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Abstract

Discriminative dialog state tracking has
become a hot topic in dialog research com-
munity recently. Compared to genera-
tive approach, it has the advantage of be-
ing able to handle arbitrary dependent fea-
tures, which is very appealing. In this
paper, we present our approach to the
DSTC2 challenge. We propose to use dis-
criminative Markovian models as a natu-
ral enhancement to the stationary discrim-
inative models. The Markovian structure
allows the incorporation of ‘transitional’
features, which can lead to more effi-
ciency and flexibility in tracking user goal
changes. Results on the DSTC2 dataset
show considerable improvements over the
baseline, and the effects of the Markovian
dependency is tested empirically.

1 Introduction

Spoken dialog systems (SDS) have become much
more popular these days, but still far from wide
adoption. One of the most outstanding problems
that affect user experience in an SDS is due to
automatic speech recognition (ASR) and spoken
language understanding (SLU) errors. While the
advancement of ASR technology has a positive ef-
fect on SDS, it is possible to improve the SDS user
experience by designing a module which explicitly
handles ASR and SLU errors. With accurately es-
timated dialog state, the dialog manager could se-
lect more effective and flexible dialog actions, re-
sulting in shorter dialogs and higher dialog success
rate. Dialog state tracking is the task of identifying
the correct dialog state (user action, user goal, etc.)
from ASR and SLU outputs in the presence of er-
rors. Commercial dialog systems these days usu-
ally use simple dialog state tracking strategies that
only consider the most probable SLU output. Pre-
vious research shows that several errors in dialog
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state tracking can be rectified by considering the
full N-best results from the ASR and SLU compo-
nents (Williams, 2012). Thus it is very important
to develop robust and practical dialog state track-
ing models.

In statistical dialog state tracking, models
can be roughly divided into two major classes,
i.e. generative and discriminative. Generative
(Bayesian) dialog tracking models are prevalent
in early studies due to its close relationship with
the POMDP dialog management model (Young et
al., 2013). Generative models generally use Dy-
namic Bayesian Networks to model the observa-
tion probability P(O|S;) and transition probabil-
ity P(S¢|S;t—1), where O; and S; are observations
and dialog state at turn ¢. In a discriminative
model, the conditional probability P(S;|O}) is
modeled directly, where O is all the observations
from turn 1 to £. One problem with the generative
models is that the independent assumptions are al-
ways not realistic. For example, N-best hypothe-
ses are often assumed independent of each other,
which is flawed in realistic scenarios (Williams,
2012). Furthermore, it is intrinsically difficult for
generative models to handle overlapping features,
which prevents model designers from incorporat-
ing arbitrarily large feature set. Discriminative
model does not suffer from the above problems as
there is no need to make any assumptions about
the probabilistic dependencies of the features. As
aresult. it is potentially able to handle much larger
feature sets and to make more accurate predic-
tions (Bohus and Rudnicky, 2006). Discrimina-
tive models also tend to be more data-driven, un-
like generative models in which many sub-models
parameters are heuristically tuned.

2 DSTCI1 revisited

The first Dialog State Tracking Challenge
(DSTC1) for the first time provided a common
test bed for various state tracking methods, and
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several participants employed various discrimi-
native models in the challenge. DSTCI1 provided
real user dialog corpora in the domain of bus
route service to evaluate performance of various
state tracking methods. In DSTCI1 there are 9
teams with 27 submissions, where discriminative,
generative and rule-based models are used in the
challenge. Maximum entropy models (Lee and
Eskenazi, 2013), conditional random fields (Lee,
2013) and neural networks (Henderson et al.,
2013) are the most frequently used discriminative
models, which gave competitive results on several
metrics. It has been empirically analyzed that dis-
criminative methods are especially advantageous
when the ASR/SLU confidence scores are poorly
estimated (Williams et al., 2013).

3 Discriminative modeling in dialog state
tracking

In the design of a slot-filling or task-oriented di-
alog systems, dialog state tracking can be consid-
ered as a classification problem, i.e. assigning pre-
defined values to a fixed number of slots. One
major problem in the formulation is that in com-
plex dialog scenarios the number of classes tends
to be very big, resulting in extremely sparse train-
ing instances for each class. This sparsity affects
the classification performance. A large predic-
tion domain also leads to computation inefficiency
which makes the model less practical. Usually we
could focus only on the on-list hypotheses, which
are the hypotheses appeared in the SLU results,
and all the other values in the slot value set are
grouped into a meta category other. It is simi-
lar to the partition concept in HIS (Young et al.,
2010), and by doing this we could reduce the num-
ber of classes to a reasonable size. We use ); to
denote the prediction domain at turn ¢. Although
the number of classes is reduced by focusing on
the dynamically generated ), some classes will
still suffer from the lack of training instances, and
what is even worse is that a large portion of the
classes will not have any training data, since in
practical SDS deployment it is hard to collect a
large dialog corpus. To handle the data sparseness
problem, parameters are often shared across dif-
ferent slots, or even data sets, and by doing this the
model complexity could be effectively controlled
and the overfitting problem would be alleviated.
Williams proposed to use various techniques from
multi-domain learning to improve model perfor-
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Figure 1: Markovian discriminative model depen-
dency diagram. In this figure the dialog state is
simplified to a single slot variable: date, the do-
main of the slot typically increases as dialog con-
tinues, which includes all the slot values appeared
as SLU results. As indicated by the arrows, S
depends on S;_; and O!. In stationary discrimi-
native model, there’s no dependency between ad-
jacent turns indicated by the upper arrow.

mance (Williams, 2013), which could be taken as
another way of parameter sharing.
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A dialog can be naturally seen as a temporal se-
quence involving a user and an agent, where strong
dependencies exist between adjacent turns. In typ-
ical task-oriented dialogs, users often change their
goals when their original object cannot be satis-
fied. Even when the true user goal stays constant
in a dialog session, the agent’s perception of it will
tend to evolve and be more accurate as the con-
versation proceeds, and thus the dialog state will
often change. The states at adjacent turns are sta-
tistically correlated, and therefore it is important
to leverage this natural temporal relationship in
tracking dialog state. We enhance the stationary
discriminative model in a similar way as described
in (McCallum et al., 2000), by assuming Marko-
vian dependency between adjacent turns.

Thus, the original probability P(S¢|O!) can be
factored into the following form:

P(5;|07) =

> P(S|Of, Si—1)P(Si-1|Ofh)
Si—1€S

Markovian discriminative model

1

The graphical model is shown is figure

1. Unlike stationary discriminative models,



we model the conditional transition probability
P(S;|O%, S;—1) instead of P(S;|O}) and the dia-
log state is updated according to equation 1 at each
turn. The feature functions in the structured model
can depend on the state of the previous turn, which
we call transitional features.

It is worth noting that stationary discriminative
model can include features built from dialog his-
tory (Metallinou et al.,, 2013). The major dif-
ference in utilizing this information from our ap-
proach is that by explicitly assuming the Marko-
vian dependency, the structured model is able to
exploit the whole probabilistic dialog state distri-
bution of the previous turn. The previous dialog
state S;_1 is inferred from previous dialog history
Oi_l, which contains higher level hypotheses than
the raw history features. Apart from that, the struc-
tured model can also use any stationary features
built from OY, which makes the stationary model
a special case of the structured one.

3.2 Neural network classifier

We use the family of multi-layer neural net-
works to model the transition probability
P(S;|Ot™,S;_1). To allow for the use of the
dynamic prediction domain, we utilize a forward
network structure similar to (Henderson et al.,
2013). Feature vectors for each class in ), are
fed into the model and forwarded through several
hidden layers for non-linear transformation in the
hope that deeper layers may form higher abstrac-
tion of the raw inputs. The parameter vectors for
each class are shared. For each feature vector
the model generates a real score. The scores for
all the classes in ), are then normalized using a
softmax function resulting in valid probabilities.

vi=Wi—1-g-1(..ao(W1-X5)...) ()
) (3)

where g7 to g;— are sigmoid functions, W; is the
weight matrix for linear transformation at layer ¢
and X; = f(O},v;) is the feature vector for class
1. We also test maximum entropy models, which
can be seen as a simple neural network without
hidden layers:

Py = Softmax(y1, ...,y

_ ty
P(Y - y’Ol) - (Oi’y)

4
4 DSTC2 challenge

DSTC2 is the second round of Dialog State Track-
ing Challenge, and it provides dialog corpora
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collected from real human-machine dialogs in a
restaurant domain. The corpora are split into la-
beled training and development sets and unlabeled
test set. Test sets are collected from a SDS dif-
ferent from the training and development set to
reflect the mismatch in real deployment. Unlike
DSTCI, the user goal often changes in DSTC2
when the condition specified by the user cannot
be met. For evaluation DSTC2 defined a number
of metrics among which several featured metrics
are selected. Besides tracking user goals (the val-
ues of each slot), two additional states method and
requested slots are also defined, which track the
method to query and the slots requested by users
respectively. Further details about DSTC2 could
be found in (Henderson et al., 2014).

5 Feature set

We briefly describe the feature set used in our sys-
tem. We only use the live SLU information pro-
vided by the organizers, and no extra external data
is used. The features used can be divided into two
classes.

stationary features which only depend on the
observations and the class (slot value) pre-
dicted at current turn in the form of f(y;, Oy).

transitional features that can also depends on
the predicted class at the previous turn in the

form of f(y¢, ye—1, O).
Stationary features include:

e SLU Scores: confidence scores of the current
prediction binned into boolean values, raw

scores are also added as real features.

SLU Status: whether the prediction is denied,
informed and confirmed in the current turn.

Dialog history: whether the prediction has
been denied, informed and confirmed in all
the dialog turns until the current one.

User/system action: The most probable user
action and the machine action in the current
turn.

The transitional features are as follows:

e Transitionl: whether the predictions in the
previous and the current turn are the same.



Name | Model Class | Hidden layers State Tracker | ACC L2 | CAOS
Entry1 MEMM - Baseline | 0.619 | 0.738 | 0.000
Entry2 | Structured NN [50] Entryl | 0.707 | 0.447 | 0.223
Entry3 | Structured NN [50, 30] Goal Entry2 | 0.713 | 0.437 | 0.207
MLP | Stationary NN [50, 30] Entry3 | 0.718 | 0.461 | 0.100
MLP | 0.713 | 0.448 | 0.128

Table 1: Configurations of models. The model Baseline | 0.875 | 0.217 | 0.000
MLP uses the same structure as Entry3, but with- Entryl | 0.865 | 0.228 | 0.199
out the transitional features described in section 5. Method Entry2 | 0.871 | 0.211 | 0.290
Number in brackets denotes the number of units Entry3 | 0.871 | 0.210 | 0.287
used in each hidden layers. MLP | 0.946 | 0.092 | 0.000
Baseline | 0.884 | 0.196 | 0.000

A . . Entryl | 0.932 | 0.118 | 0.057
s o S f oo 0| | Ean | 0047 0093 | 021
rent turn, i.e. for each machine cation, Tran- Entry3 1 0.951 1 0.085 1 0225

’ ’ MLP | 0.863 | 0.231 | 0.291

sision] is replicated and only the one corre-
sponding to the machine action at current turn
is activated.

Transitional features are specific to Markovian
models while stationary features can be used in
any discriminative models.

6 Model training

Markovian models in various forms are tested to
find the most appropriate structure for the task.
Models for ‘method’ and ‘state’ are built sepa-
rately using similar structured models.

When using the maximum entropy model to
build the conditional probability, the Markovian
model is equivalent to the maximum-entropy
Markov model (MEMM) model introduced in
(McCallum et al., 2000). More sophisticated neu-
ral networks with different configurations are used
to fit the model to more complex patterns in the
input features. In tracking the state ‘goal’, the
joint distribution of slots is built assuming differ-
ent slots are independent of each other. From the
perspective of practical implementation, one ad-
vantage of the simpler MEMM model is that the
training objective is convex. Thus the optimiza-
tion routine is guaranteed to find the global opti-
mum, while neural networks with hidden layers al-
ways have many local optima which require care-
ful initialization of the parameters. LBFGS (Liu
and Nocedal, 1989) is used in optimizing the batch
log-likelihood objective and L1 and L2 regulariz-
ers are used to penalize the model from overfitting.
We train the model on the training set, the devel-
opment set is used for model selection and models
produced at each training iteration are evaluated.
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Table 2: Evaluation results on the DSTC?2 test set.
ACC stands for accuracy, L2 measures the Eu-
clidean distance between the predicted distribution
and the ground truth vector with only the correct
hypothesis set to 1. CAOS5 is the correct accep-
tance rate when false acceptance rate is 5%. De-
tails of the metrics can be found in (Henderson et
al., 2014). Except L2, the larger the scores, the
better the performance.

In DSTC2 we submitted 3 trackers, an additional
tracker without the transitional features is trained
afterwards for comparison. Configurations of the
models are described in table 1.

7 Experiments and part of the results

Featured metrics on the test set are shown in ta-
ble 2. By most metrics our models are superior
to the simple baseline. Especially in tracking user
goals which is the most important state to track in
DSTC2, the discriminative trackers show consid-
erable performance gain. Judging from the per-
formance of Entryl to Entry3, we can conclude
that the more complex 2-layer neural networks
have better performance. Markovian neural net-
works can fit to the training instances with much
more flexibility than the simple MEMM model.
We have also trained a standard multi-layer neural
network (MLP) model by disabling all the transi-
tional features. By comparing the model ‘Entry 3’
and ‘MLP’, which share the same network struc-
ture, we explicitly test the effect of the Marko-
vian structure. On the state ‘goal’ and ‘requested’,
the Markovian model shows better tracking accu-



racies, which means that the Markovian structure
has a positive effect on fitting the target. But in
tracking the state ‘method’, the MLP model has
the best performance among all the models com-
pared. Thus although the log-likelihood increases
considerably on the training set by adding the tran-
sitional features, the overfiting to the training set is
more serious in tracking ‘method’.

8 Conclusion

We described the models used in the DSTC2 chal-
lenge. We proposed a novel approach to enhanc-
ing the model capability of stationary discrimina-
tive models in dialog state tracking by assuming
Markovian dependencies between adjacent turns.
The results showed better performance than the
simple baseline which uses the most probable hy-
pothesis, and we empirically compared the mod-
els with and without the Markovian dependency.
In future work, more discriminative models in dif-
ferent forms could be compared to evaluate their
capability, and the effects of the Markovian struc-
ture and transitional features needs to be further
studied.
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