “someone”) may consti-
tute another such positive face threat (De Jong et
al., 2008). Future work will need to be done to de-
velop mechanisms to address these other possible
threats to positive face.

5 Conclusion

Enabling politeness in NLG is a challenging prob-
lem that requires the modeling of a host of com-
plex, social psychological factors. In this paper,
we discuss ongoing work to integrate a compu-
tational model of blame to prevent inappropriate
threats to positive face that can account for prior
human-subject data. As an ongoing project, future
work is needed to further test and evaluate this pro-
posed approach.

Acknowledgments

We would like to thank the reviewers for their
helpful feedback. This work was supported by
NSF grant #111323.

4

References
Paul Bello and Selmer Bringsjord. 2013. On how to

build a moral machine. Topoi, 32(2):251–266.

Gordon Briggs and Matthias Scheutz. 2011. Facilitat-
ing mental modeling in collaborative human-robot
interaction through adverbial cues. In Proceedings
of the SIGDIAL 2011 Conference, pages 239–247,
Portland, Oregon, June. Association for Computa-
tional Linguistics.

Gordon Briggs and Matthias Scheutz. 2013. A hybrid
architectural approach to understanding and appro-
priately generating indirect speech acts. In Proceed-
ings of the 27th AAAI Conference on Artificial Intel-
ligence.

Penelope Brown and Stephen C. Levinson. 1987. Po-
liteness: Some universals in language usage. Cam-
bridge University Press.

Justine Cassell and Timothy Bickmore. 2003. Negoti-
ated collusion: Modeling social language and its re-
lationship effects in intelligent agents. User Model-
ing and User-Adapted Interaction, 13(1-2):89–132.

Markus De Jong, Mariët Theune, and Dennis Hofs.
2008. Politeness and alignment in dialogues with
a virtual guide. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and
multiagent systems-Volume 1, pages 207–214. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems.

Swati Gupta, Marilyn A Walker, and Daniela M Ro-
mano. 2007. How rude are you?: Evaluating po-
liteness and affect in interaction. In Affective Com-
puting and Intelligent Interaction, pages 203–217.
Springer.

Bertram F Malle, Steve Guglielmo, and Andrew E
Monroe. 2012. Moral, cognitive, and social: The
nature of blame. Social thinking and interpersonal
behavior, 14:313.

Wenji Mao and Jonathan Gratch. 2012. Modeling so-
cial causality and responsibility judgment in multi-
agent interactions. Journal of Artificial Intelligence
Research, 44(1):223–273.

Christopher A Miller, Peggy Wu, and Harry B Funk.
2008. A computational approach to etiquette: Oper-
ationalizing brown and levinson’s politeness model.
Intelligent Systems, IEEE, 23(4):28–35.

Megan Strait, Cody Canning, and Matthias Scheutz.
2014. Let me tell you! investigating the ef-
fects of robot communication strategies in advice-
giving situations based on robot appearance, inter-
action modality and distance. In Proceedings of
the 2014 ACM/IEEE international conference on
Human-robot interaction, pages 479–486. ACM.

Emmett Tomai and Ken Forbus. 2007. Plenty of blame
to go around: a qualitative approach to attribution of

moral responsibility. Technical report, DTIC Docu-
ment.

Cristen Torrey, Susan R Fussell, and Sara Kiesler.
2013. How a robot should give advice. In Human-
Robot Interaction (HRI), 2013 8th ACM/IEEE Inter-
national Conference on, pages 275–282. IEEE.

Wendell Wallach and Colin Allen. 2008. Moral ma-
chines: Teaching robots right from wrong. Oxford
University Press.

5

Proceedings of the INLG and SIGDIAL 2014 Joint Session, pages 6–15,
Philadelphia, Pennsylvania, 19 June 2014. c�2014 Association for Computational Linguistics

Generating effective referring expressions using charts

Nikos Engonopoulos and Alexander Koller
University of Potsdam, Germany

{engonopo|akoller}@uni-potsdam.de

Abstract
We present a novel approach for generat-
ing effective referring expressions (REs).
We define a synchronous grammar formal-
ism that relates surface strings with the
sets of objects they describe through an ab-
stract syntactic structure. The grammars
may choose to require or not that REs are
distinguishing. We then show how to com-
pute a chart that represents, in finite space,
the complete (possibly infinite) set of valid
REs for a target object. Finally, we pro-
pose a probability model that predicts how
the listener will understand the RE, and
show how to compute the most effective
RE according to this model from the chart.

1 Introduction
The fundamental challenge in the generation of re-
ferring expressions (REG) is to compute an RE
which is effective, i.e. understood as intended by
the listener. Throughout the history of REG, we
have approximated this as the problem of generat-
ing distinguishing REs, i.e. REs that are only satis-
fied by a unique individual in the domain. This has
been an eminently successful approach, as doc-
umented e.g. in the overview article of Krahmer
and van Deemter (2012) and a variety of recent
shared tasks involving RE generation (Gatt and
Belz, 2010; Belz et al., 2008; Koller et al., 2010).

Nonetheless, reducing effectiveness to unique-
ness is limiting in several ways. First, in complex,
real-world scenes it may not be feasible to gener-
ate fully distinguishing REs, or these may have to
be exceedingly complicated. It is also not neces-
sary to generate distinguishing REs in such situa-
tions, because listeners are very capable of taking
the discourse and task context into account to re-
solve even ambiguous REs. Conversely, listeners
can misunderstand even a distinguishing RE, so
uniqueness is no guarantee for success. We pro-
pose instead to define and train a probabilistic RE

resolution model P (a|t), which directly captures
the probability that the listener will resolve a given
RE t to some object a in the domain. An RE t will
then be “good enough” if P (a⇤|t) is very high for
the intended target referent a⇤.

Second, in an interactive setting like the GIVE
Challenge (Koller et al., 2010), the listener may
behave in a way that offers further information on
how they resolved the generated RE. Engonopou-
los et al. (2013) showed how an initial estimate
of the distribution P (a|t) can be continuously up-
dated based on the listener’s behavior, and that this
can improve a system’s ability to detect misunder-
standings. It seems hard to achieve this in a prin-
cipled way without an explicit model of P (a|t).

In this paper, we present an algorithm that gen-
erates the RE t that maximizes P (a⇤|t), i.e. the
RE that has the highest chance to be understood
correctly by the listener according to the proba-
bilistic RE resolution model. This is a challeng-
ing problem, since the algorithm must identify that
RE from a potentially infinite set of valid alterna-
tives. We achieve this by using a chart-based al-
gorithm, a standard approach in parsing and real-
ization, which has (to our knowledge) never been
used in REG.

We start by defining a synchronous grammar
formalism that relates surface strings to their in-
terpretations as sets of objects in a given domain
(Section 3). This formalism integrates REG with
surface realization, and allows us to specify in the
grammar whether REs are required to be distin-
guishing. We then show how to compute a chart
for a given grammar and target referent in Sec-
tion 4. Section 5 defines a log-linear model for
P (a|t), and presents a Viterbi-style algorithm for
computing the RE t from the chart that maximizes
P (a⇤|t). Section 6 concludes by discussing how
to apply our algorithm to the state-of-the-art ap-
proaches of Krahmer et al. (2003) and Golland et
al. (2010), and how to address a particular chal-
lenge involving cycles that arises when dealing

6

with probabilistic listener models.

2 Related Work

RE generation is the task of generating a natural-
language expression that identifies an object to the
listener. Since the beginnings of modern REG
(Appelt, 1985; Dale and Reiter, 1995), this prob-
lem has been approximated as generating a dis-
tinguishing description, i.e. one which fits only
one object in the domain and not any of the oth-
ers. This perspective has made it possible to apply
search-based (Kelleher and Kruijff, 2006), logic-
based (Areces et al., 2008) and graph-based (Krah-
mer et al., 2003) methods to the problem, and
overall has been one of the success stories of NLG.

However, in practice, human speakers fre-
quently overspecify, i.e. they include information
in an RE beyond what is necessary to make it
distinguishing (Wardlow Lane and Ferreira, 2008;
Koolen et al., 2011). An NLG system, too, might
include redundant information in an RE to make it
easier to understand for the user. Conversely, an
RE that is produced by a human can often be eas-
ily resolved by the listener even if it is ambiguous.
Here we present an NLG system that directly uses
a probabilistic model of RE resolution, and is ca-
pable of generating ambiguous REs if it predicts
that the listener will understand them.

Most existing REG algorithms focus on gener-
ating distinguishing REs, and then select the one
that is best according to some criterion, e.g. most
human-like (Krahmer et al., 2003; FitzGerald et
al., 2013) or most likely to be understood (Garoufi
and Koller, 2013). By contrast, Mitchell et al.
(2013) describe a stochastic algorithm that com-
putes human-like, non-relational REs that may not
be distinguishing. Golland et al. (2010) are close
to our proposal in spirit, in that they use a log-
linear probability model of RE resolution to com-
pute a possibly non-distinguishing RE. However,
they use a trivial REG algorithm which is limited
to grammars that only permit a (small) finite set of
REs for each referent. This is in contrast to gen-
eral REG, where there is typically an infinite set
of valid REs, especially when relational REs (“the
button to the left of the plant”) are permitted.

Engonopoulos et al. (2013) describe how to up-
date an estimate for P (a|t) based on a log-linear
model based on observations of the listener’s be-
havior. They use a shallow model based on a string
t and not an RE derived from a grammar, and they
do not discuss how to generate the best t. The al-

gorithm we develop here fills this gap.
Our formalism for REG can be seen as a syn-

chronous grammar formalism; it simultaneously
derives strings and their interpretations, connect-
ing the two by an abstract syntactic representa-
tion. This allows performing REG and surface re-
alization with a single algorithm, along the lines
of SPUD (Stone et al., 2003) and its planning-
based implementation, CRISP (Koller and Stone,
2007). Probabilistic synchronous grammars are
widely used in statistical machine translation (Chi-
ang, 2007; Graehl et al., 2008; Jones et al., 2012)
and semantic parsing (Zettlemoyer and Collins,
2005; Wong and Mooney, 2007). Lu and Ng
(2011) have applied such grammars to surface re-
alization. Konstas and Lapata (2012) use related
techniques for content selection and surface real-
ization (with simple, non-recursive grammars).

Charts are standard tools for representing a
large space of possible linguistic analyses com-
pactly. Next to their use in parsing, they have also
been applied to surface realization (Kay, 1996;
Carroll et al., 1999; Kaplan and Wedekind, 2000).
To our knowledge, ours is the first work using
charts for REG. This is challenging because the
input to REG is much less structured than in pars-
ing or realization.

3 Grammars for RE generation

We define a new grammar formalism that we use
for REG, which we call semantically intepreted
grammar (SIG). SIG is a synchronous grammar
formalism that relates natural language strings
with the sets of objects in a given domain which
they describe. It uses regular tree grammars
(RTGs) to describe languages of derivation trees,
which then project to strings and sets.

3.1 Derivation trees
We describe the abstract syntax of an RE by its
derivation tree, which is a tree over some ranked
signature ⌃ of symbols representing lexicon en-
tries and grammatical constructions. A (ranked)
signature is a finite set of symbols r 2 ⌃, each
of which is assigned an arity ar(r) 2 N0. A tree
over the signature ⌃ is a term r(t1, . . . , tn), where
r 2 ⌃, n = ar(r), and t1, . . . , tn are trees over ⌃.
We write T⌃ for the set of all trees over ⌃.

Fig. 1b shows an example derivation tree for
the RE “the square button” over the signature
⌃ = {def |1, square|1, button|0}, where r|n indi-
cates that the symbol r has arity n. In term nota-

7

(a) (b) (c)

{b2}
IR

 ������ def

square

button

IS
���! “the square button”

0

@
\1

square button

1

A
0

BBB@

•

the •

square button

1

CCCA

Figure 1: A SIG derivation tree (b) with its inter-
pretations (a, c).

tion, it is def (square(button)).

String interpretation. We interpret derivation
trees simultaneously as strings and sets. First, let
� be a finite alphabet, and let �⇤ be the string al-
gebra over �. We define a string interpretation
over � as a function IS that maps each r|n 2 ⌃

to a function IS(r) : (�⇤
)

n
! �

⇤. For instance,
we can assign string interpretations to our exam-
ple signature ⌃ as follows; we write w1 • w2 for
the concatenation of the strings w1 and w2.

IS(def)(w1) = the • w1

IS(square)(w1) = square • w1

IS(button) = button

Since the arity of IS(r) is the same as the ar-
ity of r for any r 2 ⌃, we can use IS to recur-
sively map derivation trees to strings. Starting at
the leaves, we map the tree r(t1, . . . , tn) to the
string IS(r)(IS(t1), . . . , IS(tn)), where IS(ti) is
the string that results from recursively applying IS

to the subtree ti. In the example, the subtree button
is mapped to the string “button”. We then get
the string for the subtree square(button) by con-
catenating this with “square”, obtaining the string
“square button” and so on, as shown in Fig. 1c.

Relational interpretation. We further define a
relational interpretation IR, which maps each
r|n 2 ⌃ to a function IR(r) : R(U)

n
! R(U),

where R(U) is a class of relations. We define IR

over some first-order model structure M = hU,Li,
where U is a finite universe U of individuals and L
interprets a finite set of predicate symbols as rela-
tions over U . We let R(U) be the set of all k-place
relations over U for all k � 0. The subsets of U
are the special case of k = 1. We write k(R) for
the arity of a relation R 2 R(U).

For the purposes of this paper, we construct IR
by combining the following operations:

• The denotations of the atomic predicate sym-
bols of M ; see Fig. 2 for an example.

U = {b1, b2, b3} button = {b1, b2, b3}
round = {b1, b3} square = {b2}
left of = {hb1, b2i, hb2, b3i}
right of = {hb2, b1i, hb3, b2i}

Figure 2: A simple model, illustrated as a graph.

• proji(R) = {ai | ha1, . . . , ak(R)i 2 R} is
the projection to the i-th component; if i >
k(R), it evaluates to ;.

• R1 \i R2 = {ha1, . . . , ak(R1)i 2 R1 | ai 2
R2} is the intersection on the i-th component
of R1; if i > k(R1), it evaluates to ;.

• For any a 2 U , uniqa(R) evaluates to {a} if
R = {a}, and to ; otherwise.

• For any a 2 U , membera(R) evaluates to
{a} if a 2 R, and to ; otherwise.

For the example, we assume that we want to
generate REs over the scene shown in Fig. 2; it
consists of the universe U = {b1, b2, b3} and inter-
prets the atomic predicate symbols button, square,
round, left of, and right of. Given this, we can
assign a relational interpretation to the derivation
tree in Fig. 1b using the following mappings:

IR(def)(R1) = R1

IR(square)(R1) = square \1 R1

IR(button) = button

We evaluate a derivation tree to a relation as we
did for strings (cf. Fig. 1a). The subtree button
maps to the denotation of the symbol button, i.e.
{b1, b2, b3}. The subtree square(button) evaluates
to the intersection of this set with the set of square
individuals, i.e. {b2}; this is also the relational in-
terpretation of the entire derivation tree. We thus
see that “the square button” is an RE that describes
the individual b2 uniquely.

3.2 Semantically interpreted grammars
Now we define grammars that describe relations
between strings and relations over U . We achieve
this by combining a regular tree grammar (RTG,
(Gécseg and Steinby, 1997; Comon et al., 2007)),
describing a language of derivation trees, with a
string interpretation and a relational interpretation.
An RTG G = (N,⌃, S, P) consists of a finite
set N of nonterminal symbols, a ranked signa-
ture ⌃, a start symbol S 2 N , and a finite set
P of production rules A ! r(B1, ..., Bn), where

8

A,B1, . . . , Bn 2 N and r|n 2 ⌃. We say that
a tree t2 2 T⌃ can be derived in one step from
t1 2 T⌃, t1) t2, if it can be obtained by replac-
ing an occurrence of B in t1 with t and P con-
tains the rule B ! t. A tree tn 2 T⌃ can be
derived from t1, t1)⇤ tn, if there is a sequence
t1) . . .) tn of length n � 0. For any nontermi-
nal A, we write LA(G) for the set of trees t 2 T⌃

with A)⇤ t. We simply write L(G) for LS(G)

and call it the language of G.
We define a semantically interpreted grammar

(SIG) as a triple G = (G, IS , IR) of an RTG G
over some signature ⌃, together with a string inter-
pretation IS over some alphabet � and a relational
interpretation IR over some universe U , both of
which interpret the symbols in ⌃. We assume that
every terminal symbol r 2 ⌃ occurs in at most
one rule, and that the nonterminals of G are pairs
Ab of a syntactic category A and a semantic index
b = ix(Ab). A semantic index indicates the indi-
vidual in U to which a given constituent is meant
to refer, see e.g. (Kay, 1996; Stone et al., 2003).
Note that SIGs can be seen as specific Interpreted
Regular Tree Grammars (Koller and Kuhlmann,
2011) with a set and a string interpretation.

We ignore the start symbol of G. Instead, we
say that given some individual b 2 U and syntactic
category A, the set of referring expressions for b is
REG(A, b) = {t 2 LAb(G) | IR(t) = {b}}, i.e.
we define an RE as a derivation tree that G can
derive from Ab and whose relational interpretation
is {b}. From t, we can read off the string IS(t).1

3.3 An example grammar

Consider the SIG G in Fig. 3 for example. The
grammar is written in template form. Each rule
is instantiated for all semantic indices specified
in the line above; e.g. the symbol round denotes
the set {b1, b3}, therefore there are rules Nb1 !

roundb1(Nb1) and Nb3 ! roundb3(Nb3). The val-
ues of IR and IS for each symbol are specified
below the RTG rule for that symbol.

We can use G to generate NPs that refer to the
target referent b2 given the model shown in Fig. 2
by finding trees in LNPb2

(G) that refer to {b2}.
One such tree is t1 = def b2(squareb2(buttonb2)),
a more detailed version of the tree in Fig. 1b.
It can be derived by NPb2) def b2(Nb2))

def b2(squareb2(Nb2))) t1. Because IR(t1) =

{b2}, we see that t1 2 REG(NP, b2); it represents

1Below, we will often write the RE as a string when the
derivation tree is clear.

for all a 2 U :
NPa ! defa(Na)
IS(defa)(w1) = the • w1

IR(defa)(R1) = membera(R1)

for all a 2 button:
Na ! buttona
IS(buttona) = button
IR(buttona) = button

for all a 2 round:
Na ! rounda(Na)
IS(rounda)(w1) = round • w1

IR(rounda)(R1) = round \1 R1

for all a 2 square:
Na ! squarea(Na)
IS(squarea)(w1) = square • w1

IR(squarea)(R1) = square \1 R1

for all a, b 2 left of:
Na ! leftofa,b(Na,NPb)
IS(leftofa,b)(w1, w2) = w1 • to • the • left • of • w2

IR(leftofa,b)(R1, R2) = proj1((left of \1 R1) \2 R2)

for all a, b 2 right of:
Na ! rightofa,b(Na,NPb)
IS(rightofa,b)(w1, w2) = w1 • to • the • right • of • w2

IR(rightofa,b)(R1, R2) = proj1((right of \1 R1) \2 R2)

Figure 3: An example SIG grammar.

the string IS(t1) = “the square button”.
A second derivation tree for b2 is t2 =

def b2(squareb2(squareb2(buttonb2))), correspond-
ing to IS(t2) = “the square square button”. It de-
rives from NPb2 in four steps, and has IR(t2) =

{b2}. Even the small grammar G licences an infi-
nite set of REs for b2, all of which are semantically
correct. Avoiding the generation of nonsensical
REs like “the square square button” is a techni-
cal challenge to which we will return in Section 6.
G can also derive relational REs; for instance, the
derivation tree in Fig. 6 for the string “the button
to the left of the square button” is in REG(NP, b1).

Finally, G considers the non-distinguishing t3 =
def b2(buttonb2) (for “the button”) a valid RE for
b2. This is because memberb2 will quietly project
the set {b1, b2, b3} (to which buttonb2 refers) to
{b2}. As discussed in previous sections, we want
to allow such non-unique REs and delegate the
judgment about their quality to the probability
model. It would still be straightforward, however,
to impose a hard uniqueness constraint, by simply
changing IR(def a)(R1) to uniqa(R1) in Fig. 3.
This would yield IR(t3) = ;, i.e. t3 would no
longer be in REG(NP, b2).

4 Chart-based RE generation

We now present a chart-based algorithm for gener-
ating REs with SIG grammars. Charts allow us to
represent all REs for a target referent compactly,
and can be computed efficiently. We show in Sec-
tion 5 that charts also lend themselves well to com-
puting the most effective RE.

9

Nb1/{b1, b2, b3} ! buttonb1
Nb2/{b1, b2, b3} ! buttonb2
Nb3/{b1, b2, b3} ! buttonb3
Nb1/{b1, b3} ! roundb1 (Nb1/{b1, b2, b3})
Nb3/{b1, b3} ! roundb3 (Nb3/{b1, b2, b3})
Nb1/{b1, b3} ! roundb1 (Nb1/{b1, b3})
Nb3/{b1, b3} ! roundb3 (Nb3/{b1, b3})
Nb2/{b2} ! squareb2 (Nb2/{b1, b2, b3})
Nb2/{b2} ! squareb2 (Nb2/{b2})
NPb2/{b2} ! def b2 (Nb2/{b1, b2, b3})
NPb2/{b2} ! def b2 (Nb2/{b2})
Nb1/{b1} ! leftof b1,b2

(Nb1/{b1, b2, b3},NPb2/{b2})
Nb1/{b1} ! leftof b1,b2

(Nb1/{b1, b3},NPb2/{b2})
Nb1/{b1} ! leftof b1,b2

(Nb1/{b1},NPb2/{b2})
Nb1/{b1} ! roundb1 (Nb1/{b1})
NPb1/{b1} ! def b1 (Nb1/{b1, b2, b3})
NPb1/{b1} ! def b1 (Nb1/{b1, b3})
NPb1/{b1} ! def b1 (Nb1/{b1})
Nb3/{b3} ! rightof b3,b2

(Nb3/{b1, b2, b3},NPb2/{b2})
Nb3/{b3} ! rightof b3,b2

(Nb3/{b1, b3},NPb2/{b2})
Nb3/{b3} ! rightof b3,b2

(Nb3/{b3},NPb2/{b2})
Nb3/{b3} ! roundb3 (Nb3/{b3})
NPb3/{b3} ! def b3 (Nb3/{b1, b2, b3})
NPb3/{b3} ! def b3 (Nb3/{b1, b3})
NPb3/{b3} ! def b3 (Nb3/{b3})
Nb2/{b2} ! leftof b2,b3

(Nb2/{b1, b2, b3},NPb3/{b3})
Nb2/{b2} ! rightof b2,b1

(Nb2/{b1, b2, b3},NPb1/{b1})
Nb2/{b2} ! leftof b2,b3

(Nb2/{b2},NPb3/{b3})
Nb2/{b2} ! rightof b2,b1

(Nb2/{b2},NPb1/{b1})

Figure 4: The chart for the grammar in Fig. 3.

4.1 RE generation charts

Generally speaking, a chart is a packed data struc-
ture which describes how larger syntactic repre-
sentations can be recursively built from smaller
ones. In applications such as parsing and sur-
face realization, the creation of a chart is driven
by the idea that we consume some input (words
or semantic atoms) as we build up larger struc-
tures. The parallel to this intuition in REG is that
“larger” chart entries are more precise descriptions
of the target, which is a weaker constraint than
input consumption. Nonetheless, we can define
REG charts whose entries are packed representa-
tions for large sets of possible REs, and compute
them in terms of these entries instead of RE sets.

Technically, we represent charts as RTGs over
an extended set of nonterminals. A chart for gener-
ating an RE of syntactic category A for an individ-
ual b 2 U is an RTG C = (N 0,⌃, S0, P 0

), where
N 0
✓ N ⇥ R(U) and S0

= Ab/{b}. Intuitively,
the nonterminal Ab/{a1, . . . , an} expresses that
we intend to generate an RE for b from A, but each
RE that we can derive from the nonterminal actu-
ally denotes the referent set {a1, . . . , an}.

A chart for the grammar in Fig. 3 is shown
in Fig. 4. To generate an NP for b2, we let
its start symbol be S0

= NPb2/{b2}. The rule
Nb2/{b1, b2, b3}! buttonb2 says that we can gen-
erate an RE t with IR(t) = {b1, b2, b3} from the
nonterminal symbol Nb2 by expanding this symbol
with the grammar rule Nb2 ! buttonb2 . Similarly,

A ! r(B1, ..., Bn) in G
B0

1 = B1/R1, ..., B
0
n = Bn/Rn in N 0

Add A0 = A/IR(r)(R1, ..., Rn) to N 0

Add rule A0 ! r(B0
1, ..., B

0
n) to P 0

Figure 5: The chart computation algorithm.

the rule Nb2/{b2} ! squareb2(Nb2/{b1, b2, b3})
expresses that we can generate an RE with
IR(t) = {b2} by expanding the nonterminal sym-
bol Nb2 into squareb2(t

0
), where t0 is any tree that

the chart can generate from Nb2/{b1, b2, b3}.

4.2 Computing a chart
Given a SIG G, a syntactic category A, and a
target referent b, we can compute a chart C for
REG(A, b) using the parsing schema in Fig. 5.
The schema assumes that we have a rule A !
r(B1, . . . , Bn) in G; in addition, for each 1 

i  n it assumes that we have already added
the nonterminal B0

i = Bi/Ri to the chart, in-
dicating that there is a tree ti with Bi)

⇤ ti
and IR(ti) = Ri. Then we know that t =

r(t1, . . . , tn) can be derived from A and that R0
=

IR(t) = IR(r)(R1, . . . , Rn). We can therefore
add the nonterminal A0

= A/R0 and the produc-
tion rule A0

! r(B0
1, . . . , B

0
n) to the chart; this

rule can be used as the first step in a derivation of t
from A0. We can optimize the algorithm by adding
A0 and the rule only if R0

6= ;.
The algorithm terminates when it can add no

more rules to the chart. Because U is finite, this
always happens after a finite number of steps, even
if there is an infinite set of REs. For instance, the
chart in Fig. 4 describes an infinite language of
REs, including “the square button”, “the button to
the left of the round button”, “the button to the left
of the button to the right of the square button”, etc.
Thus it represents relational REs that are nested
arbitrarily deeply through a finite number of rules.

After termination, the chart contains all rules by
which a nonterminal can be decomposed into other
(productive) nonterminals. As a result, L(C) con-
tains exactly the REs for b of category A:

Theorem 1 If C is a chart for the SIG G, the syn-
tactic category A, and the target referent b, then
L(C) = REG(A, b).

5 Computing best referring expressions

The chart algorithm allows us to compactly rep-
resent all REs for the target referent. We now
show how to compute the best RE from the chart.
We present a novel probability model P (b|t) for
RE resolution, and take the “best” RE to be the

10

Figure 6: The derivation tree for “the button to the
left of the square button”.

one with the highest chance to be understood as
intended. Next to the best RE itself, the algo-
rithm also computes the entire distribution P (b|t),
to support later updates in an interactive setting.

Nothing in our algorithm hinges on this par-
ticular model; it can also be used with any other
scoring model that satisfies a certain monotonicity
condition which we spell out in Section 5.2.

5.1 A log-linear model for effective REs

We model the probability P (b|t) that the listener
will resolve the RE t to the object b using a
log-linear model with a set of feature functions
f(a, t,M), where a is an object, t is a derivation
tree, and M is the relational interpretation model.

We focus on features that only look at informa-
tion that is local to a specific subtree of the RE,
such as the label at the root. For instance, a feature
fround(a, t0,M) might return 1 if the root label of
t0 is rounda and a is round in M , and 0 otherwise.
Another feature fdef (a, t0,M) might return 1/k if
t0 is of the form def b(t00), R = IR(t00) has k el-
ements, and a 2 R; and 0 otherwise. This fea-
ture counterbalances the ability of the grammar in
Fig. 3 to say “the w” even when w is a non-unique
description by penalizing descriptions with many
possible referents through lower feature values.

When generating a relational RE, the derivation
tree naturally splits into separate regions, each of
which is meant to identify a specific object. These
regions are distinguished by the semantic indices
in the nonterminals that derive them; e.g., in Fig. 6,
the subtree for “the square button” is an attempt to
refer to b2, whereas the RE as a whole is meant to
refer to b1. To find out how effective the RE is as
a description of b1, we evaluate the features at all
nodes in the region top(t) containing the root of t.

Each feature function fi is associated with a
weight wi. We obtain a score tuple sc(t0) for some
subtree t0 of an RE as follows:

sc(t0) = hs(a1, t
0,M), . . . , s(am, t0,M)i,

t b1 b2 b3
“the button” 0.33 0.33 0.33
“the round button” 0.45 0.10 0.45
“the button to the left
of the square button” 0.74 0.14 0.12

Figure 7: Probability distributions for some REs t.

where U = {a1, . . . , am} and s(a, t0,M) =Pn
i=1wi · fi(a, t0,M). We then combine these

into a score tuple score(t) =

P
u2top(t) sc(t.u)

for the whole RE t, where t.u is the subtree of
t below the node u. Finally, given a score tuple
s = hs1, . . . , smi for t, we define the usual log-
linear probability distribution as

P (ai|t) = prob(ai, s) =
esiPm
j=1 e

sj
.

The best RE for the target referent b is then

bestG(A, b) = argmax

t2REG(A,b)
prob(b, sc(t)).

For illustration, we consider a number of REs
for b1 in our running example. We use fround and
fdef and let wround = wdef = 1. In this case, the
RE “the button” has a score tuple h1/3, 1/3, 1/3i,
which is the sum of the tuple h0, 0, 0i for fround
(since the RE does not use the “round” rule) and
the tuple h1/3, 1/3, 1/3i for fdef (since “button”
is three-way ambiguous in M). This yields a uni-
form probability distribution over U (see Fig. 7).
By contrast, “the round button” gets h3/2, 0, 3/2i,
resulting in the distribution in the second line of
Fig. 7. This RE is judged better than “the button”
because it assigns a higher probability to b1.

Relational REs involve derivation trees with
multiple regions, only the top one of which is di-
rectly counted for P (b|t) (see Fig. 6). We incorpo-
rate the quality of the other regions through appro-
priate features. In the example, we use a feature
fleftof (a, t0,M) =

P
b:ha,bi2left of P (b|t00), where

t00 is the second subtree of t0. This feature com-
putes the probability that the referent to which the
listener resolves t00 is actually to the right of a,
and will thus take a high value if t00 is a good
RE for b2. Assuming a probability distribution of
P (b2|t0) = 0.78 and P (b1|t0) = P (b3|t0) = 0.11
for t0 =“the square button”, we get the tuple
h0.78, 0.11, 0i for fleftof , yielding the third line
of Fig. 7 for wleftof = 1.

11

5.2 Computing the best RE
We compute bestG(A, b) from the chart by adapt-
ing the Viterbi algorithm. Our key data structure
assigns a score tuple is(A0

) to each nonterminal
A0 in the chart. Intuitively, if the semantic index
of A0 is b, then is(A0

) is the score tuple sc(t) for
the tree t 2 LA0

(C) which maximizes P (b|t). We
also record this best tree as bt(A0

). Thus the al-
gorithm is correct if, after running it, we obtain
bestG(A, b) = bt(Ab/{b}).

As is standard in chart algorithms, we limit our
attention to features whose values can be com-
puted bottom-up by local operations. Specifically,
we assume that if A0

! r(B0
1, . . . , B

0
n) is a rule in

the chart and ti is the best RE for B0
i for all i, then

the best RE for A0 that can be built using this rule
is r(t1, . . . , tn). This means that features must be
monotonic, i.e. that the RE that seemed locally
best for B0

i leads to the best RE overall.
Under this assumption, we can compute is(A0

)

and bt(A0
) bottom-up as shown in Fig. 8. We it-

erate over all nonterminals A0 in the chart in a
fixed linear order, which we call the evaluation
order. Then we compute is(A0

) and bt(A0
) by

maximizing over the rules for A0. Assume that
the best RE for A0 can be constructed using the
rule A0

! r(B0
1, . . . , B

0
n). Then if, at the time we

evaluate A0, we have fully evaluated all the B0
i in

the sense that bt(B0
i) is actually the best RE for

B0
i, the algorithm will assign the best RE for A0

to bt(A0
), and its score tuple to is(A0

). Thus, if
we call an evaluation order exact if the nontermi-
nals on the right-hand side of each rule in the chart
come before the nonterminal on the left-hand side,
we can inductively prove the following theorem:

Theorem 2 If the evaluation order is exact, then
for every nonterminal A0 in the chart, we ob-
tain bt(A0

) = argmaxt2LA0 (C) P (ix(A0
)|t) and

is(A0
) = sc(bt(A0

)).

In other words, the algorithm is correct if the
evaluation order is exact. If it is not, we might
compute a sub-optimal RE as bt(A0

), which un-
derestimates is(A0

). The choice of evaluation or-
der is thus crucial.

6 Evaluating charts with cycles

It remains to show how we can determine an ex-
act evaluation order for a given chart. One way to
think about the problem is to consider the order-
ing graph O(C) of the chart C (see Fig. 9 for an
example). This is a directed graph whose nodes

1: for nonterminals A0 in evaluation order do
2: for rules r of the form A0 ! r(B0

1, . . . , B
0
n) do

3: a = ix(A0)
4: t0 = r(bt(B0

1), . . . , bt(B
0
n))

5: s = sc(t0) +
nX

i=1
ix(B0

i)=a

is(B0
i)

6: if prob(a, s) > prob(a, is(A0)) then
7: is(A0) = s
8: bt(A0) = t0

Figure 8: Computing the best RE.

are the nonterminals of the chart; for each rule
A0
! r(B0

1, . . . , B
0
n) in C, it has an edge from

B0
i to A0 for each i. If this graph is acyclic, we

can simply compute a topological sort of O(C)

to bring the nodes into a linear order in which
each B0

i precedes A0. This is enough to evalu-
ate charts using certain simpler models. For in-
stance, we can apply our REG algorithm to the
log-linear model of Golland et al. (2010). Because
they only generate REs with a bounded number of
relations, their grammars effectively only describe
finite languages. In such a case, our charts are al-
ways acyclic, and therefore a topological sort of
O(C) yields an exact evaluation order.

This simple approach will not work with gram-
mars that allow arbitrary recursion, as they can
lead to charts with cycles (indicating an infinite
set of valid REs). E.g. the chart in Fig. 4 contains
a rule Nb2/{b2} ! squareb2(Nb2/{b2}) (shown
in Fig. 9), which can be used to construct the RE
t0 = “the square square button” in addition to the
RE t = “the square button”. Such cycles can be
increasing with respect to a log-linear probability
model, i.e. the model considers t0 a better RE than
t. Indeed, t has a score tuple of h0, 2, 0i, giving
P (b2|t) = 0.78. By contrast, t0 has a score tuple
of h0, 3, 0i, thus P (b2|t0) = 0.91. This can be con-
tinued indefinitely, with each addition of “square”
increasing the probability of being resolved to b2.
Thus, there is no best RE for b2; every RE can be
improved by adding another copy of “square”.

In such a situation, it is a challenge to even
compute any score for every nonterminal without
running into infinite loops. We can achieve this
by decomposing O(C) into its strongly connected
components (SCCs), i.e. the maximal subgraphs in
which each node is reachable from any other node.
We then consider the component graph O0

(C); its
nodes are the SCCs of O(C), and it has an edge
from c1 to c2 if O(C) has an edge from some
node in c1 to some node in c2. O0

(C) is acyclic
by construction, so we can compute a topological

12

Figure 9: A fragment of the ordering graph for the
chart in Fig. 4. Dotted boxes mark SCCs.

Figure 10: A fragment of a chart ordering graph
for a grammar with enriched nonterminals.

sort and order all nonterminals from earlier SCCs
before all nonterminals from later SCCs. Within
each SCC, we order the nonterminals in the order
in which they were discovered by the algorithm in
Fig. 5. This yields a linear order on nonterminals,
which at least ensures that by the time we evaluate
a nonterminal A0, there is at least one rule for A0

whose right-hand nonterminals have all been eval-
uated; so is(A0

) gets at least some value.
In our example, we obtain the order

Nb2/{b1, b2, b3}, Nb2/{b2}, NPb2/{b2}. The
rule Nb2/{b2} ! squareb2(Nb2/{b2}) will thus
not be considered in the evaluation of Nb2/{b2},
and the algorithm returns “the square button”.
The algorithm computes optimal REs for acyclic
charts, and also for charts where all cycles are
decreasing, i.e. using the rules in the cycle make
the RE worse. This enables us, for instance, to
encode the REG problem of Krahmer et al. (2003)
into ours by using a feature that evaluates the rule
for each attribute to its (negative) cost according
to the Krahmer model. Krahmer et al. assume that
every attribute has positive cost, and is only used
if it is necessary to make the RE distinguishing.
Thus all cycles in the chart are decreasing.

One limitation of the algorithm is that it does
not overspecify. Suppose that we extend the ex-
ample model in Fig. 2 with a color predicate
green = {b2}. We might then want to prefer
“the green square button” over “the square but-
ton” because it is easier to understand. But since
all square objects (i.e. {b2}) are also green, using
“green” does not change the denotation of the RE,
i.e. it is represented by a loop from Nb2/{b2} to
Nb2/{b2}, which is skipped by the algorithm. One
idea could be to break such cycles by the careful
use of a richer set of nonterminals in the gram-
mar; e.g., they might record the set of all attributes
that were used in the RE. Our example rule would
then become Nb2/{b2}/{square, green} !

greenb2(Nb2/{b2}/{square}), which the algo-

rithm can make use of (see Fig. 10).

7 Conclusion

We have shown how to generate REs using charts.
Based on an algorithm for computing a chart of all
valid REs, we showed how to compute the RE that
maximizes the probability of being understood as
the target referent. Our algorithm integrates REG
with surface realization. It generates distinguish-
ing REs if this is specified in the grammar; oth-
erwise, it computes the best RE without regard to
uniqueness, using features that prefer unambigu-
ous REs as part of the probability model.

Our algorithm can be applied to earlier models
of REG, and in these cases is guaranteed to com-
pute optimal REs. The probability model we intro-
duced here is more powerful, and may not admit
“best” REs. We have shown how the algorithm
can still do something reasonable in such cases,
but this point deserves attention in future research,
especially with respect to overspecification.

We evaluated the performance of our chart al-
gorithm on a number of randomly sampled in-
put scenes from the GIVE Challenge, which con-
tained 24 objects on average. Our implementa-
tion is based on the IRTG tool available at irtg.
googlecode.com. While in the worst case the
chart computation is exponential in the input size,
in practice runtimes did not exceed 60 ms for the
grammar shown in Fig. 3.

We have focused here on computing best REs
given a probability model. We have left train-
ing the model and evaluating it on real-world data
for future work. Because our probability model
focuses on effectiveness for the listener, rather
than human-likeness, our immediate next step is to
train it on an interaction corpus which records the
reactions of human listeners to system-generated
REs. A further avenue of research is to deliber-
ately generate succinct but ambiguous REs when
the model predicts them to be easily understood.
We will explore ways of achieving this by combin-
ing the effectiveness model presented here with a
language model that prefers succinct REs.

Acknowledgments. We thank Emiel Krahmer,
Stephan Oepen, Konstantina Garoufi, Martı́n Vil-
lalba and the anonymous reviewers for their useful
comments and discussions. The authors were sup-
ported by the SFB 632 “Information Structure”.

13

References
Douglas E. Appelt. 1985. Planning English sentences.

Cambridge University Press.

Carlos Areces, Alexander Koller, and Kristina Strieg-
nitz. 2008. Referring expressions as formulas of
description logic. In Proceedings of the 5th Inter-
national Natural Language Generation Conference
(INLG).

Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt.
2008. The GREC challenge 2008: Overview and
evaluation results. In Proceedings of the 5th Inter-
national Conference on Natural Language Genera-
tion (INLG).

John Carroll, Ann Copestake, Dan Flickinger, and Vic-
tor Poznanski. 1999. An efficient chart generator
for (semi-)lexicalist grammars. In Proceedings of
the 7th European Workshop on Natural Language
Generation.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Hubert Comon, Max Dauchet, Rémi Gilleron, Christof
Löding, Florent Jacquemard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. 2007. Tree automata
techniques and applications. Available on http:
//tata.gforge.inria.fr/.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the Gricean Maxims in the gener-
ation of referring expressions. Cognitive Science,
19(2):233–263.

Nikos Engonopoulos, Martin Villalba, Ivan Titov, and
Alexander Koller. 2013. Predicting the resolution
of referring expressions from user behavior. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), Seattle.

Nicholas FitzGerald, Yoav Artzi, and Luke Zettle-
moyer. 2013. Learning distributions over logical
forms for referring expression generation. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

Konstantina Garoufi and Alexander Koller. 2013.
Generation of effective referring expressions in situ-
ated context. Language and Cognitive Processes.

Albert Gatt and Anja Belz. 2010. Introducing shared
task evaluation to NLG: The TUNA shared task
evaluation challenges. In E. Krahmer and M. The-
une, editors, Empirical Methods in Natural Lan-
guage Generation, number 5790 in LNCS, pages
264–293. Springer.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chap-
ter 1, pages 1–68. Springer-Verlag.

Dave Golland, Percy Liang, and Dan Klein. 2010.
A game-theoretic approach to generating spatial de-
scriptions. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Computational
Linguistics, 34(3).

B. Jones, J. Andreas, D. Bauer, K.-M. Hermann, and
K. Knight. 2012. Semantics-based machine transla-
tion with hyperedge replacement grammars. In Pro-
ceedings of COLING.

Ron Kaplan and Jürgen Wedekind. 2000. LFG gener-
ation produces context-free languages. In Proceed-
ings of the 18th COLING.

Martin Kay. 1996. Chart generation. In Proceedings
of the 34th ACL.

John Kelleher and Geert-Jan Kruijff. 2006. Incremen-
tal generation of spatial referring expressions in situ-
ated dialogue. In In Proceedings of Coling-ACL ’06,
Sydney Australia.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th International Conference on
Parsing Technologies, pages 2–13. Association for
Computational Linguistics.

Alexander Koller and Matthew Stone. 2007. Sentence
generation as a planning problem. In Proceedings of
the 45th Annual Meeting of the Association of Com-
putational Linguistics (ACL).

Alexander Koller, Kristina Striegnitz, Donna Byron,
Justine Cassell, Robert Dale, Johanna Moore, and
Jon Oberlander. 2010. The First Challenge on
Generating Instructions in Virtual Environments.
In E. Krahmer and M. Theune, editors, Empirical
Methods in Natural Language Generation, number
5790 in LNAI, pages 337–361. Springer.

Yannis Konstas and Mirella Lapata. 2012. Concept-
to-text generation via discriminative reranking. In
Proceedings of the 50th ACL.

Ruud Koolen, Albert Gatt, Martijn Goudbeek, and
Emiel Krahmer. 2011. Factors causing overspec-
ification in definite descriptions. Journal of Prag-
matics, 43:3231–3250.

Emiel Krahmer and Kees van Deemter. 2012. Compu-
tational generation of referring expressions: A sur-
vey. Computational Linguistics, 38(1):173–218.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
2003. Graph-based generation of referring expres-
sions. Computational Linguistics, 29(1):53–72.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic
forest-to-string model for language generation from
typed lambda calculus expressions. In Proceedings
of EMNLP.

14

Margaret Mitchell, Kees van Deemter, and Ehud Re-
iter. 2013. Generating expressions that refer to vis-
ible objects. In Proceedings of NAACL-HLT, pages
1174–1184.

Matthew Stone, Christine Doran, Bonnie Webber, To-
nia Bleam, and Martha Palmer. 2003. Microplan-
ning with communicative intentions: The SPUD
system. Computational Intelligence, 19(4):311–
381.

Liane Wardlow Lane and Victor Ferreira. 2008.
Speaker-external versus speaker-internal forces on
utterance form: Do cognitive demands override
threats to referential success? Journal of Experi-
mental Psychology: Learning, Memory, and Cogni-
tion, 34:1466–1481.

Yuk Wah Wong and Raymond J. Mooney. 2007.
Learning synchronous grammars for semantic pars-
ing with lambda calculus. In Proceedings of the 45th
ACL.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence (UAI).

15

Proceedings of the INLG and SIGDIAL 2014 Joint Session, pages 16–24,
Philadelphia, Pennsylvania, 19 June 2014. c�2014 Association for Computational Linguistics

Crowdsourcing Language Generation Templates for Dialogue Systems

Margaret Mitchell
Microsoft Research
Redmond, WA USA

memitc@microsoft.com

Dan Bohus
Microsoft Research
Redmond, WA USA

dbohus@microsoft.com

Ece Kamar
Microsoft Research
Redmond, WA USA

eckamar@microsoft.com

Abstract
We explore the use of crowdsourcing to
generate natural language in spoken dia-
logue systems. We introduce a method-
ology to elicit novel templates from the
crowd based on a dialogue seed corpus,
and investigate the effect that the amount
of surrounding dialogue context has on the
generation task. Evaluation is performed
both with a crowd and with a system de-
veloper to assess the naturalness and suit-
ability of the elicited phrases. Results indi-
cate that the crowd is able to provide rea-
sonable and diverse templates within this
methodology. More work is necessary be-
fore elicited templates can be automati-
cally plugged into the system.

1 Introduction
A common approach for natural language gener-
ation in task-oriented spoken dialogue systems is
template-based generation: a set of templates is
manually constructed by system developers, and
instantiated with slot values at runtime. When
the set of templates is limited, frequent interac-
tions with the system can quickly become repet-
itive, and the naturalness of the interaction is lost.

In this work, we propose and investigate a
methodology for developing a corpus of natural
language generation templates for a spoken dia-
logue system via crowdsourcing. We use an ex-
isting dialogue system that generates utterances
from templates, and explore how well a crowd
can generate reliable paraphrases given snippets
from the system’s original dialogues. By utiliz-
ing dialogue data collected from interactions with
an existing system, we can begin to learn differ-
ent ways to converse while controlling the crowd
to stay within the scope of the original system.
The proposed approach aims to leverage the sys-
tem’s existing capabilities together with the power

of the crowd to expand the system’s natural lan-
guage repertoire and create richer interactions.

Our methodology begins with an existing cor-
pus of dialogues, extracted from a spoken dia-
logue system that gives directions in a building.
Further details on this system are given in §4.1.
The extracted dialogue corpus contains phrases
the system has generated, and crowd-workers con-
struct alternates for these phrases, which can be
plugged back into the system as crowd templates.
We investigate via crowdsourcing the effect of the
amount of surrounding context provided to work-
ers on the perceived meaning, naturalness, and di-
versity of the alternates they produce, and study
the acceptability of these alternates from a sys-
tem developer viewpoint. Our results indicate that
the crowd provides reasonable and diverse tem-
plates with this methodology. The developer eval-
uation suggests that additional work is necessary
before we can automatically plug crowdsourced
templates directly into the system.

We begin by discussing related work in §2. In
§3, we detail the proposed methodology. In §4, we
describe the experimental setup and results. Di-
rections for future work are discussed in §5.

2 Related Work

Online crowdsourcing has gained popularity in
recent years because it provides easy and cheap
programmatic access to human intelligence. Re-
searchers have proposed using crowdsourcing
for a diverse set of natural language process-
ing tasks, including paired data collection for
training machine translation systems (Zaidan and
Callison-Burch, 2011), evaluation of NLP systems
(Callison-Burch and Dredze, 2010) and speech
transcriptions (Parent and Eskenazi, 2010). A
popular task targeting language diversity is para-
phrase generation, which aims at collecting di-
verse phrases while preserving the original mean-
ing. Crowdsourcing paraphrase generation has

16

been studied for the purposes of plagiarism detec-
tion (Burrows and Stein, 2013), machine transla-
tion (Buzek et al., 2010), and expanding language
models used in mobile applications (Han and Ju,
2013). Automated and crowd-based methods have
been proposed for evaluating paraphrases gener-
ated by the crowd (Denkowski and Lavie, 2010;
Tschirsich and Hintz, 2013). Researchers have
proposed workflows to increase the diversity of
language collected with crowd-based paraphrase
generation (Negri et al., 2012) and for reducing
the language bias in generation by initiating gen-
eration with visual input (Chen and Dolan, 2011).
While paraphrase generation typically aims to pre-
serve the meaning of a phrase without considering
its use beyond the sentence level, we focus on col-
lecting diverse language to be used directly in a
dialogue system in a way that agrees with the full
dialogue context.

Manually authoring dialogue systems has been
identified as a challenging and time-consuming
task (Ward and Pellom, 1999), motivating re-
searchers to explore opportunities to use the crowd
to improve and evaluate dialogue systems. Wang
et al. (2012) proposed methods to acquire corpora
for NLP systems using semantic forms as seeds,
and for analyzing the quality of the collected cor-
pora. Liu et al. (2010) used crowdsourcing for
free-form language generation and for semantic
labeling, with the goal of generating language cor-
pora for new domains. Crowd-workers contribute
to dialogue generation in real-time in the Chorus
system by providing input about what the system
should say next (Lasecki et al., 2013). Crowd-
sourcing has also been used with some success for
dialogue system evaluation (Jurc̆ı́c̆ek et al., 2011).

Previous work on increasing language diversity
in dialogue systems with crowdsourcing has fo-
cused on learning about diversity in user input
to improve components such as speech recogni-
tion and language understanding (e.g., Wang et al.
(2012)). Instead, our work focuses on adding di-
versity to system outputs. Mairesse et al. (2010)
followed a similar approach to the work reported
here, using crowdsourcing to collect paraphrases
for a dialogue system in the restaurant domain.
However, the focus of the Mairesse et al. work was
on training an NLG module using this data. Our
work focuses on crowdsourcing techniques to ex-
tract relevant paraphrases, examining the effect of
context on their suitability and generalizability.

3 Methodology

Our methodology for developing natural language
generation templates is illustrated by the pipeline
in Figure 1. This pipeline is designed for di-
alogue systems that use a template-based natu-
ral language generation component. It assumes
that the given system has an initial set of lan-
guage generation templates that have been man-
ually authored, and expands from there. The ini-
tial system is used to collect a corpus of dialogues,
which we will refer to as the dialogue seed cor-
pus, through interactions with users. Based on the
dialogue seed corpus, we automatically construct
a set of generation HITs, web-based crowdsourc-
ing tasks that are used to elicit paraphrases from
crowd-workers for instantiated system templates.
A generation HIT displays one of the system turns
extracted from a system dialogue, with a phrase
highlighted, and different amounts of surround-
ing context in different conditions. The worker is
asked to replace the phrase with another one that
keeps the same meaning and the coherence of the
interaction. If slots are marked in the original, they
must be preserved by the worker, which allows us
to easily convert the elicited paraphrases to crowd
templates. Once a corpus of crowd templates are
collected in this fashion, a system developer may
filter and decide which to add as viable alternatives
to the system’s existing list of language generation
templates (top path in the pipeline from Figure 1).

We also construct a set of evaluation HITs and
post them to the crowd to assess the suitability and
relative naturalness of the crowd templates (bot-
tom path in the pipeline from Figure 1.) We study
how the scores obtained in this crowd-evaluation
may be used to help filter the set of new templates
that are presented as candidates to the system de-
veloper. In the following subsections, we describe
each of the pipeline components in detail.

3.1 Dialogue Seed Corpus

We assume as a starting point an existing dialogue
system that uses a template-based language gener-
ation component. The system uses a set of tem-
plates T , which are instantiated with slots filled to
generate system phrases. A system turn may con-
tain one or more such phrases connected together.
For instance, in the dialogue fragments shown in
Figure 2, the template “Sorry, that was [Place]
you wanted, right?” generates at runtime “Sorry,
that was Ernestine Patrick’s office you wanted,

17

Figure 1: Pipeline for crowd-based development of natural language generation templates.

right?”. Statistics on the dialogue seed corpus
used in this study are provided in §4.2.

The proposed methodology does not require
transcriptions of user utterances in the dialogue
seed corpus; instead, it utilizes the recognition re-
sults for each user turn. The primary reason be-
hind this choice is that a dialogue that contains
recognized user turns may be more coherent than
one that contains transcripts and can be generated
automatically, as the dialogue manager generates
system responses based on the recognition results.
However, turn-overtaking issues and recognition
problems sometimes resulted in incoherent dia-
logue interactions. Improving speech recognition
remains an area for future work.

3.2 Generation HITs
We use the dialogue seed corpus to produce gener-
ation HITs to elicit paraphrases for system phrases
from crowd-workers. In the simplest form, a gen-
eration HIT might present a single system phrase
to the worker. We hypothesize that the surround-
ing context may be an important factor in facili-
tating the construction of appropriate paraphrases,
affecting their diversity, naturalness, generaliz-
ability, etc.; we therefore investigate the effect of
presenting varying amounts of dialogue context to
the worker.

Specifically, given a system phrase correspond-
ing to a template t instantiated in a dialogue, we
investigate six different dialogue context condi-
tions. A phrase in a condition presented to a
crowd-worker will be referred to as a seed, p. Ex-
amples of seeds in each condition are illustrated in
Figure 2. In the first condition, denoted Phrase,
a seed is presented to the worker in isolation. In
the second condition, denoted S, the entire sys-
tem turn containing p is presented to the worker,
with p highlighted. In the next 4 conditions, de-
noted suS, suSu, susuS, susuSu, seeds are pre-
sented in increasingly larger contexts including
one or two previous system and user turns (de-
noted with lowercase ‘s’ and ‘u’ in the encoding

Figure 2: Generation HIT excerpts in six different
context conditions (w/o instructions, examples).

above), followed by the system turn S that con-
tains the highlighted seed p, followed in two con-
ditions (susuSu and suSu) by another user turn.
Not all context conditions are applicable for each
instantiated template, e.g., conditions that require
previous context, such as suS, cannot be con-
structed for phrases appearing in the first system
turn. We follow a between-subjects design, such

18

that each worker works on only a single condition.
Each generation HIT elicits a paraphrase for a

seed. The HIT additionally contains instructions
and examples of what workers are expected to do
and not to do.1 We instruct workers to read the
dialogue presented and rephrase the highlighted
phrase (seed) so as to preserve the meaning and
the cohesion of the interaction. To identify slots
accurately in the crowd-generated paraphrases, we
mark slot values in the given seed with bold italics
and instruct workers to keep this portion exactly
the same in their paraphrases (see Figure 2). These
paraphrases are then turned into crowd templates
following 3 basic steps: (1) Spelling error cor-
rection; (2) Normalization;2 and (3) Replacing
filled slots in the worker’s paraphrase with the slot
name. We ask workers to provide paraphrases (in
English) that differ from the original phrase more
substantially than by punctuation changes, and im-
plement controls to ensure that workers enter slot
values.

In completing the generation tasks, the crowd
produces a corpus of paraphrases, one paraphrase
for each seed. For example, “I apologize, are you
looking for Ernestine Patrick’s office?”, is a para-
phrase for the highlighted seed shown in Figure 2.
As we have asked the workers not to alter slot val-
ues, crowd templates can easily be recovered, e.g.,
“I apologize, are you looking for [Place]?”

3.3 Evaluation HITs
A good crowd template must minimally satisfy
two criteria: (1) It should maintain the meaning
of the original template; and (2) It should sound
natural in any dialogue context where the original
template was used by the dialogue manager, i.e., it
should generalize well, beyond the specifics of the
dialogue from which it was elicited.

To assess crowd template quality, we construct
evaluation HITs for each crowd template. Instan-
tiated versions of the original template and the
crowd template are displayed as options A and
B (with randomized assignment) and highlighted
as part of the entire dialogue in which the origi-
nal template was used (see Figure 3). In this in-
context (IC) evaluation HIT, the worker is asked
whether the instantiated crowd template has the
same meaning as the original, and which is more
natural. In addition, because the original dialogues

1Instructions available at m-mitchell.com/corpora.html.
2We normalize capitalization, and add punctuation identi-

cal to the seed when no punctuation was provided.

Figure 3: Example evaluation HIT excerpt.

were sometimes incoherent (see §3.1), we also
asked the evaluation workers to judge whether the
given phrases made sense in the given context.

Finally, in order to assess how well the crowd
template generalizes across different dialogues,
we use a second, out-of-context (OOC) eval-
uation HIT. For each crowd template, we ran-
domly selected a new dialogue where the tem-
plate t appeared. The out-of-context evaluation
HIT presents the instantiated original template and
crowd template in this new dialogue. The crowd-
workers thus assess the crowd template in a dia-
logue context different from the one in which it
was collected. We describe the evaluation HITs in
further detail in §4.

3.4 Developer Filtering

While a crowd-based evaluation can provide in-
sights into the quality of the crowd templates, ul-
timately, whether or not a template is appropriate
for use in the dialogue system depends on many
other factors (e.g., register, style, expectations,
system goals, etc.). The last step in the proposed
methodology is therefore a manual inspection of
the crowd templates by a system developer, who
assesses which are acceptable for use in the sys-
tem without changes.

19

Figure 4: Directions Robot system.

4 Experiments and Results

We now describe our experiments and results. We
aim to discover whether there is an effect of the
amount of surrounding context on perceived crowd
template naturalness. We additionally explore
whether the crowd template retains the meaning
of the original template, whether they both make
sense in the given context, and the diversity of
the templates that the crowd produced for each
template type. We report results when the tem-
plates are instantiated in-context, in the original
dialogue; and out-of-context, in a new dialogue.
We first describe the experimental test-bed and the
corpora used and collected below.

4.1 Experimental Platform
The test-bed for our experiments is Directions
Robot, a situated dialogue system that provides
directions to peoples’ offices, conference rooms,
and other locations in our building (Bohus et al.,
2014). The system couples a Nao humanoid
robot with a software infrastructure for multi-
modal, physically situated dialogue (Bohus and
Horvitz, 2009) and has been deployed for several
months in an open space, in front of the elevator
bank on the 3rd floor of our building (see Figure
4). While some of the interactions are need-based,
e.g., visitors coming to the building for meetings,
many are also driven by curiosity about the robot.

The Directions Robot utilizes rule-based natu-
ral language generation, with one component for
giving directions based on computed paths, and
another component with 38 templates for the rest
of the dialogue. Our experimentation focuses on
these 38 templates. As the example shown in Fig-
ure 2 illustrates, slots are dynamically filled in at
run-time, based on the dialogue history.

We conducted our experiments on a general-

Cond.

Crowd Generation Crowd Eval.
Gen # w Time/ # Uniq. # Eval Time/
HITs HIT Para. HITs HIT
(⇥ 3) (sec) (⇥ 5) (sec)

Phrase 767 26 34.7 1181 1126 29.4
S 860 28 30.8 1330 1260 39.2
suS 541 26 33.3 1019 772 30.5
suSu 265 24 38.8 531 392 32.6
susuS 360 24 41.0 745 572 32.3
susuSu 296 28 42.9 602 440 34.4
Total 3089 - - 5408 4562 -
Average - 26 36.9 - - 33.1

Table 1: Statistics for the crowd-based generation
and evaluation processes. Each generation HIT
was seen by 3 unique workers and each evaluation
HIT was seen by 5 unique workers. #w represents
number of workers. For evaluation, #w = 231.

purpose crowdsourcing marketplace, the Univer-
sal Human Relevance System (UHRS).3 The mar-
ketplace connects human intelligence tasks with a
large population of workers across the globe. It
provides controls for selecting the country of res-
idence and native languages for workers, and for
limiting the maximum number of tasks that can be
done by a single worker.

4.2 Crowd-based Generation
Dialogue seed corpus We used 167 dialogues
collected with the robot over a period of one week
(5 business days) as the dialogue seed corpus. The
number of turns in these dialogues (including sys-
tem and user) ranges from 1 to 41, with a mean of
10 turns. 30 of the 38 templates (79%) appeared
in this corpus.

Generation HITs We used the dialogue seed
corpus to construct generation HITs, as described
in §3.2. In a pilot study, we found that for every
10 instances of a template submitted to the crowd,
we received approximately 6 unique paraphrases
in return, with slightly different ratios for each of
the six conditions. We used the ratios observed for
each condition in the pilot study to down-sample
the number of instances we created for each tem-
plate seen more than 10 times in the corpus. The
total number of generation HITs resulting for each
condition is shown in Table 1.

Crowd generation process Statistics on crowd
generation are shown in Table 1. Each worker
could complete at most 1/6 of the total HITs for
that condition. We paid 3 cents for each genera-

3This is a Microsoft-internal crowdsourcing platform.

20

tion HIT, and each HIT was completed by 3 unique
workers. From this set, we removed corrupt re-
sponses, and all paraphrases for a generation HIT
where at least one of the 3 workers did not cor-
rectly write the slot values. This yielded a total of
9123 paraphrases, with 5408 unique paraphrases.

4.3 Crowd-based Evaluation

Evaluation HITs To keep the crowd evaluation
tractable, we randomly sampled 25% of the para-
phrases generated for all conditions to produce
evaluation HITs. We excluded paraphrases from
seeds that did not receive paraphrases from all 3
workers or were missing required slots. As dis-
cussed in §3, paraphrases were converted to crowd
templates, and each crowd template was instanti-
ated in the original dialogue, in-context (IC) and
in a randomly selected out-of-context (OOC) dia-
logue. The OOC templates were instantiated with
slots relevant to the chosen dialogue. This process
yielded 2281 paraphrases, placed into each of the
two contexts.

Crowd evaluation process As discussed in
§3.3, instantiated templates (crowd and original)
were displayed as options A and B, with random-
ized assignment (see Figure 3). Workers were
asked to judge whether the original and the crowd
template had the same meaning, and whether they
made sense in the dialogue context. Workers then
rated which was more natural on a 5-point ordi-
nal scale ranging from -2 to 2, where a -2 rating
marked that the original was much more natural
than the crowd template. Statistics on the judg-
ments collected in the evaluation HITs are shown
in Table 1. Workers were paid 7 cents for each
HIT. Each worker could complete at most 5% of
all HITs, and each HIT was completed by 5 unique
workers.

Outlier elimination One challenge with crowd-
sourced evaluations is noise introduced by spam-
mers. While questions with known answers may
be used to detect spammers in objective tasks, the
subjective nature of our evaluation tasks makes
this difficult: a worker who does not agree with the
majority may simply have different opinions about
the paraphrase meaning or naturalness. Instead of
spam detection, we therefore seek to identify and
eliminate outliers; in addition, as previously dis-
cussed, each HIT was performed by 5 workers, in
an effort to increase robustness.

We focused attention on workers who per-
formed at least 20 HITs (151 of 230 workers, cov-
ering 98% of the total number of HITs). Since
we randomized the A/B assignment of instantiated
original templates and crowd templates, we expect
to see a symmetric distribution over the relative
naturalness scores of all judgments produced by a
worker. To identify workers violating this expec-
tation, we computed a score that reflected the sym-
metry of the histogram of the naturalness votes for
each worker. We considered as outliers 6 work-
ers that were more than z=1.96 standard deviations
away from the mean on this metric (corresponding
to a 95% confidence interval). Secondly, we com-
puted a score that reflected the percentage of tasks
where a worker was in a minority, i.e., had the
single opposing vote to the other workers on the
same meaning question. We eliminated 4 work-
ers, who fell in the top 97.5 percentile of this dis-
tribution. We corroborated these analyses with a
visual inspection of scatterplots showing these two
metrics against the number of tasks performed by
each judge.4 As one worker failed on both criteria,
overall, 9 workers (covering 9% of all judgements)
were considered outliers and their responses were
excluded.

4.4 Crowd Evaluation Results

Meaning and Sense Across conditions, we find
that most crowd templates are evaluated as hav-
ing the same meaning as the original and mak-
ing sense by the majority of workers. Evaluation
percentages are shown in Table 2, and are around
90% across the board. This suggests that in most
cases, the generation task yields crowd templates
that meet the goal of preserving the meaning of the
original template.

Naturalness To evaluate whether the amount of
surrounding context has an effect on the perceived
naturalness of a paraphrase relative to the original
phrase, we use a Kruskal-Wallis (KW) test on the
mean scores for each of the paraphrases, setting
our significance level to .05. A Kruskal-Wallis
test is a non-parametric test useful for significance
testing when the independent variable is categor-
ical and the data is not assumed to be normally
distributed. We find that there is an effect of con-
dition on the relative naturalness score (KW chi-
squared = 15.9156, df = 5, p = 0.007) when crowd

4Scatterplots available at m-mitchell.com/corpora.html.

21

Crowd Evaluation Developer Evaluation
Cond. % Same % Makes Avg. Relative Avg. % Dev. Avg.

Meaning Sense Naturalness D-score Accepted D-score
IC OOC IC OOC IC OOC IC OOC All Seen>1

Phrase 92 91 90 90 -.54 (.66) -.50 (.61) .67 .67 37 67 .30
S 91 89 88 88 -.50 (.65) -.47 (.66) .68 .64 35 53 .29
suS 84 87 85 87 -.37 (.65) -.37 (.61) .70 .70 40 63 .41
suSu 88 85 95 88 -.48 (.62) -.43 (.61) .76 .71 38 50 .39
susuS 94 94 91 94 -.43 (.70) -.39 (.67) .81 .80 38 78 .34
susuSu 91 89 92 86 -.40 (.61) -.38 (.66) .73 .74 45 67 .42

Table 2: % same meaning, % makes sense, and average relative naturalness (standard deviation in paren-
theses), measured in-context (IC) and out-of-context (OOC); crowd-based and developer-based diversity
score (D-score); developer acceptance rate computed over all templates, and those seen more than once.
The susuS condition yields the most diverse templates using crowd-based metrics; removing templates
seen once in the evaluation corpus, this condition has the highest acceptance in the developer evaluation.

templates are evaluated in-context, but not out-of-
context (KW chi-squared = 9.4102, df = 5, p-value
= 0.09378). Average relative naturalness scores in
each condition are shown in Table 2.

Diversity We also assess the diversity of the
templates elicited from the crowd, based on the
evaluation set. Specifically, we calculate a diver-
sity score (D-score) for each template type t. We
calculate this score as the number of unique crowd
template types for t voted to make sense and have
the same meaning as the original by the majority,
divided by the total number of seeds for t with
evaluated crowd templates. More formally, let P
be the original template instantiations that have
evaluated crowd templates, M the set of unique
crowd template types voted as having the same
meaning as the original template by the majority
of workers, and S the set of unique crowd tem-
plate types voted as making sense in the dialogue
by the majority of workers. Then:

D-score(t) =
|M \ S|

|P |

The average diversity scores across all tem-
plates for each condition are shown in Table 2.
We find the templates that yield the most di-
verse crowd templates include WL Retry “Where
are you trying to get to in this building?” and
OK Help, “Okay, I think I can help you with
that”, which have a diversity rating of 1.0 in sev-
eral conditions: for each template instance we in-
stantiate (i.e., each generation HIT), we get a new,
unique crowd template back. Example crowd tem-
plates for the OK Help category include “I be-
lieve I can help you find that” and “I can help
you ok”. The templates with the least diversity are
those for Hi, which has a D-score around 0.2 in

the S and Phrase conditions.

4.5 Developer Acceptability Results
For the set of crowd templates used in the crowd-
based evaluation process, one of the system de-
velopers5 provided binary judgments on whether
each template could be added (without making any
changes) to the system or not. The developer had
access to the original template, extensive knowl-
edge about the system and domain, and the way in
which each of these templates are used.

Results indicate that the developer retained 487
of the 1493 unique crowd templates that were used
in crowd-evaluation (33%). A breakdown of this
acceptance rate by condition is shown in Table 2.
When we eliminate templates seen only once in
the evaluation corpus, acceptability increases, at
the expense of recall. We additionally calculate
a diversity score from those templates accepted
by the developer, which is simply the number of
crowd template types accepted by the developer,
divided by the total number of seeds used to elicit
the crowd templates in the developer’s evaluation,
for each template type t.

The developer evaluation revealed a wide range
of reasons for excluding crowd templates. Some
of the most common were lack of grammatical-
ity, length (some paraphrases were too long/short),
stylistic mismatch with the system, and incorrect
punctuation. Other reasons included register is-
sues, e.g., too casual/presumptive/impolite, issues
of specificity, e.g., template was too general, and
issues of incompatibility with the dialogue state
and turn construction process. Overall, the de-
veloper interview highlighted very specific system

5The developer was not an author of this paper.

22

Figure 5: Precision and recall for heuristics.

and domain knowledge in the selection process.

4.6 Crowd-based Evaluation and Developer
Acceptability

We now turn to an investigation of whether statis-
tics from the crowd-based generation and evalu-
ation processes can be used to automatically fil-
ter crowd templates. Specifically, we look at two
heuristics, with results plotted in Figure 5. These
heuristics are applied across the evaluation cor-
pus, collating data from all conditions. The first
heuristic, Heur1, uses a simple threshold on the
number of times a crowd template occurred in the
evaluation corpus.6 We hypothesize that more fre-
quent paraphrases are more likely to be acceptable
to the developer, and in fact, as we increase the
frequency threshold, precision increases and recall
decreases.

The second heuristic, Heur2, combines the
threshold on counts with additional scores col-
lected in the out-of-context crowd-evaluation: It
only considers templates with an aggregated judg-
ment on the same meaning question greater than
50% (i.e., the majority of the crowd thought the
paraphrase had the same meaning as the origi-
nal), and with an aggregated relative naturalness
score above the overall mean. As Figure 5 illus-
trates, different tradeoffs between precision and
recall can be achieved via these heuristics, and by
varying the count threshold.

These results indicate that developer filtering re-
mains a necessary step for adding new dialogue
system templates, as the filtering process cannot
yet be replaced by the crowd-evaluation. This is
not surprising since the evaluation HITs did not

6Since the evaluation corpus randomly sampled 25% of
the generation HITs output, this is a proxy for the frequency
with which that template was generated by the crowd.

express all the different factors that we found the
developer took into account when selecting tem-
plates, such as style decisions and how phrases are
combined in the system to form a dialogue. Future
work may consider expanding evaluation HITs to
reflect some of these aspects. By using signals ac-
quired through crowd generation and evaluation,
we should be able to reduce the load for the de-
veloper by presenting a smaller and more precise
candidate list at the expense of reductions in recall.

5 Discussion

We proposed and investigated a methodology for
developing a corpus of natural language genera-
tion templates for a spoken dialogue system via
crowdsourcing. We investigated the effect of the
context we provided to the workers on the per-
ceived meaning, naturalness, and diversity of the
alternates obtained, and evaluated the acceptabil-
ity of these alternates from a system developer
viewpoint.

Our results show that the crowd is able to pro-
vide suitable and diverse paraphrases within this
methodology, which can then be converted into
crowd templates. However, more work is nec-
essary before elicited crowd templates can be
plugged directly into a system.

In future work, we hope to continue this pro-
cess and investigate using features from the crowd
and judgments from system developers in a ma-
chine learning paradigm to automatically identify
crowd templates that can be directly added to the
dialogue system. We would also like to extend be-
yond paraphrasing single templates to entire sys-
tem turns. With appropriate controls and feature
weighting, we may be able to further expand dia-
logue capabilities using the combined knowledge
of the crowd. We expect that by eliciting lan-
guage templates from multiple people, as opposed
to a few developers, the approach may help con-
verge towards a more natural distribution of al-
ternative phrasings in a dialogue. Finally, future
work should also investigate the end-to-end effects
of introducing crowd elicited templates on the in-
teractions with the user.

Acknowledgments

Thanks to members of the ASI group, Chit W.
Saw, Jason Williams, and anonymous reviewers
for help and feedback with this research.

23

References
D. Bohus and E. Horvitz. 2009. Dialog in the open

world: Platform and applications. Proceedings of
ICMI’2009.

Dan Bohus, C. W. Saw, and Eric Horvitz. 2014. Di-
rections robot: In-the-wild experiences and lessons
learned. Proceedings of AAMAS’2014.

Martin Potthast Burrows, Steven and Benno Stein.
2013. Paraphrase acquisition via crowdsourcing and
machine learning. ACM Transactions on Intelligent
Systems and Technology (TIST), 43.

Olivia Buzek, Philip Resnik, and Benjamin B. Beder-
son. 2010. Error driven paraphrase annotation using
mechanical turk. Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk.

Chris Callison-Burch and Mark Dredze. 2010. Cre-
ating speech and language data with amazon’s me-
chanical turk. Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk.

David L. Chen and William B. Dolan. 2011. Collect-
ing highly parallel data for paraphrase evaluation.
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1.

Michael Denkowski and Alon Lavie. 2010. Exploring
normalization techniques for human judgments of
machine translation adequacy collected using ama-
zon mechanical turk. Proceedings of the NAACL
HLT 2010 Workshop on Creating Speech and Lan-
guage Data with Amazon’s Mechanical Turk.

Matthai Philipose Han, Seungyeop and Yun-Cheng Ju.
2013. Nlify: lightweight spoken natural language
interfaces via exhaustive paraphrasing. Proceedings
of the 2013 ACM international joint conference on
Pervasive and ubiquitous computing.

Filip Jurc̆ı́c̆ek, Simon Keizer, Milica Gašić, Franc̆ois
Mairesse, Blaise Thomson, Kai Yu, and Steve
Young. 2011. Real user evaluation of spoken dia-
logue systems using amazon mechanical turk. Pro-
ceedings of INTERSPEECH, 11.

Walter S. Lasecki, Rachel Wesley, Jeffrey Nichols,
Anand Kulkarni, James F. Allen, and Jeffrey P.
Bigham. 2013. Chorus: a crowd-powered con-
versational assistant. Proceedings of the 26th an-
nual ACM symposium on User interface software
and technology.

Sean Liu, Stephanie Seneff, and James Glass. 2010.
A collective data generation method for speech lan-
guage models. Spoken Language Technology Work-
shop (SLT), IEEE.

François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.

2010. Phrase-based statistical language generation
using graphical models and active learning. Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Matteo Negri, Yashar Mehdad, Alessandro Marchetti,
Danilo Giampiccolo, and Luisa Bentivogli. 2012.
Chinese whispers: Cooperative paraphrase acquisi-
tion. Proceedings of LREC.

Gabriel Parent and Maxine Eskenazi. 2010. To-
ward better crowdsourced transcription: Transcrip-
tion of a year of the let’s go bus information sys-
tem data. Spoken Language Technology Workshop
(SLT), IEEE.

Martin Tschirsich and Gerold Hintz. 2013. Leveraging
crowdsourcing for paraphrase recognition. LAW VII
& ID, 205.

William Yang Wang, Dan Bohus, Ece Kamar, and
Eric Horvitz. 2012. Crowdsourcing the acquisi-
tion of natural language corpora: Methods and ob-
servations. Spoken Language Technology Workshop
(SLT), IEEE.

W. Ward and B. Pellom. 1999. The cu communicator
system. Proceedings of IEEE ASRU.

Omar F. Zaidan and Chris Callison-Burch. 2011.
Crowdsourcing translation: Professional quality
from non-professionals. Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1.

24

Author Index

Bohus, Dan, 16
Briggs, Gordon, 1
Engonopoulos, Nikolaos, 6

Kamar, Ece, 16
Koller, Alexander, 6
Mitchell, Margaret, 16
Scheutz, Matthias, 1

25

	Modeling Blame to Avoid Positive Face Threats in Natural Language Generation
	Generating effective referring expressions using charts
	Crowdsourcing Language Generation Templates for Dialogue Systems

