
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Langauge Processing (ANLP), pages 143–147,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Fast and Robust Arabic Error Correction System

Michael N. Nawar

Computer Engineering Department

Cairo University

Giza, Egypt

michael.nawar@eng.cu.edu.eg

Moheb M. Ragheb

Computer Engineering Department

Cairo University

Giza, Egypt

moheb.ragheb@eng.cu.edu.eg

Abstract

In this paper we describe the implementation

of an Arabic error correction system devel-

oped for the EMNLP2014 shared task on au-

tomatic error correction for Arabic text. We

proposed a novel algorithm, where we find

some correction rules and calculate their

probability based on the training data, they

we rank the correction rules, then we apply

them on the text to maximize the overall F-

score for the provided data. The system

achieves and F-score of 0.6573 on the test da-

ta.

1 Introduction

 Traditional techniques in text correction is the

generation of a large set of candidates for an in-

correct word using different approaches like

enumerating all possible candidates in edit dis-

tance of one. Then, all the candidates are ranked

such that the best candidates are ranked on the

top of the list. Finally, the best candidate is cho-

sen to replace incorrect word.

The traditional techniques are slow, since the

generation of a large set of candidates is time

consuming task. Also, it doesn’t take into con-

sideration the overall score of the system. While,

in this paper we apply a novel technique in au-

tomatic error correction, where we take into con-

sideration the correction rules, not the variants.

In the propose technique, we order corrections to

be applied on text to maximize the F-score.

This shared task was on automatic Arabic text

correction. For this task, the Qatar Arabic Lan-

guage Bank (QALB) corpus (Mohit et. al, 2014)

was provided. The QALB corpus contains a pre-

processed input text with some features extracted

and the corrected output. The main issue in the

shared task, that the tools used for the extraction

of the provided features wasn’t provided. So, we

had a choice, to create an algorithm that can deal

with missing features, or to generate our own set

of features. Finally, we have chosen to generate

our own set of features.

The proposed framework could be described

as a probabilistic rule-based framework. During

the training of this framework, we extracted

some rules and assign a probability to each rule

as shown later in section 3. The extracted rules

are then sorted based on their probabilities. And

during the test, we apply the rules from the high-

est probability to the lowest probability one by

one, on the entire test data till a stopping criteria

is satisfied. During the algorithm we have some

kind of heuristic to estimate the F-score after

each rule is apply. The stopping criteria for the

algorithm is that the estimated F-score start to

decrease.

This paper is organized as follow, in section 2,

an overview of the related work in the field of

error correction is discussed. In section 3, the

proposed system and its main components are

explained. The evaluation process is presented in

section 4. Finally, concluding remarks and future

work are presented in section 5.

2 Related Work

Most of the work done in the field automatic er-

ror correction for text, is made for English lan-

guage (Kukich, 1992; Golding and Roth, 1999;

Carlson and Fette, 2007; Banko and Brill, 2001).

Arabic spelling correction has also received con-

siderable interest, Ben Othmane Zribi and Ben

Ahmed, (2003) have proposed a new aiming to

reduce the number of proposals given by auto-

matic Arabic spelling correction tools, which

have reduced the proposals by about 75%. Had-

dad and Yaseen (2007) took into consideration

the complex nature of the Arabic language and

the effect of the root-pattern relationship to lo-

143

cate, reduce and rank the most probable correc-

tion candidates in Arabic derivative words to

improve the process of error detection and cor-

rection. Hassan et al. (2008) used a finite state

automata to propose candidates corrections, then

assign a score to each candidate and choose the

best correction in the context. Shaalan et al.

(2010) developed an error correction system to

Arabic learners. Alkanhal et al. (2012) have de-

veloped an error correction system and they em-

phasized on space insertion and deletion. Zag-

houani et al. (2014) provided a large scale da-

taset for the task of automatic error correction for

Arabic text.

3 The Proposed System

The main system idea is explained by the al-

gorithm, in figure 1. The algorithm has two in-

puts: the set of sentences that need to be modi-

fied T[1..n], and the set of correction rules

C[1..m] that could be applied to text. The algo-

rithm has one single output: the set of modified

sentences T’[1..n]. The algorithm could be divid-

ed into two main component: the initialization

and the main loop.

Figure 1: Proposed Algorithm

First, the initialization part of the algorithm

starts from line 1 to line 8. In the first line, the

sentences are copied from T[1..n] to T’[1..n]. In

line number 2, the number of errors in the test set

T[1..n] is expected using the rate of errors in the

train set (#error / #words). In lines 3 to 8, the

variables used in the algorithm are initialized to

zero.

The main loop of the algorithm starts from

line 9 to line 20. In line 9, the loop begins, and

the sentences are copied from T[1..n] to T’[1..n]

and the F-score is copied to old F-score, in lina-

rae 10 and 11. Then the first not applied correc-

tion with the highest probability to be correct is

correct is chosen in line 12. In line 13, the cor-

rection is applied on the text T[1..n]. Then we

calculate the number of changes between T[1..n]

and T’[1..n], in line 14. And based on the ex-

pected number of changes, we update the ex-

pected number of performed edits in line 14. Al-

so, we update the expected number of the correct

edits based on the number of change and the

probability of a change to be correct in line 15.

In lines 17 to 19, we calculate the expected pre-

cision, recall and F-score based on the expected

gold edits, performed edits, and correct edits cal-

culated at lines 2, 14, and 15. If the F-score is

higher than the old F-score, which means that

applying the correction c on the text T[1..n] will

increase the expected F-score, then go to line 9

and start a new iteration in the loop. And if the F-

score is lower than the old F-score, which means

that applying the correction c on the text T[1..n]

will decrease the expected F-score, then exit the

loop and return the modified text T’[1..n].

After we have discussed the main idea of algo-

rithm, in the following subsections we will dis-

cuss some of the extracted corrections rules and

the calculation of the probability of each rule.

These rules and their probabilities are compiled

by analyzing the training data.

3.1 Morphological Analyzer Corrections

Rules

We used a morphological analyzer, BAMA-

v2.0 (Buckwalter Arabic morphological analyzer

version 2.0) (Buckwalter, 2010), in the extraction

of a correction rule. This rule will be used to

solve the errors caused by the exchange between

some characters like: (“ا”, “A”), (“أ”, “>”), (“إ”,

“<”) and (“ه”, “h”), (“ة”, “p”) and (“ي”, “y”),

 .(”Y“ ,”ى“)

RULE: We analyze a word with the morpho-

logical analyzer, if all the solutions of the word

have the same form that is different from the

Input: T[1..n], C[1..m]

Output: T’[1..n]

1: T’ = T

2: Gold Edits = #Words in Test * # Gold Edits in

Train / # Words in Train

3: Correct Edits = 0

4: Performed Edits = 0

5: Precision = 0

6: Recall = 0

7: Old F-score = 0

8: F-score = 0

9: Do

10: T’ = T

11: Old F-score = F-score

12: Get next correction “c” with the highest

probability “p” from C

13: Apply the correction “c” on T

14: N = number of changes between T and

T’

15: Performed Edits = Performed Edits + N

16: Correct Edits = Correct Edits + p * N

17: Precision = Correct Edits / Performed

Edits

18: Recall = Correct Edits / Gold Edits

19: F-score = 2*Precision*Recall / (Preci-

sion+Recall)

20: while F-score > Old F-score do

21: return T’

144

word, then change the word by the solutions

form.

For example, the word (“احمد”, “AHmd”),

when the word is analyzed by the morphological

analyzer, there are 02 different solutions, 14 are

proper noun (“أحمد”, “>Hmd”, “Ahmed”) and the

remaining 6 of them are verb (“ مدأح ”, “>Hmd”, “I

praise”). Since all the solution of the word

 ,”أحمد“) have the form (”AHmd“ ,”احمد“)

“>Hmd”), then we will change (“احمد”, “AHmd”)

to (“أحمد”, “>Hmd”). Another example, the word

 when the word is analyzed by ,(”AmAm“ ,”امام“)

the morphological analyzer, there are 04 differ-

ent solutions, 12 of them have the form (“أمام”,

“>mAm”), and the other 12 have the form (“إمام”,

“<mAm”), so we leave it unchanged.

To calculate the correctness probability of the

rule, we apply the following rule to all the train-

ing set, then we calculate the number of correct

edits, and the number of performed edits, finally

we calculate the probability as the ratio between

the correct and the performed edits.

3.2 Colloquial to Arabic Corrections Rules

To convert the colloquial Arabic words to Ar-

abic words, we have compiled some rules as

shown below:

RULE: Replace a word or a phrase by a spe-

cific word or phrase from a list extracted from

the training set provided in Qalb shared task

(Mohit et. al, 2014).

From example replace the word (“احنا”, “AH-

nA”, “we”) by the word (“نحن”, “nHn”, “we”).

RULE: Replace a word or phrase with a spe-

cific word or phrase based on its context.

RULE: Replace a word or phrase with a spe-

cific pattern to another word or phrase.

From example replace the word (“بيلعب”,

“bylEb”, “is playing”) by the word (“يلعب”,

“ylEb”, “is playing”).

The correctness probability of each rule is the

ratio between the correct and the performed edits

when this rule is applied on the train data.

3.3 The Single Character Spelling Errors

Correction

The single character spelling errors are divid-

ed into four main subcategories: replace charac-

ter by another character, insert character, delete

character, and transpose two adjacent characters.

For these four errors, we have conducted four

types of rules.

RULE 1: We analyze a word with the mor-

phological analyzer, if it is outside the corpus,

and it not defined in the correct words in qalb

corpus (the words that don’t change) try to

change one character by a specific character, if

the new word is recognized by the morphological

analyzer or it is inside the corpus, then change

the word and keep the new solution.

For example, if we have a word (“بعظ”,

“bEZ”) and a rule that change the character (‘ظ’,

‘Z’) to (‘ض’, ‘D’). And the word (“بعض”,

“bED”) is recognized by the morphological ana-

lyzer, then we change the word (“بعظ”, “bEZ”) to

 Another example, if we have .(”bED“ ,”بعض“)

the word (“بعظ”, “bEZ”) and a rule that change

the character (‘ع’, ‘E’) to (‘غ’, ‘g’). And the

word (“بغظ”, “bgZ”) is not recognized by the

morphological analyzer and it is outside the Qalb

corpus, then we don’t change the word.

RULE 2: We analyze a word with the mor-

phological analyzer, if it is outside the corpus,

and it not defined in the correct words in qalb

corpus (the words that don’t change) try to insert

one specific character between a pair of specific

characters, if the new word is recognized by the

morphological analyzer or it is inside the corpus,

then change the word and keep the new solution.

RULE 3: We analyze a word with the mor-

phological analyzer, if it is outside the corpus,

and it not defined in the correct words in qalb

corpus (the words that don’t change) try to delete

one specific character from a triplet of specific

characters, if the new word is recognized by the

morphological analyzer or it is inside the corpus,

then change the word and keep the new solution.

RULE 4: We analyze a word with the mor-

phological analyzer, if it is outside the corpus,

and it not defined in the correct words in Qalb

corpus (the words that don’t change) try to re-

place a pair of characters to the transpose of the

pair of characters, if the new word is recognized

by the morphological analyzer or it is inside the

corpus, then change the word and keep the new

solution.

The correctness probability of each rule is the

ratio between the correct and the performed edits

when this rule is applied on the train data, and it

differs from one character to another (i.e. the two

examples in rule 1, will have different correct-

ness probabilities based on the training data).

3.4 The Space Insertion Errors Correction

The space insertion error correction is the pro-

cess of splitting an incorrect word to multiple

correct word.

RULE: If there is a character concatenated af-

ter taa marbouta (‘ة’, ‘p’), insert a space between

them.

145

RULE: If the word starts with negation parti-

cle, split negation particle from it.

RULE: If the word starts with vocative parti-

cle, split vocative particle from it.

RULE: If the word starts with vocative parti-

cle, split vocative particle from it.

RULE: We analyze a word with the morpho-

logical analyzer, if it is outside the corpus, and it

not defined in the correct words in Qalb corpus

(the words that don’t change) try to find the long

substring from the word, that keep another sub-

string, where both of them are recognized by the

morphological analyzer.

The correctness probability of each rule is the

ratio between the correct and the performed edits

when this rule is applied on the train data.

3.5 The Space Deletion Errors Correction

The space deletion errors correction is the pro-

cess of merging multiple tokens into one correct

word.

RULE: Merge conjunction particles, with

their succeeding token.

RULE: If two out of corpus tokens could be

merged to an inside the corpus word, then merge

them.

The correctness probability of each rule is the

ratio between the correct and the performed edits

when this rule is applied on the train data.

3.6 Punctuation Errors Corrections

The punctuation errors are hard to correct be-

cause they depends on the meaning of the sen-

tence, and require almost full understanding of

the sentence. However, we have conducted some

rules for the punctuation, for example:

RULE: If the sentence doesn’t end with a

punctuation point from (“.”, “!”, “؟”), then add a

point at the end of the sentence.

RULE: Insert a punctuation mark before a

certain word.

For example, insert a semicolon before the

word (“لأنه”, “l>nH”, “because he”).

The correctness probability of each rule is the

ratio between the correct and the performed edits

when this rule is applied on the train data.

3.7 Syntactic Errors Corrections

The syntactic errors is one of the most difficult

error to correct. For this task we apply a simple

kind of a grammatical analyzer to assign simple

grammatical tag to some words. One simple

grammatical system, is the one to determine gen-

itive noun. Nouns are genitive mainly if they oc-

cur after a preposition, or if they are possessives

(definite noun after indefinite noun) or if they are

adjectives of genitive nouns, or if they are con-

junction with genitive noun.

RULE: Plural and Dual genitive nouns that

end with (“ون”, “wn”) or (“ان”, “An”) should end

with (“ين”, “yn”).

The correctness probability of each rule is the

ratio between the correct and the performed edits

when this rule is applied on the train data.

3.8 Additional Corrections Rules

Finally, we generated some rules that present

the data on a correct format as the training data

and we will assign their correctness probability

manually to be equal to 1.

RULE: Remove kashida (tatweel) from text.

RULE: Replace “*” if between parenthesis by

the Arabic character (‘ذ’, ‘*’).

RULE: If a character is repeated consecutive-

ly more than twice inside a word, remove the

extra characters except if the word consists of

only one char like (“ههههه”, “hhhhh”).

RULE: Write a comma between two numbers.

4 Evaluation of the System

 For the evaluation of the system, we used the

M2 scorer by Dahlmeier and Ng (2012). When

we evaluated the system with the development

dataset, we have reached an F-score of 0.6817;

and when the system is evaluated the test dataset,

we have reached and F-score of 0.6573.

The proposed algorithm is very fast compared

to traditional error correction algorithm. In tradi-

tional error correction algorithm, you generate all

possible variants of an incorrect word, then you

rank the solutions and choose the best solution.

But, in the proposed algorithm, you rank the

rules during the training time, and you apply one

rule at the time until you find an appropriate so-

lution of an incorrect word.

For example, let’s consider single character

replace spelling error, if the incorrect word

length is five characters, so you need to make

((28-1)*5) iterations to generate all possible vari-

ants of a word, while in the proposed algorithm

you generate one variant at the time, and you

might stop after that.

5 Conclusion

In this paper we have presented a novel and

fast algorithm for the automatic text correction

for Arabic. The proposed algorithm has a good

F-score, and the system has the potential to be

further improved. As a future work, the punctua-

146

tion error correction might need to be further im-

proved. And the expected number of gold edits,

could be improved or calculated on the sentence

level. And finally, the rules used in the frame-

work could be extended by further analysis of the

training data.

References

Mohamed I. Alkanhal, Mohammed A. Al-Badrashiny,

Mansour M. Alghamdi, and Abdulaziz O. AlQab-

bany. 2012. Automatic Stochastic Arabic Spelling

Correction with Emphasis on Space Insertions and

Deletions. IEEE Transactions on Audio, Speech

& Language Processing, 20:2111–2122.

Michele Banko and Eric Brill, 2001. Scaling to very

very large corpora for natural language disambigu-

ation. In Proceedings of 39th Annual Meeting

of the Association for Computational Linguis-

tics. Toulouse, France.

Chiraz Ben Othmane Zribi and Mohammed Ben Ah-

med. 2003. Efficient Automatic Correction of Mis-

spelled Arabic Words Based on Contextual Infor-

mation. In Proceedings of the Knowledge-

Based Intelligent Information and Engineering

Systems Conference, Oxford, UK.

Tim Buckwalter. 2010. Buckwalter Arabic Morpho-

logical Analyzer Version 2.0. Linguistic Data Con-

sortium, University of Pennsylvania, 2002. LDC

Catalog No.: LDC2004L02. ISBN 1-58563-324-0.

Andrew Carlson and Ian Fette. 2007. Memory-based

context-sensitive spelling correction at web scale.

In Proceedings of the IEEE International Con-

ference on Machine Learning and Applica-

tions (ICMLA).

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better

evaluation for grammatical error correction. In

Proceeding of the 2012 Conference of the

North American Chapter of the Association

for Computational Linguistics: Human Lan-

guage Technologies.

Andrew R. Golding and Dan Roth. 1999. A Winnow

based approach to context-sensitive spelling cor-

rection. Machine Learning, 34(1-3):107–130.

Bassam Haddad and Mustafa Yaseen. 2007. Detection

and Correction of Non-Words in Arabic: A Hybrid

Approach. International Journal of Computer

Processing Of Languages (IJCPOL).

Ahmed Hassan, Sara Noeman, and Hany Hassan.

2008. Language Independent Text Correction using

Finite State Automata. In Proceedings of the In-

ternational Joint Conference on Natural Lan-

guage Processing (IJCNLP 2008).

Karen Kukich. 1992. Techniques for Automatically

Correcting Words in Text. ACM Computing Sur-

veys, 24(4).

Behrang Mohit, Alla Rozovskaya, Nizar Habash,

Wajdi Zaghouani, and Ossama Obeid, 2014. The

First shared Task on Automatic Text Correction for

Arabic. In Proceedings of EMNLP workshop

on Arabic Natural Language Processing. Do-

ha, Qatar.

Khaled Shaalan, Rana Aref, and Aly Fahmy. 2010.

An approach for analyzing and correcting spelling

errors for non-native Arabic learners. In Proceed-

ings of Informatics and Systems (INFOS).

Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Os-

sama Obeid, Nadi Tomeh, Alla Rozovskaya, Noura

Farra, Sarah Alkuhlani, and Kemal Oflazer. 2014.

Large Scale Arabic Error Annotation: Guidelines

and Framework. In Proceedings of the Ninth In-

ternational Conference on Language Re-

sources and Evaluation (LREC’14), Reykjavik,

Iceland.

147

