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Abstract

This paper describes the string-to-tree sys-
tems built at the University of Edin-
burgh for the WMT 2014 shared trans-
lation task. We developed systems for
English-German, Czech-English, French-
English, German-English, Hindi-English,
and Russian-English. This year we
improved our English-German system
through target-side compound splitting,
morphosyntactic constraints, and refine-
ments to parse tree annotation; we ad-
dressed the out-of-vocabulary problem us-
ing transliteration for Hindi and Rus-
sian and using morphological reduction
for Russian; we improved our German-
English system through tree binarization;
and we reduced system development time
by filtering the tuning sets.

1 Introduction

For this year’s WMT shared translation task we
built syntax-based systems for six language pairs:

• English-German • German-English
• Czech-English • Hindi-English
• French-English • Russian-English

As last year (Nadejde et al., 2013), our systems are
based on the string-to-tree pipeline implemented
in the Moses toolkit (Koehn et al., 2007).

We paid particular attention to the production of
grammatical German, trying various parsers and
incorporating target-side compound splitting and
morphosyntactic constraints; for Hindi and Rus-
sian, we employed the new Moses transliteration
model to handle out-of-vocabulary words; and for
German to English, we experimented with tree bi-
narization, obtaining good results from right bina-
rization.

We also present our first syntax-based results
for French-English, the scale of which defeated us

last year. This year we were able to train a sys-
tem using all available training data, a task that
was made considerably easier through principled
filtering of the tuning set. Although our system
was not ready in time for human evaluation, we
present BLEU scores in this paper.

In addition to the five single-system submis-
sions described here, we also contributed our
English-German and German-English systems for
use in the collaborative EU-BRIDGE system com-
bination effort (Freitag et al., 2014).

This paper is organised as follows. In Sec-
tion 2 we describe the core setup that is com-
mon to all systems. In subsequent sections we de-
scribe language-pair specific variations and exten-
sions. For each language pair, we present results
for both the development test set (newstest2013
in most cases) and for the filtered test set (new-
stest2014) that was provided after the system sub-
mission deadline. We refer to these as ‘devtest’
and ‘test’, respectively.

2 System Overview

2.1 Pre-processing

The training data was normalized using the WMT
normalize-punctuation.perl script then
tokenized and truecased. Where the target lan-
guage was English, we used the Moses tokenizer’s
-penn option, which uses a tokenization scheme
that more closely matches that of the parser. For
the English-German system we used the default
Moses tokenization scheme, which is similar to
that of the German parsers.

For the systems that translate into English, we
used the Berkeley parser (Petrov et al., 2006;
Petrov and Klein, 2007) to parse the target-side of
the training corpus. As we will describe in Sec-
tion 3, we tried a variety of parsers for German.

We did not perform any corpus filtering other
than the standard Moses method, which removes
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sentence pairs with dubious length ratios and sen-
tence pairs where parsing fails for the target-side
sentence.

2.2 Translation Model
Our translation grammar is a synchronous context-
free grammar (SCFG) with phrase-structure labels
on the target side and the generic non-terminal la-
bel X on the source side.

The grammar was extracted from the word-
aligned parallel data using the Moses implemen-
tation (Williams and Koehn, 2012) of the GHKM
algorithm (Galley et al., 2004; Galley et al., 2006).
For word alignment we used MGIZA++ (Gao and
Vogel, 2008), a multi-threaded implementation of
GIZA++ (Och and Ney, 2003).

Minimal GHKM rules were composed into
larger rules subject to parameterized restrictions
on size defined in terms of the resulting target tree
fragment. A good choice of parameter settings
depends on the annotation style of the target-side
parse trees. We used the settings shown in Table 1,
which were chosen empirically during the devel-
opment of last years’ systems:

Parameter Value
Rule depth 5
Node count 20
Rule size 5

Table 1: Parameter settings for rule composition.

Further to the restrictions on rule composition,
fully non-lexical unary rules were eliminated us-
ing the method described in Chung et al. (2011)
and rules with scope greater than 3 (Hopkins and
Langmead, 2010) were pruned from the trans-
lation grammar. Scope pruning makes parsing
tractable without the need for grammar binariza-
tion.

2.3 Language Model
We used all available monolingual data to train
5-gram language models. Language models
for each monolingual corpus were trained using
the SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) and then interpolated using weights tuned to
minimize perplexity on the development set.

2.4 Feature Functions
Our feature functions are unchanged from the pre-
vious two years. They include the n-gram lan-

guage model probability of the derivation’s target
yield, its word count, and various scores for the
synchronous derivation.

Each grammar rule has a number of pre-
computed scores. For a grammar rule r of the form

C → 〈α, β,∼〉
where C is a target-side non-terminal label, α is a
string of source terminals and non-terminals, β is
a string of target terminals and non-terminals, and
∼ is a one-to-one correspondence between source
and target non-terminals, we score the rule accord-
ing to the following functions:

• p (C, β | α,∼) and p (α | C, β,∼), the direct
and indirect translation probabilities.

• plex (β | α) and plex (α | β), the direct and
indirect lexical weights (Koehn et al., 2003).

• ppcfg (π), the monolingual PCFG probability
of the tree fragment π from which the rule
was extracted.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty. The main grammar
and glue grammars have distinct penalty fea-
tures.

2.5 Tuning
The feature weights were tuned using the Moses
implementation of MERT (Och, 2003) for all sys-
tems except English-to-German, for which we
used k-best MIRA (Cherry and Foster, 2012) due
to the larger number of features.

We used tuning sentences drawn from all of
the previous years’ test sets (except newstest2013,
which was used as the development test set). In
order to speed up the tuning process, we used sub-
sets of the full tuning sets with sentence pairs up
to length 30 (Max-30) and further applied a fil-
tering technique to reduce the tuning set size to
2,000 sentence pairs for the language pairs involv-
ing German, French and Czech1. We also experi-
mented with random subsets of size 2,000.

For the filtering technique, we make the as-
sumption that finding suitable weights for all the
feature functions requires the optimizer to see a
range of feature values and to see hypotheses that
can partially match the reference translations in
order to rank the hypotheses. For example, if a

1For Russian and Hindi, the development sets are smaller
and no filtering was applied.
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tuning example contains many out-of-vocabulary
words or is difficult to translate for other reasons,
this will result in low quality translation hypothe-
ses and provide the system with little evidence for
which features are useful to produce good transla-
tions. Therefore, we select high quality examples
using a smooth version of sentence-BLEU com-
puted on the 1-best output of a single decoder run
on the development set. Standard sentence-BLEU

tends to select short examples because they are
more likely to have perfect n-gram matches with
the reference translation. Very short sentence pairs
are less informative for tuning but also tend to have
more extreme source-target length ratios which
can affect the weight of the word penalty. Thus,
we penalize short examples by padding the de-
coder output with a fixed number of non-matching
tokens2 to the left and right before computing
sentence-BLEU. This has the effect of reducing
the precision of short sentences against the refer-
ence translation while affecting longer sentences
proportionally less. Experiments on phrase-based
systems have shown that the resulting tuning sets
are of comparable diversity as randomly selected
sets in terms of their feature vectors and maintain
BLEU scores in comparison with tuning on the en-
tire development set.

Table 2 shows the size of the full tuning sets
and the size of the subsets with up to length 30,
Table 3 shows the results of tuning with different
sets. Reducing the tuning sets to Max-30 results
in a speed-up in tuning time but affects the per-
formance on some of the devtest/test sets (mostly
for Czech-English). However, tuning on the full
set took more than 18 days using 12 cores for
German-English which is not feasible when try-
ing out several model variations. Further filter-
ing these subsets to a size of 2,000 sentence pairs
as described above maintains the BLEU scores in
most cases and even improves the scores in some
cases. This indicates that the quality of the se-
lected examples is more important than the total
number of tuning examples. However, the exper-
iments with random subsets from Max-30 show
that random selection also yields results which im-
prove over the results with Max-30 in most cases,
though are not always as good as with the filtered
sets.3 The filtered tuning sets yield reasonable per-

2These can be arbitrary tokens that do not match any ref-
erence token.

3For random subsets from the full tuning set the perfor-
mance was similar but resulted in standard deviations of up

formance compared to the full tuning sets except
for the German-English devtest set where perfor-
mance drops by 0.5 BLEU4.

Tuning set Cs-En En-De De-En
Full 13,055 13,071 13,071
Max-30 10,392 9,151 10,610

Table 2: Size of full tuning sets and with sentence
length up to 30.

devtest
Tuning set Cs-En En-De De-En
Full 25.1 19.9 26.7
Max-30 24.7 19.8 26.2
Filtered 24.9 19.8 26.2
Random 24.8 19.7 26.4

test
Tuning set Cs-En En-De De-En
Full 27.5 19.2 26.9
Max-30 27.2 19.2 27.0
Filtered 27.5 19.1 27.2
Random 27.3 19.4 27.0

Table 3: BLEU results on devtest and test sets with
different tuning sets: Full, Max-30, filtered subsets
of Max-30 and average of three random subsets of
Max-30 (size of filtered/random subsets: 2,000).

3 English to German

We use the projective output of the dependency
parser ParZu (Sennrich et al., 2013) for the syn-
tactic annotation of our primary submission. Con-
trastive systems were built with other parsers: Bit-
Par (Schmid, 2004), the German Stanford Parser
(Rafferty and Manning, 2008), and the German
Berkeley Parser (Petrov and Klein, 2007; Petrov
and Klein, 2008).

The set of syntactic labels provided by ParZu
has been refined to reduce overgeneralization phe-
nomena. Specifically, we disambiguate the labels
ROOT (used for the root of a sentence, but also
commas, punctuation marks, and sentence frag-
ments), KON and CJ (coordinations of different
constituents), and GMOD (pre- or postmodifying
genitive modifier).

to 0.36 across three random sets.
4Note however that due to the long tuning times, we are

reporting single tuning runs.
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Figure 1: Syntactic representation of split com-
pound Bundesberufungsgericht (Engl: federal ap-
peals court).

We discriminatively learn non-terminal labels
for unknown words using sparse features, rather
than estimating a probability distribution of non-
terminal labels from singleton statistics in the
training corpus.

We perform target-side compound splitting, us-
ing a hybrid method described by Fritzinger and
Fraser (2010) that combines a finite-state mor-
phology and corpus statistics. As finite-state mor-
phology analyzer, we use Zmorge (Sennrich and
Kunz, 2014). An original contribution of our
experiments is a syntactic representation of split
compounds which eliminates typical problems
with target-side compound splitting, namely er-
roneous reorderings and compound merging. We
represent split compounds as a syntactic tree with
the last segment as head, preceded by a modifier.
A modifier consists of an optional modifier, a seg-
ment and a (possibly empty) joining element. An
example is shown in Figure 1. This hierarchical
representation ensures that compounds can be eas-
ily merged in post-processing (by removing the
spaces and special characters around joining ele-
ments), and that no segments are placed outside of
a compound in the translation.

We use unification-based constraints to model
morphological agreement within German noun
phrases, and between subjects and verbs (Williams
and Koehn, 2011). Additionally, we add con-
straints that operate on the internal tree structure of
the translation hypotheses, to enforce several syn-
tactic constraints that were frequently violated in
the baseline system:

• correct subcategorization of auxiliary/modal
verbs in regards to the inflection of the full
verb.

• passive clauses are not allowed to have ac-
cusative objects.

system
BLEU

devtest test
Stanford Parser 19.0 18.3
Berkeley Parser 19.3 18.6
BitPar 19.5 18.6
ParZu 19.6 19.1
+ modified label set 19.8 19.1
+ discriminative UNK weights 19.9 19.2
+ German compound splitting 20.0 19.8
+ grammatical constraints 20.2 20.1

Table 4: English to German translation results
on devtest (newstest2013) and test (newstest2014)
sets.

• relative clauses must contain a relative (or in-
terrogative) pronoun in their first constituent.

Table 4 shows BLEU scores with systems
trained with different parsers, and for our exten-
sions of the baseline system.

4 Czech to English

For Czech to English we used the core setup de-
scribed in Section 2 without modification. Table 5
shows the BLEU scores.

BLEU

system devtest test
baseline 24.8 27.0

Table 5: Czech to English results on the devtest
(newstest2013) and test (newstest2014) sets.

5 French to English

For French to English, alignment of the parallel
corpus was performed using fast_align (Dyer et
al., 2013) instead of MGIZA++ due to the large
volume of parallel data.

Table 6 shows BLEU scores for the system and
Table 7 shows the resulting grammar sizes after
filtering for the evaluation sets.

BLEU

system devtest test
baseline 29.4 32.3

Table 6: French to English results on the devtest
(newsdev2013) and test (newstest2014) sets.
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system devtest test
baseline 86,341,766 88,657,327

Table 7: Grammar sizes of the French to En-
glish system after filtering for the devtest (new-
stest2013) and test (newstest2014) sets.

6 German to English

German compounds were split using the script
provided with Moses.

For training the primary system, the target parse
trees were restructured before rule extraction by
right binarization. Since binarization strategies
increase the tree depth and number of nodes by
adding virtual non-terminals, we increased the ex-
traction parameters to: Rule Depth = 7, Node
Count = 100, Rule Size = 7. A thorough in-
vestigation of binarization methods for restructur-
ing Penn Treebank style trees was carried out by
Wang et al. (2007).

Table 8 shows BLEU scores for the baseline
system and two systems employing different bi-
narization strategies. Table 9 shows the result-
ing grammar sizes after filtering for the evaluation
sets. Results on the development set showed no
improvement when left binarization was used for
restructuring the trees, although the grammar size
increased significantly.

BLEU

system devtest test
baseline 26.2 27.2
+ right binarization (primary) 26.8 28.2
+ left binarization 26.3 -

Table 8: German to English results on the devtest
(newsdev2013) and test (newstest2014) sets.

system devtest test
baseline 11,462,976 13,811,304
+ right binarization 24,851,982 29,133,910
+ left binarization 21,387,976 -

Table 9: Grammar sizes of the German to En-
glish systems after filtering for the devtest (new-
stest2013) and test (newstest2014) sets.

7 Hindi to English

English-Hindi has the least parallel training data
of this year’s language pairs. Out-of-vocabulary

(OOV) input words are therefore a comparatively
large source of translation error: in the devtest set
(newsdev2014) and filtered test set (newstest2014)
the average OOV rates are 1.08 and 1.16 unknown
words per sentence, respectively.

Assuming a significant fraction of OOV words
to be named entities and thus amenable to translit-
eration, we applied the post-processing translitera-
tion method described in Durrani et al. (2014) and
implemented in Moses. In brief, this is an unsuper-
vised method that i) uses EM to induce a corpus of
transliteration examples from the parallel training
data; ii) learns a monotone character-level phrase-
based SMT model from the transliteration corpus;
and iii) substitutes transliterations for OOVs in the
system output by using the monolingual language
model and other features to select between translit-
eration candidates.5

Table 10 shows BLEU scores with and without
transliteration on the devtest and filtered test sets.
Due to a bug in the submitted system, the language
model trained on the HindEnCorp corpus was used
for transliteration candidate selection rather than
the full interpolated language model. This was
fixed subsequent to submission.

BLEU

system devtest test
baseline 12.9 14.7
+ transliteration (submission) 13.3 15.1
+ transliteration (fixed) 13.6 15.5

Table 10: Hindi to English results with and with-
out transliteration on the devtest (newsdev2014)
and test (newstest2014) sets.

Transliteration increased 1-gram precision from
48.1% to 49.4% for devtest and from 49.1% to
50.6% for test. Of the 2,913 OOV words in test,
938 (32.2%) of transliterations exactly match the
reference. Manual inspection reveals that there are
also many near matches. For instance, translitera-
tion produces Bernat Jackie where the reference is
Jacqui Barnat.

8 Russian to English

Compared to Hindi-English, the Russian-English
language pair has over six times as much parallel
data. Nonetheless, OOVs remain a problem: the
average OOV rates are approximately half those

5This is the variant referred to as Method 2 in Dur-
rani et al. (2014).
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of Hindi-English, at 0.47 and 0.51 unknown words
per sentence for the devtest (newstest2013) and fil-
tered test (newstest2014) sets, respectively. We
address this in part using the same transliteration
method as for Hindi-English.

Data sparsity issues for this language pair are
exacerbated by the rich inflectional morphology of
Russian. Many Russian word forms express gram-
matical distinctions that are either absent from En-
glish translations (like grammatical gender) or are
expressed by different means (like grammatical
function being expressed through syntactic config-
uration rather than case). We adopt the widely-
used approach of simplifying morphologically-
complex source forms to remove distinctions that
we believe to be redundant. Our method is simi-
lar to that of Weller et al. (2013) except that ours
is much more conservative (in their experiments,
Weller et al. (2013) found morphological reduc-
tion to harm translation indicating that useful in-
formation was likely to have been discarded).

We used TreeTagger (Schmid, 1994) to obtain
a lemma-tag pair for each Russian word. The tag
specifies the word class and various morphosyn-
tactic feature values. For example, the adjective
республиканская (‘republican’) gets the lemma-
tag pair республиканский + Afpfsnf, where
the code A indicates the word class and the re-
maining codes indicate values for the type, degree,
gender, number, case, and definiteness features.

Like Weller et al. (2013), we selectively re-
placed surface forms with their lemmas and re-
duced tags, reducing tags through feature dele-
tion. We restricted morphological reduction to ad-
jectives and verbs, leaving all other word forms
unchanged. Table 11 shows the features that
were deleted. We focused on contextual inflec-
tion, making the assumption that inflectional dis-
tinctions required by agreement alone were the
least likely to be useful for translation (since the
same information was marked elsewhere in the
sentence) and also the most likely to be the source
of ‘spurious’ variation.

Table 12 shows the BLEU scores for Russian-
English with transliteration and morphological re-
duction. The effect of transliteration was smaller
than for Hindi-English, as might be expected from
the lower baseline OOV rate. 1-gram precision in-
creased from 57.1% to 57.6% for devtest and from
62.9% to 63.6% for test. Morphological reduction
decreased the initial OOV rates by 3.5% and 4.1%

Adjective Verb
Type 7 Type 7

Degree 3 VForm 3

Gender 7 Tense 3

Number 7 Person 3

Case 7 Number 3

Definiteness 7 Gender 7

Voice 3

Definiteness 7

Aspect 3

Case 3

Table 11: Feature values that are retained (3)
or deleted (7) during morphological reduction of
Russian.

BLEU

system devtest test
baseline 23.3 29.7
+ transliteration 23.7 30.3
+ morphological reduction 23.8 30.3

Table 12: Russian to English results on the devtest
(newstest2013) and test (newstest2014) sets.

on the devtest and filtered test sets. After both
morphological and transliteration the 1-gram pre-
cisions for devtest and test were 57.7% and 63.8%.

9 Conclusion

We have described Edinburgh’s syntax-based sys-
tems in the WMT 2014 shared translation task.
Building upon the already-strong string-to-tree
systems developed for previous years’ shared
translation tasks, we have achieved substantial im-
provements over our baseline setup: we improved
translation into German through target-side com-
pound splitting, morphosyntactic constraints, and
refinements to parse tree annotation; we have ad-
dressed unknown words using transliteration (for
Hindi and Russian) and morphological reduction
(for Russian); and we have improved our German-
English system through tree binarization.
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