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Abstract

We use parallel FDA5, an efficiently pa-
rameterized and optimized parallel im-
plementation of feature decay algorithms
for fast deployment of accurate statistical
machine translation systems, taking only
about half a day for each translation di-
rection. We build Parallel FDA5 Moses
SMT systems for all language pairs in
the WMT14 translation task and obtain
SMT performance close to the top Moses
systems with an average of 3.49 BLEU
points difference using significantly less
resources for training and development.

1 Introduction

Parallel FDA5 is developed for fast deployment
of accurate statistical machine translation systems
using an efficiently parameterized and optimized
parallel implementation of feature decay algo-
rithms (Biçici and Yuret, 2014). Parallel FDA5
takes about half a day for each translation direc-
tion. We achieve SMT performance that is on par
with the top constrained Moses SMT systems.

Statistical machine translation (SMT) is a data
intensive problem. If you have the translations for
the source sentences you are translating in your
training set or even portions of it, then the trans-
lation task becomes easier. If some tokens are not
found in the training data then you cannot trans-
late them and if some translated word do not ap-
pear in your language model (LM) corpus, then it
becomes harder for the SMT engine to find its cor-
rect position in the translation. The importance of
parallel FDA5 increases with the proliferation of
training material available for building SMT sys-
tems. Table 2 presents the statistics of the avail-
able training and LM corpora for the constrained
(C) systems as well as the statistics of the Parallel
FDA5 selected training and LM corpora.

Parallel FDA5 runs separate FDA5 models on
randomized subsets of the training data and com-
bines the selections afterwards. We run parallel
FDA5 SMT experiments using Moses (Koehn et
al., 2007) in all language pairs in WMT14 (Bojar
et al., 2014) and obtain SMT performance close to
the top constrained Moses systems training using
all of the training material. Parallel FDA5 allows
rapid prototyping of SMT systems for a given tar-
get domain or task and can be very useful for MT
in target domains with limited resources or in dis-
aster and crisis situations (Lewis et al., 2011).

2 Parallel FDA5 for Instance Selection

2.1 FDA5

FDA is developed mainly for building high per-
formance SMT systems using fewer yet relevant
data that is selected for increasing the coverage of
the test set features while maximizing their diver-
sity (Biçici and Yuret, 2011; Biçici, 2011). Par-
allel FDA parallelize instance selection and sig-
nificantly reduces the time to deploy accurate MT
systems in the presence of large training data from
weeks to half a day and still achieve state-of-
the-art SMT performance (Biçici, 2013). FDA5
is developed for efficient parameterization, opti-
mization, and implementation of FDA (Biçici and
Yuret, 2014). FDA5 can be used in both trans-
ductive learning scenarios where test set is used to
select the training data or in active learning sce-
narios where training set itself is used to obtain a
sorting of the training data and select.

We run transductive learning experiments in
this work such that the instance selection is per-
formed for the given test set. According to
SMT experiments performed on the 2 million sen-
tence English-German section of the Europarl cor-
pus (Biçici and Yuret, 2014), FDA5 can increase
the performance by 0.41 BLEU points compared
to using all of the available training data and by
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Algorithm 1: Parallel FDA5
Input: Parallel training sentences U , test set

features F , and desired number of
training instances N .

Output: Subset of the parallel sentences to be
used as the training data L ⊆ U .

1 U ← shuffle(U)
2 UUU , M ← split(U , N)
3 L← {}
4 foreach Ui ∈ UUU do
5 〈Li, si〉 ← FDA5(Ui,F , M)
6 L← L ∪ 〈Li, si〉
7 L ← merge(L)

3.22 BLEU points compared to random selection.
FDA5 is also used for selecting the training set
in the WMT14 medical translation task (Calixto
et al., 2014) and the tuning set in the WMT14
German-English translation task (Li et al., 2014).

FDA5 has 5 parameters that effect the instance
scores based on the three formulas used:

• Initialization:

init(f) = log(|U|/CU (f))i |f |l (1)

• Decay:

decay(f) = init(f)(1+CL(f))−cdCL(f)

(2)

• Sentence score:

sentScore(S) =
1
|S|s

∑
f∈F (S)

fvalue(f)

(3)

CL(f) returns the count of feature f in L. d
is the feature score polynomial decay factor, c is
the feature score exponential decay factor, s is
the sentence score length exponent, i is the initial
feature score idf exponent, and l is the initial
feature score n-gram length exponent. FDA5 is
available at http://github.com/bicici/FDA

and the FDA5 optimizer is available at
http://github.com/bicici/FDAOptimization.

2.2 Parallel FDA5
Parallel FDA5 (ParFDA5) is presented in Algo-
rithm 1, which first shuffles the training sentences,
U and runs individual FDA5 models on the multi-
ple splits from which equal number of sentences,

M , are selected. We use ParFDA5 for select-
ing parallel training data and LM data for build-
ing SMT systems. merge combines k sorted ar-
rays, Li, into one sorted array in O(Mk log k) us-
ing their scores, si, where Mk is the total number
of elements in all of the input arrays. 1 ParFDA5
makes FDA5 more scalable to domains with large
training corpora and allows rapid deployment of
SMT systems. By selecting from random splits of
the original corpus, we work with different n-gram
feature distributions in each split and prevent fea-
ture values from becoming negligible, which can
enhance the diversity.

2.3 Language Model Data Selection

We select the LM training data with ParFDA5
based on the following observation (Biçici, 2013):

No word not appearing in the training
set can appear in the translation.

It is impossible for an SMT system to translate a
word unseen in the training corpus nor can it trans-
late it with a word not found in the target side of
the training set 2. Thus we are only interested
in correctly ordering the words appearing in the
training corpus and collecting the sentences that
contain them for building the LM. At the same
time, a compact and more relevant LM corpus is
also useful for modeling longer range dependen-
cies with higher order n-gram models. We use
1-gram features for LM corpus selection since we
don’t know which phrases will be generated by the
translation model. After the LM corpus selection,
the target side of the parallel training data is added
to the LM corpus.

3 Results

We run ParFDA5 SMT experiments for all lan-
guage pairs in both directions in the WMT14
translation task (Bojar et al., 2014), which include
English-Czech (en-cs), English-German (en-de),
English-French (en-fr), English-Hindi (en-hi), and
English-Russian (en-ru). We true-case all of the
corpora, use 150-best lists during tuning, set the
LM order to a value between 7 and 10 for all lan-
guage pairs, and train the LM using SRILM (Stol-
cke, 2002). We set the maximum sentence length
filter to 126 and for GIZA++ (Och and Ney, 2003),

1 (Cormen et al., 2009), question 6.5-9. Merging k sorted
lists into one sorted list using a min-heap for k-way merging.

2Unless the translation is a verbatim copy of the source.
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S → T
Training Data LM Data

Data #word S (M) #word T (M) #sent (K) SCOV TCOV #word (M) TCOV
en-cs C 253.5 223.4 16068 0.8282 0.7046 717.0 0.8539
en-cs ParFDA5 22.0 19.6 1205 0.8161 0.6062 325.8 0.8238
cs-en C 223.4 253.5 16068 0.7046 0.8282 5541.9 0.9552
cs-en ParFDA5 19.3 22.0 1205 0.7046 0.7581 351.0 0.9132
en-de C 116.0 109.5 4511 0.812 0.7101 1573.8 0.8921
en-de ParFDA5 16.7 16.8 845 0.8033 0.6316 206.9 0.8184
de-en C 109.5 116.0 4511 0.7101 0.812 5446.8 0.9525
de-en ParFDA5 17.8 19.6 845 0.7087 0.753 339.5 0.9082
en-fr C 1096.1 1287.8 40344 0.8885 0.9163 2534.5 0.9611
en-fr ParFDA5 22.6 26.6 1008 0.8735 0.8412 737.4 0.9491
fr-en C 1287.8 1096.1 40344 0.9163 0.8885 6255.8 0.9675
fr-en ParFDA5 20.9 19.3 1008 0.8963 0.7845 463.4 0.9282
en-hi C 3.4 5.0 306 0.5467 0.5986 36.3 0.7972
en-hi ParFDA5 3.3 4.9 254 0.5467 0.5976 41.2 0.8115
hi-en C 5.0 3.4 306 0.5986 0.5467 5350.4 0.9473
hi-en ParFDA5 5.0 3.3 284 0.5985 0.5466 966.8 0.9209
en-ru C 49.6 46.1 2531 0.7992 0.6823 590.8 0.8679
en-ru ParFDA5 19.6 18.6 1107 0.7991 0.6388 282.1 0.8447
ru-en C 46.1 49.6 2531 0.6823 0.7992 5380.6 0.9567
ru-en ParFDA5 16.6 19.4 1107 0.6821 0.7586 225.1 0.9009

Table 2: The data statistics for the available training and LM corpora for the constrained (C) submissions
compared with the ParFDA5 selected training and LM corpora statistics. #words is in millions (M) and
#sents is in thousands (K).

S → T d c s i l

Tr
ai

ni
ng

,n
=

2

en-de 1.0 0.5817 1.4176 5.0001 -3.154
de-en 1.0 1.0924 1.3604 5.0001 -4.341
en-cs 1.0 0.0676 0.8299 5.0001 -0.8788
cs-en 1.0 1.5063 0.7777 3.223 -2.3824
en-ru 1.0 0.6519 1.6877 5.0001 -1.1888
ru-en 1.0 1.607 3.0001 0.0 -1.8247
en-hi 1.0 3.0001 3.0001 1.5701 -1.5699
hi-en 1.0 0.0 1.1001 5.0001 -0.8264
en-fr 1.0 0.8143 0.801 3.5996 -1.3394
fr-en 1.0 0.19 1.0106 5.0001 1.238

L
M

,n
=

1

en-de 1.0 0.1924 1.0487 5.0001 4.9404
de-en 1.0 1.7877 3.0001 3.1213 -0.4147
en-cs 1.0 0.4988 1.1586 5.0001 -5.0001
cs-en 0.9255 0.2787 0.7439 3.7264 -2.0564
en-ru 1.0 1.4419 2.239 1.5543 -0.5097
ru-en 1.0 2.4844 3.0001 4.6669 3.7978
en-hi 1.0 0.0 0.0 5.0001 -4.944
hi-en 1.0 0.3053 3.0001 5.0001 4.1216
en-fr 1.0 3.0001 2.0452 3.0229 3.4364
fr-en 1.0 0.7467 0.7641 5.0001 5.0001

Table 1: Optimized ParFDA5 parameters for se-
lecting the training set using 2-grams or the LM
corpus using 1-grams.

max-fertility is set to 10, with the number of itera-
tions set to 7,3,5,5,7 for IBM models 1,2,3,4, and
the HMM model and 70 word classes are learned
over 3 iterations with the mkcls tool during train-
ing. The development set contains 5000 sentences,
2000 of which are randomly sampled from pre-
vious years’ development sets (2008-2012) and
3000 come from the development set for WMT14.

3.1 Optimized ParFDA5 Parameters

Table 1 presents the optimized ParFDA5 parame-
ters obtained using the development set. Transla-
tion direction specific differences are visible. A
negative value for l shows that FDA5 prefers
shorter features, which we observe mainly when
the target language is English. We also observe
higher exponential decay rates when the target lan-
guage is mainly English. For optimizing the pa-
rameters for selecting LM corpus instances, we
still use a parallel corpus and instead of optimiz-
ing for TCOV, we optimize for SCOV such that
we select instances that are relevant for the target
training corpus but still maximize the coverage of
source features and be able to represent the source
sentences within a translation task. The selected
LM corpus is prepared for a translation task.

3.2 Data Selection

We select the same number of sentences with Par-
allel FDA (Biçici, 2013), which is roughly 15%
of the training corpus for en-de, 35% for ru-en,
6% for cs-en, and 2% for en-fr. After the training
set selection, we select the LM data using the tar-
get side of the training set as the target domain to
select LM instances for. For en and fr, we have
access to the LDC Gigaword corpora (Parker et
al., 2011; Graff et al., 2011), from which we ex-
tract only the story type news. We select 15 mil-
lion sentences for each LM not including the se-

61



S → T
Time (Min) Space (MB)

ParFDA5 Moses
Overall

Moses
Train LM Total Train Tune Total PT LM ALL

en-cs 5 28 34 375 702 1162 1196 1871 5865 19746
cs-en 7 65 72 358 448 867 939 1808 4906 18650
en-de 8 29 38 302 1059 1459 1497 1676 2923 18313
de-en 8 85 93 358 474 924 1017 1854 5219 19247
en-fr 23 60 84 488 781 1372 1456 2309 9577 24362
fr-en 21 99 120 315 490 897 1017 1845 4888 17466
en-hi 2 9 11 91 366 511 522 269 817 4292
hi-en 1 36 37 91 330 467 504 285 9697 3845
en-ru 11 25 35 358 369 837 872 2174 4770 21283
ru-en 10 62 71 309 510 895 966 1939 2735 19537

Table 3: The space and time required for building the ParFDA5 Moses SMT systems. The sizes are in
MB and time in minutes. PT stands for the phrase table. ALL does not contain the size of the LM.

BLEUc
S → en en→ T

cs-en de-en fr-en hi-en ru-en en-cs en-de en-fr en-hi en-ru
WMT14C 0.288 0.28 0.35 0.139 0.318 0.21 0.201 0.358 0.111 0.287
ParFDA5 0.256 0.239 0.319 0.105 0.282 0.172 0.168 0.325 0.07 0.257
diff 0.032 0.041 0.031 0.034 0.036 0.038 0.033 0.033 0.041 0.03
LM order 9 9 9 9 9 9 9 7 10 9

Table 4: BLEUc for the top constrained result in WMT14 (WMT14C) and for ParFDA5 results, their
difference to WMT14C, and the LM order used are presented. Average difference is 3.49 BLEU points.

lected training set, which is added later. The statis-
tics of the ParFDA5 selected training data and the
available training data for the constrained transla-
tion task is given in Table 2. The size of the LM
corpora includes both the LDC and the monolin-
gual LM corpora provided by WMT14. Table 2
shows the significant size differences between the
constrained dataset (C) and the ParFDA5 selected
data. Table 2 also present the source and target
coverage (SCOV and TCOV) in terms of the 2-
grams of the test set observed in the training data
or the LM data. The quality of the training cor-
pus can be measured by TCOV, which is found to
correlate well with the BLEU performance achiev-
able (Biçici and Yuret, 2011; Biçici, 2011).

3.3 Computing Statistics

We quantify the time and space requirements for
running ParFDA5 SMT systems for each trans-
lation direction. The space and time required
for building the ParFDA5 Moses SMT systems
are given in Table 3 where the sizes are in MB
and the time in minutes. PT stands for the
phrase table. We used Moses version 2.1.1, from
www.statmt.org/moses. Building a ParFDA5

Moses SMT system takes about half a day.

3.4 Translation Results
The results of our two ParFDA5 SMT experiments
for each language pair and their tokenized BLEU
performance, BLEUc, together with the LM order
used and the top constrained submissions to the
WMT14 are given in Table 4 3, which use phrase-
based Moses for comparison 4. We observed sig-
nificant gains (+0.23 BLEU points) using higher
order LMs last year (Biçici, 2013) and therefore
we use LMs of order 7 to 10. The test set con-
tains 10,000 sentences and only 3000 of which are
used for evaluation, which can make the transduc-
tive learning application of ParFDA5 harder. In
the transductive learning setting, ParFDA5 is se-
lecting target test task specific SMT resources and
therefore, having irrelevant instances in the test set
may decrease the performance by causing FDA5
to select more domain specific data and less task
specific. ParFDA5 significantly reduces the time
required for training, development, and deploy-
ment of an SMT system for a given translation

3We use the results from matrix.statmt.org.
4Phrase-based Moses systems usually rank in the top 3.
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ppl
OOV log OOV = −19 log OOV = −11

Translation T order train FDA5 FDA5 LM % red. train FDA5 FDA5 LM % red. train FDA5 FDA5 LM % red.

en-cs en

3

866 1205 525 0.39

1764 1731 938 0.47 1370 1218 805 0.41
4 1788 1746 877 0.51 1389 1229 753 0.46
5 1799 1752 868 0.52 1398 1233 745 0.47
6 1802 1753 867 0.52 1400 1234 744 0.47

cs-en cs

3

557 706 276 0.5

480 419 333 0.31 408 342 307 0.25
4 487 422 292 0.4 415 344 269 0.35
5 495 424 285 0.42 421 346 263 0.38
6 497 425 284 0.43 423 346 262 0.38

en-de en

3

1666 2116 744 0.55

1323 1605 747 0.44 831 890 607 0.27
4 1307 1596 689 0.47 821 885 560 0.32
5 1307 1596 680 0.48 822 885 553 0.33
6 1308 1596 679 0.48 822 885 552 0.33

de-en de

3

691 849 417 0.4

482 498 394 0.18 386 379 345 0.11
4 470 490 344 0.27 376 373 301 0.2
5 470 490 336 0.29 377 373 293 0.22
6 471 490 334 0.29 377 373 292 0.23

en-fr en
3

270 411 153 0.43
185 167 173 0.07 173 151 166 0.04

4 170 160 135 0.21 159 144 130 0.19
5 171 160 126 0.27 160 145 121 0.24

fr-en fr
3

306 604 179 0.42
349 325 275 0.21 320 275 261 0.19

4 338 321 235 0.3 310 271 224 0.28
5 342 322 228 0.33 314 272 217 0.31

en-hi en

3

2035 2123 950 0.53

242 246 114 0.53 168 168 96 0.43
4 237 241 87 0.63 164 165 73 0.55
5 238 242 78 0.67 165 165 66 0.6
6 239 242 75 0.68 165 165 64 0.62

hi-en hi

3

1842 1860 623 0.66

1894 1898 482 0.75 915 911 377 0.59
4 1910 1914 398 0.79 923 919 312 0.66
5 1915 1919 378 0.8 925 921 296 0.68
6 1915 1919 378 0.8 926 921 296 0.68

en-ru en

3

959 1176 585 0.39

1067 1171 668 0.37 814 840 566 0.3
4 1053 1159 603 0.43 803 831 511 0.36
5 1052 1159 591 0.44 802 831 501 0.38
6 1052 1159 588 0.44 802 831 498 0.38

ru-en ru

3

558 689 340 0.39

385 398 363 0.06 334 334 333 0.0
4 377 391 325 0.14 327 328 298 0.09
5 378 392 318 0.16 328 329 292 0.11
6 378 392 318 0.16 328 329 291 0.11

Table 5: Perplexity comparison of the LM built from the training corpus (train), ParFDA5 selected
training corpus (FDA5), and the ParFDA5 selected LM corpus (FDA5 LM). % red. column lists the
percentage of reduction.

task. The average difference to the top constrained
submission in WMT14 is 3.49 BLEU points. For
en-ru and en-cs, true-casing the LM using a true-
caser trained on all of the available training data
decreased the performance by 0.5 and 0.9 BLEU
points respectively and for cs-en and fr-en, in-
creased the performance by 0.2 and 0.5 BLEU
points. We use the true-cased LM results using
a true-caser trained on all of the available train-
ing data for all language pairs where for hi-en,
the true-caser is trained on the ParFDA5 selected
training data.

3.5 LM Data Quality

A LM training data selected for a given transla-
tion task allows us to train higher order language

models, model longer range dependencies better,
and at the same time, achieve lower perplexity
as given in Table 5. We compare the perplexity
of the ParFDA5 selected LM with a LM trained
on the ParFDA5 selected training data and a LM
trained using all of the available training corpora.
To be able to compare the perplexities, we take
the OOV tokens into consideration during calcu-
lations (Biçici, 2013). We present results for the
cases when we handle OOV words with a cost
of −19 or −11 each in Table 5. We are able to
achieve significant reductions in the number of
OOV tokens and the perplexity, reaching up to
66% reduction in the number of OOV tokens and
up to 80% reduction in the perplexity.
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BLEUc
S → en en→ T

cs-en de-en fr-en ru-en en-cs en-de en-fr en-ru
ParFDA5 0.256 0.239 0.319 0.282 0.172 0.168 0.325 0.257
ParFDA 0.243 0.241 0.254 0.223 0.171 0.179 0.238 0.173
diff 0.013 -0.002 0.065 0.059 0.001 -0.011 0.087 0.084

Table 7: Parallel FDA5 WMT14 results compared with parallel FDA WMT13 results. Training set sizes
are given in millions (M) of words on the target side. Average difference is 3.7 BLEU points.

BLEUc
S → en en→ T

cs-en fr-en en-cs en-fr
ParFDA5 0.256 0.319 0.172 0.325
ParFDA5 15% 0.248 0.321 0.178 0.333
diff -0.008 0.002 0.006 0.008

Table 6: ParFDA5 results, ParFDA5 results using
15% of the training set, and their difference.

3.6 Using 15% of the Available Training Set

In the FDA5 results (Biçici and Yuret, 2014),
we found that selecting 15% of the best train-
ing set size maximizes the performance for the
English-German out-of-domain translation task
and achieves 0.41 BLEU points improvement over
a baseline system using all of the available train-
ing data. We run additional experiments select-
ing 15% of the training data for fr-en and cs-en
language pairs to see the effect of increased train-
ing sets selected with ParFDA5. The results are
given in Table 6 where most of the results improve.
The slight performance decrease for cs-en may be
due to using a true-caser trained on only the se-
lected training data. We observe larger gains in
the en→ T translations.

3.7 ParFDA5 versus Parallel FDA

We compare this year’s results with the results
we obtained last year (Biçici, 2013) in Table 7.
The task setting is different in WMT14 since the
test set contains 10,000 sentences but only 3000
of these are used as the actual test set, which
can make the transductive learning application of
ParFDA5 harder. We select the same number of
instances for the training sets but 5 million more
instances for the LM corpus this year. The aver-
age difference to the top constrained submission
in WMT13 was 2.88 BLEU points (Biçici, 2013)
and this has increased to 3.49 BLEU points in
WMT14. On average, the performance improved
3.7 BLEU points when compared with ParFDA re-
sults last year. For the fr-en, en-fr, and en-ru trans-

lation directions, we observe increases in the per-
formance. This may be due to better modeling of
the target domain by better parameterization and
optimization that FDA5 is providing. We observe
some decrease in the performance in en-de and de-
en results. Since the training material remained
the same for WMT13 and WMT14 and the mod-
eling power of FDA5 increased, building a domain
specific rather than a task specific ParFDA5 model
may be the reason for the decrease.

4 Conclusion

We use parallel FDA5 for solving computational
scalability problems caused by the abundance of
training data for SMT models and LMs and still
achieve SMT performance that is on par with
the top performing SMT systems. Parallel FDA5
raises the bar of expectations from SMT with
highly accurate translations and lower the bar to
entry for SMT into new domains and tasks by al-
lowing fast deployment of SMT systems in about
half a day. Parallel FDA5 enables a shift from gen-
eral purpose SMT systems towards task adaptive
SMT solutions.
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