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Abstract 

Zoonotic viruses, viruses that are trans-

mittable between animals and humans, 

represent emerging or re-emerging patho-

gens that pose significant public health 

threats throughout the world. It is there-

fore crucial to advance current surveil-

lance mechanisms for these viruses 

through outlets such as phylogeography. 

Phylogeographic techniques may be ap-

plied to trace the origins and geographical 

distribution of these viruses using se-

quence and location data, which are often 

obtained from publicly available data-

bases such as GenBank. Despite the abun-

dance of zoonotic viral sequence data in 

GenBank records, phylogeographic anal-

ysis of these viruses is greatly limited by 

the lack of adequate geographic metadata. 

Although more detailed information may 

often be found in the related articles refer-

enced in these records, manual extraction 

of this information presents a severe bot-

tleneck. In this work, we propose an auto-

mated system for extracting this infor-

mation using Natural Language Pro-

cessing (NLP) methods. In order to vali-

date the need for such a system, we first 

determine the percentage of GenBank rec-

ords with “insufficient” geographic 

metadata for seven well-studied zoonotic 

viruses. We then evaluate four different 

named entity recognition (NER) systems 

which may help in the automatic extrac-

tion of information from related articles 

that can be used to improve the GenBank 

geographic metadata. This includes a 

novel dictionary-based location tagging 

system that we introduce in this paper.  
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1 Introduction 

Zoonotic viruses, viruses that are transmittable 

between animals and humans, have become in-

creasingly prevalent in the last century leading to 

the rise and re-emergence of a variety of diseases 

(Krauss, 2003). In order to enhance currently 

available surveillance systems for these viruses, a 

better understanding of their origins and transmis-

sion patterns is required. This need has led to a 

greater amount of research in the field of phylo-

geography, the study of geographical lineages of 

species (Avise, 2000). Population health agencies 

frequently apply phylogeographic techniques to 

trace the evolutionary changes within viral line-

ages that affect their diffusion and transmission 

among animal and human hosts (Ciccozzi et al., 

2013; Gray and Salemi, 2012; Weidmann et al., 

2013). Prediction of virus migration routes en-

hances the chances of isolating the viral strain for 

vaccine production. In addition, if the source of 

the strain is identified, intervention methods may 

be applied to block the virus at the source and 

limit outbreaks in other areas.  

Phylogeographic analysis depends on the utili-

zation of both the sequence data and the location 

of collection of specific viral sequences.  Re-

searchers often use publicly available databases 

such as GenBank for retrieving this information. 

For instance, Wallace and Fitch (2008) used data 

from GenBank records to study the migration of 

the H5N1 virus in various animal hosts over Eu-

rope, Asia and Africa, and were able to identify 

the Guangdong province in China as the source of 

the outbreak.  However, the extent of phylogeo-

graphic modeling is highly dependent on the spec-

ificity of available geospatial information and the 

lack of geographic data more specific than the 

state or province level may limit phylogeographic 

analysis and distort results. In the previous exam-

ple, Wallace and Fitch (2008) had to use town-

level information to identify the source of the 

H5N1 outbreak; without specific location data, 

they would not have been able to identify the 

Guangdong province as the source. Unfortu-

nately, while there is an abundance of sequence 

data in GenBank records, many of them lack suf-

ficient geographic metadata that would enable 

specific identification of the isolate’s location of 

collection. A prior study conducted by Scotch et 

al. (2011) showed that the geographic information 

of 80% of the GenBank records associated with 

single or double stranded RNA viruses within tet-

rapod hosts is less specific than 1st level adminis-

trative boundaries (ADM1) such as state or prov-

ince.  

Though many of the records lack specific geo-

graphic metadata, more detailed information is of-

ten available within the journal articles referenced 

in them. However, manual extraction of this infor-

mation is time-consuming and cumbersome and 

presents a severe bottleneck on phylogeographic 

analysis. In this work, we investigate the potential 

of NLP techniques to enhance the geographic data 

available for phylogeographic studies of zoonotic 

viruses using NER systems. In addition to geo-

graphic metadata and sequence information, Gen-

Bank records also contain several other forms of 

metadata such as host, collection date and gene for 

each isolate. Journal articles that are referenced in 

these records often mention the location of isola-

tion for the viral sample in conjunction with re-

lated metadata (Figure 1 provides an example of 

such a case). Therefore, by allowing identification 

of location mentions along with mentions of re-

lated GenBank metadata in these articles, we be-

lieve that NER systems may help to accurately 

link each GenBank record to its corresponding lo-

cation of isolation and distinguish it from other lo-

cation mentions.  

Previously Scotch et al. (2011) evaluated the 

performance of BANNER (Leaman and Gonza-

lez, 2008) and the Stanford NER tool (Finkel et 

al., 2005) for automated identification of gene and 

location mentions respectively, in 10 full-text 

PubMed articles, each related to a specific Gen-

Bank record. They were both found to achieve f-

scores of less than 0.45, thereby establishing the 

need for NER systems with better performance 

and/or a larger test corpus (Scotch et al, 2011). In 

this study, we start by evaluating the state of geo-

graphic insufficiency for zoonotic viruses in Gen-

Bank records using a new automated approach. 

Next, we further expand upon the work done by 

Scotch et al. (2011) by building our own diction-

ary-based location-tagging system and evaluating 

its performance on a larger corpus corresponding 

to over 8,500 GenBank records for zoonotic vi-

ruses. In addition, we also evaluate the perfor-

mance of three other state-of-the-art NER tools 

for tagging gene, date and species mentions in this 

corpus. We believe that identification of these en-

tities will be useful for the future development of 

a system for extracting the location of collection 

of viral isolates from articles related to their re-

spective GenBank records.   
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Figure 1. Example of how the date, gene, and strain metadata within a GenBank record may be 

used to differentiate between two potential locations in a related article 

2 Methods 

The process undertaken to complete this study can 

be divided into three distinct stages: selection of 

the zoonotic viruses and extraction of relevant 

GenBank data related to each virus, computation 

of “sufficiency” statistics on the extracted data, 

and development/evaluation of NER systems for 

tagging location, gene, date and species mentions 

in full-text PubMed Central articles. A detailed 

description of each phase is given below. 

2.1 Virus Selection and GenBank Data Ex-

traction 

The domain of this study has been limited to zo-

onotic viruses that are most consistently docu-

mented and tracked by public health, agriculture 

and wildlife state departments within the United 

States. These viruses include influenza, rabies, 

hantavirus, western equine encephalitis (WEE), 

eastern equine encephalitis (EEE), St. Louis en-

cephalitis (SLE), and West Nile virus (WNV). 

The Entrez Programming Utilities (E-Utilities) 

was used to download the following fields from 

59,595 GenBank records associated with these vi-

ruses: GenBank Accession ID, PubMed Central 

ID, Strain name, Collection date and Country. 

These records were the result of a query per-

formed to retrieve all accession numbers related 

to the selected viruses which had at least one ref-

erence to a PubMed Central article. The results 

                                                 
1 Iso.org. [Internet]. Genève. c2013. Available from 

http://www.iso.org/iso/home/standards/country_codes.htm 

 

from the query was retrieved on August 22nd, 

2013.  

2.2 Sufficiency Analysis 

Database Integration: The data extracted from 

Genbank was used to compute the percentage of 

GenBank records that had insufficient geographic 

information for each of the selected viruses. In or-

der to perform this computation, we used data 

from the ISO 3166-1 alpha-2 1  table and the 

GeoNames database. The ISO 3166-1 alpha-2 is 

the International Standard for representing coun-

try names using two-letter codes. The GeoNames2 

database contains a variety of geospatial data for 

over 10 million locations on earth, including the 

ISO 3166-1 alpha-2 code for the country of each 

location and a feature code that can be used to de-

termine the administrative level of each location. 

To allow for efficient querying, we downloaded 

the main GeoNames table and the ISO alpha-2 

country codes table from their respective websites 

and stored them in a local SQL database. Prior to 

adding the ISO data to the database, some com-

monly used country names and their correspond-

ing country codes were added to the table since it 

only included a single title for each country. For 

example, the ISO table included the country name 

“United States” but not alternate names such as 

“USA”, “United States of America”, or “US”. Us-

ing the created database in conjunction with a par-

ser written in Java, we were able to retrieve most 

2 Geonames.org. [Internet]. Egypt. c2013. [updated 2013 

Apr 30] Available from http://www.geonamesorg/EG/ad-

ministrative-division-egypt.html 

Related PubMed Article 
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of the geographic information present within the 

records and classify each of them as sufficient or 

insufficient.   

 

 
 

Figure 2. Sufficiency Criteria 

 

Sufficiency Criteria: For the purpose of this 

project, we considered any geographical bound-

ary more specific than ADM1 to be “sufficient”. 

Based on this criterion, a feature code in 

GeoNames was categorized as sufficient only if it 

was absent from the following list of feature 

codes: ADM1, ADM1H, ADMD, ADMDH, PCL, 

PCLD, PCLF, PCLH, PCLI and PCLS. Evalua-

tion of the geographical sufficiency of a GenBank 

record was dependent upon whether the record in-

cluded a country name. A GenBank record with a 

country mention was called sufficient if the geo-

graphic information extracted from that record in-

cluded another place mention whose feature code 

fell within the class of sufficient feature codes and 

whose ISO country code matched that of the re-

trieved country. For instance, a GenBank record 

with the geographic metadata “Orange County, 

United States” will be called sufficient since the 

place “Orange County” has a sufficient feature 

code of “ADM2” and a country code of “US” 

which matches the country code of the retrieved 

country, “United States”. Place mentions with 

matching country codes often had several differ-

ent feature codes in GeoNames. Such places were 

only called sufficient if all feature codes corre-

sponding to the given pair of place name and 

country code were classified as sufficient. In cases 

where the GenBank record had no country men-

tion, the record was called sufficient only if all 

matching GeoNames entries for any of the places 

mentioned in it had sufficient feature codes. The 

sufficiency criteria were designed to ensure that a 

geographic location is only called sufficient if its 

administrative level was found to be more specific 

than ADM1 without any form of ambiguity. Fig-

ure 3 illustrates the pathways of geographical suf-

ficiency for GenBank records in a diagram. 

Sufficiency Computation: In order to obtain 

the geographic information for each Genbank rec-

ord, we used a Java parser which automatically 

extracted data from the “country” field of each 

record.  Since the “country” field typically con-

tained multiple place mentions divided by a set of 

delimiters consisting of comma, colon and hy-

phen, we first split this field using these delimit-

ers.  We then checked each string obtained 

through this process against the ISO country code 

table to determine whether it was a potential coun-

try name for the record’s location.  If the query 

returned no results, then the locally stored 

GeoNames table was searched and for each match 

found, the corresponding ISO country code and 

feature code were extracted.  Figure 4 shows a di-

agram of this process. 

 

 
 

Figure 3. Sufficiency Calculation Example 

 

In cases where no sufficient location data was 

found from the “country” field of a GenBank rec-

ord, the Java parser searched through its “strain” 

field. This was done because some viral strains 

such as influenza include their location of origin 

integrated into their names. For example, the in-

fluenza strain “A/duck/Alberta/35/76” indicates 

that the geographic origin of the strain is Alberta. 

The different sections of a strain field are sepa-

rated by either forward slash, parenthesis, comma, 

colon, hyphen or underscore and so we used a set 

of delimiters consisting of these characters to split 

this field. Each string thus retrieved was queried 

as before on the ISO country code table and the 

GeoNames table. GeoNames often returned 

matches for strings like ‘raccoons’ and ‘chicken’ 

which were actually meant to be names of host 

species within the “strain” field, and so a list of 
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Figure 4. Example of annotation including all four entities  

 

some of the most frequently seen host name men-

tions in these records was manually created and 

filtered out before querying GeoNames.  

Some of the place mentions contained very spe-

cific location information which resulted in 

GeoNames not finding a match for them. A list 

was created for strings like ‘north’, ‘south-east’, 

‘governorate’ etc. which when removed from a 

place mention may produce a match. In cases of 

potential place mentions which contained any one 

of these strings and for which GeoNames returned 

no matching result, a second query was performed 

after removal of the string. 

Evaluation of Sufficiency Computation: We 

manually annotated 10% of all influenza records 

in GenBank which reference at least one PubMed 

Central article as sufficient or insufficient based 

on our sufficiency criteria (5731 records). We 

then ran our program on these records and com-

pared system results with annotated results. 

2.3 Development/Evaluation of NER sys-

tems 

Creation of Gold Standard Corpus: We created 

a gold standard corpus consisting of twenty-seven 

manually-annotated full-text PubMed Central ar-

ticles in order to evaluate the performance of NER 

systems for tagging location, gene, species and 

date mentions in text. The articles corresponded to 

over 8,500 GenBank records and were randomly 

sampled using the subset of extracted GenBank 

records which contained a link to PubMed Central 

articles and had insufficient geographic metadata.  

Three annotators tagged the following four en-

tities in each article using the freely available an-

notation tool, BRAT (Stenetorp et al., 2012): gene 

names, locations, dates and species. Figure 4 pro-

vides an example of the manual annotation in 

BRAT. We annotated all mentions of each entity 

type, not only those relevant to zoonotic viruses, 

in order to evaluate system performance. A total 

of over 19,000 entities were annotated within this 

corpus. The number of tokens annotated was 

about 24,000. A set of annotation guidelines was 

created for this process (available upon request). 

Before creating the guidelines, each annotator in-

dividually annotated six common articles and 

compared and discussed their results to devise a 

reasonable set of rules for annotating each entity. 

After discussion, the annotators re-annotated the 

common articles based on the guidelines and di-

vided the remaining articles amongst themselves. 

The inter-annotator agreement was calculated for 

each pair of annotators. The annotated corpus will 

be made available at diego.asu.edu/downloads. 

Development of Automated Location Tag-

ger: We developed a dictionary-based NER sys-

tem using the GeoNames database for automated 

identification of location mentions in text. The 

dictionary used by this system, which we will 

hereby refer to as GeoNamer, was created by re-

trieving distinct place names from the GeoNames 

table and filtering out commonly used words from 

the retrieved set. Words filtered out include stop 

words such as ‘are’ and ‘the’, generic place names 

such as ‘cave’ and ‘hill’, numbers like ‘one’ and 

‘two’, domain specific words such as ‘biology’ 

and ‘DNA’, most commonly used surnames like 

‘Garcia’, commonly used animal names such as 

‘chicken’ and ‘fox’ and other miscellaneous 

words such as ‘central’. This was a crucial step 

since the GeoNames database contains a wide ar-

ray of commonly used English words which may 

cause a large volume of false positives if not re-

moved. The final dictionary consists of 5,396,503 

entries. In order to recognize place mentions in a 
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given set of text files, GeoNamer first builds a Lu-

cene index on the contents of the files. It then con-

structs a phrase query for every entry in the 

Geonames dictionary and runs each query on the 

Lucene index. The document id, query text, start 

offset and end offset for every match found is 

written to an output file. We chose this approach 

because of its simplicity and efficiency.  

Evaluation of NER Systems: Four different 

NER systems for identifying species, gene, date 

and location mentions in text were evaluated us-

ing the created gold standard. The evaluated sys-

tems include LINNEAUS (Gerner et al., 2010), 

BANNER, Stanford SUTime (Chang and Man-

ning, 2012) and GeoNamer. LINNEAUS, BAN-

NER and Stanford SUTime are widely-used, 

state-of-the-art open source NER systems for 

recognition of species, gene and temporal expres-

sions respectively. GeoNamer is the system we 

developed in this work for the purpose of tagging 

locations, as described earlier.  

3 Results 

3.1 Sufficiency Analysis 

The system for classifying records as sufficient or 

insufficient was found to have an accuracy of 72% 

as compared to manual annotation.  98% of the 

errors was due to insufficient records being called 

sufficient. The results of the sufficiency analysis 

are given in Table 1. 64% of all GenBank records 

extracted for this project contained insufficient 

geographic information. Amongst the seven stud-

ied viruses, WEE had the highest and EEE had the 

lowest percentage of insufficient records.  

 

Virus 

Type  

Number of 

Entries  

% Insuffi-

cient  

WEE  67  90  

Rabies  4450  85  

WNV  1084  79  

SLE  141  74  

Hanta  1745  66  

Influenza  51734  62  

EEE  374  51  

All  59595  64  

 

Table 1. Percentage of GenBank records with in-

sufficient geographic information for each zoon-

otic virus studied in this project 

3.2 Gold Standard Corpus 

The results for the comparison of the annota-

tions performed by our three annotators on 6 com-

mon papers can be found in Table 2. We used the 

F-score between each pair of annotators as a 

measure of inter-rater agreement and had over 

90% agreement with overlap matching and over 

86% agreement with exact matching in all cases. 

The final gold standard corpus contained approx-

imately 19,000 entities corresponding to approxi-

mately 24,000 tokens. 

 

Entity F-score 

(A,B) 

(Exact; 

Overlap) 

F-score 

(𝑨,𝑪) 
(Exact; 

Overlap) 

F-score  

(𝑩,𝑪) 
(Exact; 

Overlap) 

Date .975; 

.978 

.979; 

.987 

.962; 

.973 

Gene .914; 

.926 

.913; 

.932 

.911; 

.954 

Location .945; 

.961 

.907; 

.931 

.914; 

.935 

Species .909; 

.956 

.874; 

.940 

.915; 

.959 

Virus .952; 

.958 

.947; 

.966 

.947; 

.955 

Mean .939; 

.956 

.924; 

.951 

.930; 

.955 

 

Table 2. Frequency of Annotated Entities for 6 

common annotated papers 

3.3 Performance Analysis of NER Systems 

The performance metrics for the NER systems 

at tagging the desired entities in the test set are 

listed in Table 3. The highest performance was 

achieved by Stanford SUTime for date tagging. 

Tagging of genes had the lowest performance. 

 

Entity  Precision  

(Exact; 

Overlap)  

Recall 

(Exact; 

Overlap)  

F-score  

(Exact; 

Overlap)  

BAN-

NER  

0.070; 

0.239  

0.114; 

0.395  

0.087; 

0.297  

Geo-

Namer 

0.452; 

0.626  

0.658; 

0.783  

0.536; 

0.696  

LIN-

NEAUS  

0.853; 

0.962  

0.563; 

0.658  

0.678; 

0.781  

Stanford 

SUTime 

0.800; 

0853  

0.681; 

0.727  

0.736; 

0.785  

 

Table 3. Performance Statistics of NER 
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4 Discussion 

Based on our analysis, at least half of the Gen-

Bank records for each of the studied zoonotic vi-

ruses lack sufficient geographic information, and 

the proportion of insufficient records can be as 

high as 90%. Our automated system for classify-

ing records as insufficient or sufficient was found 

to have an accuracy of 72% with 98% of the errors 

being a result of insufficient records being called 

sufficient. Therefore, our computed estimate of 

insufficiency is very likely to be an underestima-

tion of the actual problem. The virus with the 

highest level of sufficiency, EEE, had a large 

number of records with county level information 

in the “country” field. However, the insufficient 

records for this virus typically contained no place 

mention, not even at the country level. A key rea-

son for our calculated percentage of sufficient 

GenBank records being higher for these seven vi-

ruses than what has been previously computed by 

Scotch et al. (2011) was the inclusion of the 

“strain” field. The “strain” field often contained 

specific location information which, when com-

bined with place mentions present within the 

“country” field, made the record geographically 

sufficient. The virus for which the inclusion of 

“strain” field had the greatest impact on boosting 

the sufficiency percentage was influenza. Most of 

the GenBank records associated with this virus 

had structured “strain” fields from which the par-

ser could easily separate place mentions using 

GeoNames. 

Although the sufficiency classifications pro-

duced by our system were correct most of the 

time, there were a few cases where a record got 

incorrectly labeled as insufficient even when it 

contained detailed geographic information. This 

typically happened because GeoNames failed to 

return matching results for these places. For in-

stance, the country field “India: Majiara,WB” was 

not found to be sufficient even though Majiara is 

a city in India because GeoNames has no entry for 

it. In some cases the lack of matching result was 

due to spelling variations of the place name. For 

instance the country field “Indonesia: Yogjakarta” 

was called insufficient since “Yogjakarta” is 

spelled as “Yogyakarta” in GeoNames. Some-

times the database simply did not contain the ex-

act string present in the GenBank record. For in-

stance, it does not have any entry for the place 

“south Kalimantan” but it contains the place name 

“kalimantan”. The number of sufficient records 

which were called insufficient by our system due 

to inexact matching were greatly mitigated by re-

moving strings such as “south” from the place 

mention, as described in the “Methods” section. 

Most of the NER systems performed signifi-

cantly better with overlap measures than with ex-

act-match measures. This is because our annota-

tion guidelines typically involved tagging the 

longest possible match for each entity and the au-

tomated systems frequently missed portions of 

each annotation. Stanford SUTime had the best 

overlap f-measure of 0.785, closely followed by 

LINNEAUS with an overlap f-measure of 0.781. 

Although Stanford SUTime was fairly effective at 

finding date mentions in text, it tagged all four-

digit-numbers such as “1012” and “2339” as 

years, leading to a number of false positives. The 

poor recall of LINNEAUS was mostly caused be-

cause the dictionary used by LINNEAUS tagged 

only species mentions in text while we tagged ge-

nus and family mentions as well. It also missed a 

lot of commonly used animal names such as mon-

key, bat, badger and wolf. GeoNamer was the 

third best performer with the highest recall but 

second lowest precision. This is because the 

GeoNames dictionary contains an extensively 

large list of location names, many of which are 

commonly used words such as “central”. Even 

though we filtered out a vast majority of these 

words, it still produced false positives such as 

“wizard”. However, its performance was consid-

erably better than that of the Stanford location tag-

ger used by Scotch et al. (2011) which was found 

to have a recall, precision and f-score of 0.26, 0.81 

and 0.39 respectively. The improved performance 

was achieved because of the higher recall of our 

system. The GeoNames dictionary provides an 

extensive coverage of all location mentions in the 

world and the Stanford NER system, which is a 

CRF classifier trained on a different dataset, was 

not able to recognize many of the place mentions 

present in full-text PMC articles related to Gen-

Bank records.  

BANNER showed the poorest performance 

amongst all the entity taggers evaluated in this pa-

per. In fact, the f-score we achieved for BANNER 

in this study was much lower that its past f-score 

of 0.42 within the domain of articles related to 

GenBank records for viral isolates (Scotch et al., 

2011).  As mentioned by Scotch et al. (2011), a 

key reason for BANNER’s poor performance in 

this domain is the difference between the data set 

used to train the BANNER model and the annota-

tion corpus used to test this system. The version 

of BANNER used in these two studies was trained 

on the training set for the BioCreative 2 Gene 
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Mention task, which comprised of 15,000 sen-

tences from PubMed abstracts. These abstracts of-

ten contained the full names for gene and protein 

mentions while the full-text articles we used 

mostly contained the abbreviated forms of gene 

names, which BANNER tended to miss. The arti-

cles also contained abbreviated forms of several 

entities such as viral strain name (e.g. H1N1) and 

species name (e.g. VEEV) which look similar to 

abbreviated gene names. Therefore, BANNER of-

ten misclassified these entities as gene mentions. 

A possible reason for BANNER having a much 

lower performance in this study than in the previ-

ous study conducted by Scotch et al (2011) is the 

presence of a large number of tables in the journal 

articles we selected. BANNER is a machine learn-

ing system based on conditional random fields 

which uses orthographic, morphological and shal-

low syntax features extracted from sentences to 

identify gene mentions in text. Such features do 

not help greatly for extraction from tables. There-

fore, BANNER was often not able to identify the 

gene mentions in the tables present within our cor-

pus, thereby producing false negatives. Moreover, 

it tagged several entries within the table as a single 

gene name, thereby producing false positives as 

well. This reduced both the recall and precision of 

BANNER. 

Although this study explores the problem of in-

sufficient geographic information in GenBank 

more thoroughly than past studies, the number of 

papers annotated as the gold standard is still lim-

ited. Thus, the performance of the taggers re-

ported can be construed as a preliminary estimate 

at best. The set of taggers and their performance 

seem to be adequate for a large-scale application, 

with the exception of BANNER. However, we did 

not make any changes to the BANNER system 

(specifically, re-training) since changes to it are 

not possible until sufficient data is annotated for 

retraining. 

5 Conclusions and Future Work 

It can be concluded that the majority of Gen-

Bank records for zoonotic viruses do not contain 

sufficient geographic information concerning 

their origin. In order to enable phylogeographic 

analysis of these viruses and thereby monitor their 

spread, it is essential to develop an efficient mech-

anism for extracting this information from pub-

lished articles. Automated NER systems may help 

accelerate this process significantly. Our results 

indicate that the NER systems LINNEAUS, Stan-

ford SUTime and GeoNamer produce satisfactory 

performance in this domain and thus can be used 

in the future for linking GenBank records with 

their corresponding geographic information. 

However, the current version of BANNER is not 

well-suited for this task. We will need to train 

BANNER specifically for this purpose before in-

corporating it within our system. 

We are currently altering the component of our 

program which classifies records as sufficient or 

insufficient in order to reduce the number of errors 

due to insufficient records being called sufficient. 

We are also manually looking through GenBank 

records for zoonotic viruses with insufficient geo-

graphic metadata and linking them to the location 

mentions in related articles which we deem to be 

the most likely location of collection for the given 

viral isolate. The resulting annotated corpus will 

be used to train and evaluate an automated system 

for populating GenBank geographic metadata. 

We have already covered all GenBank records re-

lated to Encephalitis viruses and close to 10% of 

all records related to Influenza which are linked to 

PubMed Central articles. The annotation process 

has revealed that a large proportion of the infor-

mation allowing linkage of GenBank records to 

geographic metadata is often present in tables 

within the articles in addition to textual sentences. 

Therefore, we have developed a Python parser for 

automatically linking GenBank records to loca-

tion mentions using tables from the HTML ver-

sion of the PubMed Central articles.  Future work 

will include further expansion of this annotation 

corpus and the development of an integrated sys-

tem for enhancing GenBank geographic metadata 

for phylogeographic analysis of zoonotic viruses.  
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