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Abstract
We present a new version of Phrasal, an
open-source toolkit for statistical phrase-
based machine translation. This revision
includes features that support emerging re-
search trends such as (a) tuning with large
feature sets, (b) tuning on large datasets like
the bitext, and (c) web-based interactive ma-
chine translation. A direct comparison with
Moses shows favorable results in terms of
decoding speed and tuning time.

1 Introduction
In the early part of the last decade, phrase-based ma-
chine translation (MT) (Koehn et al., 2003) emerged
as the preeminent design of statistical MT systems.
However, most systems were proprietary or closed-
source, so progress was initially constrained by
the high engineering barrier to entry into the field.
Then Moses (Koehn et al., 2007) was released.
What followed was a flowering of work on all as-
pects of the translation problem, from rule extrac-
tion to deployment issues. Other toolkits appeared
including Joshua (Post et al., 2013), Jane (Wuebker
et al., 2012), cdec (Dyer et al., 2010) and the first
version of our package, Phrasal (Cer et al., 2010), a
Java-based, open source package.
This paper presents a completely re-designed

release of Phrasal that lowers the barrier to entry
into several exciting areas of MT research. First,
Phrasal exposes a simple yet flexible feature API for
building large-scale, feature-rich systems. Second,
Phrasal provides multi-threaded decoding and on-
line tuning for learning feature-rich models on very
large datasets, including the bitext. Third, Phrasal
supplies the key ingredients for web-based, inter-
active MT: an asynchronous RESTful JSON web
service implemented as a J2EE servlet, integrated
pre- and post-processing, and fast search.
Revisions to Phrasal were guided by several de-

sign choices. First, we optimized the system for
multi-core architectures, eschewing distributed in-
frastructure like Hadoop and MapReduce. While

“scaling-out” with distributed infrastructure is the
conventional industry and academic choice, we find
that “scaling-up” on a single large-node is an at-
tractive yet overlooked alternative (Appuswamy et
al., 2013). A single “scale-up” node is usually
competitive in terms of cost and performance, and
multi-core code has fewer dependencies in terms
of software and expertise. Second, Phrasal makes
extensive use of Java interfaces and reflection. This
is especially helpful in the feature API. A feature
function can be added to the system by simply im-
plementing an interface and specifying the class
name on the decoder command line. There is no
need to modify or recompile anything other than
the new feature function.
This paper presents a direct comparison of

Phrasal and Moses that shows favorable results
in terms of decoding speed and tuning time. An
indirect comparison via the WMT2014 shared
task (Neidert et al., 2014) showed that Phrasal
compares favorably to Moses in an evaluation
setting. The source code is freely available at:
http://nlp.stanford.edu/software/phrasal/

2 Standard System Pipeline

This section describes the steps required to build
a phrase-based MT system from raw text. Each
step is implemented as a stand-alone executable.
For convenience, the Phrasal distribution includes
a script that coordinates the steps.

2.1 Prerequisites
Phrasal assumes offline preparation of word align-
ments and at least one target-side language model.

Word Alignment The rule extractor can accom-
modate either unsymmetrized or symmetrized
alignments. Unsymmetrized alignments can be
produced with either GIZA++ or the Berkeley
Aligner (Liang et al., 2006). Phrasal then applies
symmetrization on-the-fly using heuristics such as
grow-diag or grow-diag-final. If the alignments are
symmetrized separately, then Phrasal accepts align-
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ments in the i-j Pharaoh format, which indicates
that source token i is aligned to target token j.

Language Modeling Phrasal can load any n-
gram language model saved in the ARPA format.
There are two LM loaders. The Java-based loader is
used by default and is appropriate for small-scale ex-
periments and pure-Java environments. The C++
KenLM (Heafield, 2011) loader1 is best for large-
scale LMs such as the unfiltered models produced
by lmplz (Heafield et al., 2013). Profiling shows
that LM queries often account for more than 50% of
the CPU time in a Phrasal decoding run, so we de-
signed the Phrasal KenLM loader to execute queries
mostly in C++ for efficiency. The KenLM bind-
ing efficiently passes full strings to C++ via JNI.
KenLM then iterates over the string, returning a
score and a state length. Phrasal can load multiple
language models, and includes native support for
the class-based language models that have become
popular in recent evaluations (Wuebker et al., 2012;
Ammar et al., 2013; Durrani et al., 2013).

2.2 Rule Extraction
The next step in the pipeline is extraction of a phrase
table. Phrasal includes a multi-threaded version
of the rule extraction algorithm of Och and Ney
(2004). Phrase tables can be filtered to a specific
data set—as is common in research environments.
When filtering, the rule extractor lowers memory
utilization by splitting the data into arbitrary-sized
chunks and extracting rules from each chunk.
The rule extractor includes a feature API that is

independent of the decoder feature API. This al-
lows for storage of static rule feature values in the
phrase table. Static rule features are useful in two
cases. First, if a feature value depends on bitext
statistics, which are not accessible during tuning
or decoding, then that feature should be stored in
the phrase table. Examples are the standard phrase
translation probabilities, and the dense rule count
and rule uniqueness indicators described by Green
et al. (2013). Second, if a feature depends only
on the rule and is unlikely to change, then it may
be more efficient to store that feature value in the
phrase table. An example is a feature template that
indicates inclusion in a specific data domain (Dur-
rani et al., 2013). Rule extractor feature templates
must implement the FeatureExtractor inter-
face and are loaded via reflection.

1Invoked by prefixing the LM path with the “kenlm:”.

The rule extractor can also create lexicalized re-
ordering tables. The standard phrase orientation
model (Tillmann, 2004) and the hierarchical model
of Galley and Manning (2008) are available.

2.3 Tuning
Once a language model has been estimated and a
phrase table has been extracted, the next step is to
estimate model weights. Phrasal supports tuning
over n-best lists, which permits rapid experimenta-
tion with different error metrics and loss functions.
Lattice-based tuning, while in principle more pow-
erful, requires metrics and losses that factor over
lattices, and in practice works no better than n-best
tuning (Cherry and Foster, 2012).
Tuning requires a parallel set {(ft, et)}Tt=1 of

source sentences ft and target references et.2
Phrasal follows the log-linear approach to phrase-
based translation (Och and Ney, 2004) in which
the predictive translation distribution p(e|f ;w) is
modeled directly as

p(e|f ;w) =
1

Z(f)
exp

[
w>φ(e, f)

]
(1)

where w ∈ Rd is the vector of model parameters,
φ(·) ∈ Rd is a feature map, and Z(f) is an appro-
priate normalizing constant.

MT differs from other machine learning settings
in that it is not common to tune to log-likelihood
under (1). Instead, a gold error metric G(e′, e) is
chosen that specifies the similarity between a hy-
pothesis e′ and a reference e, and that error is min-
imized over the tuning set. Phrasal includes Java
implementations of BLEU (Papineni et al., 2002),
NIST, and WER, and bindings for TER (Snover et
al., 2006) and METEOR (Denkowski and Lavie,
2011). The error metric is incorporated into a loss
function ` that returns the loss at either the sentence-
or corpus- level.
For conventional corpus-level (batch) tuning,

Phrasal includes multi-threaded implementations
of MERT (Och, 2003) and PRO (Hopkins and
May, 2011). The MERT implementation uses the
line search of Cer et al. (2008) to directly min-
imize corpus-level error. The PRO implementa-
tion uses a pairwise logistic loss to minimize the
number of inversions in the ranked n-best lists.
These batch implementations accumulate n-best
lists across epochs.

2For simplicity, we assume one reference, but the multi-
reference case is analogous.

115



Online tuning is faster and more scalable than
batch tuning, and sometimes leads to better solu-
tions for non-convex settings like MT (Bottou and
Bousquet, 2011). Weight updates are performed
after each tuning example is decoded, and n-best
lists are not accumulated. Consequently, online tun-
ing is preferable for large tuning sets, or for rapid
iteration during development. Phrasal includes the
AdaGrad-based (Duchi et al., 2011) tuner of Green
et al. (2013). The regularization options are L2,
efficient L1 for feature selection (Duchi and Singer,
2009), or L1 + L2 (elastic net). There are two on-
line loss functions: a pairwise (PRO) objective and
a listwise minimum expected error objective (Och,
2003). These online loss functions require sentence-
level error metrics, several of which are available in
the toolkit: BLEU+1 (Lin and Och, 2004), Nakov
BLEU (Nakov et al., 2012), and TER.

2.4 Decoding
The Phrasal decoder can be invoked either program-
matically as a Java object or as a standalone appli-
cation. In both cases the decoder is configured via
options that specify the language model, phrase
table, weight vector w, etc. The decoder is multi-
threaded, with one decoding instance per thread.
Each decoding instance has its own weight vector,
so in the programmatic case, it is possible to decode
simultaneously under different weight vectors.

Two search procedures are included. The default
is the phrase-based variant of cube pruning (Huang
and Chiang, 2007). The standard multi-stack beam
search (Och and Ney, 2004) is also an option. Ei-
ther procedure can be configured in one of several
recombination modes. The “Pharaoh” mode only
considers linear distortion, source coverage, and
target LM history. The “Exact” mode considers
these states in addition to any feature that declares
recombination state (see section 3.3).

The decoder includes several options for deploy-
ment environments such as an unknown word API,
pre-/post-processing APIs, and both full and prefix-
based force decoding.

2.5 Evaluation and Post-processing
All of the error metrics available for tuning can
also be invoked for evaluation. For significance
testing, the toolkit includes an implementation of
the permutation test of Riezler and Maxwell (2005),
which was shown to be less susceptible to Type-I
error than bootstrap re-sampling (Koehn, 2004).

r : s(r,w) r ∈ R axiom

d : w(d) r : s(r,w)
d′ : s(d′,w) r /∈ cov(d) item

|cov(d)| = |s| goal

Table 1: Phrase-based MT as deductive inference.
This notation can be read as follows: if the an-
tecedents on the top are true, then the consequent
on the bottom is true subject to the conditions on
the right. The new item d′ is creating by appending
r to the ordered sequence of rules that define d.

Phrasal also includes two truecasing packages.
The LM-based truecaser (Lita et al., 2003) requires
an LM estimated from cased, tokenized text. A
subsequent detokenization step is thus necessary. A
more convenient alternative is the CRF-based post-
processor that can be trained to invert an arbitrary
pre-processor. This post-processor can perform
truecasing and detokenization in one pass.

3 Feature API
Phrasal supports dynamic feature extraction dur-
ing tuning and decoding. In the API, feature tem-
plates are called featurizers. There are two types
with associated interfaces: RuleFeaturizer
and DerivationFeaturizer. One way to il-
lustrate these two featurizers is to consider phrase-
based decoding as a deductive system. Let r =
〈f, e〉 be a rule in a set R, which is conventionally
called the phrase table. Let d = {ri}Ni=1 be an
ordered sequence of derivation N rules called a
derivation, which specifies a translation for some
source input sequence s (which, by some abuse of
notation, is equivalent to f in Eq. (1)). Finally,
define functions cov(d) as the source coverage set
of d as a bit vector and s(·, w) as the score of a rule
or derivation under w.3 The expression r /∈ cov(d)
means that r maps to an empty/uncovered span in
cov(d). Table 1 shows the deductive system.

3.1 Dynamic Rule Features
RuleFeaturizers are invoked when scoring axioms,
which do not require any derivation context. The
static rule features described in section 2.2 also
contribute to axiom scoring, and differ only from
RuleFeaturizers in that they are stored permanently
in the phrase table. In contrast, RuleFeaturizers

3Note that s(d,w) = w>φ(d) in the log-linear formulation
of MT (see Eq. (1)).
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Listing 1: A RuleFeaturizer, which depends
only on a translation rule.
public class WordPenaltyFeaturizer
implements RuleFeaturizer {

@Override
public List<FeatureValue>
ruleFeaturize(Featurizable f) {

List<FeatureValue> features =
Generics.newLinkedList();

// Extract single feature
features.add(new FeatureValue(
"WordPenalty", f.targetPhrase.size()));

return features;
}
}

are extracted during decoding. An example feature
template is the word penalty, which is simply the
dimension of the target side of r (Listing 1).
Featurizable wraps decoder state from

which features can be extracted. RuleFeaturizers
are extracted during each phrase table query and
cached, so they can be simply efficiently retrieved
during decoding.
Once the feature is compiled, it is simply speci-

fied on the command-line when the decoder is exe-
cuted. No other configuration is required.

3.2 Derivation Features
DerivationFeaturizers are invoked when scoring
items, and thus depend on some derivation context.
An example is the LM, which requires the n-gram
context from d to score r when creating the new
hypothesis d′ (Listing 2).
The LM featurizer first looks up the recombi-

nation state of the derivation, which contains the
n-gram context. Then it queries the LM by passing
the rule and context, and sets the new state as the
result of the LM query. Finally, it returns a feature
“LM” with the value of the LM query.

3.3 Recombination State
Listing 2 shows a state lookup during feature ex-
traction. Phrase-based MT feature design differs
significantly from that of convex classifiers in terms
of the interaction with inference. For example, in
a maximum entropy classifier inference is exact,
so a good optimizer can simply nullify bad fea-
tures to retain baseline accuracy. In contrast, MT
feature templates affect search through both future
cost heuristics and recombination state. Bad fea-
tures can introduce search errors and thus decrease

Listing 2: A DerivationFeaturizer, which
must lookup and save recombination state for ex-
traction.
public class NGramLanguageModelFeaturizer
extends DerivationFeaturizer {

@Override
public List<FeatureValue> featurize(
Featurizable f) {

// Get recombination state
LMState priorState = f.prior.getState(this);

// LM query
LMState state = lm.score(f.targetPhrase, priorState);

List<FeatureValue> features =
Generics.newLinkedList();

// Extract single feature
features.add(
new FeatureValue("LM", state.getScore()));

// Set new recombination state
f.setState(this, state);

return features;
}
}

accuracy, sometimes catastrophically.
The feature API allows DerivationFeaturizers

to explicitly declare recombination state via the
FeaturizerState interface.4 The interface re-
quires a state equality operator and a hash code
function. Then the search procedure will only re-
combine derivations with equal states. For example,
the state of the n-gram LM DerivationFeaturizer
(Listing 2) is the n-1 gram context, and the hash-
code is a hash of that context string. Only deriva-
tions for which the equality operator of LMState
returns true can be recombined.

4 Web Service
Machine translation output is increasingly uti-
lized in computer-assisted translation (CAT) work-
benches. To support deployment, Phrasal includes
a lightweight J2EE servlet that exposes a REST-
ful JSON API for querying a trained system. The
toolkit includes a standalone servlet container, but
the servlet may also be incorporated into a J2EE
server. The servlet requires just one input param-
eter: the Phrasal configuration file, which is also
used for tuning and decoding. Consequently, after
running the standard pipeline, the trained system
can be deployed with one command.

4To control future cost estimation, the designer would need
to write a new heuristic that considers perhaps a subset of
the full feature map. There is a separate API for future cost
heuristics.
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4.1 Standard Web Service
The standard web service supports two types of
requests. The first is TranslationRequest,
which performs full decoding on a source input.
The JSON message structure is:

Listing 3: TranslationRequest message.
TranslationRequest {
srcLang :(string),
tgtLang :(string),
srcText :(string),
tgtText :(string),
limit :(integer),
properties :(object)

}

The srcLang and tgtLang fields are ignored by
the servlet, but can be used by a middleware proxy
to route requests to Phrasal servlet instances, one
per language pair. The srcText field is the source
input, and properties is a Javascript associa-
tive array that can contain key/value pairs to pass
to the feature API. For example, we often use the
properties field to pass domain information
with each request.

Phrasal will perform full decoding and respond
with the message:

Listing 4: TranslationReply message,
which is returned upon successful processing of
TranslationRequest.
TranslationReply {
resultList :[
{tgtText :(string),
align :(string),
score :(float)

},...]
}

resultList is a ranked n-best list of transla-
tions, each with target tokens, word alignments,
and a score.
The second request type is RuleRequest,

which enables phrase table queries. These requests
are processed very quickly since decoding is not
required. The JSON message structure is:

Listing 5: RuleRequest message, which
prompts a direct lookup into the phrase table.
RuleRequest {
srcLang :(string),
tgtLang :(string),
srcText :(string),
limit :(integer),
properties :(object)

}

limit is the maximum number of translations to
return. The response message is analogous to that
for TranslationRequest, so we omit it.

4.2 Interactive Machine Translation
Interactive machine translation (Bisbey and Kay,
1972) pairs human and machine translators in hopes
of increasing the throughput of high quality trans-
lation. It is an old idea that is again in focus. One
challenge is to present relevant machine suggestions
to humans. To that end, Phrasal supports context-
sensitive translation queries via prefix decod-
ing. Consider again the TranslationRequest
message. When the tgtText field is empty, the
source input is decoded from scratch. But when
this field contains a prefix, Phrasal returns transla-
tions that begin with the prefix. The search proce-
dure force decodes the prefix, and then completes
the translation via conventional decoding. Conse-
quently, if the user has typed a partial translation,
Phrasal can suggest completions conditioned on
that prefix. The longer the prefix, the faster the de-
coding, since the user prefix constrains the search
space. This feature allows Phrasal to produce in-
creasingly precise suggestions as the user works.

5 Experiments
We compare Phrasal and Moses by restricting an
existing large-scale system to a set of common fea-
tures. We start with the Arabic–English system of
Green et al. (2014), which is built from 6.6M paral-
lel segments. The system includes a 5-gram English
LM estimated from the target-side of the bitext and
990M English monolingual tokens. The feature set
is their dense baseline, but without lexicalized re-
ordering and the two extended phrase table features.
This leaves the nine baseline features also imple-
mented by Moses. We use the same phrase table,
phrase table query limit (20), and distortion limit
(5) for both decoders. The tuning set (mt023568)
contains 5,604 segments, and the development set
(mt04) contains 1,075 segments.

We ran all experiments on a dedicated server with
16 physical cores and 128GB of memory.

Figure 1 shows single-threaded decoding time
of the dev set as a function of the cube pruning
pop limit. At very low limits Moses is faster than
Phrasal, but then slows sharply. In contrast, Phrasal
scales linearly and is thus faster at higher pop limits.

Figure 2 shows multi-threaded decoding time of
the dev set with the cube pruning pop limit fixed
at 1,200. Here Phrasal is initially faster, but Moses
becomes more efficient at four threads. There are
two possible explanations. First, profiling shows
that LM queries account for approximately 75%
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Figure 1: Development set decoding time as a
function of the cube pruning pop limit.

of the Phrasal CPU-time. KenLM is written in
C++, and Phrasal queries it via JNI. It appears
as though multi-threading across this boundary is
a source of inefficiency. Second, we observe that
the Java parallel garbage collector (GC) runs up to
seven threads, which become increasingly active
as the number of decoder threads increases. These
and other Java overhead threads must be scheduled,
limiting gains as the number of decoding threads
approaches the number of physical cores.
Finally, Figure 3 shows tuning BLEU as a func-

tion of wallclock time. For Moses we chose the
batch MIRA implementation of Cherry and Fos-
ter (2012), which is popular for tuning feature-rich
systems. Phrasal uses the online tuner with the ex-
pected BLEU objective (Green et al., 2014). Moses
achieves a maximum BLEU score of 47.63 after
143 minutes of tuning, while Phrasal reaches this
level after just 17 minutes, later reaching a maxi-
mum BLEU of 47.75 after 42 minutes. Much of
the speedup can be attributed to phrase table and
LM loading time: the Phrasal tuner loads these data
structures just once, while the Moses tuner loads
them every epoch. Of course, this loading time be-
comes more significant with larger-scale systems.

6 Conclusion

We presented a revised version of Phrasal, an open-
source, phrase-based MT toolkit. The revisions
support new directions in MT research including
feature-rich models, large-scale tuning, and web-
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based interactive MT. A direct comparison with
Moses showed favorable performance on a large-
scale translation system.
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