
Proceedings of the SIGDIAL 2014 Conference, pages 263–272,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

The Second Dialog State Tracking Challenge

Matthew Henderson1, Blaise Thomson1 and Jason Williams2

1Department of Engineering, University of Cambridge, U.K.
2Microsoft Research, Redmond, WA, USA

mh521@eng.cam.ac.uk brmt2@eng.cam.ac.uk jason.williams@microsoft.com

Abstract

A spoken dialog system, while commu-
nicating with a user, must keep track of
what the user wants from the system at
each step. This process, termed dialog
state tracking, is essential for a success-
ful dialog system as it directly informs the
system’s actions. The first Dialog State
Tracking Challenge allowed for evalua-
tion of different dialog state tracking tech-
niques, providing common testbeds and
evaluation suites. This paper presents a
second challenge, which continues this
tradition and introduces some additional
features – a new domain, changing user
goals and a richer dialog state. The chal-
lenge received 31 entries from 9 research
groups. The results suggest that while
large improvements on a competitive base-
line are possible, trackers are still prone
to degradation in mismatched conditions.
An investigation into ensemble learning
demonstrates the most accurate tracking
can be achieved by combining multiple
trackers.

1 Introduction

Spoken language provides a medium of communi-
cation that is natural to users as well as hands- and
eyes-free. Voice-based computer systems, called
spoken dialog systems, allow users to interact us-
ing speech to achieve a goal. Efficient operation of
a spoken dialog system requires a component that
can track what has happened in a dialog, incor-
porating system outputs, user speech and context
from previous turns. The building and evaluation
of these trackers is an important field of research
since the performance of dialog state tracking is
important for the final performance of a complete
system.

Until recently, it was difficult to compare ap-
proaches to state tracking because of the wide va-
riety of metrics and corpora used for evaluation.
The first dialog state tracking challenge (DSTC1)
attempted to overcome this by defining a challenge
task with standard test conditions, freely available
corpora and open access (Williams et al., 2013).
This paper presents the results of a second chal-
lenge, which continues in this tradition with the
inclusion of additional features relevant to the re-
search community.

Some key differences to the first challenge in-
clude:
• The domain is restaurant search instead of

bus timetable information. This provides par-
ticipants with a different category of interac-
tion where there is a database of matching en-
tities.

• Users’ goals are permitted to change. In the
first challenge, the user was assumed to al-
ways want a specific bus journey. In this chal-
lenge the user’s goal can change. For exam-
ple, they may want a ‘Chinese’ restaurant at
the start of the dialog but change to wanting
‘Italian’ food by the end.

• The dialog state uses a richer representa-
tion than in DSTC1, including not only the
slot/value attributes of the user goal, but also
their search method, and what information
they wanted the system to read out.

As well as presenting the results of the different
state trackers, this paper attempts to obtain some
insights into research progress by analysing their
performance. This includes analyses of the predic-
tive power of performance on the development set,
the effects of tracking the dialog state using joint
distributions, and the correlation between 1-best
accuracy and overall quality of probability distri-
butions output by trackers. An evaluation of the
effects of ensemble learning is also performed.

The paper begins with an overview of the chal-
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lenge in section 2. The labelling scheme and met-
rics used for evaluation are discussed in section 3
followed by a summary of the results of the chal-
lenge in section 4. An analysis of ensemble learn-
ing is presented in section 5. Section 6 concludes
the paper.

2 Challenge overview
2.1 Problem statement

This section defines the problem of dialog state
tracking as it is presented in the challenge. The
challenge evaluates state tracking for dialogs
where users search for restaurants by specifying
constraints, and may ask for information such as
the phone number. The dialog state is formu-
lated in a manner which is general to information
browsing tasks such as this.

Included with the data is an ontology1, which
gives details of all possible dialog states. The
ontology includes a list of attributes termed re-
questable slots which the user may request, such
as the food type or phone number. It also provides
a list of informable slots which are attributes that
may be provided as constraints. Each informable
slot has a set of possible values. Table 1 gives de-
tails on the ontology used in DSTC2.

The dialog state at each turn consists of three
components:
• The goal constraint for each informable slot.

This is either an assignment of a value from
the ontology which the user has specified as
a constraint, or is a special value — either
Dontcare which means the user has no pref-
erence, or None which means the user is yet
to specify a valid goal for this slot.

• A set of requested slots, i.e. those slots
whose values have been requested by the
user, and should be informed by the system.

• An assignment of the current dialog search
method. This is one of

– by constraints, if the user is attempting
to issue a constraint,

– by alternatives, if the user is requesting
alternative suitable venues,

– by name, if the user is attempting to ask
about a specific venue by its name,

– finished, if the user wants to end the call
– or none otherwise.

Note that in DSTC1, the set of dialog states

1Note that this ontology includes only the schema for di-
alog states and not the database entries

was dependent on the hypotheses given by a Spo-
ken Language Understanding component (SLU)
(Williams et al., 2013), whereas here the state is
labelled independently of any SLU (see section 3).
Appendix B gives an example dialog with the state
labelled at each turn.

A tracker must use information up to a given
turn in the dialog, and output a probability distri-
bution over dialog states for the turn. Trackers
output separately the distributions for goal con-
straints, requested slots and the method. They may
either report a joint distribution over the goal con-
straints, or supply marginal distributions and let
the joint goal constraint distribution be calculated
as a product of the marginals.

2.2 Challenge design
DSTC2 studies the problem of dialog state track-
ing as a corpus-based task, similar to DSTC1. The
challenge task is to re-run dialog state tracking
over a test corpus of dialogs.

A corpus-based challenge means all trackers
are evaluated on the same dialogs, allowing di-
rect comparison between trackers. There is also
no need for teams to expend time and money in
building an end-to-end system and getting users,
meaning a low barrier to entry.

When a tracker is deployed, it will inevitably al-
ter the performance of the dialog system it is part
of, relative to any previously collected dialogs. In
order to simulate this, and to penalise overfitting to
known conditions, evaluation dialogs in the chal-
lenge are drawn from dialogs with a dialog man-
ager which is not found in the training data.

2.3 Data
A large corpus of dialogs with various telephone-
based dialog systems was collected using Ama-
zon Mechanical Turk. The dialogs used in the
challenge come from 6 conditions; all combina-
tions of 3 dialog managers and 2 speech recognis-
ers. There are roughly 500 dialogs in each condi-
tion, of average length 7.88 turns from 184 unique
callers.

The 3 dialog managers are:
• DM-HC, a simple tracker maintaining a sin-

gle top dialog state, and a hand-crafted policy
• DM-POMDPHC, a dynamic Bayesian net-

work for tracking a distribution of dialog
states, and a hand-crafted policy

• DM-POMDP, the same tracking method as
DM-POMDPHC, with a policy learnt using
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Slot Requestable Informable

area yes yes. 5 values; north,
south, east, west, centre

food yes yes, 91 possible values
name yes yes, 113 possible values

pricerange yes yes, 3 possible values
addr yes no

phone yes no
postcode yes no
signature yes no

Table 1: Ontology used in DSTC2 for restaurant informa-
tion. Counts do not include the special Dontcare value.

POMDP reinforcement learning
The 2 speech recognisers are:
• ASR-degraded, speech recogniser with arti-

ficially degraded statistical acoustic models
• ASR-good, full speech recogniser optimised

for the domain
These give two acoustic conditions, the de-

graded model producing dialogs at higher error
rates. The degraded models simulate in-car con-
ditions and are described in Young et al. (2013).

The set of all calls with DM-POMDP, with both
speech recognition configurations, constitutes the
test set. All calls with the other two dialog man-
agers are used for the training and development
set. Specifically, the datasets are arranged as so:
• dstc2 train. Labelled dataset released in Oc-

tober 2013, with 1612 calls from DM-HC and
DM-POMDPHC, and both ASR conditions.

• dstc2 dev. Labelled dataset released at the
same time as dstc2 train, with 506 calls under
the same conditions as dstc2 train. No caller
in this set appears in dstc2 train.

• dstc2 test. Set used for evaluation. Released
unlabelled at the beginning of the evaluation
week. This consists of all 1117 dialogs with
DM-POMDP.

Paid Amazon Mechanical Turkers were as-
signed tasks and asked to call the dialog systems.
Callers were asked to find restaurants that matched
particular constraints on the slots area, pricerange
and food. To elicit more complex dialogs, includ-
ing changing goals (goals in DSTC1 were always
constant), the users were sometimes asked to find
more than one restaurant. In cases where a match-
ing restaurant did not exist they were required to
seek an alternative, for example finding an Indian
instead of an Italian restaurant.

A breakdown of the frequency of goal con-
straint changes is given in table 2, showing around
40% of all dialogs involved a change in goal con-
straint. The distribution of the goal constraints in

50

100

150

200

Figure 1: Histogram of values for the food constraint (ex-
cluding dontcare) in all data. The most frequent values are
Indian, Chinese, Italian and European.

Dataset
train dev test

area 2.9% 1.4% 3.8%
food 37.3% 34.0% 40.9%
name 0.0% 0.0% 0.0%

pricerange 1.7% 1.6% 3.1%
any 40.1% 37.0% 44.5%

Table 2: Percentage of dialogs which included a change in
the goal constraint for each informable (and any slot). Barely
any users asked for restaurants by name.

the data was reasonably uniform across the area
and pricerange slots, but was skewed for food as
shown in figure 1. The skew arises from the distri-
bution of the restaurants in the system’s database;
many food types have very few matching venues.

Recently, researchers have started using word
confusion networks for spoken language under-
standing (Henderson et al., 2012; Tür et al., 2013).
Unfortunately, word confusion networks were not
logged at the time of collecting the dialog data. In
order to provide word confusion networks, ASR
was run offline in batch mode on each dialog us-
ing similar models as the live system. This gives
a second set of ASR results, labelled batch, which
not only includes ASR N -best lists (as in live re-
sults), but also word confusion networks.

For each dataset and speech recogniser, table 3
gives the Word Error Rate on the top ASR hypoth-
esis, and F-score for the top SLU hypothesis (cal-
culated as in Henderson et al. (2012)). Note the
batch ASR was always less accurate than the live.

Live Batch
Dataset ASR WER F-score WER

train
degraded 30.7% 72.4% 37.7%

good 22.4% 78.7% 25.5%
all 26.4% 75.7% 31.3%

dev
degraded 40.4% 67.3% 47.3%

good 25.2% 75.2% 30.0%
all 31.9% 71.6% 37.6%

test
degraded 33.6% 70.0% 41.1%

good 23.5% 77.8% 27.1%
all 28.7% 73.8% 34.3%

Table 3: Word Error Rate on the top hypothesis, and F-score
on top SLU hypothesis.
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3 Labelling and evaluation
The output of each tracker is a distribution over
dialog states for each turn, as explained in section
2.1. To allow evaluation of the tracker output, the
single correct dialog state at each turn is labelled.

Labelling of the dialog state is facilitated by first
labelling each user utterance with its semantic rep-
resentation, in the dialog act format described in
Henderson et al. (2013) (some example seman-
tic representations are given in appendix B). The
semantic labelling was achieved by first crowd-
sourcing the transcription of the audio to text.
Next a semantic decoder was run over the tran-
scriptions, and the authors corrected the decoder’s
results by hand. Given the sequence of machine
actions and user actions, both represented seman-
tically, the true dialog state is computed determin-
istically using a simple set of rules.

Recall the dialog state is composed of multiple
components; the goal constraint for each slot, the
requested slots, and the method. Each of these
is evaluated separately, by comparing the tracker
output to the correct label. The joint over the goal
constraints is evaluated in the same way, where the
tracker may either explicitly enumerate and score
its joint hypotheses, or let the joint be computed as
the product of the distributions over the slots.

A bank of metrics which look at the tracker out-
put and the correct labels are calculated in the eval-
uation. These metrics are a slightly expanded set
of those calculated in DSTC1.

Denote an example probability distribution
given by a tracker as p and the correct label to be
i, so we have that the probability reported to the
correct hypothesis is pi, and

∑
j pj = 1.

Accuracy measures the fraction of turns where
the top hypothesis is correct, i.e. where i =
arg maxj pj . AvgP, average probability, mea-
sures the mean score of the correct hypothesis, pi.
This gives some idea of the quality of the score
given to the correct hypothesis, ignoring the rest
of the distribution. Neglogp is the mean nega-
tive logarithm of the score given to the correct hy-
pothesis, − log pi. Sometimes called the negative
log likelihood, this is a standard score in machine
learning tasks. MRR is the mean reciprocal rank
of the top hypothesis, i.e. 1

1+k where jk = i and
pj0 ≥ pj1 ≥ . . .. This metric measures the qual-
ity of the ranking, without necessarily treating the
scores as probabilities. L2 measures the square
of the l2 norm between the distribution and the

correct label, indicating quality of the whole re-
ported distribution. It is calculated for one turn
as (1 − pi)2 +

∑
j 6=i p

2
j . Two metrics, Update

precision and Update accuracy measure the ac-
curacy and precision of updates to the top scoring
hypothesis from one turn to the next. For more
details, see Higashinaka et al. (2004), which finds
these metrics to be highly correlated with dialog
success in their data.

Finally there is a set of measures relating to
the receiver operating characteristic (ROC) curves,
which measure the discrimination of the scores for
the highest-ranked hypotheses. Two versions of
ROC are computed, V1 and V2. V1 computes
correct-accepts (CA), false accepts (FA) and false-
rejects (FR) as fractions of all utterances. The
V2 metrics consider fractions of correctly classi-
fied utterances, meaning the values always reach
100% regardless of the accuracy. V2 metrics mea-
sure discrimination independently of the accuracy,
and are therefore only comparable between track-
ers with similar accuracies.

Several metrics are computed from the ROC
statistics. ROC V1 EER computes the false ac-
ceptance rate at the point where false-accepts are
equal to false-rejects. ROC V1 CA05, ROC V1
CA10, ROC V1 CA20 and ROC V2 CA05, ROC
V2 CA10, ROC V2 CA20, compute the correct
acceptance rates for both versions of ROC at false-
acceptance rates 0.05, 0.10, and 0.20.

Two schedules are used to decide which turns to
include when computing each metric. Schedule 1
includes every turn. Schedule 2 only includes a
turn if any SLU hypothesis up to and including the
turn contains some information about the compo-
nent of the dialog state in question, or if the correct
label is not None. E.g. for a goal constraint, this is
whether the slot has appeared with a value in any
SLU hypothesis, an affirm/negate act has appeared
after a system confirmation of the slot, or the user
has in fact informed the slot regardless of the SLU.

The data is labelled using two schemes. The
first, scheme A, is considered the standard la-
belling of the dialog state. Under this scheme,
each component of the state is defined as the most
recently asserted value given by the user. The
None value is used to indicate that a value is yet
to be given. Appendix B demonstrates labelling
under scheme A.

A second labelling scheme, scheme B, is in-
cluded in the evaluation, where labels are prop-
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agated backwards through the dialog. This la-
belling scheme is designed to assess whether a
tracker is able to predict a user’s intention be-
fore it has been stated. Under scheme B, the la-
bel at a current turn for a particular component of
the dialog state is considered to be the next value
which the user settles on, and is reset in the case
of goal constraints if the slot value pair is given in
a canthelp act by the system (i.e. the system has
informed that this constraint is not satisfiable).

3.1 Featured metrics

All combinations of metrics, state components,
schedules and labelling schemes give rise to 815
total metrics calculated per tracker in evaluation.
Although each may have its particular motiva-
tion, many of the metrics will be highly corre-
lated. From the results of DSTC1 it was found
the metrics could be roughly split into 3 indepen-
dent groups; one measuring 1-best quality (e.g.
Acc), another measuring probability calibration
(e.g. L2), and the last measuring discrimination
(e.g. ROC metrics) (Williams et al., 2013).

By selecting a representative from each of these
groups, the following were chosen as featured
metrics:
• Accuracy, schedule 2, scheme A
• L2 norm, schedule 2, scheme A
• ROC V2 CA 5, schedule 2, scheme A
Accuracy is a particularly important measure

for dialog management techniques which only
consider the top dialog state hypothesis at each
turn, while L2 is of more importance when mul-
tiple dialog states are considered in action selec-
tion. Note that the ROC metric is only compara-
ble among systems operating at similar accuracies,
and while L2 should be minimised, Accuracy and
the ROC metric should be maximised.

Each of these, calculated for joint goal con-
straints, search method and combined re-
quested slots, gives 9 metrics altogether which
participants were advised to focus on optimizing.

3.2 Baseline trackers

Three baseline trackers were entered in the chal-
lenge, under the ID ‘team0’. Source code for
all the baseline systems is available on the DSTC
website2. The first, ‘team0.entry0’, follows sim-
ple rules commonly used in spoken dialog sys-
tems. It gives a single hypothesis for each slot,

2http://camdial.org/˜mh521/dstc/

whose value is the top scoring suggestion so far in
the dialog. Note that this tracker does not account
well for goal constraint changes; the hypothesised
value for a slot will only change if a new value
occurs with a higher confidence.

The focus baseline, ‘team0.entry1’, includes a
simple model of changing goal constraints. Be-
liefs are updated for the goal constraint s = v, at
turn t, P (s = v), using the rule:

P (s = v)t = qtP (s = v)t−1 + SLU (s = v)t

where 0 ≤ SLU(s = v)t ≤ 1 is the evidence
for s = v given by the SLU in turn t, and qt =∑

v′ SLU(s = v′)t ≤ 1.
Another baseline tracker, based on the tracker

presented in Wang and Lemon (2013) is included
in the evaluation, labelled ‘team0.entry2’. This
tracker uses a selection of domain independent
rules to update the beliefs, similar to the focus
baseline. One rule uses a learnt parameter called
the noise adjustment, to adjust the SLU scores.
Full details of this and all baseline trackers are pro-
vided on the DSTC website.

Finally, an oracle tracker is included under the
label ‘team0.entry3’. This reports the correct la-
bel with score 1 for each component of the dialog
state, but only if it has been suggested in the dialog
so far by the SLU. This gives an upper-bound for
the performance of a tracker which uses only the
SLU and its suggested hypotheses.

4 Results

Altogether 9 research teams participated in the
challenge. Each team could submit a maximum of
5 trackers, and 31 trackers were submitted in total.
Teams are identified by anonymous team numbers
team1-9, and baseline systems are grouped under
team0. Appendix A gives the results on the fea-
tured metrics for each entry submitted to the chal-
lenge. The full results, including tracker output,
details of each tracker and scripts to run the evalu-
ation are available on the DSTC2 website.

The table in appendix A specifies which of the
inputs available were used for each tracker- from
live ASR, live SLU and batch ASR. This facil-
itates comparisons between systems which used
the same information.

A variety of techniques were used in the sub-
mitted trackers. Some participants provided short
synopses, which are available in the download
from the DSTC2 website. Full details on the track-
ers themselves are published at SIGdial 2014.
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For the “requested slot” task, some trackers out-
performed the oracle tracker. This was possible
because trackers could guess a slot was requested
using dialog context, even if there was no mention
of it in the SLU output.

Participants were asked to report the results of
their trackers on the dstcs2 dev development set.
Figure 2 gives some insight into how well perfor-
mance on the development set predicted perfor-
mance on the test set. Metrics are reported as per-
centage improvement relative to the focus base-
line to normalise for the difficulty of the datasets;
in general trackers achieved higher accuracies on
the test set than on development. Figure 2 shows
that the development set provided reasonable pre-
dictions, though in all cases improvement rel-
ative to the baseline was overestimated, some-
times drastically. This suggests that approaches to
tracking have trouble with generalisation, under-
performing in the mismatched conditions of the
test set which used an unseen dialog manager.

Joint Goal Constraint Accuracy

�0.3 �0.2 �0.1 0.1

team1entry0

team2entry1

team3entry0

team4entry0

team5entry4

team6entry2

team7entry0

team8entry1

team9entry0

Joint Goal Constraint L2
team1entry0

team2entry1

team3entry0

team4entry0

team5entry4

team6entry2

team7entry0

team8entry1

team9entry0

�0.2 0.2 0.4 0.6

Figure 2: Performance relative to the focus baseline (per-
centage increase) for dev set (white) and test set (grey). Top
entry for each team chosen based on joint goal constraint ac-
curacy. A lower L2 score is better.

Recall from section 2, trackers could output
joint distributions for goal constraints, or simply
output one distribution for each slot and allow the
joint to be calculated as the product. Two teams,
team2 and team8, opted to output a joint distribu-
tion for some of their entries. Figure 3 compares
performance on the test set for these trackers be-
tween the joint distributions they reported, and the
joint calculated as the product. The entries from
team2 were able to show an increase in the accu-

racy of the top joint goal constraint hypotheses,
but seemingly at a cost in terms of the L2 score.
Conversely the entries from team8, though oper-
ating at lower performance than the focus base-
line, were able to show an improvement in L2 at a
slight loss in accuracy. These results suggest that a
tracking method is yet to be proposed which can,
at least on this data, improve both accuracy and
the L2 score of tracker output by reporting joint
predictions of goal constraints.

Accuracy
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-1.69%
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Figure 3: Influence of reporting a full joint distribution.
White bar shows test set performance computing the goal
constraints as a product of independent marginals; dark bar is
performance with a full joint distribution. All entries which
reported a full joint are shown. A lower L2 score is better.

It is of interest to investigate the correlation be-
tween accuracy and L2. Figure 4 plots these met-
rics for each tracker on joint goal constraints. We
see that in general a lower L2 score correlates with
a higher accuracy, but there are examples of high
accuracy trackers which do poorly in terms of L2.
This further justifies the reporting of these as two
separate featured metrics.

0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.3

0.4

0.5

0.6

0.7

0.8 team2entry0

team2entry1

team4entry0

team2entry3

focus baseline, team0entry2

Accuracy

L2

Figure 4: Scatterplot of joint goal constraint accuracy and
joint goal constraint L2 for each entry. Plotted line is least-
squares linear regression, L2 = 1.53− 1.43Accuracy
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Joint goal Method Requested
Tracker Acc. L2 Acc. L2 Acc. L2

Single best entry 0.784 0.346 0.950 0.082 0.978 0.035
Score averaging: top 2 entries 0.787 0.364- 0.945- 0.083 0.976 0.039-
Score averaging: top 5 entries 0.777 0.347 0.945 0.089- 0.976 0.038
Score averaging: top 10 entries 0.760- 0.364- 0.934- 0.108- 0.967- 0.056-

Score averaging: all entries 0.765- 0.362- 0.934- 0.103- 0.971- 0.052-
Stacking: top 2 entries 0.789 0.322+ 0.949 0.085- 0.977 0.040-
Stacking: top 5 entries 0.795+ 0.315+ 0.949 0.084 0.978 0.037
Stacking: top 10 entries 0.796+ 0.312+ 0.949 0.083 0.979 0.035

Stacking: all entries 0.798+ 0.308+ 0.950 0.083 0.980 0.034

Table 4: Accuracy and L2 for Joint goal constraint, Method, and Requested slots for the single best tracker (by accuracy) in
DSTC2, and various ensemble methods. “Top N entries” means the N entries with highest accuracies from distinct teams, where
the baselines are included as a team. +/- indicates statistically significantly better/worse than the single best entry (p < 0.01),
computed with McNemar’s test for accuracy and the paired t-test for L2, both with Bonferroni correction for repeated tests.

5 Ensemble learning
The dialog state tracking challenge provides an
opportunity to study ensemble learning – i.e. syn-
thesizing the output of many trackers to improve
performance beyond any single tracker. Here we
consider two forms of ensemble learning: score
averaging and stacking.

In score averaging, the final score of a class is
computed as the mean of the scores output by all
trackers for that class. One of score averaging’s
strengths is that it requires no additional training
data beyond that used to train the constituent track-
ers. If each tracker’s output is correct more than
half the time, and if the errors made by trackers are
not correlated, then score averaging is guaranteed
to improve performance (since the majority vote
will be correct in the limit). In (Lee and Eskenazi,
2013), score averaging (there called “system com-
bination”) has been applied to combine the output
of four dialog state trackers. To help decorrelate
errors, constituent trackers were trained on differ-
ent subsets of data, and used different machine
learning methods. The relative error rate reduction
was 5.1% on the test set.

The second approach to ensemble learning is
stacking (Wolpert, 1992). In stacking, the scores
output by the constituent classifiers are fed to a
new classifier that makes a final prediction. In
other words, the output of each constituent classi-
fier is viewed as a feature, and the new final classi-
fier can learn the correlations and error patterns of
each. For this reason, stacking often outperforms
score averaging, particularly when errors are cor-
related. However, stacking requires a validation
set for training the final classifier. In DSTC2, we
only have access to trackers’ output on the test set.
Therefore, to estimate the performance of stack-
ing, we perform cross-validation on the test set:
the test set is divided into two folds. First, fold 1

is used for training the final classifier, and fold 2
is used for testing. Then the process is reversed.
The two test outputs are then concatenated. Note
that models are never trained and tested on the
same data. A maximum entropy model (maxent) is
used (details in (Metallinou et al., 2013)), which is
common practice for stacking classifiers. In addi-
tion, maxent was found to yield best performance
in DSTC1 (Lee and Eskenazi, 2013).

Table 4 reports accuracy and L2 for goal con-
straints, search method, and requested slots. For
each ensemble method and each quantity (column)
the table gives results for combining the top track-
ers from 2 or 5 distinct teams, for combining the
top tracker from each team, and combining all
trackers (including the baselines as a team). For
example, the joint goal constraint ensemble with
the top 2 entries was built from team2.entry1 &
team4.entry0, and the method ensemble with the
top 2 entries from team2.entry4 & team4.entry0.

Table 4 shows two interesting trends. The first
is that score averaging does not improve perfor-
mance, and performance declines as more track-
ers are combined, yielding a statistically signifi-
cant decrease across all metrics. This suggests that
the errors of the different trackers are correlated,
which is unsurprising since they were trained on
the same data. On the other hand, stacking yields
a statistically significant improvement in accuracy
for goal constraints, and doesn’t degrade accuracy
for the search method and requested slots. For
stacking, the trend is that adding more trackers in-
creases performance – for example, combining the
best tracker from every team improves goal con-
straint accuracy from 78.4% to 79.8%.

For completeness, we note that the additional
data could alternatively be used to improve the ac-
curacy of a constituent classifier; given the con-
straints of the challenge, we can’t assess the mag-
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nitude of that improvement, so it is an open ques-
tion whether stacking is the best use of additional
data. Also, the training and test conditions of
the final stacking classifier are not mis-matched,
whereas in practice they would be. Nonethe-
less, this result does suggest that, if additional
data is available, stacking can be used to success-
fully combine multiple trackers and achieve per-
formance better than the single best tracker.

6 Conclusions

DSTC2 continues the tradition of DSTC1 by pro-
viding a common testbed for dialog state track-
ing, introducing some additional features relevant
to the research community– specifically a new
domain, changing user goals and a richer dialog
state. The data, evaluation scripts, and baseline
trackers will remain available and open to the re-
search community online.

Results from the previous challenge motivated
the selection of a few metrics as featured met-
rics, which facilitate comparisons between track-
ers. Analysis of the performance on the matched
development set and the mismatched test set sug-
gests that there still appears to be limitations on
generalisation, as found in DSTC1. The results
also suggest there are limitations in exploiting cor-
relations between slots, with few teams exploiting
joint distributions and the effects of doing so being
mixed. Investigating ensemble learning demon-
strates the effectiveness of combining tracker out-
puts. Ensemble learning exploits the strengths of
individual trackers to provide better quality output
than any constituent tracker in the group.

A follow up challenge, DSTC3, will present
the problem of adapting to a new domain with
very few example dialogs. Future work should
also verify that improvements in dialog state track-
ing translate to improvements in end-to-end dia-
log system performance. In this challenge, paid
subjects were used as users with real information
needs were not available. However, differences
between these two user groups have been shown
(Raux et al., 2005), so future studies should also
test on real users.
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Appendix A: Featured results of evaluation

Tracker Inputs Joint Goal Constraints Search Method Requested Slots

team entry Live
ASR

Live
SLU

Batch
ASR Acc L2 ROC Acc L2 ROC Acc L2 ROC

0* 0 X 0.619 0.738 0.000 0.879 0.209 0.000 0.884 0.196 0.000
1 X 0.719 0.464 0.000 0.867 0.210 0.349 0.879 0.206 0.000
2 X 0.711 0.466 0.000 0.897 0.158 0.000 0.884 0.201 0.000
3 X† 0.850 0.300 0.000 0.986 0.028 0.000 0.957 0.086 0.000

1 0 X 0.601 0.649 0.064 0.904 0.155 0.187 0.960 0.073 0.000
1 X 0.596 0.671 0.036 0.877 0.204 0.397 0.957 0.081 0.000

2 0 X X 0.775 0.758 0.063 0.944 0.092 0.306 0.954 0.073 0.383
1 X X X 0.784 0.735 0.065 0.947 0.087 0.355 0.957 0.068 0.446
2 X 0.668 0.505 0.249 0.944 0.095 0.499 0.972 0.043 0.300
3 X X X 0.771 0.354 0.313 0.947 0.093 0.294 0.941 0.090 0.262
4 X X X 0.773 0.467 0.140 0.950 0.082 0.351 0.968 0.050 0.497

3 0 X 0.729 0.452 0.000 0.878 0.210 0.000 0.889 0.188 0.000
4 0 X 0.768 0.346 0.365 0.940 0.095 0.452 0.978 0.035 0.525

1 X 0.746 0.381 0.383 0.939 0.097 0.423 0.977 0.038 0.490
2 X 0.742 0.387 0.345 0.922 0.124 0.447 0.957 0.069 0.340
3 X 0.737 0.406 0.321 0.922 0.125 0.406 0.957 0.073 0.385

5 0 X X 0.686 0.628 0.000 0.889 0.221 0.000 0.868 0.264 0.000
1 X X 0.609 0.782 0.000 0.927 0.147 0.000 0.974 0.053 0.000
2 X X 0.637 0.726 0.000 0.927 0.147 0.000 0.974 0.053 0.000
3 X X 0.609 0.782 0.000 0.927 0.147 0.000 0.974 0.053 0.000
4 X X 0.695 0.610 0.000 0.927 0.147 0.000 0.974 0.053 0.000

6 0 X 0.713 0.461 0.100 0.865 0.228 0.199 0.932 0.118 0.057
1 X 0.707 0.447 0.223 0.871 0.211 0.290 0.947 0.093 0.218
2 X 0.718 0.437 0.207 0.871 0.210 0.287 0.951 0.085 0.225

7 0 X 0.750 0.416 0.081 0.936 0.105 0.237 0.970 0.056 0.000
1 X 0.739 0.428 0.159 0.921 0.161 0.554 0.970 0.056 0.000
2 X 0.750 0.416 0.081 0.929 0.117 0.379 0.971 0.054 0.000
3 X 0.725 0.432 0.105 0.936 0.105 0.237 0.972 0.047 0.000
4 X 0.735 0.433 0.086 0.910 0.140 0.280 0.946 0.089 0.190

8 0 X 0.692 0.505 0.071 0.899 0.153 0.000 0.935 0.106 0.000
1 X 0.699 0.498 0.067 0.899 0.153 0.000 0.939 0.101 0.000
2 X 0.698 0.504 0.067 0.899 0.153 0.000 0.939 0.101 0.000
3 X 0.697 0.501 0.068 0.899 0.153 0.000 0.939 0.101 0.000
4 X 0.697 0.508 0.068 0.899 0.153 0.000 0.939 0.101 0.000

9 0 X 0.499 0.760 0.000 0.857 0.229 0.000 0.905 0.149 0.000

* The entries under team0 are the baseline systems mentioned in section 3.2. † team0.entry3 is the
oracle tracker, which uses the labels on the test set and limits itself to hypotheses suggested by the live
SLU.
The top score in each column is indicated by bold-type. The ROC metric is only comparable for trackers
operating at a similar accuracy, and so the highest values are not indicated.
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Appendix B: Sample dialog, labels, and tracker output

S:

U:

Which part of town?

The north uh area

0.2 inform(food=north_african) area=north

method=byconstraints

requested=()

0.1 inform(area=north)

0.2 food=north_african

0.1 area=north
request(area)

inform(area=north)
0.9 byconstraints
0.1 none

0.0 phone
0.0 address

Actual input and output SLU hypotheses and scores Labels Example tracker output Correct?

S:

U:

Which part of town?

A cheap place in 
the north
inform(area=north, 
pricerange=cheap)

0.8 inform(area=north),
inform(pricerange=cheap)

area=north
pricerange=cheap

method=byconstraints

requested=()

0.1 inform(area=north)

0.7 area=north
pricerange=cheap

0.1 area=north
food=north_african

request(area)

0.9 byconstraints
0.1 none

0.0 phone
0.0 address

S:

U:

Clown café is a cheap 
restaurant in the 
north part of town.

Do you have any 
others l ike that, 
maybe in the south 
part of town?
reqalts(area=south)

0.7 reqalts(area=south) area=south
pricerange=cheap

method=byalternatives

requested=()

0.2 reqmore()

0.8 area=south
pricerange=cheap

0.1 area=north
pricerange=cheap

0.6 byalternatives
0.2 byconstraints

0.0 phone
0.0 address

S:

U:

Galleria is a cheap 
restaurant in the 
south.

What is their phone 
number and 
address?
request(phone), 
request(address)

0.6 request(phone) area=south
pricerange=cheap

method=byalternatives

requested= (phone, 
address)

0.2 request(phone),
request(address)

0.9 area=south
pricerange=cheap

0.1 area=north
pricerange=cheap

0.5 byconstraints 
0.4 byalternatives

0.8 phone
0.3 address

0.1 request(address)

0.7 ()

0.2 ()

0.1 ()

0.0 ()

Example dialog illustrating DSTC2 data, labels, and evaluation procedure. The left column shows the
actual system output and user input. The second column shows two SLU N-Best hypothesis and their
scores. In practice, up to 10 SLU N-Best hypotheses are output. In the right 3 columns, the three shaded
regions correspond to the three components of the dialog state output by a tracker at each turn. The blue
region corresponds to the user’s joint goal constraint; the red region to the user’s search method; and
the yellow region to the slots requested by the user. For space, only 2 of the 5 methods and 2 of the
8 requestable slots are shown. The third column shows the label (correct output) for each component.
The fourth column shows example tracker output for each of these three quantities, and the fifth column
indicates correctness. A goal constraint is correct if it exactly matches the label. Therefore, 0 or 1 of
the output goal constraints is correct, and all the others are incorrect. Accuracy is determined by the
correctness of the goal constraint with the highest tracker score. For search method, exactly one method
is correct at each turn, so correctness is determined by comparing the maximum scoring method to the
label. For requested slots, each slot can be requested (or not) in the same turn, so each requestable slot
is separately marked as correct or incorrect. The quantity requested.all averages the correctness of all
requested slots.
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