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Abstract

This paper presents an annotation scheme for a new semantic annotation task with relevance for
analysis and computation at both the clause level and the discourse level. More specifically, we
label the finite clauses of texts with the type of situation entity (e.g., eventualities, statements
about kinds, or statements of belief) they introduce to the discourse, following and extending
work by Smith (2003). We take a feature-driven approach to annotation, with the result that
each clause is also annotated with fundamental aspectual class, whether the main NP referent is
specific or generic, and whether the situation evoked is episodic or habitual. This annotation is
performed (so far) on three sections of the MASC corpus, with each clause labeled by at least
two annotators. In this paper we present the annotation scheme, statistics of the corpus in its
current version, and analyses of both inter-annotator agreement and intra-annotator consistency.

1 Introduction

Linguistic expressions form patterns in discourse. Passages of text can be analyzed in terms of the
individuals, concepts, times and situations that they introduce to the discourse. In this paper we intro-
duce a new semantic annotation task which focuses on the latter and in particular their aspectual nature.
Situations are expressed at the clause level; situation entity (SE) annotation is the task of associating
individual clauses of text with the type of SE introduced to the discourse by the clause. Following Smith
(2003), we distinguish the following SE types (see Sec. 3.1): EVENTS, STATES, GENERALIZING SEN-
TENCES, GENERIC SENTENCES, FACTS, PROPOSITIONS, QUESTIONS and IMPERATIVES. Although
these categories are clearly distinct from one another on theoretical grounds, in practice it can be difficult
to cleanly draw boundaries between them. We improve annotation consistency by defining the SE types
in terms of features whose values are easier for annotators to identify, and which provide guidance for
distinguishing the more complex SE types.

As with most complex annotation tasks, multiple interpretations are often possible, and we cannot
expect agreement on all instances. The feature-driven approach (see Sec. 3.2) is a valuable source of
information for investigating annotator disagreements, as the features indicate precisely how annotators
differ in their interpretation of the situation. Analysis of intra-annotator consistency shows that personal
preferences of annotators play a role, and we conclude that disagreements often highlight cases where
multiple interpretations are possible. We further argue that such cases should be handled carefully in
supervised learning approaches targeting methods to automatically classify situation entity types.

As the first phase of the SE annotation project, we are in the process of annotating the written portion
of MASC (Ide et al., 2010), the manually-annotated subcorpus of the Open American National Corpus.
MASC provides texts from 20 different genres and has already been annotated with various linguistic
and semantic phenomena.1 MASC offers several benefits: it includes text from a wide variety of genres,
it facilitates study of interactions between various levels of analysis, and the data is freely available
with straightforward mechanisms for distribution. In this paper we report results for three of the MASC
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genres: news, letters, and jokes. Once a larger portion of MASC has been labeled with SEs and their
associated features, we will add our annotations to those currently available for MASC. We mark the SE
types of clauses with the aim of providing a large corpus of annotated text for the following purposes:

(1) To assess the applicability of SE type classification as described by Smith (2003): to what extent
can situations be classified easily, which borderline cases occur, and how do humans perform on this
task? (see Sec. 4)

(2) Training, development and evaluation of automatic systems classifying situation entities, as well
as sub-tasks which have (partially) been studied by the NLP community, but for which no large
annotated corpora are available (for example, automatically predicting the fundamental aspectual
class of verbs in context (Friedrich and Palmer, 2014) or the genericity of clauses and noun phrases).

(3) To provide a foundation for analysis of the theory of Discourse Modes (Smith, 2003), which we
explain next (Sec. 2).

2 Background and related work

Within a text, one recognizes stretches that are intuitively of different types and can be clustered by their
characteristic linguistic features and interpretations. Smith (2003) posits five discourse modes: Narrative,
Report, Description, Informative and Argument/Commentary. Texts of almost all genre categories have
passages of different modes. The discourse modes are characterized by (a) the type of situations (also
called situation entities) introduced in a text passage, and (b) the principle of text progression in the
mode (temporal or atemporal, and different manners of both temporal and atemporal progression). This
annotation project directly addresses the first of these characteristics, the situation entity types (SE types).

Some previous work has addressed the task of classifying SE types at the clause level. Palmer et al.
(2004) enrich LFG parses with lexical information from both a database of lexical conceptual structures
(Dorr, 2001) and hand-collected groups of predicates associated with particular SE types. The enriched
parses are then fed to an ordered set of transfer rules which encode linguistic features indicative of SE
types. The system is evaluated on roughly 200 manually-labeled clauses. Palmer et al. (2007) investigate
various types of linguistic features in a maximum entropy model for SE type classification. The best
results are still below 50% accuracy (with a most-frequent-class baseline of 38%), and incorporating
features from neighboring clauses is shown to increase performance. Palmer et al. (2007) annotate data
from one section of the Brown corpus and a small amount of newswire text, with two annotators and
no clear set annotation guidelines. In addition, work by Cocco (2012) classifies clauses of French text
according to a six-way scheme that falls somewhere between the SE level and the level of discourse
modes. The types are: narrative, argumentative, descriptive, explicative, dialogal, and injunctive.

Other related works address tasks related to the features we annotate. One strand of work is in auto-
matic classification of aspectual class (Siegel and McKeown, 2000; Siegel, 1999; Siegel, 1998; Klavans
and Chodorow, 1992; Friedrich and Palmer, 2014) and its determination as part of temporal classification
(UzZaman et al., 2013; Bethard, 2013; Costa and Branco, 2012). A second aims to distinguish generic
vs. specific clauses (Louis and Nenkova, 2011) or to identify generic noun phrases (Reiter and Frank,
2010). The latter work leverages data with noun phrases annotated as either generic and specific from
the ACE-2 corpus (Mitchell et al., 2003); their definitions of these two types match ours (see Sec. 3.2.1).

3 Annotation Scheme and Process

In this section, we first present the inventory of SE types (Sec. 3.1). We then describe our feature-
driven approach to annotation (Sec. 3.2) and define the SE types with respect to three situation-related
features: main referent type, fundamental aspectual class, and habituality. Some situation entity types
are easier to recognize than others. While some can be identified on the basis of surface structure and
clear linguistic indicators, others depend on internal temporal (and other) properties of the verb and its
arguments. Annotators take the following approach: first, easily-identifiable SE types (Speech Acts and
Abstract Entities) are marked. If the clause’s SE type is not one of these, values for the three features are
determined, and the final determination of SE type is based on the features.
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3.1 Situation entity types
Following Smith (2003), we distinguish the following SE types:

Eventualities. These types describe particular situations such as STATES (1a) or EVENTS (2). The type
REPORT, a subtype of EVENT, is used for situations introduced by verbs of speech (1b).

(1) (a) “Carl is a tenacious fellow”, (STATE)
(b) said a source close to USAir. (EVENT – REPORT)

(2) The lobster won the quadrille. (EVENT)

General Statives. This class includes GENERALIZING SENTENCES (3), which report regularities re-
lated to specific main referents, and GENERIC SENTENCES (4), which make statements about kinds.

(3) Mary often feeds my cats. (GENERALIZING)

(4) The lion has a bushy tail. (GENERIC)

Abstract Entities are the third class of SE types, and comprise FACTS (5) and PROPOSITIONS (6).
These situations differ from the other types in how they relate to the world: Eventualities and General
Statives are located spatially and temporally in the world, but Abstract Entities are not. FACTS are objects
of knowledge and PROPOSITIONS are objects of belief from the respective speaker’s point of view.

(5) I know that Mary refused the offer. (FACT)

(6) I believe that Mary refused the offer . (PROPOSITION)

We limit the annotation of Abstract Entities to the clausal complements of certain licensing predicates,
as well as clauses modified by a certain class of adverbs, as it is not always possible to identify sentences
directly expressing Facts or Propositions on linguistic grounds (Smith, 2003). In (6), believe is the
licensing predicate, and Mary refused the offer is a situation that is introduced as not being in the world,
but about the world (Smith, 2003). Annotators are asked to additionally label the embedded SE type
when possible. For example, that Mary refused the offer in (5) and (6) would be labeled as EVENT.

Speech Acts. This class comprises QUESTIONS and IMPERATIVE clauses (Searle, 1969).

Derived SE types. In some cases, the SE type of a clause changes based on the addition of some
linguistic indication of uncertainty about the status of the situation described. We refer to these as derived
SE types. More specifically, clauses that would otherwise be marked as EVENT may be coerced to the
type STATE due to negation, modality, future tense, conditionality, and sometimes subjectivity: e.g. John
did not win the lottery, a negated event, introduces a STATE to the discourse.

3.2 Features for distinguishing situation entity types
In this section, we describe three features that allow for the clear expression of differences between SE
types. Fleshing out the descriptions of SE types with these underlying features is useful to convey the
annotation scheme to new annotators, to get partial information when an annotator has trouble making a
decision on SE type, and to analyze disagreements between annotators.

3.2.1 Main referent type: specific or generic
This feature indicates the type of the most central entity mentioned in the clause as a noun phrase. We
refer to this entity as the clause’s main referent. This referent can be found by asking the question: What
is this clause about? Usually, but not always, the main referent of a clause is realized as its grammatical
subject. We appeal to the annotator’s intuitions in order to determine the main referent of a clause. In
case the main referent does not coincide with the grammatical subject as in example (7), this is to be
indicated during annotation.

(7) There are two books on the table. (specific main referent, STATE)
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Some SE types (STATES, GENERALIZING SENTENCES and GENERIC SENTENCES, for details see
Table 1) are distinguished by whether they make a statement about some specific main referent or about
a generic main referent. Specific main referents are particular entities (8), particular groups of entities (9),
organizations (10), particular situations (11) or particular instantiations of a concept (12).

(8) Mary likes popcorn. (particular entity → specific, STATE)

(9) The students met at the cafeteria. (a particular group → specific, STATE)

(10) IBM was a very popular company in the 80s. (organization → specific, STATE)

(11) That she didn’t answer her phone really upset me. (particular situation → specific, EVENT)

(12) Today’s weather was really nice. (particular instantiation of a concept → specific, STATE)

The majority of generic main referents are noun phrases referring to a kind rather than to a particular
entity, and generic mentions of concepts or notions (14). Definite NPs and bare plural NPs (13) are the
main kind-referring NP types (Smith, 2003).

(13) The lion has a bushy tail. / Dinosaurs are extinct. (generic, GENERIC SENTENCE)

(14) Security is an important issue in US electoral campaigns. (generic, GENERIC SENTENCE)

While some NPs clearly make reference to a well-established kind, other cases are not so clear cut,
as humans tend to make up a context in which an NP describes some kind (Krifka et al., 1995). Sen-
tence (15) gives an example for such a case: while lions in captivity are not a generally well-established
kind, this term describes a class of entities rather than a specific group of lions in this context.

(15) Lions in captivity have trouble producing offspring. (generic, GENERIC SENTENCE)

Gerunds may occur as the subject in English sentences. When they describe a specific process as in
(16a), we mark them as specific. If they instead describe a kind of process as in (16b), we mark them as
generic.

(16) (a) Knitting this scarf took me 3 days. (specific, EVENT)
(b) Knitting a scarf is generally fun. (generic, GENERIC SENTENCE)

We also give annotators the option to explicitly mark the main referent as expletive, as in (17).

(17) It seemed like (expletive = no main referent, STATE)
he would win. (specific, STATE)

3.2.2 Fundamental aspectual class: stative or dynamic
Following Siegel and McKeown (2000), we determine the fundamental aspectual class of a clause. This
notion is the extension of lexical aspect or aktionsart, which describe the “real life shape” of situations
denoted by verbs, to the level of clauses. More specifically, aspectual class is a feature of the main verb
and a select group of modifiers, which may differ per verb. The stative/dynamic distinction is the most
fundamental distinction in taxonomies of aspectual class (Vendler, 1967; Bach, 1986; Mourelatos, 1978).

We allow three labels for this feature: dynamic for cases where the verb and its arguments describe
some event (something happens), stative for cases where they introduce some properties of the main
referent to the discourse, or both for cases where annotators see both interpretations.

It is important to note that the fundamental aspectual class of a verb can be different from the type
of situation entity introduced by the clause as a whole. The basic situation type of building a house is
dynamic, and in the examples below we see this fundamental aspectual class appearing in clauses with
different situation entity types. Example (18) describes an EVENT. Clause (19), on the other hand, is a
GENERALIZING SENTENCE, as it describes a pattern of events; this is a situation with a derived type.
The same is true for example (20), which is a STATE because of its future tense.

(18) John built a house. (EVENT, dynamic fundamental aspectual class)

(19) John builds houses. (GENERALIZING SENTENCE, dynamic fundamental aspectual class)

(20) John is going to build a house. (STATE, dynamic fundamental aspectual class)
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3.2.3 Habituality
Another dimension along which situations can be distinguished is whether they describe a static state, a
one-time (episodic) event (21) or some regularity of an event (22) or a state (23), which is labeled ha-
bitual. The term habitual as used in this annotation project covers more than what is usually considered
a matter of habit, extending to any clauses describing regularities (24). The discussion related to this
linguistic feature in this section follows Carlson (2005). If one can add a frequency adverbial such as
typically/usually to the clause and the meaning of the resulting sentence differs at most slightly from the
meaning of the original sentence, or the sentence contains a frequency adverbial such as never, the sen-
tence expresses a regularity, i.e., is habitual. Another property of habituals is that they are generalizations
and hence have the property of tolerating exceptions. If we learn that Mary eats oatmeal for breakfast, it
does not necessarily need to be true that she eats oatmeal at every breakfast. It is important to note that
unlike fundamental aspectual class, habituality is an attribute of the entire situation.

(21) Mary ate oatmeal for breakfast this morning. (episodic, EVENT)

(22) Mary eats oatmeal for breakfast. (habitual, GENERALIZING SENTENCE)

(23) I often feel as if I only get half the story. (habitual, stative fundamental aspectual class, GENER-
ALIZING SENTENCE)

(24) Glass breaks easily. (habitual, GENERIC SENTENCE)

3.3 SE types and their features
The feature-driven approach to annotation taken here is defined such that, ideally, each unique combina-
tion of values for the three features leads to one SE type. Table 1 shows the assignment of SE types to
various combinations of feature values. This table covers all SE types except ABSTRACT ENTITIES and
SPEECH ACTS, which are more easily identifiable based on lexical and/or syntactic grounds. Annotators
are also provided with information about linguistic tests for some SE types and feature values, both for
making feature value determinations and to support selection of clause-level SE type labels.

SE type main referent aspectual class habituality

EVENT
specific

eventive episodic
generic

STATE specific stative static

GENERIC SENTENCE generic
eventive habitual
stative static, habitual

GENERALIZING
specific

eventive
habitual

SENTENCE stative

General Stative specific
eventive habitual

generic

Table 1: Situation entity types and their features.

4 Annotator agreement and consistency

This section presents analyses of inter-annotator agreement and intra-annotator consistency, looking at
agreement for individual feature values as well as clause-level SE type.

4.1 Data and annotators
The current version of our corpus consists of three sections (news, letters and jokes) of MASC corpus
(Ide et al., 2010). We hired three annotators, all either native or highly-skilled speakers of English, and
had a training phase of 3 weeks using several Wikipedia documents. Afterwards, annotation of the texts
began and annotators had no further communication with each other. Two annotators (A and B) each
marked the complete data set, and one additional annotator (C) marked the news section only.
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ANNOTATORS NUMBER OF MAIN ASPECTUAL HABITUALITY SE TYPE SE TYPE
SEGMENTS REFERENT CLASS (REP=EVT)

A:B 2563 0.35 0.81 0.77 0.56 0.66
A:C 2524 0.29 0.77 0.76 0.55 0.65
B:C 2556 0.45 0.73 0.76 0.76 0.74

average 2545 0.36 0.77 0.76 0.62 0.68

Table 2: Cohen’s κ, for pairs of annotators on the MASC news section.

GENRE NUMBER OF MAIN ASPECTUAL HABITUALITY SE TYPE SE TYPE
SEGMENTS REFERENT CLASS (REP=EVT)

jokes 3455 0.57 0.85 0.81 0.74 0.73
news 2563 0.35 0.81 0.77 0.56 0.66
letters 1851 0.41 0.71 0.65 0.56 0.56

all 7869 0.47 0.80 0.77 0.64 0.68

Table 3: Cohen’s κ, for two annotators on three different sections of MASC.

4.2 Segmentation into clauses

We segment the texts into finite clauses using the SPADE discourse parser (Soricut and Marcu, 2003),
applying some heuristic post-processing and allowing annotators to mark segments that do not contain
a situation (for instance, headlines or by-lines) or that should be merged with another segment in order
to describe a complete situation. We filter out all segments marked by any annotator as having a seg-
mentation problem. Of the 2823 segments automatically created for the news section, 4% were marked
as containing no situation by at least one of the three annotators, and 7% were merged to a different
segment by at least one annotator. All three annotators agree on the remaining 2515 segments (89%). Of
the 9428 automatically-created segments in the full data set, 11.5% were marked as no-situation by at
least one of two annotators, and a further 5% were merged to other segments by at least one annotator.
7869 segments remain for studying agreement between two annotators on the full data set.

The three genres vary as to the average segment length. Segments in the letters texts have the longest
average length (11.1 tokens), segments in jokes are the shortest (6.9 tokens on average), and segments in
news fall in the middle with an average length of 9.9 tokens.

4.3 Inter-annotator agreement

As we allow annotators to mark a segment as Speech Acts or Abstract Entities and in addition mark the
SE type of the embedded situation with a non-surface type, we compute agreement for Eventualities and
General Statives in the following, and present the results for Speech Acts and Abstract Entities separately.

news section, 3 annotators. We compute Cohen’s unweighted κ between all three pairs of annotators
for the news section, as shown in Table 2. We compute agreement for the segments where both respective
annotators agree on the segmention, i.e., that the segment describes a situation. For aspectual class, we
compute agreement over the three labels stative, dynamic and both; for main referents, we compute
agreement over the three labels specific, dynamic and expletive; for habituality, we compute agreement
over the three labels episodic, habitual and static. In each case, we omit segments for which one of the
annotators did not give a label, which in each case are fewer than 26 segments.

We observe good agreement for the features aspectual class and habituality, and for SE type between
annotators B and C. Pairs involving annotator A reach lower agreement; we identify two causes. Anno-
tator A marks many segments marked as REPORT by the others as the corresponding supertype EVENT.
This shows up in Table 2 as higher values of κ when considering REPORT to match its supertype EVENT.
The second cause is A’s different preference for marking main referents, causing lower κ scores for agree-
ment on the main referent type and also influencing agreement for situation entity types. In more than
92% of the 183 clauses on which annotators B and C agree with each other, but disagree with A, B
and C assigned the value specific while A marked the main referent as generic. Early in the annotation
project, a revision was made to the scheme for labeling main referents – one hypothesis is that A might
not have updated her way of labeling these. We estimate that roughly 40% of these cases were due to
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A’s misunderstanding of feature value definitions, but around 30% of these cases do allow for both inter-
pretations. In the following sentence, the main referent of the second segment could either refer to the
specific set of all kids in New York, or to the class of children in New York: As governor, I’ll make sure
// that every kid in New York has the same opportunity. Another frequent case is the main referent you,
which can be interpreted in a generic way or as specifically addressing the reader (e.g. of a letter). Such
disagreements at the level of feature annotations allow us to detect cases where several interpretations
are possible. Having annotators with different preferences on difficult cases can actually be a valuable
source of information for identifying such cases.

The distribution of labels for main referents is highly skewed towards specific main referents for the
news section; when comparing B and C, they agree on 2358 segments to have a specific main referent.
However, only 122 segments are labeled as having a generic main referent by at least one annotator, and
they agree only on 43 of them. A further 49 are labeled generic by B but specific by C and a further 30
vice versa. In order to collect more reliable data and agreement numbers for the task of labeling main
referent types, we plan to conduct a focused study with a carefully-balanced data set.

news, jokes, letters: 2 annotators. We report agreement for three sections, corresponding to three
genres, for two annotators (A and B) in Table 3. We observe higher agreement for jokes than for news,
and higher agreement for news than for letters. Figure 1 shows the distribution of situation entity types
per genre. The numbers express averages of percentages of label types assigned to the clauses of one
genre by the two annotators. The letters genre is different in that it has more STATES, far fewer EVENTS,
which are usually easy to detect, and more General Statives. Most cases of confusion between annotators
occur between General Statives and STATES, so the more EVENTS texts have, the higher the agreement.

letters news jokes
0%

20%

40%

60%
STATE

EVENT

GENERALIZING 
SENTENCE

GENERIC 
SENTENCE

Figure 1: Distribution of situation entity types in three different genres.

Speech Acts and Abstract Entities. Figure 2 shows the percentage of segments of each genre that
were marked as a Speech Act or an Abstract Entity by at least one annotator. QUESTIONS are most
frequent in the jokes genre, but about half of them are just marked by one annotator, which has to do with
how consistently indirect questions are marked. The two annotators agree on almost all segments labeled
as imperatives; while there are only very few IMPERATIVES in the news section, there are more in the
jokes and letters sections. The letters are mainly fund-raising letters, which explains the high percentage
of IMPERATIVES (Please help Goodwill. // Use the enclosed card // and give a generous gift today.).
FACTS and PROPOSITIONS, on the other hand, are rather infrequent in any genre, and annotators tend to
mark them inconsistently. We take from this analysis that we need to offer some help to the annotators in
detecting Abstract Entities. We plan to compile a list of verbs that may introduce Abstract Entities and
specifically highlight potential licensing constructions in order to increase recall for these types.

4.4 Intra-annotator consistency
After the first round of annotation, we identified 11 documents with low inter-annotator agreement on
SE type (5 news, 5 letters, 1 jokes) and presented them to two annotators for re-annotation. For each
annotator, the elapsed time between the first and second rounds was at least 3 weeks. We observe that in
general, the agreement of each annotator with herself is greater than agreement with the other annotator.
This shows that the disagreements are not pure random noise, but that annotators have different prefer-
ences for certain difficult decisions. It is interesting to note that annotator B apparently changed how
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jokes news letters
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jokes news letters
0.0%

3.0%

6.0%

9.0%

12.0%
FACT

jokes news letters
0.0%

3.0%

6.0%

9.0%

12.0%
IMPERATIVE

jokes news letters
0.0%

3.0%

6.0%

9.0%

12.0%
QUESTION

Figure 2: Percentage of segments marked as Speech Act or Abstract Entity by at least one annotator.

GENRE NUMBER OF MAIN ASPECTUAL HABITUALITY SE TYPE SE TYPE
SEGMENTS REFERENT CLASS (REP=EVT)

A1:B1 636 0.15 0.79 0.64 0.40 0.45
A2:B2 599 0.12 0.78 0.70 0.42 0.48
A1:A2 596 0.79 0.88 0.78 0.75 0.75
B1:B2 620 0.55 0.84 0.78 0.75 0.75

Table 4: Consistency study: Cohen’s κ, for two annotators, comparing against each other and against
themselves (re-annotated data). A1 = annotator A in first pass, B2 = annotator B in second pass etc.

she annotates main referents; possibly this is also due to the above mentioned revision to the annotation
scheme. On the other hand, B annotated very few segments as generic (only 61 segments were marked
as having a generic main referent in either the first or second pass, 27 of them in both passes), which
may also have led to the low κ value. The fact that annotators do disagree with themselves indicates that
there are noisy cases in our data set, where multiple interpretations are possible. However, we want to
point out that the level of noise estimated by this intra-annotator consistency study is an upper bound as
we chose the most difficult documents for re-annotation; the overall level of noise in the data set can be
assumed to be much lower.

5 Conclusion

We have presented an annotation scheme for labeling clauses with their situation entity type along with
features indicating the type of main referent, fundamental aspectual class and habituality. The feature-
driven approach allows for a detailed analysis of annotator disagreements, showing in which way the
annotators’ understandings of a clause differ. The analysis in the previous chapter showed that while
good inter-annotator agreement can be reached for most decisions required by our annotation schema,
there remain hard cases, on which annotators disagree with each other or with their own first round
of annotations. We do not yet observe satisfying agreement for main referent types or for identifying
abstract entities. In both cases, data sparseness is a problem; there are only very few generic main
referents and abstract entities in our current corpus. We plan to conduct case studies on data that is
specifically selected for these phenomena.

However, in many of the hard cases, several readings are possible. Rather than using an adjudicated
data set for training and evaluation of supervised classifiers for labeling clauses with situation entities,
we plan to leverage such disagreements for training, following proposals by Beigman Klebanov and
Beigman (2009) and Plank et al. (2014).

The annotation reported here is ongoing; our next goal is to extend annotation to additional genres
within MASC, starting with essays, journal, fiction, and travel guides. Following SE annotation, we will
extend the project to annotation of discourse modes. Finally, we are very interested in exploring and
annotating SEs in other languages, as we expect a similar inventory but different linguistic realizations.
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