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ABSTRACT

This paper shows a method to diagnose potential mispronunciations in second language learning
by studying the characteristics of the speech produced by a group of native speakers and the
speech produced by various non-native groups of speakers from diverse language backgrounds.
The method compares the native auditory perception and the non-native spectral representation
on the phoneme level using similarity measures that are based on the radial basis function
kernel. A list of ordered problematic phonemes is found for each non-native group of speakers
and the results are analyzed based on a relevant linguistic survey found in the literature. The
experimental results indicate an agreement with linguistic findings of up to 80.8% for vowels
and 80.3% for consonants.
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1 Introduction

Second language (L2) speakers are generally having trouble with certain phonemes of the target
language that do not exist in the sound system of their native language (Flege, 1995; Guion
et al., 2000). It is therefore common practice to include speech sounds from their first language
(L1) or ignore unfamiliar ones (Piske et al., 2001) while practicing a new language. Within
a computer-assisted language learning (CALL) program, the task of automatic pronunciation
error detection (PED) is to find effective techniques to diagnose and detect mispronunciations in
order to assist L2 learners to improve their oral capabilities.

In (Neumeyer et al., 1996; Franco et al., 1997; Neumeyer et al., 2000) a system used for
performing automatic speech recognition (ASR) is turned into an automatic pronunciation
scoring system, in which several different scores, e.g., hidden Markov models (HMM) phone
log-likelihood, are compared to human listeners’ evaluation. The experiments show that certain
scores, such as the log-posterior and the normalized duration correlate well with human ratings.
Scoring is also the main characteristic of the goodness of pronunciation (GOP) proposed in
(Witt and Young, 2000), which measures the quality of pronunciations of non-native speakers.
The idea is to score each phone of an utterance depending on how close the pronunciation
of the non-native speaker is to that of native speakers. A method that combines knowledge
from acoustic-phonetic, linguistic, and from expert listeners is presented in (Park and Rhee,
2004), in which the analysis of the results is done by finding the correlation of human listeners
and machine-based rating. In (Truong et al., 2005), a set of classification approaches based on
linear discriminant analysis (LDA) and decision trees is presented. These classifiers are used
to analyze the mispronunciations of second language learners of Dutch. In (Tepperman and
Narayanan, 2008), the research is oriented in introducing articulatory information in PED by
reformulating the hidden-articulator Markov models (HAMM) (Tepperman and Narayanan,
2005) and deriving new articulatory-based features for classification. In (Strik et al., 2009), four
different classification systems are examined: a GOP-based, one combining cepstral coefficients
and LDA, a method based on the work described in (Weigelt et al., 1990), which is an algorithm
that discriminates voiceless fricatives from voiceless plosives, and an LDA-acoustic-phonetic
feature classifier. It is found that the two LDA-based classification systems perform better in
mispronunciation detection. In (Wei et al., 2009), the authors use support vector machines
(SVM) to model phones with several parallel acoustic models that represent the variation in
pronunciation at various proficiency levels. This approach seems to achieve better results in
comparison to more traditional posterior probability based methods.

Since the pronunciation of a phone is not only related to its acoustics, aspects, such as fluency,
syllable structure, word stress, intonation, prosody or segmental quality may also be considered
for investigation of pronunciation errors. For example, the work that is presented in (Delmonte,
2000) concerns a prosodic module of a CALL system called SLIM. This module deals with
phonetic and prosodic problems both at the word but also at the segmental level. Prosodic
measures based on FO, power and duration of L2 and L1 speech are used in (Yamashita et al.,
2005) within a multiple regression framework to predict the prosodic proficiency of L2 learners.
In (Raux and Kawahara, 2002), a probabilistic algorithm is applied to derive intelligibility
from error rates and also define a function of error priority to indicate which errors are most
critical to intelligibility. Finally, in (Xu et al., 2009), linguistic knowledge obtained from the
non-native speakers’ most common mistakes, and pronunciation space constructed using revised
log-posterior probability vectors is considered along with an SVM classifier.
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In this paper, a PED method based on psychoacoustic knowledge from a spectral auditory
model (van de Par et al., 2002) is presented that models the native perception to evaluate
non-native pronunciations based on acoustic and auditory processing of the speech sounds. The
fundamental assumption is based on the ability of the human auditory system to distinguish
speech sounds of various type. The method compares the acoustic and auditory-perceptual
characteristics of uttered phones on a frame-by-frame basis. In doing so, it utilizes a similarity
measure based on radial basis function kernel or RBF kernel, which is compared with a
Euclidean distance measure that was used in (Koniaris and Engwall, 2011; Koniaris et al.,
2013). The motivation for this arrives from the fact that the data become sparse in a high
dimensional space and hence choosing RBF kernel seems a more suitable solution since it is
considered more appropriate for such conditions (Braun et al., 2008). Roughly speaking, the
method performs a comparison between speech sounds generated by a group of native speakers
with the corresponding speech sounds generated by different L2 groups of speakers. This is
done separately for each phoneme category and the uttered phones are transformed into their
auditory representations for the native speech, and into their spectrum representations for the
non-native speech. In each domain, a distortion measure based on the RBF kernel is computed
for each speech frame and then the two distortion measures are explored — considering all the
frames — to investigate, quantitatively, the similarities between the native and the non-native
phones.

The paper is organized as follows. Section 2 presents the method and implementation issues,
Section 3 discusses the experiments and the findings and finally Section 4 provides conclusions.

2 Method

The underlying idea behind the pronunciation error detection method that is described here is
based on the auditory ability of a native speaker to discriminate the mispronounced phonemes
produced by L2 speakers while hearing them speaking. The diagnostic evaluation of the
pronunciation errors is done on the speech signal level by comparing the similarities between
the auditory perceptual domain of the native speech and the power spectrum domain of the
non-native speech. It is assumed that a non-native acoustic representation will have very similar
characteristics to native provided that the non-native speech is produced without significant
mispronunciation. On the other hand, if the non-native speech suffers from severe pronunciation
errors then the two representations, of the L2 and L1 speakers, will differ a lot and thus the
measured similarities will become minimal (Koniaris et al., 2013).

In short, the approach tries to measure the distortion in a set of phones that belong to a specific
phoneme, produced by a group of native speakers n and compare it to that of non-native
speakers of some specific language background {. For this, it is assumed that some form of
acoustic representation x is extracted from the speech signal s of a phone p to evaluate the
distortion measure ¢ in the corresponding transformed domain, where ¢ : R¥ x R¥N — R*,
with R* denoting the non-negative real numbers and N indicating the dimensionality of the
vector X. Then, the RBF kernel-based similarity measure is,

(s, §i,j) = eYHX(s,)—X(él,j)HZ, 1)

where i € Z is the index of the considered speech frame, §, ; is the j’th perturbation of s; that

is used to compute distortion and y = —2%2. It is noted that o will determine the size of the
considered area around s;. An analogous measure is defined for the auditory perception domain
where the speech signal is transformed into the auditory model output representation y. Again,
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a RBF kernel-based distortion measure is computed in the auditory domain v : R¥ x RM — R*,
where M is the dimensionality of the internal representation y, as

v(s;, 8 ;) = Y IV(s) =y I )

The above distortion measures of Egs. (1) and (2) are then compared using the following

similarity measure
1 1 . - 2
o = }Z—Z [U(Si,Si,j)—¢(Si,Si,j)] , 3

ics 71 jey;
where i € .# and j € ¢, represent a finite frame sequence and a finite set of acoustic perturba-
tions, respectively. This measure is used to find mispronunciations as described in (Koniaris
et al., 2013), i.e., by computing the distortion measure v(s;,$; ;) using only native speech
and the spectral distortion measure ¢ (s;,$; ;), calculated separately for non-native (and thus
computing .«/) and native speech (and thus computing ./,). Finally, the native-perceptual
assessment degree (nPAD) is computed for every phoneme and L1 background as
s

PAD = —
n . )

which is a normalized ratio that shows the degree of the similarity between the native perceptual
outcome and the non-native speech signal representation, as compared to the native-only case.
The higher the nPAD value is, the more problematic the L2 phoneme is.

2.1 Practical implementation

Considering p to be a phone that a speaker has produced, the speech power spectrum x(p) can
be seen simply as a function of p that maps this phone onto the spectral domain. If additionally
is considered a small area around p, a local approximation is possible using the Taylor series
expansion, thus

x(p) ~x(p) +Jx [P — pl, )

where J, = a;—(ﬁp) and p is the perturbed phone. Assuming that the small distortion [p — p]

p=p
remains the same independently of the language background of the speaker, Eq. (5) can be used
either for native speech x, or non-native speech x, of a language background ¢. This means
that is possible to find a linearized relation between these two and compute the speech power
spectrum distortion in a non-native subspace into the native speech power spectrum domain.

Thus,
Xy (f’) N Xy (p) + WZ [Xn (15) - Xn(p)]’ (6)

where W, = J,, [J,,]7!. Eq. (6) implies that a different W, should be calculated for each frame.
However, the duration of phones or silence mismatches between the native and non-native
speech signal prevent such computation. In addition, the matrices are non-invertible. Therefore
the estimation of W, is done by considering a common matrix for all frames i of a specific
L2 group of speakers £. In speech processing is often assumed that a speech signal follows a
Gaussian distribution. Thus, Eq. (6) can be expressed as A (uy, %) ~ N (W, u,, W, Z,, [W,]7),
where uy, W, are the mean vectors of the distortion in non-native and native speech signals,
respectively and ¥%,, ¥, their covariance matrices.
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Considering a matrix decomposition (e.g., eigendecomposition), the two covariance matrices
can be expressed as

where { = n for the native language group, and { = £ for the non-native language group. Next,
assuming the following distributions

7 ~ NV s V172, V,)
~ NS, g, [8,]72 B, [8,]72),

~  N([SL]? b, [S1]7 B0 [S,]7),
~ NV, Vg [VL]T), 8)

Sl )

and performing a decomposition in each of them, it can be proved that matrix W, is given by
1 _1

W=V, [S]2[S,]72 [V,]". ©

Then, the power spectrum distortion measure for the non-native speech signal is calculated as

qbl(xéifﬁlu) = qsl(xn[:ﬁni)j;xfi»iélyj) & [Xni - xnu]T [Wl]TWZ [Xni - f(n »]: (10)

L)
wherei€ ¢, j€ ¢.

As mentioned above, a small area is considered around each phone. In practice, this is done by
allowing small perturbations, i.e., adding 30 dB SNR independent and identically distributed
(i.i.d.) Gaussian noise to each x; and generate a set of 100 vectors ¥; ; for the native speech
data n as well as for non-native speech data of all language backgrounds £. All data from native
speech are used to calculate the perceptual distortion measure Eq. (2) on a frame by frame basis
by exploiting auditory information from the psychoacoustic model presented in (van de Par
et al., 2002). Analogously, all data from non-native speech of each language group £ are used to
compute Eq. (1) and, separately, all data from native speech, too. Next, the similarity measure
./, is calculated using the native perceptual distortion and the non-native spectral distortion
measures and also the corresponding similarity measure for the native speakers ./, using the
native perceptual and spectral measures. Then for each phoneme class, the RBF kernel-based
nPAD G)be is computed for every L2 background using Eq. (4). Finally, a Euclidean-based
nPAD ©,, described in (Koniaris and Engwall, 2011; Koniaris et al., 2013), is calculated by
considering Euclidean distances in Eqgs. (1) and (2), i.e., ¢(s;,8; ;) = || x(s;) — x(8; ;) ||? and
v(s;,8;;) =l x(s;) — x(8; ;) |12, respectively.

3 Experiments

This section describes the experiments and discusses the findings of the RBF kernel-based
approach in relation to the Euclidean-based approach and the theoretical linguistic survey
presented in (Bannert, 1984).

3.1 Speech data

The speech data were recorded with a sampling frequency of 16 kHz consisting of 23 phone-
tically rich single words and 55 sentences of varying complexity and length. The utterances
were specifically designed for L2 learners of Swedish that were using a CALL program (Wik and
Hjalmarsson, 2009). The collection of the data was done through a desktop microphone while
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L1 bkgr. male/female  utt. L1bkgr.  male/female  utt. L1bkgr.  male/female  utt.

Eng.(US) 1/1 318 Russian 1/3 583 Arabic 0/1 164
German 2/0 249 Greek 3/0 393 Chinese 2/3 832
French 3/0 347 Spanish 4/1 882 Persian 3/3 987
Polish 0/2 317 Turkish 4/0 604 Swedish 9/2 888

Table 1: Distribution of the total number of male and female speakers and the number of
utterances (utt.) for each language background (L1 bkgr.).

students repeated a word or sentence after the virtual language tutor, the main character of
the program. The procedure was simple; first, the animated agent produced an utterance — a
pre-recorded natural speech produced by a native speaker — accompanied by a subtitle text and
the student repeated afterwards.

The total number of participants was 37 of which 23 were male students and 14 female, from 11
different language backgrounds as it is shown in Table 1. The data recordings took place twice
within one month’s time, before and after practicing at home. The duration of each recording
session was approximately 30 minutes. In addition, 9 male and 2 female Swedish speakers
without regional accent varieties were also recorded once each. Non-linguistic information,
such as coughs, long pauses, repetitions or fillers was excluded from the final corpus used
for experiments. Each speech file was accompanied by a text file, the content of which was
adjusted to the actual utterance, thus any deletion or insertion that may have occurred was not
considered into the text file. A phone-level transcription was then automatically generated from
the speech signal and the text file, using an HMM-based aligner (Sjolander, 2003). These phone-
level transcription files were used to separate the speech data into phoneme categories. The
material contained all Swedish phonemes, but the two short and more open pre-r allophones
/ee/, [oe/ and the retroflexes /n/, /d/, and /|/ were not considered in the experiments because
the number of occurrences in the database was not sufficiently large.

For each language background, the speech data were divided into different phoneme categories
according to the phone-level transcription files. The speech signal was first pre-emphasized and
then windowed every 25 ms with an overlap of 10 ms using a Hamming window. A discrete
Fourier transform of 512 points was applied to the windowed frame to compute the signal’s
power spectrum.

3.2 Results

This section deals with the experiments and results of the described method. The goal is
to identify a list of the most problematic phonemes for a given group of L2 speakers using
previously recorded data. Hence, the experiments are done offline and the error detection
was not made on an utterance basis but on the whole data for each phoneme category. The
method is focusing on repeated mispronunciations made by the L2 speakers that deviate from
the L1 speakers. Only the speech signal is considered without further linguistic or paralinguistic
information. The list of problematic phonemes for each language group is then compared to a
linguistic study (Bannert, 1984).

Table 2 lists the vowels identified by the PED algorithms as being problematic for the different
groups of non-native speakers. For each L2 speaker group, the first line shows, in decreasing
order, the most deviating vowels according to the Euclidean-based nPAD ©,. Correspondingly,
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L1 bkgr.  nPAD ver. detected phonemes missed phonemes
accord. to Bannert (1984)

English 0,

o, (i), az, (9), ex, €, 0, &, |t
ws) @2“250 ,y5 (0), (i1),0,0, 0,01, €
@;”fm 2 (), (i), e, 1,0, 0,0
@;bf 1000 e, e, (), 8, (@), y1, (i), 0,0
German 2] a1, (8), yi, w, (v), €1, (0), cer, o1, 11, 0, ar neY
@;bfzso 1, (en), v, 81, ai, uy, €1, (1), v, (a), o, it us, o, cer
@Z"ff"m ar, (e, v, o1, au, €3, 11, (a), (), v, 0,1t ui, o, ot
el’bfm‘m a1, o1, v, (e1), a, €1, (a), mr, (D), cer, vz, 0 u, e, it
French o, &1, €,y 1, cer, (), e (), 6, 01, 13, 0, ar, €1, €, 0, (a) u,0LY
@lrbf250 5L (@), (), y1, 15,9, 8,0, 01, (), @ i, cer, e
@lrbeOO ar, (a), uy, g, (1), yi, 0,11, e, 0, €, 01 ui e
@;bﬂooo el o1, Y, ai, €, (a), ce:, v 6(¢)ey 9, 1 u, 9,01
Polish ()] a1, (8), yi, w, oer, (U), g1, 8, 0, . i, Y, 01, a
opbre enen @, an, Y, 05 (6), H,L( ,ynise, (0,010 w, g, @
;"5 &, e e ay (8), 85, Y, a, wz, (D), i, 9, (e), i, cex, (0) u 0,0, 9
e;bflOOO ai, o1, Y, a,oe,E,TE), @, 9,0, y1, it u, 05,8
Russian [ , 81, a, (9),y, (0), (), ce: s, 1, 0
@;bfZSO , (0), 21, (1), (9), cer, e, ur 8,05 €
@[”’fSOO : i:, ®1, 8, 0,¢, (9), (i), (®) ui, oL €
@be 1000 , e, @1 €, 0, (0), (1) u, o
Greek O &1, on iz az, 0, €10, (9)
eszZSO & e i1, 9, (0), 0, 01
@2"’/‘500 e, €1, €1, i, (g), Y, g, (a), ur, (i), yi, 9, €, i1, cex, (0)
pP/1000 a0, g1, (€), €5, az, o1, v, (a), o1, @ ; ®, 8,0, y5, 1t
Spanish [H 5 (@, 0,%, (), 0
e;b[zso , (0), e, e, o1, (v)
@;bfsoo w e, v £,z 0, 0o, @, g, 6,0, (0), €, 9
e;bflOOO ui, (a), ey, (), i, en, €, 8, 03, €, 0, a, 9, &, g1, (0)
Turkish o, 21, (€), y1, (&1, (@), us, 0, u, @1, I, az, €1, (0)
@bezso e o1, e, (a), w, (i), ai, i, yi, (9), (0)
o)bfs0 en, (), &1, (e0), g1, (a), az, (), ws, (8), I3, yi, )
ezb/‘lOOO 1, &, (v), (89, ¢, (a), (), az, (i), ws, (0), cer, e
Arabic o €1, 8, 0, 81 i1, 4z, 9, €1, €, (0), a, ur Y, 01
@It e a, a1, (D), yi, 15, 9, 0, 03, (), 0, € w, 9, oe:
@2"’/‘500 e Y, a, 11, (1), yz, 0, € iz, cez, (9), (), @ us o1, ¢
@;bfwoo @1, €1, €L 8, a5, P, Y, a, @, a6, (D, 8,0,y i, (0), @ u, of
Chinese )] 9, & 8, L’ w, 1,0, g3 i3, @i, €3, €, 9, (9), 3, uy, (1), o X e
O o anmy e (), en o, a0y, i o, 2y, 0 (©), us, e, (v), cex X0,
@l’bfsoo o, ai, &1, uy, €1, e, gy, (1), 8,0, i, y1, 01, ceny €, (0), Wi, € X, 9
@irbIIOOU az, @, e, 05, 8, e, (), 3, ce1, 0, 6, 05 €, 01, v, 9, (0), W Y, e
Persian Ch o, & 1, (8), 8, 01, v, (D, 11, e, 8, (o), (a1, 01, (0)
elrbfZSO o, 1, (e) (€),0, €1, 8, 01, €1, ¥, (1), wy, (an), us, cex
o0 ®1, 0, (0), (e), 95, 0, £1, a1, 11, 6, ¥, €5, 3, (1), (ar)
ezbflooo &1, 05, 0, o1, £, (6), (6), gxb(l),a,ﬁ,(ﬂ)sa

Table 2: Problematic vowels per language background. To the left, the vowels are shown in
decreasing order, starting from the one with the highest nPAD. Phonemes that differ from the
linguistic study findings are in parentheses, and the seriously problematic according to Bannert
(1984) are underscored. To the right, the missed vowels.
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e elrbf250 elrbeOO e[rbflOOO

Better performance in no. of language groups 3 2 3 4
Mismatches with theory (total) 19.2% 22.0% 20.9% 19.2%
Seriously problematic phonemes missed (total) 21.3% 22.0% 26.0% 25.2%
Mismatches in top 5 phonemes 8 7 8 7
Seriously problematic captured in top 5 phonemes 34 35 34 34

Table 3: Summary of findings for vowels.

the second, third and fourth lines show the results of the RBF kernel-based nPAD G)zbf for

02 =0.002, 0.001 and 0.0005, respectively. These are shown in table as ®2bf250, @;bfsoo and

@be 1000, respectively because y in Egs. (1) and (2) becomes 250, 500 and 1000, respectively.

As ground truth is considered the linguistic survey described in (Bannert, 1984). False rejections
according to (Bannert, 1984) are indicated in parentheses and false accepts according to
(Bannert, 1984) are listed in the right-most column. Some phonemes are shown underscored.
These are the seriously problematic phonemes according to (Bannert, 1984), i.e., they are
totally mispronounced by the non-native speakers. Generally, the nPAD methods capture most
of the common errors made by each language group when its members are trying to learn
Swedish. The Euclidean-based nPAD ©, is better for American English, Spanish and Turkish

speakers. The RBF kernel-based nPAD ©"%/%* is better for Polish, ©!*°* is better for French

¢ ¢
and Chinese and 9be 1000 3¢ better for Russian, Greek, Arabic and Persian speakers. For the

rbf250 g @besoo

German speaking group both ©, perform equally well.

Table 3 summarizes the findings of the approaches for vowels. The Euclidean-based measure
achieves a lower percentage of mismatches with the theoretical linguistic findings and also
misses less seriously mispronounced vowels compared to the RBF kernel-based measures. On
the other hand, ®£bf 250 captures the most seriously problematic vowels of all methods when
looking only at the top 5 vowels of the list of problematic ones and also has the least mismatches
with Bannert, again when only the five most problematic phonemes according to the method
be %% seems not achieving better performance compared to the rest of the
methods according to the table list and finally, @;bf 1000 5 generally performing better in more
groups of L2 speakers, has the least mismatches with theory (as ©, does, too) and also has less

mismatches when only the top 5 most problematic vowels are considered (the same as @;bf 29,

are considered. ©

The reported findings show clearly that for many groups of L2 speakers the open pre-r allophone
/ee1/ is very problematic as it appears most of times at the top of the problematic vowels. Another
vowel that appears problematic is /e:/, which is often not pronounced with a long duration
as it is supposed but rather short, often being replaced by /e/. Generally, it is revealed that
most of the foreign speakers face difficulties when trying to produce the Swedish long vowels.
Hence, /u:/, /a:/ and /e:/ are vowels that both the tested methods and Bannert’s linguistic
survey diagnose as seriously problematic for most of the L2 groups.

Table 4 lists the consonants that are diagnosed as being mispronounced by the L2 groups. As
in Table 2, the first row shows, in decreasing order, the most deviating consonants according
to the Euclidean-based nPAD ©, and the following rows the three RBF kernel-based nPADs

e %0 grtf500 and @;bf 1000 respectively. © is better for French, Greek, Spanish and Turkish

[ B
speakers. @be 1090 i< better for Persian speakers while all three RBF kernel-based nPADs are
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L1 bkgr. nPAD ver. detected phonemes missed phonemes
accord. to Bannert (1984)

English o B9, (), m,n, (b), 1, @), L kst 86t
ws) o) I ENON SANOROR RN m, 0, {
ezbfsoo 568 G, 11, F, (@), '.J:k (d), t m, n,{
rbf1000
o] $6s ML @ k6t @ m o, {
German O ﬁ E n, (m), b,r,d, 1), k, 5, t,p, (h), f, ¢, 5 b
/0 56850, 690dktb 0),fvnp ti
oo/ 65550 90dk6tb M, Ev,np ti
e[rbflOOO &5 0,90kdt (),bfvmnf]j Lp
French o 2.6 @ mnbr0dsktpheg st
)= 560,50, 605d6bkh, Lm ™ P
ezbeOO 5@, 1, g1,5dbkhtmfmn Pt
elrbeOOO $.6 (.o 0, 0,59kdb, h, g, m, n, (v) Pt f
Polish o v, m), n,b, (@), d, 0), k5,8 p, s, (O gh et
o0 55606 0, 0,910dtkb Oy bpnt
@;bfsoo 556G, 0 0 690ktbd®v hpnt
obr100 5560, @ 0,gnkt§bd Oy hpnt
Russian S]] v, 1, (m), (), ), d, M, h, b, k, t, 9,6, £ j D s et
oM ), ), 0,59 vkEm),®,tbdp §geht
oM™, ® M, 0y g vk )L M,tbdp fpeht
O™ (), M, M, 5, g vk m), @, Ltbdp Ggeht
Greek o, G0, (), mnb, @), d Lsktpg @) oht
O 56,(),s 6 @ Lgndtbk® m hn pt
ezbfsoa 5608 0,196 0t6dkb @ ), mn hnpt
@;bfmoo 56 @5 0,190 tkdb§® 0 h,npt
Spanish o v, 0,0, M, bt s O,kgdipesh §m,t
o) ., &0 M.vntkgpdbmhit sl
O (5 ),y (0, v.n tkpg dmb bt 2he
o™ ,5 @, n® v tkgpdmbiht she
Turkish o, D, v, (m),n,br,1dk @),tpfhgtis e
@rbrae .5 L5090kt bs v fd @m),pnht be
oM™ ®.jLnygktsbyfm),doph L
O (),iLr0,kgts by, m),dLnpht e
Arabic 7] §, 9, v, (m), M), (), r,d, M, k, 5, t, p bset
eirbfZSO 5,65 ()61 0, @, dnkt (b fpvt
@2”500 e85 s (.M, 6 @) kdy,t b fpvt
or/1000 ¢ 58 GOk @, td 6 0 fpvt
Chinese 9, §,0,v,mnbrldktfgtpj (b)) Be
@2"”‘250 §,Lr,10,j,9 £k b,v,mn,t,tpd (h), ) 5 &
@rbrse Ly 6,99 kb, v, mntt p,d, (1), () 5E
oM L1y j gk fbEmynttpd {6 8¢
Persian e, b,d, (), v, (0, g, (M), s (0. ep Lk L Loem
O™ b (0, (6),v, 0.t M), pn L1 dykm BEE
o)H50 b, ®, ), v, 9., (W, p,n, Lk t,r,p,d,m s8¢
62”“000 ®, v, (6), g, t, p, W), 0, k, b, L {, 9, 7, d, m 586

Table 4: Problematic consonants per language background. To the left, the consonants are
shown in decreasing order, starting from the one with the highest nPAD. Phonemes that differ
from the linguistic study findings are in parentheses, and the seriously problematic according to
Bannert (1984) are underscored. To the right, the missed consonants.
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e @lrbf250 e[rbeOO @lrbfl()OO

Better performance in no. of language groups 5 6 5 5
Mismatches with theory (total) 20.2% 20.2% 19.7% 20.2%
Seriously problematic phonemes missed (total) 19.5% 18.6% 18.6% 18.6%
Mismatches in top 5 phonemes 15 16 18 18
Seriously problematic captured in top 5 phonemes 28 29 27 27

Table 5: Summary of findings for consonants.

equally better for American English, German, Russian and Arabic speakers in comparison to the
Euclidean-based measure. Finally, ©®, and @be 0 are better for the Polish group and e;bf 250

and 9rbeOO

¢ for the Chinese speakers.

Table 5 summarizes the findings of the Table 4. The Euclidean-based measure has less mis-
matches with Bannert in the top five most problematic consonants as compared to the RBF
kernel-based approaches. eg”f 230 is better in most language groups and can better capture the
seriously problematic consonants both when the focus is on the five most problematic ones, but
also in terms of the total number of the seriously problematic consonants (although in the latter
case, all three RBF kernel-based approaches perform equally good). In addition, @be 0 1

the least mismatches with the linguistic study.

as

The Swedish retroflex /gs/ is very problematic according to the reported results and likewise
the unique "sje-sound" /fj/, a rounded velar fricative that does not exist in other languages.
Moreover, many L2 speakers seem to have problems producing the velar nasal /y/, which is
commonly mispronounced as /yg/. Another difficult consonant is the fricative /¢/ that is also
one of the most problematic sounds for second language speakers of Swedish.

In summary, RBF kernel generally seems to work better for consonants vis-a-vis vowels when
compared with (Bannert, 1984) but also with the Euclidean distance measure. A small improve-
ment in the percentage of the seriously problematic consonants is confirmed — accomplished
by all three RBF-based measures — compared to the Euclidean measure. The figures remain
better even in the case in which only the five most problematic consonants are taken into
account. The results of the RBF kernel metrics are still in a better agreement with linguistic
findings in comparison to the Euclidean-based one. On the other hand for the case of vowels,
the two metrics perform nearly the same based on the criteria listed in Table 3. While for
instance, ©, is better considering the total number of mismatches with theory and, in addition,

r2f250 has a slightly

¢
better performance when concentrating on the five most problematic vowels and 62“ 1000 5

mainly preferable for more L2 groups compared to the rest of the metrics. Generally speaking,
RBF-kernel may be considered to outperform to a small extent the Euclidean measure, though
the two measures do not have major differences and they both seem to work well and achieve
positive results as they regurarly agree with Bannert’s linguistic survey. It is noted that the
intention of the research described in this paper was to investigate alternative measures for
the perceptually-motivated PED approach and carry out experiments to explore their behavior.
Moreover, the deviations from the theoretical findings that both distance measures have can,
for the most part, be explained by the nature of the two studies (theoretical linguistic vs.
computational automatic) and the methodology that was followed. Bannert studied the pronun-
ciation problem from a pure linguistic perspective, including lots of subjective observations and

misses less seriously problematic vowels according to Bannert’s study, ©
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analysis. The computational methods do not consider many linguistic aspects, such as context
and influence from preceding or succeeding phonemes. In addition, the PED methods aim at
diagnosing mispronunciations made by the examined learners and are not designed to be used
for identifying general problems related to the L1 of a group of speakers as Bannert’s study was.
It is noted that Bannert collected data from L2 speakers that were not influenced by repeating
after a native speaker. The reason was that the study was aimed at making an inventory of
mispronunciations for various groups of L2 students that would be used as a reference list
for the teachers of Swedish as a second language. This may partly explain why some of the
seriously problematic phonemes in Bannert’s study were not diagnosed likewise with the nPAD
approaches.

4 Conclusions

In this paper, a RBF kernel-based similarity measure was investigated as part of a pronunciation
error detection algorithm previously presented in (Koniaris and Engwall, 2011; Koniaris et al.,
2013) where a Euclidean distance measure was utilized. The idea was to investigate whether it
can achieve good performance in relation to relevant linguistic literature and in comparison
to the Euclidean similarity measure. The experiments show that good results can be obtained
using this measure. In the future, it will be interesting to extend the idea by applying support
vector machines in combination to the RBF kernel measure.
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