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Abstract

This work is an attempt to discover hidden
structural configurations in learning activ-
ity sequences of students in Massive Open
Online Courses (MOOCs). Leveraging
combined representations of video click-
stream interactions and forum activities,
we seek to fundamentally understand traits
that are predictive of decreasing engage-
ment over time. Grounded in the inter-
disciplinary field of network science, we
follow a graph based approach to success-
fully extract indicators of active and pas-
sive MOOC participation that reflect per-
sistence and regularity in the overall in-
teraction footprint. Using these rich edu-
cational semantics, we focus on the prob-
lem of predicting student attrition, one of
the major highlights of MOOC literature
in the recent years. Our results indicate an
improvement over a baseline ngram based
approach in capturing “attrition intensify-
ing” features from the learning activities
that MOOC learners engage in. Implica-
tions for some compelling future research
are discussed.

1 Introduction

Massive Open Online Courses (MOOCs) have at-
tracted millions of students, and yet, their peda-
gogy is often less elaborated than the state of the
art in learning sciences. Scaling up learning activi-
ties in MOOCs can be viewed as a sacrifice of ped-
agogical support, made acceptable by the benefits
of giving broad access to education for a marginal
increase of costs. Even with students volunteering
as teaching assistants in MOOCs, it is not possible
to provide at a distance the same support quality in
a class of ten thousand as in a class of a hundred,
because of the difficulty to collect and analyse data

from such a high number of learners. This means
that MOOC instructors need to rely on rich com-
putational methods that capture the formalism of
how learners progress through the course and what
traits of decreasing engagement with the course
are predictive of attrition over time. The interpre-
tation of the state of the students can then either be
performed by the students themselves, by a human
coach or by an automated agent that can deliver
recommendations to the students.

In this work, we model the sequence of learning
activities in the MOOC as a graph with specific
properties. Describing the participants actions se-
quence as a graph may initially sound as a futile
complexity since most MOOCs are built as a sim-
ple linear sequence of activities (watch video, do
assignments, read forums). However, when look-
ing at the activity in more detail, some sequences
are richer and justify a more powerful descrip-
tive modeling. The descriptive power of the graph
model is to capture the underlying structure of the
learning activity. The hypothesis is that formaliz-
ing the workflow of such heterogeneous behavior
in MOOCs, is one solution to be able to a) scale up
learning activities that may initially appear as non
scalable, b) help instructors reason out how educa-
tional scenarios concretely unfold with time, such
as what happened during the course (at what times
were learners active and performing well, lost, dis-
oriented or trapped) and what needs to be repaired.

2 Related Work

In this section we outline perspectives on stu-
dent attrition that have been explored so far in the
literature on MOOCs. Much of this work suc-
cessfully leverages effective feature engineering
and advanced statistical methods. However, the
biggest limitation of most of these emerging works
is that they focus solely on discussion forum be-
havior or video lecture activity, but do not fuse
and take them into account. Some of these works

42



have grown out of research on predicting academic
progress of students and identifying students those
who are at dropout risk (Kotsiantis et al., 2003;
Dekker et al., 2009; Pal, 2012; Márquez-Vera et
al., 2013; Manhaes et al., 2014).

Some prior research has focused on deriving so-
cial positioning metrics within discussion forums
to understand influencing factors that lead to dif-
ferently motivated behaviors of students. For ex-
ample, (Yang et al., 2013; Rosé et al., 2014) used
aggregate post-reply discussion forum graph per
week, with an aim to investigate posting behavior
and collaborative aspects of participation through
operationalizations of social positioning. How-
ever, we work at a much finer granularity in the
current study and our focus is on individual stu-
dent modeling instead. We capture not only fo-
rum participation trajectory, but also video lecture
viewing activity of every student in their partici-
pation week. Modeling the combined interaction
footprint as an activity network, allows us to de-
cipher the type of engagement and organization of
behavior for each student, which are reflective of
attrition.

Similarly (Ramesh et al., 2014; Wen et al.,
2014a; Wen et al., 2014b) published results that
describe longitudinal discussion forum behavior
affecting student dropout, in terms of posting,
viewing, voting activity, level of subjectivity (cog-
nitive engagement) and positivity (sentiment) in
students’ posts. Related to this, one recent work of
(Rossi and Gnawali, 2014) have made an attempt
to overcome the language dependency drawback
of these works and capture language indepen-
dent discussion forum features related to structure,
popularity, temporal dynamics of threads and di-
versity of students.

It is important to note, however, that all this sub-
stantial research caters to only about 5% of stu-
dents who participate in MOOC discussion forums
(Huang et al., 2014). Our recent work has laid a
preliminary foundation for research investigating
students’ information processing behavior while
interacting with MOOC video lectures (Sinha et
al., 2014). We apply a cognitive video watching
model to explain the dynamic process of cogni-
tion involved in MOOC video clickstream interac-
tion and develop a simple, yet potent information
processing index that can be effectively used as an
operationalization for making predictions regard-
ing critical learner behavior, specifically in-video

and course dropouts. In an attempt to better under-
stand what features are predictive of students ceas-
ing to actively participate in the MOOC, (Veera-
machaneni et al., 2014) have integrated a crowd
sourcing approach for effective feature engineer-
ing at scale. Among posting, assignment and grad-
ing metrics, students’ cohort membership depend-
ing on their MOOC engagement was identified as
an influential feature for dropout prediction.

3 Study Context

The current study is a part of the shared task
for EMNLP 2014 Workshop on Modeling Large
Scale Social Interaction in Massively Open On-
line Courses (Rosé and Siemens, 2014). We have
both video clickstream data (JSON) and discus-
sion forum activity data (SQL) from one Cours-
era MOOC as training data, that we use in this
work. Our predictive models will also be tested
on 5 other Coursera MOOCs.

In general, Coursera forums, divided into var-
ious subforums, have a thread starter post that
serves as a prompt for discussion. The thread
builds up as people start following up discus-
sions by their posts and comments. As far as our
forum dataset is concerned, we have 31532 in-
stances of forum viewing and 35306 instances of
thread viewing. In addition to this view data, we
have 4840 posts and 2652 comments among 1393
threads initiated in the discussion forums during
the span of the course, which received 5060 up-
votes and 1763 downvotes in total.

To supplement the forum data, we additionally
leverage rich video interaction data from the click-
stream data. The clickstream data contains many
errors. We obtained 82 unique video ids from the
clickstream data, but only 45 of them are valid
(watched by large number of unique students).
The 37 invalid video ids may be simply due to log-
ging errors. They are also likely to be videos that
were uploaded by the course staff for testing pur-
poses. There are in total 27739 students registered
the course, however, only 14312 students had on-
line video interactions. The rest of the students
may have never logged in, or only have viewed the
course pages, or have downloaded the videos with-
out further online engagement. Among the 14312
students who have video interactions, 14264 of
them have valid video events logged, which lead
to 181100 valid video sessions for our analy-
sis. These valid video sessions further contain
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462341 play events, 295103 pause events, 87585
forward jumps, 98169 backward jumps, 6707 for-
ward scrolls, 5311 backward scrolls, 18051 video-
play rate increase and 16163 decrease events, re-
spectively.

Our dropout prediction approach that will be de-
scribed in the next section is applied to student
interactions comprising of only online forum and
video viewing activities. Currently, we do not
make use of the pageview click data.

4 Technical Approach

1. To capture the behaviors exhibited in two pri-
mary MOOC activities, namely video lec-
ture viewing and forum interaction, we op-
erationalize the following metrics:

• Video lecture clickstream activi-
ties: Play (PL), Pause (PA), SeekFw
(FW), SeekBw (BW), ScrollFw (FS),
ScrollBw (BS), Ratechange Increase
(RCI), Ratechange Decrease (RCD).
When two seek events happen in < 1
second, we group them into a scroll.
We encode ratechange event based on
whether students sped up or slowed
down with respect to playrate of the last
click event.
• Discussion forum activities: Post (Po),

Comment (Co), Thread (Th), Upvote
(Uv), Downvote (Dv), Viewforum (Vf),
Viewthread (Vt)

2. Because timing of all such MOOC events are
logged in our data, we sort all these activities
by timestamp to obtain the sequence of activ-
ities done by students. This gives us a sim-
ple sequentially ordered time series that can
be used to reason about behavioral pattern of
students.

3. We form the interaction footprint sequence
for students by concatenating all their differ-
ent timestamped MOOC activities for every
week of MOOC activity. For example, if a
student watched a video (PL, PA, FW, RCI,
PA) at [time ‘i’, week ‘j’], viewed a forum at
time [‘i+1’, week ‘j’] and consequently made
a post at [time ‘i+2’, week ‘j’], his interaction
footprint sequence for week ‘j’ would be: PL
PA FW RCI PA Vf Po. Forming such a se-
quence captures in some essence, the cogni-
tive mind state that govern students’ interac-

tion, as they progress through the MOOC by
engaging with these multiple forms of com-
puter mediated inputs. Most MOOCs are
based on a weekly rhythm with a new set of
videos and new assignments released every
week.

4. To find subsequences that might help us to
predict student dropout before it occurs, we
extract the following set of features for each
student in each of his participation weeks:

• N-grams from the interaction footprint
sequence (n = 2 to 5). Such ‘n’ consec-
utively occurring MOOC activities not
only characterize suspicious behaviors
that might lead to student attrition but
also help us to automatically determine
the elements of what might be consid-
ered “best MOOC interaction practices”
that keep students engaged.
• Proportion of video viewing activities

among all video interactions, that are
active or passive. We define passive
video viewing as mere play and pause
(PL, PA), while rest of the video lecture
clickstream activities (FW, BW, FS, BS,
RCD, RCI) are considered elements of
active video viewing.
• Proportion of discussion forum activi-

ties among all forum interactions, that
are active or passive. We define passive
forum activities as viewing a forum or
thread (Vf, Vt), upvoting and downvot-
ing (Uv, Dv). The forum activities of
starting a thread (Th), posting (Po) and
commenting (Co) are indicative of ac-
tive forum interaction.

In general, because passive video lecture
viewing is high (for example, 48% of all
video clickstream activities in our dataset
comprise of activity sequences having only
PL event), discussion forum conversation
networks in MOOCs are sparse (only 10%
of forum activities relate to explicitly post-
ing, commenting or starting a thread) and
passive forum activities are very predominant
(90% of forum interactions in our dataset are
just passively viewing a thread/forum, upvot-
ing or downvoting), differentiating between
such active and passive forms of involvement
might clarify participation profiles that are
most likely to lead to disengagement of stu-
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dents from the MOOC.

5. In an attempt to enrich the basic ngram rep-
resentation and better infer traits of active
and passive participation, we extract the fol-
lowing set of graph metrics from the over-
all interaction footprint sequence. Specifi-
cally, in this modeling scheme, we extract
consecutive windows of length two and cre-
ate a directed edge of weight one between
the activities appearing in sequential order.
This results in a directed graph (having self
loops and parallel edges), with nodes repre-
senting activities done by a student in particu-
lar week, while the weighted edges represent-
ing the frequencies of activities appearing af-
ter one another. For example, in a sequence,
(Vt Po Vt Po Po), corresponding nodes in the
graph are Vt and Po, while edges are (Vt,
Po), (Po, Vt), (Vt, Po) and (Po, Po). The
activity graph thus describes the visible part
of the educational activities (who does what
and when) and models the structure of activ-
ity sequences, rather than the details of each
activity. Features from the syntactic structure
of the graph along with their educational se-
mantics are described below.

• Number of nodes and edges: Indica-
tive of whether overall participation of
students in different MOOC activities is
high or low.
• Density: Graph density is a tight-

knittedness indicator of how involved
students are in different MOOC activ-
ities, how clustered their activities are
or how frequently they switch back and
forth between different activities. Tech-
nically, for a directed network, density =
m/n(n−1), where m=number of edges,
n=number of nodes. For our multidi-
graph representation, density can be >1,
because self loops are counted in the
total number of edges. This also im-
plies that values of density >1 denote
high persistence in doing particular set
of MOOC activities, because of greater
number of self loops.
• Number of self loops: Though graph

density provides meaningful interpreta-
tions when > 1, we can’t conclusively
infer activity persistence in an activity
graph with low density. So, we addition-

ally extract number of self loops to refer
to the regularity in interaction behavior.

• Number of Strongly Connected Com-
ponents (SCC): SCC define a special
relationship among a set of graph ver-
tices that can be exploited (each vertex
can be reached from every other vertex
in the component via a directed path). If
the number of SCC in an activity graph
are high, there is a high probability that
students performs certain set of activ-
ities frequently to successfully achieve
their desired learning outcomes in the
course. This might be an influential in-
dicator for behavioral organization and
continuity reflected in overall interac-
tion footprint of students. Dense net-
works are more likely to have greater
number of SCC.

• Central activity: We extract top three
activities of students with maximum in-
degree centrality, for each of their par-
ticipation weeks. Technically, indegree
centrality for a node ‘v’ is the fraction of
nodes its incoming edges are connected
to. Depending on which are the central
activities of students, we can character-
ize how active or passive is the partic-
ipation. For example, Viewthread and
Viewforum (Vt, Vf) are more passive
forms of participation than Upvote and
Downvote (Uv, Dv), which are in turn
more passive than Posting, Comment-
ing, Thread starting (Po, Co, Th) and
other intense forms of video lecture par-
ticipation that represent high grappling
with the course material.

• Central transition: We extract the edge
(activity transition) with maximum be-
tweenness centrality, which acts like a
facilitator in sustaining or decreasing
participation. Technically, betweenness
centrality of an edge ‘e’ is the sum of
the fraction of all-pairs shortest paths
that pass through ‘e’. We normalize by
1/n(n − 1) for our directed graphical
representation, where ‘n’ is the number
of nodes. For example, Vt-Po (view
thread-post) could be one of the central
edges for Th (thread starting activ-
ity), which in turn is a strong student
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(a) Active video viewing (b) Passive video viewing (c) Active forum activity (d) Passive forum activity

Figure 1: Interaction graphs representing 4 contrasting MOOC scenarios in our dataset

participation indicator. Alternately,
Po/Co/Th-Dv (post/comment/thread
initiate-downvote) could serve as
decision conduits that increase dis-
satisfaction of students because of
others’ off content/off-conduct post-
ing. Such lack of exposure to useful
and informative posts on forums can
potentially aggravate feelings of “lack
of peer support” and “healthy commu-
nity involvement”, inturn leading to
decreasing engagement.

6. We add certain control variables in our fea-
ture set to account for inherently present
student characteristics, namely courseweek
(number of weeks since the course has been
running), userweek (number of weeks since
the student joined the course) and a nominal
variable indicating whether student activity
in a week comprised of only video lecture
viewing, only forum activity, both or none.

Because we are interested in investigating a)how
behavior within a week affects students’ dropout
in the next course week, b)how cumulative be-
havior exhibited up till a week affects students’
dropout in the next course week, we create two
experimental setups: one using data from the cur-
rent participation week (Curr) and the second us-
ing data from the beginning participation week till
the current week (TCurr). For the second setup,
all feature engineering is done from the cumula-
tive interaction footprint sequence.

Some of the interaction graphs culled out from
the footprint sequence, which are representative
of active and passive MOOC participation are de-
picted in figure 1. Each graph has a begin (Be)
and end (En) node, with nodes sized by indegree
centrality and directed edges sized by tie strength.

5 Results

5.1 Evaluating Our Features

As we would intuitively expect, mean and stan-
dard deviations for all our extracted graph metrics
are higher in the TCurr setup. Another evident
pattern is that all these graph metrics follow long
tailed distributions for both Curr and TCurr se-
tups, with very few students exhibiting high val-
ues. These distributions concur with the 90-9-1
rule in online communities which says that 90%
of the participants only view content (for example,
watch video, Vf, Vt), 9% of the participants edit
content (for example, Uv, Dv), and 1% of the par-
ticipants actively create new content (for example,
Po, Co, Th). Moreover, we notice that the top three
central activities with maximum frequency and
central edges that describe interactions between
them, are passive interaction events. Among the
top 20, we can observe central edges such as RCI-
RCI or PL-FW that hint towards skipping video
and hence decreasing participation, while Th-PL,
Po-PL, Th-Po that point towards facilitating par-
ticipation. Thus, in order to graphically visualize
interactions among features and their relationship
to the class distribution (dropout and non dropout),
we utilize mosaic plot representation. The mo-
tivating question being two-fold: a)How do the
extracted features vary among dropouts and non
dropouts? b)When viewing more than one features
together, what can we say about association of dif-
ferent feature combinations to survival of students
in the MOOC? After ranking feature projections
on basis of interaction gain (in % of class entropy
removed), we discern the following:

• For both Curr and TCurr setups, the mosaic
plots reveal that dropout is higher for students
having low number of nodes, edges, SCC and
self loops, low activity graph density, low
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Model Performance Metric Setup Curr Setup TCurr
1. Baseline Accuracy/Kappa 0.623/0.297 0.647/0.173

False Negative Rate 0.095 0.485
2. Graph Accuracy/Kappa 0.692/0.365 # 0.693/0.277 #

False Negative Rate 0.157 0.397
3. Baseline + Graph Accuracy/Kappa 0.624/0.298 0.646/0.173

False Negative Rate 0.095 0.482

Table 1: Performance metrics for machine learning experiments. Random classifier performance is 0.5.
Values marked # are significantly better (p<0.01, pairwise t-test) than other results in same column

proportion of active forum and video viewing
activity. This reflects that our operationaliza-
tions drawn from overall interaction footprint
are successfully able to capture features ex-
pressing student behavior that might escalate
attrition.
• Student dropout is higher if they join in

later course weeks and have a sparse activ-
ity graph. There could be 2 possible expla-
nations: a)Students join later and do min-
imal activity because they only have spe-
cific information needs. So, they do not
stay after interacting with the course mate-
rial in a short non linear fashion and satisfy-
ing their needs, b)Students who join later are
overwhelmed with lots of introductory and
prerequisite MOOC video lectures to watch,
pending assignments to be completed to suc-
cessfully pass the course and discussion fo-
rum content already posted. Finding diffi-
culty in coping up with the ongoing pace of
the MOOC, they do not stay for prolonged
periods in the course.

5.2 Dropout Prediction and Analysis
We leverage machine learning techniques to pre-
dict student attrition along the way based on our
extracted feature set. The dependent class variable
is dropout, which is 0 for all active student partic-
ipation weeks and 1 only for the last participation
week (student ceased to participate in the MOOC
after that week), leading to an extremely skewed
class distribution. Note that by active student par-
ticipation, we refer to only forum and video view-
ing interactions. We construct the following two
models for validation. For each model, there is a
Curr and a TCurr setup:

• Baseline Ngram Model: Features used are
Coursweek, Userweek, Ngrams from full in-
teraction footprint sequence (2 to 5), Ngram

length, proportion of active/passive video
viewing and forum activity (dichotomized by
equal width), nominal variable.
• Graph Model: Features used are Cour-

sweek, Userweek, Ngram length, Graph met-
rics (top 3 central activities, density (di-
chotomized by equal frequency), central tran-
sition, no. of nodes (dichotomized by equal
frequency), no. of edges (dichotomized by
equal frequency), no. of self loops (di-
chotomized by equal frequency), no. of
SCC), nominal variable.

For both these models, we use cost sensitive Lib-
SVM with radial basis kernel function (RBF) as
the learning algorithm (Hsu et al., 2003). The ad-
vantage of RBF is that it nonlinearly maps sam-
ples into a higher dimensional space so it, unlike
the linear kernel, can handle the case when the re-
lation between class labels and attributes is non-
linear. Rare threshold for feature extraction is set
to 4, while cross validation is done using a sup-
plied test set with held out students having sql id
798619 through 1882807.

The important take away messages from these
results are:

• Graph model performs significantly better
than Baseline ngram model for both Curr
(t=-17.903, p<0.01) and TCurr (t=-11.834,
p<0.01) setups, in terms of higher accu-
racy/kappa and comparable false negative
rates1. This is because the graph models
the integration of heterogeneous MOOC ac-
tivities into a structured activity. The edges
of the graph, which connect consecutive ac-
tivities represent a two-fold relationship be-
tween these activities: how they relate to each

1False negative rate of 0.x means that we correctly iden-
tify (100-(100*0.x))% of dropouts
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other from a pedagogical and from an oper-
ational viewpoint. In addition to capturing
just the order and mere presence of active and
passive MOOC events scatterred throughout
the activity sequence, the activity network
representation additionally captures differ-
ent properties of MOOC interaction such as
a)how recurring behaviors develop in the par-
ticipation trajectory of students, and how the
most central ones thrust towards increasing
or decreasing engagement, b)how the num-
ber and distribution of such activities are in-
dicative of persistence in interaction behav-
ior. The baseline+graph approach does not
lead to improvement in results over the base-
line approach.

• TCurr setup does not necessarily lead to bet-
ter results than Curr setup. This indicates
that students’ attrition is more strongly in-
fluenced by the most recent week’s exhib-
ited behavioral patterns, rather than aggre-
gated MOOC interactions from the begin-
ning of participation. The extremely small
false negative rates in Curr setup indicate the
effectiveness of our feature engineering ap-
proach in predicting attririon behavior, even
with an extremely skewed class distribution.
However, more studies would be required to
corroborate the relation between change in
interaction sequences from one week to an-
other and factors such as students’ confusion
(“I am unable to follow the course video lec-
tures”) or negative exposure (“I am not moti-
vated enough to engage because of less pro-
ductive discussion forums”), which gradually
build up like negative waves before dropout
happens (Sinha, 2014).

6 Conclusion and Future Work

In this work, we formed operationalizations that
quantify active and passive participation exhibited
by students in video lecture viewing and discus-
sion forum behavior. We were successful in de-
veloping meaningful indicators of overall inter-
action footprint that suggest systematization and
continuity in behavior, which are in turn predictive
of student attrition. In our work going forward,
we seek to differentiate the interaction footprint
sequences further using potent markov clustering
based approaches. The underlying motivation is to
decipher sequences having lot of activity overlap

as well as similar transition probabilities. These
cluster assignments can then serve as features that
help segregating interaction sequences predictive
of dropout versus non-dropouts.

Another interesting enhancement to our work
would include grouping commonly occurring ac-
tivities that learners perform in conjunction with
each other and form higher level latent cate-
gories indicative of different participation traits.
In our computational work, we have recently been
developing techniques for operationalizing video
lecture clickstreams of students into cognitively
plausible higher level behaviors to aid instructors
to better understand MOOC hurdles and reason
about unsatisfactory learning outcomes (Sinha et
al., 2014).

One limitation of the above work is that we
are concerned merely with the timestamped order
of activities done by a student and not the time
gap between activities appearing in the interac-
tion footprint sequence. The effect of an activ-
ity on a subsequent activity often fades out with
time, i.e. as the lag between two activities in-
creases: learners forget what they learned in a pre-
vious activity. For example, the motivation cre-
ated at the beginning of a lesson by presenting an
interesting application example does not last for-
ever, so as to initiate productive forum discussions.
Similarly, the situation of a thread being started
(Th) and a post being made (Po) within 60 secs
of completing video lecture viewing, might im-
ply a different behavior, than if these forum activ-
ities occur five days after video lecture viewing.
Therefore, we seek to better understand context
of the most and least central activities of students
in MOOCs, differentiating between subsequences
lying within and outside user specified temporal
windows. Our goal is to view the interaction foot-
print sequence formation in a sequential data min-
ing perspective (Mooney and Roddick, 2013) and
discover a)most frequently occurring interaction
pathways that lead students to such central activ-
ities, b)association rules with high statistical con-
fidences that help MOOC instructors to trace why
students engage in certain MOOC activities. For
example, a rule of the form AB⇒ C, such as “Vf”,
“Uv” [15s] ⇒ “Po” [30s] (confidence = 0.7), is
read as if a student navigated and viewed a forum
page followed by doing an upvote within 15 sec-
onds, then within the next 30 seconds he would
make a post 70% of the time.
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