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Abstract

This paper describes Dublin City Uni-
versity’s (DCU) submission to the WMT
2014 Medical Summary task. We re-
port our results on the test data set in
the French to English translation direction.
We also report statistics collected from the
corpora used to train our translation sys-
tem. We conducted our experiment on the
Moses 1.0 phrase-based translation system
framework. We performed a variety of ex-
periments on translation models, reorder-
ing models, operation sequence model and
language model. We also experimented
with data selection and removal the length
constraint for phrase-pair extraction.

1 System Description

1.1 Training Data Statistics and Preparation
The training corpora provided to the medical
translation shared task can be divided into 3 cat-
egories:

Medical in-domain corpora: these corpora
contain documents, patents, articles, terminology
lists, and titles that are representative of the same
medical domain as the development and test data
sets (Table 1, second column).

Medical out-of-domain corpora: these cor-
pora also contain medical documents, patents, ar-
ticles, terminologies lists and titles, but describe
a different domain from the development and test
data sets (Table 1, third column).

General domain corpora: these corpora con-
sist of general-domain text (WMT 2014 general

translation subtask corpora), and encompass vari-
ous domains. (We did not use these corpora in our
system).

Corpus In-domain Out-of-domain
parallel sentence parallel sentence
number number

EMEA 1,092,568 0
COPPA 664,658 2,841,849
PatTR-title 408,502 2,096,270
PatTR-abstract 688,147 3,009,523
PatTR-claims 1,105,230 5,861,621
UMLS 85,705 0
Wikipedia 8,448 0

TOTAL 4,053,258 13,809,263

Table 1: WMT 2014 Medical Translation shared
task parallel training data before preprocessing.

Within all the provided training corpora from
WMT 2014, 70.72% of the medical in domain
bilingual sentences, and 100% of the medical
out-of-domain bilingual sentences were obtained
from patent document collections. Motivated by
these percentages, we view the WMT 2014 med-
ical translation shared task as similar to training
a patent-specific translation system. The mono-
lingual corpora are taken from 9 different cor-
pora collections, and there is no clear demarca-
tion of the in/out-of-domain boundaries (except
the PatTR collection). Our method of differenti-
ating between the in/out-of-domain monolingual
corpora is that only English sentences from the
third column of Table 1, and the patent descrip-
tion documents from PatTR collection, are out-of-
domain monolingual corpora. All other English
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sentences are treated as an in-domain monolingual
resource.

A patent document usually comprises title, ab-
stract, claims and description fields. The docu-
ments often use its unique formatting and con-
tain linguistic idiosyncrasies, which distinguish
patent-specific translation systems from general
translation systems, in both training and transla-
tion phases (Ceauşu et al., 2011). We have also
found that some common writing styles are con-
stantly used, especially for long sentences. For
example, a typical patent claim begins with

Method of [X], which comprising:

followed by a numbered list. The abstract
field normally contains one paragraph only, but
with multiple sentences. Those long sentences
are necessarily filtered out to facilitate efficient
word alignment, using a tool such as GIZA++
(Och, 2003) word aligner with the default param-
eter settings. However, because statistical ma-
chine translation depends on the training data to
estimate translation probability, more high qual-
ity training data often leads a better translation re-
sult. One possible method of including long sen-
tences into the training cycle is to change the word
aligner’s parameter settings to handle longer sen-
tences; however, aligning long sentences is time
consuming. Our solution is to capture the styled
long sentences and attempt to split them on both
source and target side simultaneously according
to the numbered list or sentence boundary indica-
tions. If the sentence number after splitting are
matching in both source and target sides, and each
sentence pair is within the token length ratio of
3, we assume the split attempt is successful, oth-
erwise the sentences are kept unchanged and will
be filtered out eventually. We applied our splitting
attempt approach on the patent documents at the
data preparation step which consequently results
in 19.35% and 7.1% increase in the number of
sentence pairs compared with the original medical
in-domain (from 4053258 to 4837382) and over-
all medical (from 17862521 to 19124142) datasets
respectively.

Another finding from the training corpora is that
the titles of the patent documents are often capital-
ized in the training corpora. Since we are training
a true-cased translation system, and the transla-
tion inputs contain non-title sentences, capitalized
training sentences will contribute biased weights
to our true-case model. We addressed this issue by

creating a lowercase version of the title corpora,
then we trained our true-case model with the low-
ercased titles corpora and other non-title corpora.
We also included the lowercased title corpora in
the translation system training.

We tokenized the training corpora using the
tokenizer script distributed in the Moses 1.0
framework with additional patent document non-
breaking preferences observed during data prepa-
ration, such as Figs and FIGS etc., and a modified
aggressive setting (split hyphen character in all
cases). Other data preparation steps included char-
acter normalization, character/token based foreign
language detection, HTML/XML tag removal,
case insensitive duplication removal, longer sen-
tence removal (2-80, length ratio 9), resulting in
the preprocessed data shown in Table 2.

Corpus In-domain Out-of-domain
parallel sentence parallel sentence
number number

EMEA 273,532 0
COPPA 1,374,371 6,075,599
PatTR-title 63,856 3,457,164
PatTR-abstract 599,435 2,595,515
PatTR-claims 876,603 4,244,324
UMLS 85,683 0
Wikipedia 8,438 0

TOTAL 3,956,478 16,372,602

Table 2: WMT 2014 Medical Translation shared
task parallel training data after preprocessing
steps.

1.2 Training Data Selection

It is an open secret that high quality and large
quantity of the parallel corpus are the two most
important factors for a high-quality SMT system.
These factors assist the word aligner in producing
a precise alignment model, which in turn brings
benefits to the other SMT training steps.

The quantity factor also helps the SMT system
to cover more translation input variations. In order
to efficiently use the training corpora listed in Ta-
ble 2, we explored some data selection methodolo-
gies. We used the feature decay algorithm (Bicici
et al., 2014) to select the training instances trans-
ductively, using the source side of the test set. We
built systems with the pre-defined selection pro-
portions in token number, 1/64, 1/32, 1/16, 1/8,
1/2, 3/4 and 1 of all the in-domain medical train-
ing data, then searched for the best performing
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system using the test data set as our baseline (Ta-
ble 3). For the purpose of making the potential
baseline systems comparable, instance selection
was employed after word alignment using word
aligner MGIZA++ (Gao and Vogel, 2008) on all
the available data. The transductive learning uses
features extracted from the source data of the de-
velopment set with the default feature decay algo-
rithm weight settings. All of systems were trained
using the default phrase-based training parameter
settings of Moses 1.0 framework, with additional
msd-bidirectional-fe reordering model (Koehn et
al., 2005). We extract phrase pairs based on grow-
diag-final-and (Koehn et al., 2003) heuristics.
The language model was created with open source
IRSTLM toolkit (Federico et al., 2008) using all
the English in-domain data (monolingual and par-
allel). We used 5-gram with modied Kneser-Ney
smoothing (Kneser and Ney, 1995). The tuning
step used minimum error rate training (MERT)
(Och, 2003). The performance was measured by
the test data set in case insensitive BLEU score.

Proportions Test set
case insensitive BLEU

1/64 0.4374
1/32 0.4409
1/16 0.4370
1/8 0.4419
1/4 0.4390
1/2 0.4399
3/4 0.4397
1 0.4260

Table 3: Feature decay algorithm transductive
learning selection on all in-domain data using ex-
tracted features from the source side of the test
data set. We choose system uses 1/8 proportions
of the in-domain data as our baseline system.

Our results show that the system trained with
1/8 proportion of the in-domain medical training
data (398,098 sentence pairs) selected by FDA
outperformed the others. We chose this system as
our baseline system.

2 Experiments

2.1 Maximum Phrase Length

While extracting phrase pairs, collecting longer
phrases is not guaranteed to produce a better qual-
ity phrase table than the shorter settings, even
setting the maximum phrase length to three can

achieve top performance (Koehn et al., 2003).
We take this WMT 2014 opportunity to study the
capability of long phrase lengths ( >=10 ). We
trained translation models with phrase length set-
ting from 10 to 15, employed them to our base-
line system and compared the performance with
the default setting (length = 7).

Phrase Length Phrase Table Test set
Entries case insensitive

BLEU
7 (Baseline) 19.31 0.4419
10 29.67 0.4400
11 32.87 0.4416
12 35.95 0.4444*
13 38.91 0.4448*
14 41.75 0.4444*
15 44.47 0.4362

Table 4: -max-phrase-length setting experiment,
where phrase table entries is in millions. * indi-
actes statistically significant improvement at the p
= 0.05 level.1

As stated in (Koehn et al., 2003) and expected,
the size of the phrase table is linear with respect to
the maximum phrase length restriction. Surpris-
ingly, we also found the performance can still im-
prove after the default length setting, until a peak
point (Table 4).

It is also interesting to see the effect for each
sentence in the test set when the default phrase
length setting in Moses framework is changed. We
first evaluated the sentence level BLEU scores for
the systems listed in Table 4, then compared them
with our baseline system sentence level BLEU
scores and categorised the compared results into
increased, decreased or unaffected groups (Fig-
ure 1). We found that system with -max-phrase-
length set to 12 is influenced the least (158, 118
and 724 sentences have BLEU score increased,
decreased and unaffected respectively) and with
-max-phrase-length sets to 10 is influenced the
most (261, 257 and 482 sentences have BLEU
score increased, decreased and unaffected respec-
tively).

We then looked into the decoding phase and
tried to discover the actual phrase length that was
used to generate the translation outputs. We ex-
posed the translation segmentations by trigger-
ing the -report-segmentation decoding parameter

1The same notation is used for the rest of the tables in this
paper
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Figure 1: Sentence level BLEU score affects when
enlarge -max-phrase-length
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Figure 2: Phrase length (pl) distribution used in
decoding

in the Moses framework and computed the per-
centage of different phrases used according to the
phrase token number (Figure 2). The transla-
tion is mostly generated from short source phrases
(length<4) in all the systems during decoding,
which we think is the reason that setting phrase ex-
traction to length 3 can achieve top performance.

We did not carry out more experiments in this
case, as we think there is no absolute maximum
phrase length setting which can fit into all experi-
ments and such experiments depend on many fac-
tors, such as the similarity between the training
corpus and then testing data. The choice to set
-max-phrase-length to 13 is purely directed by the
BLEU score shown in Table 4.

2.2 Reordering Models
Ceauşu et al. (2011) also found that long-range re-
ordering is one of the characteristics of patent doc-
uments; however, long-range reordering increases
the difficulty of SMT training and decoding. We
experimented two approaches to address this chal-
lenge. Apart from the msd-bidirectional-fe lexi-
cal reordering model (Koehn et al., 2005) in our
baseline system, the phrase-based orientation and
hierarchical orientation reordering models (Gal-
ley and Manning, 2008) can capture long distance
dependencies. The phrase-based orientation re-
ordering model is similar to the lexical reordering
approach, the only difference between these two
models is the phrase-based reordering model per-
forms reordering only on the phrase level, but the
hierarchical reordering model does not have such
constraint - it does not require phrases to be ad-
jacent. OSM (Durrani, 2011) (Durrani, 2013b)
is a sequence model integrating the N-gram-based
translation model and reordering model. It de-
fines three operations for reordering and consid-
ers all reordering possibilities within a fixed win-
dow while searching. We experimented with both
reordering models, and found that the system de-
fined with three reordering models performs bet-
ter (Table 5) than OSM. We then tried to use both
OSM and the reordering models together, which
produced the best system at this point.

Systems Test set
case insensitive BLEU

Baseline + 13 0.4448
+ OSM 0.4472
+ pho-ho 0.4551*
+ pho-ho + OSM 0.4561*

Table 5: Reordering Model or/and OSM results

2.3 Two Translation Models
The back-off model aims to produce translations
for the unknown words or unknown phrases in the
primary translation table by yielding the phrase ta-
ble translation probability from primary transla-
tion table to the back-off table, as in (Koehn et
al., 2012a)

pBO(e|f) =

{
p1(e|f) if count1(f) > 0
p2(e|f) otherwise

Moreover, we look at using the back off model
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as a domain adaptation approach, which is to con-
strain the translation options within the target do-
main unless no options can be found, in which
case the translation will be selected from the back-
off model.

Phrase table fill-up (Bisazza et al., 2011) is a
very similar approach with back-off models, it col-
lects and uses the phrase pairs from the out-of-
domain phrase table only when the input is un-
available at the in-domain phrase table. It merges
the in-domain and out-of-domain translation mod-
els into one, where the scores are taken from more
reliable source. To distinguish the source of a
phrase pair entry, fill-up assigns a binary value as
an additional feature at the merged phrase table.

We trained our out-of-domain translation model
separately using all of the out-of-domain medi-
cal data listed at Table 2 with the same parame-
ter settings as our baseline system, then employed
Moses’s back-off model feature to pass the pri-
mary and back-off translation models to the de-
coder at tuning and translation time. The fill-up
tool was sourced from (Bisazza et al., 2011) at
Moses’s distribution. Our experiment results (Ta-
ble 6) show that the fill-up approach performed
better than the back-off model approach.

Systems Test set
case insensitive BLEU

Baseline + 13 + pho-ho + OSM 0.4561
Back-off 0.4573
Fill-up 0.4599*

Table 6: Back-off and fill-up experiment results

2.4 Language Model

Until now, we have reported our results using a
language model trained with all in-domain medi-
cal data only. We also took the similar approach
to (Koehn et al., 2007) and carried out language
model experiments. We trained our out-of-domain
language model with all the out-of-domain En-
glish sentences mentioned in section 1.1, then in-
terpolated the in-domain and out-of-domain lan-
guage model by optimizing the perplexity to the
development data set. We received a similar pic-
ture to (Koehn et al., 2007), where the language
model trained with only in-domain data performed
the best (Table 7).

Our final submission for WMT 2014 Medical
Translation shared task is the * system at Table 7.

Systems Test set
case insensitive BLEU

Baseline + 13 + pho-ho
+ OSM + Fill-up* 0.4599
out-of-domain LM 0.4461
interpolated LM 0.4592

Table 7: Language model experiment results

3 Conclusion

In this paper, we report our results on the WMT
2014 in the French to English translation direc-
tion. We shared our statistics for the bilingual
corpora used to train our translation system. All
systems were trained using the open source Moses
1.0 translation framework. Based on the feature
set of Moses phrased-based translation system, we
carried out our experiments on translation models,
reordering models, operation sequence model and
language model. We also experimented on data
selection and releasing the length restriction while
extracting phrase pairs.

4 Acknowledgements

This research is supported by the Science Foun-
dation Ireland (Grant 12/CE/I2267) as part of
the Centre for Next Generation Localisation
(www.cngl.ie) at Dublin City University. We
would also like to acknowledge Ergun Bicici who
gives suggestions at the data selection approach.

References
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