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Introduction

People acquire language through social interaction. Computers learn linguistic models from data, and
increasingly, from language-based exchange with people. How do computational linguistic techniques
and interactive visualizations work in concert to improve linguistic data processing for humans and
computers? How can statistical learning models be best paired with interactive interfaces? How can the
increasing quantity of linguistic data be better explored and analyzed? These questions span statistical
natural language processing (NLP), human-computer interaction (HCI), and information visualization
(Vis), three fields with natural connections but infrequent meetings. Vis and HCI are niches in NLP;
Vis and HCI have not fully utilized the statistical techniques developed in NLP. This workshop aims to
assemble an interdisciplinary community that promotes collaboration across these fields.

Three themes define this first workshop:

Active, Online, and Interactive Machine Learning Statistical machine learning (ML) has yielded
tremendous gains in coverage and robustness for many tasks, but there is a growing sense that additional
error reduction might require a fresh look at the human role. Presently, human inputs are often restricted
to passive annotation in ML research. However, the fields of ML and HCI are both developing new
techniques—such as active learning, incremental/online learning, and crowdsourcing—that attempt to
engage people in novel and productive ways. How do we jointly solve the learning questions that have
been the domain of NLP and address research topics in HCI such as managing human workers and
increasing the quality of their responses?

Language-based user interfaces NLP techniques have entered mainstream use, but the field currently
focuses more on building and improving systems and less on understanding how users interact with
them in real-world environments. User interface (UI) design decisions can affect the perceived or actual
performance of a system. For example, while machine translation (MT) quality improved considerably
over the last decade, studies found that human translators disliked MT output for reasons unrelated to
translation quality. Many existing systems present sentence-level translations in the absence of relevant
context, and disrupt rather than contribute to a translator’s workflow. How do we best integrate learning
methods, user behavior understanding, and human-centered design methodology?

Text Visualization and Analysis The quantity and diversity of linguistic corpora is swelling. Recent
work on visualizing text data annotated with linguistic structures (e.g., syntactic trees, hypergraphs, and
sequences) has produced tools that enable exploration of thematic and recurrence patterns in text. Visual
representations built on the outputs of word-level models (e.g., sentiment classifiers, topic models, and
continuous word embedding models) now power exploratory analysis of legal documents, political text,
and social media content. Beyond adding analytic value, interactive visualization can also reduce the
upfront effort needed to set up, configure, and learn a tool, as well as promote adoption. How do we
pair appropriate NLP techniques and visualizations to assist both expert and non-technical users, who
encounter a growing amount of linguistic data in their professional and everyday lives?
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MITEXTEXPLORER: Linked brushing and mutual information for
exploratory text data analysis

Figure 1: Screenshot of MITEXTEXPLORER, analyzing geolocated tweets.

Brendan O’Connor
Machine Learning Department

Carnegie Mellon University
brenocon@cs.cmu.edu
http://brenocon.com

Abstract

In this paper I describe a preliminary ex-
perimental system, MITEXTEXPLORER,
for textual linked brushing, which allows
an analyst to interactively explore statis-
tical relationships between (1) terms, and
(2) document metadata (covariates). An
analyst can graphically select documents
embedded in a temporal, spatial, or other
continuous space, and the tool reports
terms with strong statistical associations
for the region. The user can then drill
down to specific term and term groupings,
viewing further associations, and see how
terms are used in context. The goal is to
rapidly compare language usage across in-
teresting document covariates.

I illustrate examples of using the tool on
several datasets: geo-located Twitter mes-
sages, presidential State of the Union ad-
dresses, the ACL Anthology, and the King
James Bible.

1 Introduction: Can we “just look” at
statistical text data?

Exploratory data analysis (EDA) is an approach
to extract meaning from data, which emphasizes
learning about a dataset through an iterative pro-
cess of many analyses which suggest and refine
possible hypotheses. It is vital in early stages of a
data analysis for data cleaning and sanity checks,
which are crucial to help ensure a dataset will be
useful. Exploratory techniques can also suggest
possible hypotheses or issues for further investi-
gation.
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Figure 2: Anscombe Quartet. (Source: Wikipedia)

The classical approach to EDA, as pioneered in
works such as Tukey (1977) and Cleveland (1993)
(and other work from the Bell Labs statistics group
during that period) emphasizes visual analysis un-
der nonparametric, model-free assumptions, in
which visual attributes are a fairly direct reflec-
tion of numerical or categorical aspects of data.
As a simple example, consider the well-known
Anscombe Quartet (1973), a set of four bivari-
ate example datasets. The Pearson correlation, a
very widely used measure of dependence that as-
sumes a linear Gaussian model of the data, finds
that each dataset has an identical amount of de-
pendence (r = 0.82). However, a scatterplot in-
stantly reveals that very different dependence re-
lationships hold in each dataset (Figure 2). The
scatterplot is possibly the simplest visual analysis
tool for investigating the relationship between two
variables, in which the variables’ numerical values
are mapped to horizontal and vertical space. While
the correlation coefficient is a model-based analy-
sis tool, the scatterplot is model-free (or at least, it
is effective under an arguably wider range of data
generating assumptions), which is crucial for this
example.

This nonparametric, visual approach to EDA
has been encoded into many data analysis pack-
ages, including the now-ubiquitous R language (R
Core Team, 2013), which descends from earlier
software by the Bell Labs statistics group (Becker
and Chambers, 1984). In R, tools such as his-
tograms, boxplots, barplots, dotplots, mosaicplots,
etc. are built-in, basic operators in the language.
(Wilkinson (2006)’s grammar of graphics more
extensively systematizes this approach; see also
(Wickham, 2010; Bostock et al., 2011).)

In the meantime, textual data has emerged as
a resource of increasing interest for many scien-

Figure 3: Linked brushing with the anal-
ysis software GGobi. More references at
source: http://www.infovis-wiki.net/index.
php?title=Linking_and_Brushing

tific, business, and government data analysis ap-
plications. Consider the use case of automated
content analysis (a.k.a. text mining) as a tool for
investigating social scientific and humanistic ques-
tions (Grimmer and Stewart, 2013; Jockers, 2013;
Shaw, 2012; O’Connor et al., 2011). The content
of the data is under question: analysts are inter-
ested in what/when/how/by-whom different con-
cepts, ideas, or attitudes are expressed in a cor-
pus, and the trends in these factors across time,
space, author communities, or other document-
level covariates (often called metadata). Compar-
isons of word statistics across covariates are ab-
solutely essential to many interesting questions or
social measurement problems, such as

• What topics tend to get censored by the Chi-
nese government online, and why (Bamman
et al., 2012; King et al., 2013)? Covari-
ates: whether a message is deleted by cen-
sors, time/location of message.

• What drives media bias? Do newspapers
slant their coverage in response to what read-
ers want (Gentzkow and Shapiro, 2010)? Co-
variates: political preferences of readers,
competitiveness of media markets.

There exist dozens, if not more, of other examples
in social scientific and humanities research; see
references in O’Connor et al. (2011); O’Connor
(2014).

In this work, I focus on the question: What
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should be the baseline exploratory tools for textual
data, to discover important statistical associations
between text and document covariates? Ideally,
we’d like to “just look” at the data, in the spirit of
scatterplotting the Anscombe Quartet. An analy-
sis tool to support this should not require any sta-
tistical model assumptions, and should display the
data in as direct a form as possible.

For low-dimensional, non-textual data, the base
functionality of R prescribes a broad array of use-
ful defaults: one-dimensional continuous data can
be histogrammed (hist(x)), or kernel density plot-
ted (plot(density(x))), while the relationship be-
tween two dimensions of continuous variables can
be viewed as a scatterplot (plot(x,y)); or perhaps
a boxplot for discrete x and continous y (box-
plot(x,y)); and so on. Commercial data analysis
systems such as Excel, Stata, Tableau, JMP, etc.,
have similar functionality.

These visual tools can be useful for analyz-
ing derived content statistics from text—for exam-
ple, showing a high-level topic or sentiment fre-
quency trending over time—but they cannot visu-
alize the text itself. Text data consists of a linear
sequence of high-dimensional discrete variables
(words). The most aggressive and common anal-
ysis approach, bag-of-words, eliminates the prob-
lematic sequential structure, by reducing a docu-
ment to a high-dimensional discrete counts over
words. But still, none of the above visual tools
makes sense for visualizing a word distribution;
many popular tools simply crash or become very
slow when given word count data. And besides
the issues of discrete high-dimensionality, text is
unique in that it has to be manually read in order
to more reliably understand its meaning. Natural
language processing tools can sometimes extract
partial views of text meaning, but full understand-
ing is a long ways off; and the quality of available
NLP tools varies greatly across corpora and lan-
guages. A useful exploratory tool should be able
to work with a variety of levels of sophistication
in NLP tooling, and allow the user to fall back to
manual reading when necessary.

2 MITEXTEXPLORER: linked brushing
for text and covariate correlations

The analysis tool presented here, MITEXTEX-
PLORER, is designed for exploratory analysis of
relationships between document covariates—such
as time, space, or author community—against tex-

tual variables—words, or other units of meaning,
that can be counted per document. Unlike topic
model approaches to analyzing covariate-text re-
lationships (Mimno, 2012; Roberts et al., 2013),
there is no dimension reduction of the terms. In-
stead, interactivity allows a user to explore more of
the high-dimensional space, by specifying a doc-
ument selection (Q) and/or a term selection (T ).
We are inspired by the linking and brushing family
of techniques in interactive data visualization, in
which an analyst can select a group of data points
under a query in one covariate space, and see the
same data selection in a different covariate space
(Figure 3; see Buja et al. (1996), and e.g. Becker
and Cleveland (1987); Buja et al. (1991); Martin
and Ward (1995); Cook and Swayne (2007)). In
our case, one of the variables is text.

The interface consists of several linked views,
which contain:

(A) a view of the documents in a two-dimensional
covariate space (e.g. scatterplot),

(B) an optional list of pinned terms,

(C) document-associated terms: a view of the rel-
atively most frequent terms for the current
document selection,

(D) term-associated terms: a view of terms that
relatively frequently co-occur with the current
term selection; and

(E) a keyword-in-context (KWIC) display of tex-
tual passages for the current term selection.

Figure 1 shows the interface viewing a corpus of
201,647 geo-located Twitter messages from 2,000
users during 2009-2012, which have been tagged
with their author’s spatial coordinates through a
mobile phone client and posted publicly; for data
analysis, their texts have been lowercased and
tokenized appropriately (Owoputi et al., 2013;
O’Connor et al., 2010). Since this type of corpus
contains casual, everyday language, it is a dataset
that may illuminate geographic patterns of slang
and lexical variation in local dialects (Eisenstein
et al., 2012, 2010).

The document covariate display (A) uses (longi-
tude, latitude) positions as the 2D space. The cor-
pus has been preprocessed to define a document as
the concatenation of messages from a single au-
thor, with its position the average location of the
author’s messages. When the interface loads, all
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points in (A) are initially gray, and all other panels
are blank.

2.1 Covariate-driven queries

A core interaction, brushing, consists of using the
mouse to select a rectangle in the (x,y) covariate
space. Figure 1 shows a selection around the Bay
Area metropolitan area (blue rectangle). Upon
selection, the document-driven term display (C)
is updated to show the relatively most frequent
terms in the document selection. Let Q denote
the set of documents that are selected by the cur-
rent covariate query. The tool ranks terms w by
their (exponentiated) pointwise mutual informa-
tion, a.k.a. lift, for Q:

lift(w; Q) =
p(w|Q)
p(w)

(
=

p(w, Q)
p(w)p(Q)

)
(1)

This quantity measures how much more frequent
the term is in the queryset, compared to the base-
line global probability in the corpus (p(w)). Prob-
abilities are calculated with simple MLE relative
frequencies, i.e.

p(w|Q)
p(w)

=

∑
d∈Q ndw∑
d∈Q nd

N

nw
(2)

where d denotes a document ID, ndw the count
of word w in document d, and N the number
of tokens in the corpus. PMI gives results that
are much more interesting than results from rank-
ing w on raw probability within the query set
(p(w|Q)), since that simply shows grammatical
function words or other terms that are common
both in the queryset and across the corpus, and not
distinctive for the queryset.1

A well-known weakness of PMI is over-
emphasis on rare terms; terms that appear
only in the queryset, even if they appear only
once, will attain the highest PMI value. One
way to address this is through a smoothing
prior/pseudocounts/regularization, or through sta-
tistical significance ranking (see §3). For simplic-
ity, we use a minimum frequency threshold filter.
The user interface allows minimums for either lo-
cal or global term frequencies, and to easily ad-
just them, which naturally shifts the emphasis be-
tween specific and generic language. All methods

1The term “lift” is used in business applications (Provost
and Fawcett, 2013), while PMI has been used in many NLP
applications to measure word associations.

to protect against rare probabilistic events neces-
sarily involve such a tradeoff parameter that the
user ought to experiment with; given this situation,
we might prefer a transparent mechanism instead
of mathematical priors (though see also §3).

Figure 1 shows that hella is the highest ranked
term for this spatial selection (and freqency thresh-
old), occurring 7.8 times more frequently com-
pared to the overall corpus; this comports with
surveyed intuitions of Californian English speak-
ers (Bucholtz et al., 2007). For full transparency
to the user, the local and global term counts are
shown in the table. (Since hella occurred 18 times
in the queryset and 90 times globally, this im-
plies the simple conditional probability p(Q|w) =
18/90; and indeed, ranking on p(Q|w) is equiva-
lent to ranking on PMI, since exponentiated PMI
is p(Q|w)/p(Q).) The user can also sort by local
count to see the raw most-frequent term report for
the document selection. As the user reshapes the
query box, or drags it around the space, the terms
in panel (C) are updated.

Not shown are options to change the term fre-
quency representation. For exposition here, proba-
bilities are formulated as counts of tokens, but this
can be problematic for social media data, since a
single user might use a term a very large number
of times. The above analysis is conducted with
an indicator representation of terms per user, so
all frequencies refer to the probability that a user
uses the term at least once. However, the other ex-
amples in this paper use token-level frequencies,
which seem to work fine. It is an interesting statis-
tical analysis question how to derive a single range
of methods to work across these situations.

2.2 Term selection and KWIC views
Terms in the table (C) can be clicked and selected,
forming a term selection as a set of terms T . This
action drives several additional views:

(A) documents containing the term are high-
lighted in the document covariate display
(here, in red),

(E) examples of the term’s usage, in Keyword-in-
Context style with vertical alignment for the
query term; and

(D) other terms that frequently co-occur with T
(§2.3).

The KWIC report in (E) shows examples of term’s
usage. For example, why is the term “la” in
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Figure 4: KWIC examples of “la” usage in tweets
selected in Figure 1.

the PMI list? My initial thought was that this
was an example of “LA”, short for “Los Ange-
les”. But clicking on “la” instantly disproves this
hypothesis—Figure 4, showing the Los Angeles
sense, but also the “la la la” sense, as well as the
Spanish function word.

The KWIC alignment makes it easier to rapidly
browse examples, and think about a rough as-
sessment of their word sense or how they are
used. Figure 5 compares how the term “God”
is used by U.S. presidents Ronald Reagan and
Barack Obama, in a corpus of State of the Union
speeches, from two different displays of the tool.
The predominant usage is the invocation of “God
bless America” or similar, nearly ornamental, ex-
pressions, but Reagan also has substantive us-
ages, such as references to the role of religion
in schools. The vertical alignments of the right-
side context words makes it easy to see the “God
bless” word sense. I initially found this exam-
ple simply by browsing the covariate space, and
noticing “god” as a frequent term for Reagan,
though still occurring for other presidents; the
KWIC drilldown better illuminated these distinc-
tions, and suggests differences in political ideolo-
gies between the presidents.

In lots of exploratory text analysis work, espe-
cially in the topic modeling literature, it is com-
mon to look at word lists produced by a statistical
analysis method and think about what they might
mean. At least in my experience doing this, I’ve
often found that seeing examples of words in con-

text has disproved my initial intuitions. Hopefully,
supporting this activity in an interactive user inter-
face might make exploratory analysis more effec-
tive. Currently, the interface simply shows a sam-
ple of in-context usages from the document query-
set; it would be interesting to perform grouping
and stratified sampling based on local contextual
statistics. Summarizing local context by frequen-
cies could be done as a trie visualization (Watten-
berg and Viégas, 2008); see §5.

2.3 Term-association queries

When a term is selected, its interaction with co-
variates is shown by highlighting documents in (B)
that contain the term. This can be thought of as
another document query: instead of being spec-
ified as a region in the covariate space, is spec-
ified as a fragment of the discrete lexical space.
As illustrated in much previous work (e.g. Church
and Hanks (1990); Turney (2001, 2002)), word-to-
word PMI scores can find other terms with similar
meanings, or having interesting semantic relation-
ships, to the target term.2

This panel ranks terms u by their association
with the query term v. The simplest method is to
analyze the relative frequencies of terms in docu-
ments that contain v,

bool-tt-epmi(u, v) =
p(wi = u|v ∈ supp(di))

p(wi = u)

Here, the subscript i denotes a token position in
the entire corpus, for which there is a wordtype
wi and a document ID di. In this notation, the
covariate PMI in 2.1 would be p(wi = u|di ∈
Q)/p(wi = u). supp(di) denotes the set of terms
that occur at least once in document di.

This measure is a very simple extension of
the document covariate selection mechanism, and
easy to understand. However, it is less satisfy-
ing for longer documents, since a larger number
of occurrences of v do not lead to a stronger asso-
ciation score. A possible extension is to consider
the joint random event of selecting two tokens i
and j in the corpus, and consider if the two to-
kens being in the same document is informative
for whether the tokens are the words (u, v), i.e.

2For finding terms with similar semantic meaning, dis-
tributional similarity may be more appropriate (Turney and
Pantel, 2010); this could be interesting to incorporate into the
software.
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Figure 5: KWIC examples of “God” in speeches by Reagan versus Obama.

PMI[(wi, wj) = (u, v); di = dj ],

freq-tt-epmi(u, v) =
p(wi = u, wj = v|di = dj)

p(wi = u, wj = v)

In terms of word counts, this expression has the
form

freq-tt-epmi(u, v) =
∑

d ndundv

nunv

N2∑
d n2

d

The right-side term is a normalizing constant in-
variant to u and v. The left-side term is interesting:
it can be viewed as a similarity measure, where
the numerator is the inner product of the inverted
term-document vectors n.,u and n.,v, and the de-
nominator is the product of their `1 norms. This
is a very similar form as cosine similarity, which
is another normalized inner product, except its de-
nominator is the product of the vectors’ `2 norms.

Term-to-term associations allow a navigation of
the term space, complementing the views of terms
driven by document covariates. This part of the
tool is still at a more preliminary stage of develop-
ment. One important enhancement would be ad-
justment of the context window size allowed for
co-occurrences; the formulations above assume a
context window the size of the document. Medium
sized context windows might capture more fo-
cused topical content, especially in very long dis-
courses such as speeches; and the smallest context
windows, of size 1, should be more like colloca-
tion detection (though see §3; this is arguably bet-
ter done with significance tests, not PMI).

2.4 Pinned terms

The term PMI views of (C) and (D) are very dy-
namic, which can cause interesting terms to disap-
pear when their supporting query is changed. It is
often useful to select terms to be constantly viewed
when the document covariate queries change.

Any term can be double-clicked to be moved to
the the table of pinned terms (B). The set of terms
here does not change as the covariate query is
changed; a user can fix a set of terms and see how
their PMI scores change while looking at differ-
ent parts of the covariate space. One possible use
of term pinning is to manually build up clusters of
terms—for example, topical or synonymous term
sets—whose aggregate statistical behavior (i.e. as
a disjunctive query) may be interesting to observe.
Manually built sets of keywords are a very useful
form of text analysis; in fact, the WordSeer cor-
pus analysis tool has explicit support to help users
create them (Shrikumar, 2013).

3 Statistical term association measures

There exist many measures to measure the sta-
tistical strength of an association between a term
and a document covariate, or between two terms.
A number of methods are based on significance
testing, looking for violations of a null hypothesis
that term frequencies are independent. For collo-
cation detection, which aims to find meaningful
non-compositional lexical items through frequen-
cies of neighboring words, likelihood ratio (Dun-
ning, 1993) and chi-square tests have been used
(see review in Manning and Schütze (1999)). For
term-covariate associations, chi-square tests were

6



used by Gentzkow and Shapiro (2010) to find po-
litically loaded phrases often used by members of
one political party; this same method is often used
as a feature selection method for supervised learn-
ing (Guyon and Elisseeff, 2003).

The approach we take here is somewhat differ-
ent, being a point estimate approach, analyzing
the estimated difference (and giving poor results
when counts are small). Some related work for
topic model analysis, looking at statistical associa-
tions between words and latent topics (as opposed
to between words and observed covariates in this
work) includes Chuang et al. (2012b), whose term
saliency function measures one word’s associa-
tions against all topics; a salient term tends to have
most of its probability mass in a small set of top-
ics. The measure is a form of mutual information,3

and may be useful for our purposes here if the user
wishes to see a report of distinctive terms for a
group of several different observed covariate val-
ues at once. Blei and Lafferty (2009) ranks words
per topic by a measure inspired by TFIDF, which
like PMI downweights words that are generically
common across all topics.

Finally, hierarchical priors and regularizers can
also be used; for example, by penalizing the
log-odds parameterization of term probabilities
(Eisenstein et al., 2011; Taddy, 2013). These
methods are better in that they incorporate both
protection against small count situations, while
paying attention to effect size, as well as allow-
ing overlapping covariates and regression control
variables; but unfortunately, they are more compu-
tationally intensive, as opposed to the above mea-
sures which all work directly from sufficient count
statistics. An association measure that fulfilled all
these desiderata would be very useful. For term-
covariate analysis, Monroe et al. (2008) contains a
review of many different methods, from both po-
litical science as well as computer science; they
also propose a hierarchical prior method, and to
rank by statistical significance via the asymptotic

3This is apparent as follows, using notation from their sec-
tion 3.1:

saliency(w) = p(w)
∑

T

p(T |w) log[p(T |w)/p(T )]

=
∑

T

p(w, T ) log[p(w, T )/[p(w)p(T )]]

This might be called a “half-pointwise” mutual information:
between a specific word w and the topic random variable T .
Mutual information is

∑
w saliency(w).

standard error of the terms’ odds ratios.
Given the large amount of previous work using

the significance approach, it merits further explo-
ration for this system.

4 Phrase selection

The simplest approach to defining the terms is to
use all words (unigrams). This can be insightful,
but single words are both too coarse and too nar-
row a unit of analysis. They can be too narrow
when there are multiple ways of saying the same
thing, such as synonyms—for example, while we
have evidence about differing usages of the term
“god” in presidential rhetoric, in order to make a
claim about religious themes, we might need to
find other terms such as “creator”, “higher power”,
etc. Another problematic case is alternate names
or anaphoric references to an entity. In general,
any NLP tool that extracts interesting discrete vari-
able indicators of word meaning could be used
for mutual information and covariate exploratory
analysis—for example, a coreference system’s en-
tity ID predictions could be browsed by the system
as the term variables. (More complex concepts, of
course, would also require more UI support.)

At the same time, words can be too coarse com-
pared to the longer phrases they are contained
within, which often contain more interesting and
distinctive concepts: for example, “death tax”
and “social security” are important concepts in
U.S. politics that get missed under a unigram anal-
ysis. In fact, Sim et al. (2013)’s analysis of U.S.
politicians’ speeches found that domain experts
had a hard time understanding unigrams out-of-
context, but bigrams and trigrams worked much
better; Gentzkow and Shapiro (2010) similarly fo-
cus on partisan political phrases.

It sometimes works to simply add overlap-
ping n-grams as more terms, but sometimes odd
phrases get selected that cross constituent bound-
aries from their source sentences, and are thus not
totally meaningful. I’ve experimented with a very
strong filtering approach to phrase selection: be-
sides using all unigrams, take all n-grams up to
length 5 that have nominal part-of-speech patterns:
either the sequence consists of zero or more ad-
jectives followed by one or more noun tokens, or
all tokens were classified as names by a named
entity recognition system.4 This tends to yield

4For traditional text, the tool currently uses Stanford
CoreNLP; for Twitter, CMU ARK TweetNLP.
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Figure 6: MITEXTEXPLORER for paper titles in the ACL Anthology (Radev et al., 2009). Y-axis is venue
(conference or journal name), X-axis is year of publication. Unlike the other figures, docvar-associated
terms are sorted alphabetically.

Figure 7: MITEXTEXPLORER for the King James Bible. Y-axis is book, X-axis is chapter (truncated to
39).
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(partial) constituents, and nouns tend to be more
interesting than other content words (perhaps be-
cause they are relatively less reliant on predicate-
argument structure to express their semantics—as
opposed to adjectives or verbs, say—and a bag-of-
terms analysis does not allow expression of argu-
ment structure.) However, for many corpora, POS
or NER taggers work poorly—for example, I’ve
seen paper titles from the ACL Anthology have
capitalized prepositions tagged as names—so sim-
pler stopword heuristics are necessary.

The phrase selection approach could be im-
proved in many ways; for example, a real noun
phrase recognizer could get important (NP PP)
constructs like “war on terror.” Furthermore,
Chuang et al. (2012a) find that while these sorts
of syntactic features are helpful in choosing useful
keyphrases to summarize of scientific abstracts,
it is also very useful to add in collocation de-
tection scores. Similarly to the PMI calculations
used here, likelihood ratio or chi-square collo-
cation detection statistics are also very rapid to
compute and may benefit from interactive adjust-
ment of decision thresholds. More generally, any
type of lexicalized linguistic structures could po-
tentially be used, such as dependency paths or
constituents from a syntactic parser, or predicate-
argument structures from a semantic parser. Lin-
guistic structures extracted from more sophisti-
cated NLP tools may indeed be better-generalized
units of linguistic meaning compared to words and
phrases, but they will still bear the same high-
dimensionality issues for data analysis purposes.

5 Related work: Exploratory text
analysis

Many systems and techniques have been devel-
oped for interactive text analysis. Two such sys-
tems, WordSeer and Jigsaw, have been under de-
velopment for several years, each having had a se-
ries of user experiments and feedback. Recent and
interesting review papers and theses are available
for both of them.

The WordSeer system (Shrikumar, 2013)5 con-
tains many different interactive text visualization
tools, including syntax-based search, and was ini-
tially designed for the needs of text analysis in
the humanities; the WordSeer 3.0 system includes
a word frequency analysis component that can
compare word frequencies along document covari-

5http://wordseer.berkeley.edu/

ates. Interestingly, Shrikumar found in user stud-
ies with literary experts that data comparisons and
annotation/note-taking support were very impor-
tant capabilities to add to the system. Unique to
the work in this paper is the emphasis on condi-
tioning on document covariates to analyze rela-
tive word frequencies, and encouraging the user to
change the statistical parameters that govern text
correlation measurements. (The term pinning and
term-to-term association techniques are certainly
less developed than previous work.)

Another text analysis system is Jigsaw (Görg
et al., 2013),6 originally developed for investiga-
tive analysis (as in law enforcement or intelli-
gence), which again has many features. It empha-
sizes visualizations based on entity extractions,
such as for names, places, and dates. Görg et al.
note that errors in entity extraction were a major
problem for users; this might be a worthwhile ar-
gument to focus on getting something to first work
with simple words/phrases before tackling more
complex units of meaning. A section of the review
paper is entitled “Reading the documents still mat-
ters”, pointing out that analysts did not want just to
visualize high-level relationships, but also wanted
to read documents in context; this capability was
added to later versions of Jigsaw, and supports the
emphasis here on the KWIC display.

Both these systems also use variants of Watten-
berg and Viégas (2008)’s word tree visualization,
which gives a sequential word frequencies as a
tree (i.e., what computational linguists might call a
trie representation of a high-order Markov model).
The “God bless” word sense example from §2 in-
dicates that such statistical summarization of local
contextual information may be useful to integrate;
it is worth thinking how to integrate this against
the important need of document covariate analy-
sis, while being efficient with the use of space.

Many other systems, especially ones designed
for literary content analysis, emphasize concor-
dances and keyword searches within a text; for
example, Voyeur/Voyant (Rockwell et al., 2010),7

which also features some document covariate
analysis through temporal trend analyses for indi-
vidual terms. Another class of approaches empha-
sizes the use of document clustering or topic mod-
els (Gardner et al., 2010; Newman et al., 2010;

6http://www.cc.gatech.edu/gvu/ii/
jigsaw/

7http://voyant-tools.org/,
http://hermeneuti.ca/voyeur

9



Grimmer and King, 2011; Chaney and Blei, 2013),
while Overview8 emphasizes hierarchical docu-
ment clustering paired with manual tagging.

Finally, considerable research has examined
exploratory visual interfaces for information re-
trieval, in which a user specifies an information
need in order to find relevant documents or pas-
sages from a corpus (Hearst (2009), Ch. 10). In-
formation retrieval problems have some similari-
ties to text-as-data analysis in the need for an ex-
ploratory process of iterative refinement, but the
text-as-data perspective differs in that it requires
an analyst to understand content and contextual
factors across multiple or many documents.

6 Future work

The current MITEXTEXPLORER system is an ex-
tremely simple prototype to explore what sorts of
“bare words” text-and-covariates analyses are pos-
sible. Several major changes will be necessary for
more serious use.

First, essential basic capabilities must be added,
such as a search box the user can use to search and
filter the term list.

Second, the document covariate display needs
to support more than just scatterplots. When there
are hundreds or more documents, summarization
is necessary in the form of histograms, kernel den-
sity plots, or other tools. For example, for a large
corpus of documents over time, a lineplot or tem-
poral histogram is more appropriate, where each
timestep has a document count. The ACL An-
thology scatterplot (Figure 6, Radev et al. (2009)),
which has hundreds of overplotted points at each
(year,venue) position, makes clear the limitations
of the current approach.

Better visual feedback for term selections here
could be useful—for example, sizing document
points monotonically with the term’s frequency
(rather than just presence/absence), or using
stacked line plots—though certain visual depic-
tions of frequency may be difficult given the Zip-
fian distribution of word frequencies.

Furthermore, document structures may be
thought of as document covariates. A single book
has interesting internal variation that could be an-
alyzed itself. Figure 7 shows the King James
Bible, which has a hierarchical structure of book,
chapter, and verse. Here, the (y,x) coordinates

8https://www.overviewproject.org/ http:
//overview.ap.org/

represent books and chapters. A more special-
ized display for book-level structures, or other dis-
course structures, may be appropriate for book-
length texts.

Finally, a major goal of this work is to use anal-
ysis methods that can be computed on the fly,
but the current prototype only works with small
datasets. Hierarchical spatial indexing techniques
(e.g. r-trees), may make it possible to interactively
compute sums for covariate PMI scoring over very
large numbers of documents. Text indexing is
also important for term-driven queries and KWIC
views. Techniques from ad-hoc data querying sys-
tems may be necessary for further scale (e.g. Mel-
nik et al. (2010)).

Many other directions are possible. The proto-
type tool, as described in §2, will be available as
open-source software at: http://brenocon.
com/MiTextExplorer. It is a desktop appli-
cation written in Java.
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Abstract

We present an interactive text to 3D scene
generation system that learns the expected
spatial layout of objects from data. A user
provides input natural language text from
which we extract explicit constraints on
the objects that should appear in the scene.
Given these explicit constraints, the sys-
tem then uses prior observations of spa-
tial arrangements in a database of scenes
to infer the most likely layout of the ob-
jects in the scene. Through further user
interaction, the system gradually adjusts
and improves its estimates of where ob-
jects should be placed. We present exam-
ple generated scenes and user interaction
scenarios.

1 Introduction

People possess the power of visual imagination
that allows them to turn descriptions of scenes into
imagery. The conceptual simplicity of generating
pictures from descriptions has spurred the desire
to make systems capable of this task. However, re-
search into computational systems for creating im-
agery from textual descriptions has seen only lim-
ited success.
Most current 3D scene design systems require

the user to learn complex manipulation interfaces
through which objects are constructed and pre-
cisely positioned within scenes. However, arrang-
ing objects in scenes can much more easily be
achieved using natural language. For instance, it
is much easier to say “Put a cup on the table’,
rather than having to search for a 3D model of a
cup, insert it into the scene, scale it to the correct
size, orient it, and position it on a table ensuring
it maintains contact with the table. By making
3D scene design more accessible to novice users
we empower a broader demographic to create 3D

scenes for use cases such as interior design, virtual
storyboarding and personalized augmented reality.
Unfortunately, several key technical challenges

restrict our ability to create text to 3D scene sys-
tems. Natural language is difficult to map to for-
mal representations of spatial knowledge and con-
straints. Furthermore, language rarely mentions
common sense facts about the world, that contain
critically important spatial knowledge. For exam-
ple, people do not usually mention the presence of
the ground or that most objects are supported by it.
As a consequence, spatial knowledge is severely
lacking in current computational systems.
Pioneering work in mapping text to 3D scene

representations has taken two approaches to ad-
dress these challenges. First, by restricting the dis-
course domain to a micro-world with simple geo-
metric shapes, the SHRDLU system demonstrated
parsing of natural language input for manipulating
the scene, and learning of procedural knowledge
through interaction (Winograd, 1972). However,
generalization to scenes with more complex ob-
jects and spatial relations is very hard to attain.
More recently, the WordsEye system has fo-

cused on the general text to 3D scene generation
task (Coyne and Sproat, 2001), allowing a user
to generate a 3D scene directly from a textual de-
scription of the objects present, their properties and
their spatial arrangement. The authors of Words-
Eye demonstrated the promise of text to scene gen-
eration systems but also pointed out some funda-
mental issues which restrict the success of their
system: a lot of spatial knowledge is required
which is hard to obtain. As a result, the user has to
use unnatural language (e.g. “the stool is 1 feet to
the south of the table”) to express their intent.
For a text to scene system to understand more

natural text, it must be able to infer implicit in-
formation not explicitly stated in the text. For in-
stance, given the sentence “there is an office with
a red chair”, the system should be able to infer
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that the office also has a desk in front of the chair.
This sort of inference requires a source of prior
spatial knowledge. We propose learning this spa-
tial knowledge from existing 3D scene data. How-
ever, since the number of available scenes is small,
it is difficult to have broad coverage. Therefore,
we also rely on user interaction to augment and
grow the spatial knowledge. Luckily, user inter-
action is also natural for scene design since it is an
inherently interactive process where user input is
needed for refinement.
Our contributions address the fundamental chal-

lenges of establishing and interactively expanding
a spatial knowledge base. We build on prior work
in data-driven scene synthesis (Fisher et al., 2012)
to automatically extract general spatial knowledge
from data: knowledge of what objects occur in
scenes, and their expected spatial relations. Our
system then uses this knowledge to generate scenes
from natural text inferring implicit constraints. It
then leverages user interaction to allow refinement
of the scene, and improve the spatial knowledge
base. We demonstrate that user interaction is criti-
cal in expanding and improving spatial knowledge
learned from data.

2 Background

A key insight for enabling text to scene generation
is that linguistic and non-linguistic spatial knowl-
edge is critical for this task and can be learned di-
rectly from data representing the physical world
and from interactions of people with such data.
User feedback allows us to interactively update
spatial knowledge, an idea that we illustrate here
in the domain of spatial relations. Early work on
the PUT system (Clay andWilhelms, 1996) and the
SHRDLU system (Winograd, 1972) gives a good
formalization of the interactive linguistic manipu-
lation of objects in 3D scenes. Recently, there has
been promising work on generating 2D clipart for
sentences using probabilistic models with place-
ment priors learned from data (Zitnick et al., 2013).

2.1 Text to Scene Systems

Prior work on text to 3D scene generation has re-
sulted in systems such as WordsEye (Coyne and
Sproat, 2001) and other similar approaches (Sev-
ersky and Yin, 2006). These systems are typi-
cally not designed to be fully interactive and do not
leverage user interaction to improve their results.
Furthermore, they mostly rely on manual annota-

tion of 3Dmodels and on hand crafted rules to map
text to object placement decisions, which makes
them hard to extend and generalize. More re-
cent work has used crowdsourcing platforms, such
as Amazon Mechanical Turk, to collect necessary
annotations (Coyne et al., 2012). However, this
data collection is treated as a separate pre-process
and the user still has no influence on the system’s
knowledge base. We address one part of this is-
sue: learning simple spatial knowledge from data
and interactively updating it through user feed-
back. We also infer unstated implicit constraints
thus allowing for more natural text input.

2.2 Automatic Scene Layout
Prior work on scene layout has focused largely on
room interiors and determining good furniture lay-
outs by optimizing energy functions that capture
the quality of a proposed layout. These energy
functions are encoded from interior design guide-
lines (Merrell et al., 2011) or learned from input
scene data (Fisher et al., 2012). Knowledge of ob-
ject co-occurrences and spatial relations is repre-
sented by simple models such as mixtures of Gaus-
sians on pairwise object positions and orientations.
Methods to learn scene structure have been demon-
strated using various data sources including sim-
ulation of human agents in 3D scenes (Jiang et
al., 2012; Jiang and Saxena, 2013), and analysis
of supporting contact points in scanned environ-
ments (Rosman and Ramamoorthy, 2011).
However, prior work has not explored methods

for enabling users of scene generation algorithms
to interactively refine and improve an underlying
spatial knowledge model – a capability which is
critically important. Our work focuses on demon-
strating an interactive system which allows a user
to manipulate and refine such spatial knowledge.
Such a system is useful regardless of the algorithm
used to get the input spatial knowledge.

2.3 Interactive Learning
In many tasks, user interaction can provide feed-
back to an automated system and guide it towards
a desired goal. There is much prior work in various
domains including interactive systems for refin-
ing image search algorithms (Fogarty et al., 2008)
and for manipulating social network group cre-
ation (Amershi et al., 2012). We focus on the do-
main of text to 3D scene generation where despite
the success of data-driven methods there has been
little work on interactive learning systems.
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3 Approach Overview

What should an interactive text to scene system
look like from the perspective of a user? The user
should be able to provide a brief scene description
in natural language as input. The system parses
this text to a set of explicitly provided constraints
on what objects should be present, and how they
are arranged. This set of constraints should be au-
tomatically expanded by using prior knowledge so
that “common sense” facts are reflected in the gen-
eral scene – an example is the static support hier-
archy for objects in the scene (i.e. plate goes on
table, table goes on ground). The system gener-
ates a candidate scene and then the user is free to
interact with it by direct control or through textual
commands. The system can then leverage user in-
teraction to update its spatial knowledge and inte-
grate newly learned constraints or relations. The
final output is a 3D scene that can be viewed from
any position and rendered by a graphics engine. In
this paper we select an initial viewpoint such that
objects are in the frame and view-based spatial re-
lations are satisfied.
How might we create such a system? Spatial

knowledge is critical for this task. We need it to
understand spatial language, to plausibly position
objects within scenes and to allow users to manip-
ulate them. We learn spatial knowledge from ex-
ample scene data to ensure that our approach can
be generalized to different scenarios. We also learn
from user interaction to refine and expand existing
spatial knowledge. In §5 we describe the spatial
knowledge used by our system.
We define our problem as the task of taking text

describing a scene as input, and generating a plau-
sible 3D scene described by that text as output.
More concretely, based on the input text, we se-
lect objects from a dataset of 3D models (§4) and
arrange them to generate output scenes. See Fig-
ure 1 for an illustration of the system architecture.
We break the system down into several subtasks:

Constraint Parsing (§6): Parse the input textual
description of a concrete scene into a set of con-
straints on the objects present and spatial relations
between them. Automatically expand this set of
constraints to account for implicit constraints not
specified in the text.

SceneGeneration (§7): Using above constraints
and prior knowledge on the spatial arrangement of
objects, construct a scene template. Next, sample

Objects:

PLATE, FORK

ON(FORK, TABLE)

ON(PLATE, TABLE)

ON(CAKE, PLATE)

“There is a piece of 

cake on a table.”

Create 

Scene

Identify 

missing 

objects

3D ModelsSpatial KB

Objects:

CAKE, TABLE

ON(CAKE, TABLE)

Identify 

objects and 

relationships

INTERACTION

CONSTRAINT

PARSING

Figure 1: Diagram illustrating the architecture of
our system.

the template and select a set of objects to be in-
stantiated. Finally, optimize the placement of the
objects to finalize the arrangement of the scene.

Interaction and Learning (§8): Provide means
for a user to interactively adjust the scene through
direct manipulation and textual commands. Use
any such interaction to update the system’s spatial
knowledge so it better captures the user’s intent.

4 Object Knowledge from 3D Models

To generate scenes we need to have a collection
of 3D models for representing physical objects.
We use a 3D model dataset collected from Google
3D Warehouse by prior work in scene synthe-
sis and containing about 12490 mostly indoor ob-
jects (Fisher et al., 2012). These models have text
associated with them in the form of names and
tags. In addition, we semi-automatically annotated
models with object category labels (roughly 270
classes). We used model tags to set these labels,
and verified and augmented them manually.
In addition, we automatically rescale models so

that they have physically plausible sizes and orient
them so that they have a consistent up and front
direction (Savva et al., 2014). Due to the num-
ber of models in the database, not all models were
rescaled and re-oriented. We then indexed all mod-
els in a database that we query at run-time for re-
trieval based on category and tag labels.

5 Spatial Knowledge

Here we describe how we learn spatial knowledge
from existing scene data. We base our approach
on that of (Fisher et al., 2012) and use their dataset
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of 133 small indoor scenes created with 1723 3D
Warehouse models. Relative object-to-object po-
sition and orientation priors can also be learned
from the scene data but we have not yet incorpo-
rated them in the results for this paper.

5.1 Support Hierarchy
We observe the static support relations of objects
in existing scenes to establish a prior over what ob-
jects go on top of what other objects. As an exam-
ple, by observing plates and forks on tables most
of the time, we establish that tables are more likely
to support plates and forks than chairs. We esti-
mate the probability of a parent category Cp sup-
porting a given child category Cc as a simple con-
ditional probability based on normalized observa-
tion counts.

Psupport(Cp|Cc) =
count(Cc on Cp)

count(Cc)

5.2 Supporting surfaces
To identify which surfaces on parent objects sup-
port child objects, we first segment parent models
into planar surfaces using a simple region-growing
algorithm based on (Kalvin and Taylor, 1996). We
characterize support surfaces by the direction of
their normal vector limited to the six canonical di-
rections: up, down, left, right, front, back. We then
learn a probability of supporting surface normal
direction Sn given child object category Cc. For
example, posters are typically found on walls so
their support normal vectors are in the horizontal
directions. Any unobserved child categories are
assumed to have Psurf (Sn = up|Cc) = 1 since
most things rest on a horizontal surface (e.g. floor).

Psurf (Sn|Cc) =
count(Cc on surface with Sn)

count(Cc)

5.3 Spatial Relations
For spatial relations we use a set of predefined re-
lations: left, right, above, below, front, back, on
top of, next to, near, inside, and outside. These
are measured using axis-aligned bounding boxes
from the viewer’s perspective. More concretely,
the bounding boxes of the two objects involved in
a spatial relation are compared to determine vol-
ume overlap or closest distance (for proximity re-
lations). Table 1 gives a few examples of the defi-
nitions of these spatial relations.
Since these spatial relations are resolvedwith re-

spect to the current view of the scene, they corre-
spond to view-centric definitions of these spatial

Relation P (relation)

inside(A,B) V ol(A∩B)
V ol(A)

outside(A,B) 1 - V ol(A∩B)
V ol(A)

left(A,B) V ol(A∩ left (B))
V ol(A)

right(A,B) V ol(A∩ right (B))
V ol(A)

near(A,B) 1(dist(A,B) < tnear)

Table 1: Definitions of spatial relation using object
bounding box computations. Note that dist(A,B)
is normalized with respect to the maximum extent
of the bounding box of B.

concepts. An interesting line of future work would
be to explore when ego-centric and object-centric
spatial reference models are more likely in a given
utterance, and resolve the spatial term accordingly.

6 Constraint Parsing

During constraint parsing we take the input text
and identify the objects and the relations between
them. For each object, we also identify proper-
ties associated with it such as category label, ba-
sic attributes such as color and material, and num-
ber of occurrences in the scene. Based on the ob-
ject category and attributes, and other words in
the noun phrase mentioning the object, we iden-
tify a set of associated keywords to be used later
for querying the 3D model database. Spatial re-
lations between objects are extracted as predicates
of the form on(A,B) or left(A,B) where A and B are
recognized objects.
As an example, given the input “There is a

room with a desk and a red chair. The chair is
to the left of the desk.” we extract the following
objects and spatial relations:

Objects:
index category attributes keywords
0 room room
1 desk desk
2 chair color:red chair, red

Relations: left(chair, desk)

The input text is processed using the Stanford
CoreNLP pipeline1. We use the Stanford corefer-
ence system to determine when the same object is
being referred to. To identify objects, we look for
noun phrases and use the head word as the cate-
gory, filtering with WordNet (Miller, 1995) to de-
termine which objects are visualizable (under the

1http://nlp.stanford.edu/software/corenlp.shtml
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Dependency Pattern Example Text

tag:VBN=verb >nsubjpass =nsubj >prep (=prep >pobj =pobj) The chair[nsubj] is made[verb] of[prep] wood[pobj]

tag:VB=verb >dobj =dobj >prep (=prep >pobj =pobj) Put[verb] the cup[dobj] on[prep] the table[pobj]

Table 2: Example dependency patterns for extracting spatial relations.

Figure 2: Generated scene for “There is a room
with a desk and a lamp. There is a chair to the
right of the desk.” The inferred scene hierarchy is
overlayed in the center.

physical object synset, excluding locations). To
identify properties of the objects, we extract other
adjectives and nouns in the noun phrase. We also
match dependency patterns such as “X is made of
Y” to extract more attributes and keywords. Fi-
nally, we use dependency patterns to extract spa-
tial relations between objects (see Table 2 for some
example patterns).
We used a fairly simple deterministic approach

to map text to the scene template and user actions
on the scene. An interesting avenue for future re-
search is to automatically learn how to map text
using more advanced semantic parsing methods.

7 Scene Generation

During scene generation we aim to find the most
likely scene given the input utterance, and prior
knowledge. Once we have determined from the
input text what objects exist and their spatial re-

Figure 3: Generated scene for “There is a room
with a poster bed and a poster.”

Figure 4: Generated scene for “There is a room
with a table and a sandwich.” Note that the plate is
not explicitly stated, but is inferred by the system.

lations in the scene, we select 3D models match-
ing the objects and their associated properties. We
sample the support hierarchy prior Psupport to ob-
tain the support hierarchy for the scene.
We then initialize the positions of objects within

the scene by traversing the support hierarchy in
depth-first order, positioning the largest available
child node and recursing. Child nodes are posi-
tioned by selecting a supporting surface on a can-
didate parent object through sampling ofPsurf and
ensuring no collisions exist with other objects. If
there are any spatial constraints that are not satis-
fied, we remove and randomly reposition the ob-
jects violating the constraints, and iterate to im-
prove the layout. The resulting scene is rendered
and presented to the user.
Figure 2 shows a rendering of a generated scene

along with the support hierarchy and input text.
Even though the spatial relation between lamp and
desk was not mentioned explicitly, we infer that
the lamp is supported by the top surface of the
desk. In Figure 3 we show another example of
a generated scene for the input “There is a room
with a poster bed and a poster”. Note that the sys-
tem differentiates between a “poster” and a “poster
bed” – it correctly selects and places the bed on the
floor, while the poster is placed on the wall.
Figure 4 shows an example of inferring missing

objects. Even though the plate was not explicitly
mentioned in the input, we infer that the sandwich
is more likely to be supported by a plate rather than
directly placed on the table. Without this infer-
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Figure 5: Left: chair is selected using “the chair to
the right of the table” or “the object to the right of
the table”. Chair is not selected for “the cup to the
right of the table”. Right: Different view results
in different chair being selected for the input “the
chair to the right of the table”.

ence, the user would need to bemuchmore verbose
with text such as “There is a room with a table, a
plate and a sandwich. The sandwich is on the plate,
and the plate is on the table.”

8 Interactive System

Once a scene is generated, the user can view the
scene and manipulate it using both simple action
phrases and mouse interaction. The system sup-
ports traditional 3D scene interaction mechanisms
such as navigating the viewpoint with mouse and
keyboard, selection and movement of object mod-
els by clicking. In addition, a user can give simple
textual commands to select and modify objects, or
to refine the scene. For example, a user can re-
quest to “remove the chair” or “put a pot on the
table” which requires the system to resolve refer-
ents to objects in the scene (see §8.1). The system
tracks user interactions throughout this process and
can adjust its spatial knowledge accordingly. In
the following sections, we give some examples of
how the user can interact with the system and how
the system learns from this interaction.

8.1 View centric spatial relations
During interaction, the user can refer to objects
with their categories and with spatial relations be-
tween them. Objects are disambiguated by both
category and view-centric spatial relations. We use
the WordNet hierarchy to resolve hyponym or hy-
pernym referents to objects in the scene. In the left
screenshot in Figure 5, the user can select a chair
to the right of the table using the phrase “chair to
the right of the table” or “object to the right of the
table”. The user can then change their viewpoint
by rotating and moving around. Since spatial rela-
tions are resolved with respect to the current view-
point, we see that a different chair is selected for

Figure 6: Left: initial scene. Right: after input
“Put a lamp on the table”.

the same phrase from the different viewpoint in the
right screenshot.

8.2 Scene Editing with Text
By using simple textual commands the user can
edit the scene. For example, given the initial scene
on the left in Figure 6, the user can then issue the
command “put a lamp on the table” which results
in the scene on the right. The system currently al-
lows for adding objects to new positions and re-
moving existing objects. Currently, repositioning
of objects is performed only with direct control,
but in the future we also plan to support reposi-
tioning of objects by using textual commands.

8.3 Learning Support Hierarchy
After a user requests that a lamp be placed on a ta-
ble, the system updates its prior on the likelihood
of a lamp being supported by a table. Based on
prior observations the likelihood of lamps being
placed on tables was very low (4%) since very few
lamps were observed on tables in the scene dataset.
However, after the user interaction, we recompute
the prior including the scene that the user has cre-
ated and the probability of lamp on table increases
to 12% (see Figure 7).

8.4 Learning Object Names
Often, objects or parts may not have associated la-
bels that the user would use to refer to the objects.
In those cases, the system can inform the user that
it cannot resolve a given name, and the user can
then select the object or part of the object they were
referring to and annotate it with a label. For in-
stance, in Figure 8, the user annotated the differ-
ent parts of the room as “floor”, “wall”, “window”,
and “door”. Before annotation, the system did not
know any labels for these parts of the room. After
annotation, the user can select these parts using the
associated names. In addition, the system updates
its spatial knowledge base and can now predict that
the probability of a poster being placed on a wall
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Figure 7: Probability of supporting parent categories for lamps before and after the user explicitly requests
a lamp on a table.

Figure 8: The user clicks and selects parts of the scene, annotating them as “floor”, “wall”, “window”,
“door”. After annotation, the user can also refer to these parts with the associated names. The system
spatial knowledge base is updated accordingly.

is 40%, and that the probability of a table being
placed on the floor is 23%. Note that these prob-
abilities are based on multiple observations of the
annotated room. Accumulating annotations such
as these and propagating labels to new models is
an effective way to expand spatial knowledge.

9 Future Work

We described a preliminary interactive text to 3D
scene generation system that can learn from prior
data and user interaction. We hope to improve
the system by incorporating more feedback mech-
anisms for the user, and the learning algorithm.
If the user requests a particular object be se-

lected but the system gets the referent wrong, the
user could then indicate the error and provide a cor-
rection. We can then use this feedback as a source
of training data to improve the interpretation of text
to the desired user action. For example, if the user
asks to “select the red bowl” and the system could

not resolve “red bowl” to the correct object, the
user could intervene by clicking on the correct ref-
erent object. Simple interactions such as this are
incredibly powerful for providing additional data
for learning. Though we did not focus on this as-
pect, a dialogue-based interaction pattern is natural
for our system. The user can converse with the sys-
tem to iteratively refine the scene and the system
can ask for clarifications at any point – when and
how the system should inquire for more informa-
tion is interesting future research.

To evaluate whether the generated scenes are
satisfactory, we can ask people to rate them against
input text descriptions. We can also study usage
of the system in concrete tasks to see how often
users need to provide corrections and manually
manipulate the scene. A useful baseline to com-
pare against would be a traditional scenemanipula-
tion system. By doing these studies at a large scale,
for instance by making the interface available on

20



the web, we can crowdsource the accumulation of
user interactions and gathering of spatial knowl-
edge. Simultaneously, running formal user stud-
ies to better understand preference for text-based
versus direct interactions during different actions
would be very beneficial for more informed design
of text-to-scene generation systems.

10 Conclusion

We have demonstrated the usefulness of an inter-
active text to 3D scene generation system. Spatial
knowledge is essential for text to 3D scene gener-
ation. While it is possible to learn spatial knowl-
edge purely from data, it is hard to have complete
coverage of all possible scenarios. Interaction and
user feedback is a good way to improve coverage
and to refine spatial knowledge. In addition, in-
teraction is a natural mode of user involvement in
scene generation and creative tasks.
Little prior work has addressed the need for in-

teraction or the need for recovering implicit spatial
constraints. We propose that the resolution of un-
mentioned spatial constraints, and leveraging user
interaction to acquire spatial knowledge are criti-
cal for enabling natural text to scene generation.
User interaction is essential for text to scene

generation since the process is fundamentally
under-constrained. Most natural textual descrip-
tions of scenes will not mention many visual as-
pects of a physical scene. However, it is still pos-
sible to automatically generate a plausible starting
scene for refinement.
Our work focused on showing that user interac-

tion is both natural and useful for a text to scene
generation system. Furthermore, refining spatial
knowledge through interaction is a promising way
of acquiring more implicit knowledge. Finally,
any practically useful text to scene generation will
by necessity involve interaction with users who
have particular goals and tasks in mind.
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Abstract

The wordcloud is a ubiquitous visualiza-
tion of human language, though it falls
short when used for exploratory data anal-
ysis. To address some of these shortcom-
ings, we give the viewer explicit control
over the creation of the wordcloud, allow-
ing them to interact with it in real time–
a dynamic wordcloud. This allows itera-
tive adaptation of the visualization to the
data and inference task at hand. We next
present a principled approach to visualiza-
tion which highlights the similarities and
differences between two sets of documents
– a Venncloud. We make all the visual-
ization code (primarily JavaScript) freely
available.

1 Introduction

A cornerstone of exploratory data analysis is visu-
alization. Tremendous academic effort and engi-
neering expertise has created and refined a myriad
of visualizations available to the data explorer, yet
there still exists a paucity of options for visualizing
language data. While visualizing human language
is a broad subject, we apply Polya’s dictum, and
examine a pair of simpler questions for which we
still lack an answer:

• (1) what is in this corpus of documents?

• (2) what is the relationship between these
two corpora of documents?

We assert that addressing these two questions is
a step towards creating visualizations of human
language more suitable for exploratory data anal-
ysis. In order to create a meaningful visualiza-
tion, one must understand the inference question
the visualization is meant to inform (i.e., the rea-
son for which (1) is being asked), so the appro-
priate aspects of the data can be highlighted with

the aesthetics of the visualization. Different infer-
ence questions require different aspects to be high-
lighted, so we aim to create a maximally-flexible,
yet simple and intuitive method to enable a user
to explore the relevant aspects of their data, and
adapt the visualization to their task at hand.

The primary contributions of this paper are:

• A visualization of language data tailored for
exploratory data analysis, designed to exam-
ine a single corpus (the dynamic wordcloud)
and to compare two corpora (the Venncloud);

• The framing and analysis of the problem in
terms of the existing psychophysical litera-
ture;

• Distributable JavaScript code, designed to be
simple to use, adapt, and extend.

We base our visualizations on the wordcloud,
which we deconstruct and analyze in §3 and §4.
We then discuss the literature on wordclouds and
relevant psychophysical findings in §5, taking
guidance from the practical and theoretical foun-
dations explored there. We then draw heavily on
similarities to more common and well understood
visualizations to create a more useful version of
the wordcloud. Question (1) is addressed in §7,
and with only a small further expansion described
in §8, an approach to (2) becomes evident.

2 Motivating Inference Tasks

Exploratory data analysis on human language en-
compasses a diverse set of language and infer-
ence tasks, so we select the following subset for
their variety. One task in line with question (1)
is getting the general subject of a corpus, high-
lighting content-bearing words. One might want
to examine a collection of social media missives,
too numerous to read individually, perhaps to de-
tect emerging news (Petrovic et al., 2013). Sepa-
rately, author identification (or idiolect analysis)
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attempts attribution of documents (e.g., Shake-
speare’s plays or the Federalist papers) by com-
paring the author’s writing style, focusing on
stylistic and contentless words – for a review see
(Juola, 2006). Further, some linguistic psycho-
metric analysis depends on the relative distribu-
tion of pronouns and other seemingly contentless
words (Coppersmith et al., 2014a; Chung and Pen-
nebaker, 2007).

Each of these questions involves some analy-
sis of unigram statistics, but exactly what analy-
sis differs significantly, thus no single wordcloud
can display all of them. Any static wordcloud is
a single point in a distribution of possible word-
clouds – one way of calculating statistics from the
underlying language and mapping those calcula-
tions to the visual representation. Many such com-
binations and mappings are available, and the opti-
mal wordcloud, like the optimal plot, is a function
of the data and the inference task at hand. Thus,
we enable the wordcloud viewer to adjust the rela-
tionship between the aspects of the data and the
aesthetics of the display, which allows them to
view different points in the distribution of possi-
ble wordclouds. The dynamic wordcloud was im-
plicitly called for in (Rayson and Garside, 2000)
since human expertise (specifically knowledge of
broader contexts and common sense) is needed
to separate meaningful and non-meaningful differ-
ences in wordclouds. We enable this dynamic in-
teraction between human and visualization in real-
time with a simple user interface, requiring only a
modicum more engineering than the creation of a
static wordcloud, though the depth of extra infor-
mation conveyed is significant.

3 Wordcloud Aesthetics

We refer to each visual component of the visual-
ization as an aesthetic (ala (Wickham, 2009)) –
each aesthetic can convey some information to the
viewer. For context, the aesthetics of a scatterplot
include the x and y position, color, and size of
each point. Some are best suited for ordinal data
(e.g., font size), while others for categorical data
(e.g., font color).

Ordinal data can be encoded by font size,
the most prominent and noticeable to the viewer
(Bateman et al., 2008). Likewise, the opacity
(transparency) of the word is a prominent and or-
dinal aesthetic. The order in which words are dis-
played can convey a significant amount of infor-

mation as well, but using order in this fashion gen-
erally constrains the use of x and y position.

Categorical data can be encoded by the color
of each word – both the foreground of the word
itself and the background space that surrounds it
(though that bandwidth is severely limited by hu-
man perception). Likewise for font weight (bold-
ness) and font decoration (italics and underlines).
While font face itself could encode a categorical
variable, making comparisons of all the other as-
pects across font faces is likely to be at best unin-
formative and at worst misleading.

4 Data Aspects

As the wordcloud has visual aesthetics that we can
control (§3), the data we need to model has aspects
that we want to represent with those aesthetics.
This aspect-to-aesthetic mapping is what makes a
useful and informative visualization, and needs to
be flexible enough to allow it be used for a range
of inference tasks.

For clarity, we define a word (w) as a unique
set of characters and a word token (w) as a sin-
gle usage of a word in a document. We can ob-
serve multiple word tokens (w) of the same word
(w) in a single document (d). For any document d
we represent the term frequency of w as tfd(w).
Similarly, the inverse document frequency of w
as idf(w). A combination of tf and idf is often
used to determine important words in a document
or corpus. We focus on tf and idf here, but this is
just an example of an ordinal value associated with
a word, there are many other such word-ordinal
pairings that are worth exploring (e.g., weights in
a classifier).

The dynamic range (“scaling” in (Wickham,
2009)) also needs to be considered, since the data
has a natural dynamic range – where meaningful
differences can be observed (unsurprisingly, the
definition of meaningful depends on the inference
task). Likewise, each aesthetic has a range of val-
ues for which the users can perceive and differen-
tiate (e.g., words in a font size too small are illeg-
ible, those too large prevent other words from be-
ing displayed; not all differences are perceptible).
Mapping the relevant dynamic range of the data
to the dynamic range of the visualization is at the
heart of a good visualization, but to do this algo-
rithmically for all possible inference tasks remains
a challenge. We, instead, enable the user to adjust
the dynamic range of the visualization explicitly.
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5 Prior Art

Wordclouds have a mixed history, stemming from
Jim Flanagan’s “Search Referral Zeitgeist”, used
to display aggregate information about websites
linking to his, to its adoption as a visual gim-
mick, to the paradoxical claim that ‘wordclouds
work in practice, but not in theory’ (see (Viégas
and Wattenberg, 2008) for more). A number
of wordcloud-generators exist on the web (e.g.,
(Feinberg, 2013; Davies, 2013)), though these
tend towards creating art rather than informative
visualizations. The two cited do allow the user
limited interaction with some of the visual aesthet-
ics, though not of sufficient scope or response time
for general exploratory data analysis.

Enumerating all possible inference tasks involv-
ing the visualization of natural language is impos-
sible, but the prior art does provide empirical data
for some relevant tasks. This further stresses the
importance of allowing the user to interact with
the visualization, since optimizing the visualiza-
tion a priori for all inference tasks simultaneously
is not possible, much like creating a single plot for
all numerical inference tasks is not possible.

5.1 Psychophysical Analyses

The quintessential studies on how a wordcloud
is interpreted by humans can be found in (Ri-
vadeneira et al., 2007) and (Bateman et al.,
2008). They both investigated various measures of
impression-forming and recall to determine which
aesthetics conveyed information most effectively
– font size chief among them.

Rivandeneira et al. (Rivadeneira et al., 2007)
also found that word-order was important for im-
pression forming (displaying words from most fre-
quent to least frequent was most effective here),
while displaying words alphabetically was best
when searching for a known word. They also
found that users prefer a search box when search-
ing for something specific and known, and a word-
cloud for exploratory tasks and things unknown.

Bateman et al. (Bateman et al., 2008) examined
the relative utility of other aesthetics to convey in-
formation, finding that font-weight (boldness) and
intensity (opacity) are effective, but not as good
as font-size. Aesthetics such as color, number of
characters or the area covered by the word were
less effective.

Significant research has gone in to the place-
ment of words in the wordcloud (e.g., (Seifert et

al., 2008)), though seemingly little information
can be conveyed by these layouts (Schrammel et
al., 2009). Indeed, (Rivadeneira et al., 2007) in-
dicates that words directly adjacent to the largest
word in the wordcloud had slightly worse recall
than those not-directly-adjacent – in essence, get-
ting the most important words in the center may
be counterproductive. Thus we eschew these algo-
rithms in favor of more interpretable (but perhaps
less aesthetically pleasing) linear ordered layouts.

5.2 Wordclouds as a tool

Illustrative investigations of the wordcloud as a
tool for exploratory data analysis are few, but en-
couraging.

In relation to question (1), even static word-
clouds can be useful for this task. Users per-
forming an open-ended search task preferred us-
ing a wordcloud to a search box (Sinclair and
Cardew-Hall, 2008), possibly because the word-
cloud prevented them from having to hypothesize
what might be in the collection before searching
for it. Similarly, wordclouds can be used as a
follow-up display of search results from a query
performed via a standard text search box (Knautz
et al., 2010), providing the user a crude summary
of the results. In both of these cases, a simple
static wordcloud is able to provide some useful
information to the user, though less research has
been done to determine the optimal composition
of the wordcloud. What’s more, the need for a
dynamic interactive wordcloud was made explicit
(Knautz et al., 2010), given the way the users iter-
atively refined their queries and wordclouds.

Question (2) has also been examined. One ap-
proach is to make a set of wordclouds with soft
constraints that the same word appears in roughly
the same position across multiple clouds to fa-
cilitate comparisons (Castella and Sutton, 2013).
Each of these clouds in a wordstorm visualizes a
different collection of documents (e.g., subdivi-
sions via metadata of a larger corpus).

Similarly addressing our second question, Par-
allel Tag Clouds (Collins et al., 2009) allow the
comparison of multiple sets of documents (or dif-
ferent partitions of a corpus). This investigation
provides a theoretically-justified approach to find-
ing ‘the right’ static wordcloud (for a single in-
ference task), though this does depend on some
language-specific resources (e.g., stopword lists
and stemming). Interestingly, they opt for ex-
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plicit removal of words and outliers that the user
does not wish to have displayed (an exclusion
list), rather than adjusting calculations of the en-
tire cloud to remove them in a principled and fair
manner.

5.3 Wordclouds and Metadata

Wordclouds have previously been extended to
convey additional information, though these adap-
tations have been optimized generally for artistic
purposes rather than exploratory data analysis.

Wordclouds can been used to display how lan-
guage interacts with a temporal dimension in (Du-
binko et al., 2007; Cui et al., 2010; Lee et al.,
2010). Dubinko and colleagues created a tag cloud
variant that displays trends in tag usage over time,
coupled with images that have that tag (Dubinko et
al., 2007). An information-theoretic approach to
displaying information changing in time gives rise
to a theoretically grounded approach for display-
ing pointwise tag clouds, and highlighting those
pieces that have changed significantly as com-
pared to a previous time period (Cui et al., 2010).
This can be viewed as measuring the change in
overall language usage over time. In contrast, us-
ing spark lines on each individual word or tag can
convey temporal trends for individual words (Lee
et al., 2010).

Meanwhile, combining tag clouds with geospa-
tial data yields a visualization where words can be
displayed on a map of the world in locations they
are frequently tagged in, labeling famous land-
marks, for example (Slingsby et al., 2007).

6 Desiderata

In light of the diverse inference tasks (§2) and
prior art (§5), the following desiderata emerge for
the visualization. These desiderata are explicit
choices, not all of which are ideal for all infer-
ence tasks. Thus, chief among them is the first:
flexibility to allow maximum extensions and mod-
ifications as needed.

Flexible and adjustable in real time: Any sin-
gle static wordcloud is guaranteed to be subopti-
mal for at least some inference tasks, so allowing
the user to adjust the aspect-to-aesthetic mapping
of the wordcloud in real time enables adaptation
of the visualization to the data and inference task
at hand. The statistics described in §4 are relevant
to every language collection (and most inference
tasks), yet there are a number of other ordinal val-

ues to associate a word (e.g., the weight assigned
to it by a classifier). Thus, tf and idf are meant
to be illustrative examples though the visualization
code should generalize well to others.

Though removal of the most frequent words
(stopwords) is useful in many natural language
processing tasks, there are many ways to define
which words fall under this category. Unsurpris-
ingly, the optimal selection of these words can also
depend upon the task at hand (e.g., psychiatric v.
thematic analysis as in §2), so maximum flexibility
and minimum latency are desirable.

Interpretable: An explicit legend is needed to
interpret the differences in visual aesthetics and
what these differences mean with respect to the
underlying data aspects.

Language-Agnostic: We need methods for ex-
ploratory data analysis that work well regard-
less of the language(s) being investigated. This
is crucial for multilingual corpora, yet decidedly
nontrivial. These techniques must be maximally
language-agnostic, relying on only the most rudi-
mentary understanding of the linguistic structure
of the data (e.g., spaces separate words in English,
but not in Chinese), so they can be extended to
many languages easily.

This precludes the use of a fixed set of stop
words for each language examined, since a new set
of stopwords would be required for each language
explored. Alternatively, the set of stopwords can
be dealt with automatically, either by granting the
user the ability to filter out words in the extremes
of the distributions (tf and df alike) through the
use of a weight which penalizes these ubiquitous
or too-rare words. Similarly precluded is the use
of stemming to deal with the many surface forms
of a given root word (e.g., type, typing, typed).

7 Dynamic Wordclouds

We address Question (1) and a number of our
desiderata with the addition of explicitly labeled
controls to the static wordcloud display, which al-
lows the user to control the mapping from data
aspects to the visualization aesthetics. We sup-
plement these controls with an explicit explana-
tion of how each aesthetic is affected by each
aspect, so the user can easily read the relevant
mappings, rather than trying to interpret the loca-
tion of the sliders. An example of which is that
“Larger words are those that frequently occur in
the query”, when the aspect tf is mapped to the
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aesthetic font-size (and this description is tied to
the appropriate sliders so it updates as the slid-
ers are changed). The manipulation of the visu-
alization in real time allows us to take advantage
of the human’s adept visual change-detection to
highlight and convey the differences between set-
tings (or a range of settings), even subtle ones.

The data aspects from §4 are precomputed and
mapped to the aesthetics from §3 in a JavaScript
visualization displayed in a standard web browser.
This visualization enables the user to manipulate
the aspect-to-aesthetic mapping via an intuitive
set of sliders and buttons, responsive in real time.
The sliders are roughly segmented into three cat-
egories: those that control which words are dis-
played, those that control how size is calculated,
and those that control how opacity is calculated.
The buttons control the order in which words ap-
pear.

One set of sliders controls which words are
displayed by examining the frequency and rar-
ity of the words. We define the range τFreq =
[tmin

Freq, t
max
Freq] as the range of tf values for words to

be displayed (i.e., tf(w) ∈ τFreq). The viewer is
granted a range slider to manipulate both tmin

Freq and
tmax
Freq to eliminate words from the extremes of the

distribution. Similarly for df and τRarity. Those
words that fall outside τFreq or τRarity are not dis-
played. Importantly, tf is computed from the cur-
rent corpus displayed while df is computed over a
much larger collection (in our running examples,
all the works of Shakespeare or all the tweets for
the last 6 months). Those with high df or high
tf are often stopwords, those with low tf and low
df are often rare, sometimes too rare to get good
estimates of tf or idf (e.g., names).

A second set of sliders controls the mapping be-
tween aspects and aesthetics for each individual
word. Each aesthetic has a weight for the impor-
tance of rarity (γRarity) and the importance of fre-
quency (γFreq), corresponding to the current val-
ues of their respective slider (each in the range
[0, 1]). For size, we compute a weight attributed
to each data aspect:

ωFreq(w) = (1− γFreq) + γFreqtf(w)

and similarly for Rarity.
In both cases, the aesthetic’s value is computed

via an equation similar to the following:

a(w) = ωFreq(w)ωRarity(w)γRangeb

where a(w) is either font size or opacity, and b
is some base value of the aesthetic (scaled by a
dynamic range slider, γRange) and the weights for
frequency and rarity of the word. In this manner,
the weights are multiplicative, so interactions be-
tween the variables (e.g., tf*idf ) are apparent.

Though unigram statistics are informative, see-
ing the unigrams in context is also important for
many inference tasks. To enable this, we use reser-
voir sampling (Vitter, 1985) to maintain a repre-
sentative sample of the observed occurrences of
each word in context, which the user can view by
clicking on the word in the wordcloud display.

Examples of the dynamic wordcloud in various
settings can be found in Figure 1, using a set of
tweets containing “Orioles”. The left wordcloud
has tf mapped to size, the center with idf mapped
to size, and the right with both high tf and high
idf mapped to size. We only manipulate the size
aesthetic, since the opacity aesthetic is sometimes
hard to interpret in print. To fit the wordclouds
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to the small format, various values for τFreq and
τRarity are employed, and order is varied – the
left is ordered in descending order in terms of fre-
quency, the center is ordered in descending order
in terms of rarity, and the right is in alphabetical
order.

8 Vennclouds

Question (2) – “how are these corpora related” re-
quires only a single change to the dynamic sin-
gle wordcloud described in §7. We refer to two
corpora, left and right, which we abbreviate L
and R (perhaps a set of tweets containing “Ori-
oles” for left and those containing “Nationals” for
right as in Figure 2). For the right documents, let
R = {d1, ..., dnR} so |R| = nR and let TR be the
total number of tokens in all the documents in R

TR =
∑
d∈R

|Td|

We separate the wordcloud display into three re-
gions, one devoted to words most closely associ-
ated with R, one devoted to words most closely
associated with L, and one for words that should
be associated with both. “Association” here can be
defined in a number of ways, but for the nonce we
define it as the probability of occurrence in that
corpus – essentially term frequency, normalized
by corpus length. Normalizing by length is re-
quired to prevent bias incurred when the corpora
are different sizes (TL 6= TR). Specifically, we
define the number of times w occurs in left (tf ) as

tfL(w) =
∑
di∈L

T (w, di)

and this quantity normalized by the number of to-
kens in L,

tfL(w) = tfL(w)/TL

and this quantity as it relates to the term frequency
of this w in both corpora

tfL|R(w) =
tfL(w)

tfL(w) + tfR(w)

Each word is only displayed once in the Ven-
ncloud (see Figure 2, so if a word (w) only occurs
in R, it is always present in the right region, and
likewise for L and left. If w is in both L and R,
we examine the proportion of documents in each
that w is in and use this to determine in which re-
gion it should be displayed. In order to deal with

Figure 2: Three example Vennclouds, with tweets contain-
ing “Orioles” on the left, “Nationals” on the right, and com-
mon words in the middle. From top to bottom we allow pro-
gressively larger common clouds. The large common words
make sense – both teams played a Chicago team and made
the playoffs in the time covered by these corpora.

the cases where w occurs in approximately similar
proportions of left and right documents, we have
a center region (in the center in Figure 2). We
define a threshold (τCommon) to concretely define
“approximately similar”. Specifically,

• if tfR(w) = 0, w is displayed in left.

• if tfL(w) = 0, w is displayed in right.

• if tfR(w) > 0 and tfL(w) > 0,

– if tfR|L(w) > tfL|R(w) + τCommon, w
is displayed in right.

– if tfL|R(w) > tfR|L(w) + τCommon, w
is displayed in left.

– Otherwise, w is displayed in center.

The user is given a slider to control τCommon, al-
lowing them to determine what value of “approx-
imately similar” best fits the data and their task at
hand.

9 Anecdotal Evaluation

We have not yet done a proper psychophysical
evaluation of the utility of dynamic wordclouds
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Figure 3: Screenshot of a Venncloud, with controls. The sliders are accessible from the buttons across the top, displaying as
a floating window above the wordcloud itself (replacing the current display of the legend). Also note the examples in the lower
left and right corners, accessed by clicking on a word of interest (in this case “Sox”).

and Vennclouds for various tasks as compared to
their static counterparts (and other visualizations).
In part, this is because such an evaluation requires
selection of inference tasks to be examined, pre-
cisely what we do not claim to be able to do. We
leave for future work the creation and evaluation
of a representative sample of such inference tasks.

We strongly believe that the plural of anecdote
is not data – so these anecdotes are intended as
illustrations of use, rather than some data regard-
ing utility. The dynamic wordclouds and Ven-
nclouds were used on data from across the spec-
trum, from tweets to Shakespeare and political
speeches to health-related conversations in devel-
oping nations. In Shakespeare, character and place
names can easily be highlighted with one set of
slider settings (high tf*idf ), while comparisons
of stopwords are made apparent with another (high
tf , no idf ). Emerging from the debates between
Mitt Romney and Barack Obama are the common
themes that they discuss using similar (economics)
and dissimilar language (Obama talks about the
“affordable care act” and Romney calls it “Oba-
macare”). These wordclouds were also used to do
some introspection on the output of classifiers in
sentiment analysis (Mitchell et al., 2013) and men-
tal health research (Coppersmith et al., 2014b) to
expose the linguistic signals that give rise to suc-
cessful (and unsuccessful) classification.

10 Conclusions and Future Directions

Exploratory data analysis tools for human lan-
guage data and inference tasks have long lagged
behind their numerical counterparts, and here we

investigate another step towards filling that need.
Rather than determining the optimal wordcloud,
we enable the wordcloud viewer to adapt the visu-
alization to the data and inference task at hand. We
suspect that the pendulum of control has swung
too far, and that there is a subset of the possi-
ble control configurations that produce useful and
informative wordclouds. Work is underway to
collect feedback via instrumented dynamic word-
clouds and Vennclouds as they are used for various
inference tasks to address this.

Previous research, logic, and intuition were
used to create this step, though it requires fur-
ther improvement and validation. We provide
anecdotes about the usefulness of these dynamic
wordclouds, but those anecdotes do not provide
sufficient evidence that this method is somehow
more efficient (in terms of human time) than ex-
isting methods. To make such claims, a controlled
human-factors study is required, investigating (for
a particular inference task) how this method af-
fects the job of an exploratory data analyst. In
the meantime, we hope making the code freely
available1 will better enable our fellow researchers
to perform principled exploratory data analysis of
human language content quickly and encourage a
deeper understanding of data, within and across
disciplines.
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Abstract

Latent Dirichlet Allocation (LDA) is a topic
modeling tool that automatically discovers
topics from a large collection of documents.
It is one of the most popular text analysis
tools currently in use. In practice however,
the topics discovered by LDA do not al-
ways make sense to end users. In this ex-
tended abstract, we propose an active learn-
ing framework that interactively and itera-
tively acquires user feedback to improve the
quality of learned topics. We conduct exper-
iments to demonstrate its effectiveness with
simulated user input on a benchmark dataset.

1 Introduction

Statistical topic models such as Latent Dirichlet Al-
location (LDA) (Blei et al., 2003) provide powerful
tools for uncovering hidden thematic patterns in text
and are useful for representing and summarizing the
contents of large document collections. However,
when using topic models in practice, users often face
one critical problem: topics discovered by the model
do not always make sense. A topic may contain the-
matically unrelated words. Moreover, two thematic
related words may appear in different topics. This
is mainly because the objective function optimized
by LDA may not reflect human judgments of topic
quality (Boyd-Graber et al., 2009).

Potentially, we can solve these problems by incor-
porating additional user guidance or domain knowl-
edge in topic modeling. With standard LDA how-
ever, it is impossible for users to interact with the
model and provide feedback. (Hu et al., 2011) pro-
posed an interactive topic modeling framework that
allows users to add word must-links. However, it
has several limitations. Since the vocabulary size of
a large document collection can be very large, users
may need to annotate a large number of word con-
straints for this method to be effective. Thus, this
process can be very tedious. More importantly, it

cannot handle polysemes. For example, the word
“pound” can refer to either a currency or a unit of
mass. If a user adds a must-link between “pound”
and another financial term, then he/she cannot add
a must-link between “pound” and any measurement
terms. Since word must-links are added without
context, there is no way to disambiguate them. As a
result, word constraints frequently are not as effec-
tive as document constraints.

Active learning (Settles, 2010) provides a use-
ful framework which allows users to iteratively give
feedback to the model to improve its quality. In gen-
eral, with the same amount of human labeling, ac-
tive learning often results in a better model than that
learned by an off-line method.

In this extended abstract, we propose an active
learning framework for LDA. It is based on a new
constrained topic modeling framework which is ca-
pable of handling pairwise document constraints.
We present several design choices and the pros and
cons of each choice. We also conduct simulated ex-
periments to demonstrate the effectiveness of the ap-
proach.

2 Active Learning With Constrained Topic
Modeling

In this section, we first summarize our work on con-
strained topic modeling. Then, we introduce an
active topic learning framework that employs con-
strained topic modeling.

In LDA, a document’s topic distribution ~θ is
drawn from a Dirichlet distribution with prior ~α.
A simple and commonly used Dirichlet distribution
uses a symmetric ~α prior. However, (Wallach et al.,
2009) has shown that an asymmetric Dirichlet prior
over the document-topic distributions ~θ and a sym-
metric Dirichlet prior over the topic-word distribu-
tions ~φ yield significant improvements in model per-
formance. Our constrained topic model uses asym-
metric priors to encode constraints.

To incorporate user feedback, we focus on two
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Figure 1: Diagram illustrating the topic model active learning framework.

types of document constraints. A must-link be-
tween two documents indicates that they belong to
the same topics, while a cannot-link indicates that
they belong to different topics.

Previously, we proposed a constrained LDA
framework called cLDA,1 which is capable of incor-
porating pairwise document constraints. Given pair-
wise document constraints, the topic distribution of
a document cannot be assumed to be independently
sampled. More specifically, we denote the collection
of documents as D = {d1, d2, ..., dN}. We also de-
noteMi ∈ D as the set of documents sharing must-
links with document di, and Ci ∈ D as the set of
documents sharing cannot-links with document di.
~θi is the topic distribution of di, and ~α is the global
document-topic hyper-parameter shared by all doc-
uments.

Given the documents inMi, we introduce an aux-
iliary variable ~αMi :

~αi
M = T ∗ 1

|Mi|
∑
j∈Mi

~θj , (1)

where T controls the concentration parameters. The
larger the value of T is, the closer ~θi is to the average
of ~θj’s.

Given the documents in Ci, we introduce another
auxiliary variable:

~αi
C = T ∗ arg~θi

max min
j∈Ci

KL(~θi, ~θj), (2)

whereKL(~θi, ~θj) is the KL-divergence between two
distributions ~θi and ~θj . This means we choose a vec-
tor that is maximally far away from Ci, in terms of
KL divergence to its nearest neighbor in Ci.

In such a way, we force documents sharing must-
links to have similar topic distributions while docu-
ments sharing cannot-links to have dissimilar topic
distributions. Note that it also encodes constraint as
soft preference rather than hard constraint. We use
Collapsed Gibbs Sampling for LDA inference. Dur-
ing Gibbs Sampling, instead of always drawing ~θi

1currently in submission.

from Dirichlet(~α), we draw ~θi based on the fol-
lowing distribution:

~θi ∼ Dir(η~α+ηM ~αi
M+ηC ~αiC) = Dir(~αi). (3)

Here, ηg, ηM and ηC are the weights to control the
trade-off among the three terms. In our experiment,
we choose T = 100, ηg = ηM = ηC = 1.

Our evaluation has shown that cLDA is effective
in improving topic model quality. For example, it
achieved a significant topic classification error re-
duction on the 20 Newsgroup dataset. Also, top-
ics learned by cLDA are more coherent than those
learned by standard LDA.

2.1 Active Learning with User Interaction
In this subsection, we present an active learning
framework to iteratively acquire constraints from
users. As shown in Figure 1, given a document col-
lection, the framework first runs standard LDA with
a burnin component. Since it uses a Gibbs sampler
(Griffiths and Steyvers, 2004) to infer topic samples
for each word token, it usually takes hundreds of it-
erations for the sampler to converge to a stable state.
Based on the results of the burnt-in model, the sys-
tem generates a target document and a set of anchor
documents for a user to annotate. Target document is
a document on which the active learner solicits user
feedback, and anchor documents are representatives
of a topic model’s latent topics. If a large portion of
the word tokens in a document belongs to topic i, we
say the document is an anchor document for topic i.

A user judges the content of the target and the
anchor documents and then informs the system
whether the target document is similar to any of the
anchor documents. The user interface is designed
so that the user can drag the target document near
an anchor document if she considers both to be the
same topic. Currently, one target document can be
must-linked to only one anchor document. Since
it is possbile to have multiple topics in one docu-
ment, in the future, we will allow user to add must
links between one target and mulitple anchor doc-
uments. After adding one or more must-links, the
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system automatically adds cannot-links between the
target document and the rest anchor documents.

Given this input, the system adds them to a con-
straint pool. It then uses cLDA to incorporate these
constraints and generates an updated topic model.
Based on the new topic model, the system chooses a
new target document and several new anchor docu-
ments for the user to annotate. This process contin-
ues until the user is satisfied with the resulting topic
model.

How to choose the target and anchor documents
are the key questions that we consider in the next
subsections.

2.2 Target Document Selection
A target document is defined as a document on
which the active learner solicits user feedback. We
have investigated several strategies for selecting a
target document.
Random: The active learner randomly selects a doc-
ument from the corpus. Although this strategy is
the simplest, it may not be efficient since the model
may have enough information about the document
already.
MaxEntropy: The entropy of a document d is com-
puted as Hd = −∑K

i=1 θdk log θdk, where K is the
number of topics, and θ is model’s document-topic
distribution. Therefore, the system will select a doc-
ument about which it is most confused. A uniform
θ implies that the model has no topic information
about the document and thus assigns equal probabil-
ity to all topics.
MinLikelihood: The likelihood of a document d is
computed as Ld = (

∑N
i=1

∑K
k=1 φkiθdk)/N , where

N is the number of tokens in d, and φ is model’s
topic-word distribution. Since the overall likeli-
hood of the input documents is the objective func-
tion LDA aims to maximize, using this criteria, the
system will choose a document that is most difficult
for which the current model achieves the lowest ob-
jective score.

2.3 Anchor Documents Selection
Given a target document d, the active learner then
generates one or more anchor documents based on
the target document’s topic distribution θd. It filters
out topics with trivial value in θd and extracts an an-
chor topic set Tanc which only contains topics with
non-trivial value in θd. A trivial θdi means that the
mass of ith component in θd is neglectable, which
indicates that the model rarely assign topic i to doc-
ument d. For each topic t in Tanc, the active learner
selects an anchor document who has minimum Eu-
clidean distance with an ideal anchor θ′t. In the ideal
anchor θ′t, all the components are zero except the

value of the tth component is 1. For example, if a
target document d’s θd is {0.5, 0.3, 0.03, 0.02, 0.15}
in a K = 5 topic model, the active learner would
generate Tanc = {0, 1, 4} and for each t in Tanc, an
anchor document.

However, it is possible that some topics learned
by LDA are only “background” topics which have
significant non-trivial probabilities over many doc-
uments (Song et al., 2009). Since background top-
ics are often uninteresting ones, we use a weighted
anchor topic selection method to filter them. A
weighted kth component of θ′dk for document d is
defined as follows: θ′dk = θdk/

∑D
i=0 θik. There-

fore, instead of keeping the topics with non-trivial
values, we keep those whose weighted values are
non-trivial.

3 Evaluation

In this section, we evaluate our active learning
framework. Topic models are often evaluated us-
ing perplexity on held-out test data. However, re-
cent work (Boyd-Graber et al., 2009; Chuang et al.,
2013) has shown that human judgment sometimes
is contrary to the perplexity measure. Following
(Mimno et al., 2011), we employ Topic Coherence,
a metric which was shown to be highly consistent
with human judgment, to measure a topic model’s
quality. It relies upon word co-occurrence statistics
within documents, and does not depend on external
resources or human labeling.

We followed (Basu et al., 2004) to create a Mix3
sub-dataset from the 20 Newsgroups data2, which
consists of two newsgroups with similar topics
(rec.sport.hockey, rec.sport.baseball) and one with
a distinctive topic (sci.space). We use this dataset
to evaluate the effectiveness of the proposed frame-
work.

3.1 Simulated Experiments

We first burn-in LDA for 500 iterations. Then for
each additional iteration, the active learner generates
one query which consists of one target document and
one or more anchor documents. We simulate user
feedback using the documents’ ground truth labels.
If a target document has the same label as one of
the anchor documents, we add a must-link between
them. We also add cannot-links between the target
document and the rest of the anchor documents. All
these constraints are added into a constraint pool.
We also augment the constraint pool with derived
constraints. For example, due to transitivity, if there
is a must-link between (a, b) and (b, c), then we add

2Available at http://people.csail.mit.edu/
jrennie/20Newsgroups
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Topic Words
1 writes, like, think, good, know, better, even, people, run, hit
2 space, nasa, system, gov, launch, orbit, moon, earth, access, data
3 game, play, hockey, season, league, fun, wing, cup, shot, score
1 baseball, hit, won, shot, hitter, base, pitching, cub, ball, yankee
2 space, nasa, system, gov, launch, obit, moon, earth, mission, shuttle
3 hockey, nhl, playoff, star, wing, cup, king, detroit, ranger

Table 1: Ten most probable words of each topic before (above) and after active learning (below).

a must link between (a, c). We simulate the process
for 100 iterations to acquire constraints. After that,
we keep cLDA running for 400 more iterations with
the acquired constraints until it converges.

Figure 2: Topic coherence with different number of
iterations.

Figure 2 shows the topic coherence scores for dif-
ferent target document selection strategies. This re-
sult indicates 1). MaxEntropy has the best topic co-
herence score. 2). All active learning strategies out-
perform standard LDA, and the results are statisti-
cally significant at p = 0.05. With standard LDA,
500 more iterations without any constraints does not
improve the topic coherence. However, by active
learning with cLDA for 500 iterations, the topic co-
herences are significantly improved.

Using MaxEntropy target document selection
method, we demonstrate the improvement of the
most probable topic keywords before and after ac-
tive learning. Table 1 shows that before active learn-
ing, topic 1’s most probable words are incoherent
and thus it is difficult to determine the meaning of
the topic . After active learning, in contrast, topic 1’s
most probable words become more consistent with
a “baseball” topic. This example suggests that the
active learning framework that interactively and it-
eratively acquires pairwise document constraints is
effective in improving the topic model’s quality.

4 Conclusion

We presented a novel active learning framework for
LDA that employs constrained topic modeling to
actively incorporate user feedback encoded as pair-
wise document constraints. With simulated user in-

put, our preliminary results demonstrate the effec-
tiveness of the framework on a benchmark dataset.
In the future, we will perform a formal user study
in which real users will interact with the system to
iteratively refine topic models.
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Abstract 

Facilitating vocabulary knowledge is a 

challenging aspect for language learners. 

Although current corpus-based reference 

tools provide authentic contextual clues, the 

plain text format is not conducive to fully 

illustrating some lexical phenomena. Thus, 

this paper proposes GLANCE
1

, a text 

visualization tool, to present a large amount 

of lexical phenomena using charts and graphs, 

aimed at helping language learners 

understand a word quickly and intuitively. To 

evaluate the effectiveness of the system, we 

designed interfaces to allow comparison 

between text and graphics presentation, and 

conducted a preliminary user study with ESL 

students. The results show that the visualized 

display is of greater benefit to the 

understanding of word characteristics than 

textual display. 

1 Introduction 

Vocabulary is a challenging aspect for language 

learners to master. Extended word knowledge, 

such as word polarity and position, is not widely 

available in traditional dictionaries. Thus, for 

most language learners, it is very difficult to 

have a good command of such lexical phenome-

na.  

Current linguistics software programs use 

large corpus data to advance language learning. 

The use of corpora exposes learners to authentic 

contextual clues and lets them discover patterns 

or collocations of words from contextual clues 

(Partington, 1998). However, a huge amount of 

data can be overwhelming and time-consuming 

(Yeh et al., 2007) for language learners to induce 

rules or patterns. On the other hand, some lexical 

phenomena seem unable to be comprehended 

                                                 
1
 http://glance-it.herokuapp.com/ 

fast and directly in plain text format (Koo, 2006). 

For example, in the British National Corpus 

(2007), “however” seems more negative than 

“but”. Also, compared with “but”, “however” 

appears more frequently at the beginning of a 

sentence. 

With this in mind, we proposed GLANCE
1
, a 

text visualization tool, which presents corpus 

data using charts and graphs to help language 

learners understand the lexical phenomena of a 

word quickly and intuitively. In this paper, we 

focused on five types of lexical phenomena: po-

larity, position, POS, form and discipline, which 

will be detailed in the Section 3. Given a single 

query word, the GLANCE system shows graph-

ical representations of its lexical phenomena se-

quentially within a single web page.  

Additionally we believe that the use of 

graphics also facilitates the understanding of the 

differences between two words. Taking this into 

consideration, we introduce a comparison mode 

to help learners differentiate two words at a 

glance. Allowing two word input, GLANCE 

draws the individual representative graphs for 

both words and presents these graphs in a two-

column view. The display of parallel graphs de-

picts the distinctions between the two words 

clearly. 

 

2 Related Work 

Corpus-based language learning has widened the 

perspectives in second and foreign language edu-

cation, such as vocabulary learning (Wood, 

2001). In past decades, various corpus-based ref-

erence tools have been developed. For example, 

WordSmith (Scott, 2000), Compleat Lexical Tu-

tor (Cobb, 2007), GRASP (Huang et al., 2011), 

PREFER (Chen et al, 2012). 

Recently, some interactive visualization tools 

have been developed for the purpose of illustrat-

ing various linguistic phenomena. Three exam-
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ples are Word Tree, a visual concordance (Wat-

tenberg and  i gas, 2008), WORDGRAPH, a 

visual tool for context-sensitive word choice 

(Riehmann et al., 2012) and Visual Thesaurus, a 

3D interactive reference tool (ThinkMap Inc., 

2005). 

 

3 Design of the GLANCE System 

The GLANCE system consists of several com-

ponents of corpus data visualization. We design 

and implement these visualization modules sepa-

rately to ensure all graphs are simple and clear 

enough for users to capture and understand the 

lexical phenomena quickly. 

In this paper, we use the d3.js (Data-Driven 

Documents) (Bostock et al., 2011) to visualize 

the data. The d3.js enables direct inspection and 

manipulation of a standard document object 

model (DOM) so that we are able to transform 

numeric data into various types of graphs when 

fitting these data to other visualization tools. In 

this section, we describe the ways we extract the 

data from the corpus and how we translate these 

data into informative graphs. 

 

3.1 Data Preprocessing 

We use the well-formed corpus, the BNC, to ex-

tract the data. In order to obtain the Part-of-

speech tags for each text, we use the GENIA 

tagger (Tsuruoka et al., 2005) to analyze the sen-

tences of the BNC and build a list of <POS-tag, 

frequency> pairs for each word in the BNC. Also 

the BNC contains the classification code as-

signed to the text in a genre-based analysis car-

ried out at Lancaster University by Lee (2001). 

For each word, the classification codes are ag-

gregated to a list of <code, frequency> pairs.  

  

3.2 Visualization of Lexical Phenomena  

Polarity 

A word may carry different sentiment polarities 

(i.e., positive, negative and objective). To help 

users quickly determine the proper sentiment 

polarity of a word, we introduce the sentiment 

polarity information of SentiWordNet 

(Baccianella et al., 2010) into our system. For 

each synset of a word, GLANCE displays the 

polarity in a bar with three different colors. The 

individual length of the three parts in the bar cor-

responds to the polarity scores of a synset (Fig-

ure 1). 

 

 

Figure 1. Representation of sentiment polarity  

 

Position 

The word position in a sentence is also an im-

portant lexical phenomenon. By calculating the 

word position in each sentence, we then obtain 

the location distribution. GLANCE visualizes the 

distribution information of a word using a bar 

chart. Figure 2 shows a plot of distribution of 

word position on the x-axis against the word fre-

quency on the y-axis. 

 

 

Figure 2. Distribution of word position 

 

Part Of Speech (POS) 

A lexical item may have more than one part of 

speech. Knowing the distribution of POS helps 

users quickly understand the general usage of a 

word.  

GLANCE displays a pie chart for each word 

to differentiate between its parts of speech. We 

use the maximum likelihood probability of a 

POS tag for a word as the arc length of the pie 

chart (Figure 3). 

 

 

35



Figure 3. POS representation 

 

Form 

The levels of formality of written and spoken 

language are different, which also confuse lan-

guage learners. Pie charts are used to illustrate 

the proportion of written and spoken English of 

individual words as shown in Figure 4. 

We derive the frequencies of both forms from 

the BNC classification code for each word. The 

arc length of each sector is proportional to the 

maximum likelihood probability of forms. 

 

 

Figure 4. Form representation 

 

Discipline 

Similar to language form, the discipline infor-

mation (e.g., newspaper or fiction) was gathered 

from the BNC classification code. The relations 

of the disciplines of a word are presented using a 

sunburst graph, a radial space-filling tree layout 

implemented with prefuse (Heer et al., 2005). In 

the sunburst graph (Figure 5.), each level corre-

sponds to the relation of the disciplines of a cer-

tain word. The farther the level is away from the 

center, the more specific the discipline is. Each 

level is given equal width, but the circular angle 

swept out by a discipline corresponds to the fre-

quency of the disciplines. 

 

  

Figure 5. Discipline relations 

 

4 Results 

4.1 Experimental Setting 

We performed a preliminary user study to assess 

the efficiency of our system in assisting language 

learners in grasping lexical phenomena. To ex-

amine the effectiveness of visualization, we built 

a textual interface for comparison with the 

graphical interface. 

Ten pre-intermediate ESL college students 

participated in the study. A total of six pairs of 

similar words were listed on the worksheet. After 

being introduced to GLANCE, all students were 

randomly divided into two groups. One group 

was required to consult the first three pairs using 

the graphical interface and the second three pairs 

the textual interface, and vice versa. The partici-

pants were allowed a maximum of one minute 

per pair, which meets the goal of this study of 

quickly glancing at the graphics and grasping the 

concepts of words. Then a test sheet containing 

the same six similar word pairs was used to ex-

amine the extent of students’ word understanding. 

Note that during the test, no tool supports were 

provided. The student scored one point if he gave 

the correct answers to each question. In other 

words he would be awarded 6 points (the highest 

number of points) if he provided all the correct 

answers. They also completed a questionnaire, 

described below, evaluating the system. 

 

4.2 Experimental Results 

To determine the effectiveness of visualization of 

lexical phenomena, the students’ average scores 

were used as performance indicators. Students 

achieved the average score 61.9 and 45.0 out of 

100.00 after consulting the graphic interface and 

textual interface respectively. Overall, the visual-

ized display of word characteristics outper-

formed the textual version. 

The questionnaire revealed that all the partici-

pants showed a positive attitude to visualized 

word information. Further analyses showed that 

all ten participants appreciated the position dis-

play and nine of them the polarity and form dis-

plays. In short, the graphical display of lexical 

phenomena in GLANCE results in faster assimi-

lation and understanding of word information. 

Moreover, the participants suggested several in-

teresting aspects for improving the GLANCE 

system. For example, they preferred bilingual 

environment, further information concerning an-

tonyms, more example sentences, and increased 
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detail in the sunburst representation of disci-

plines. 

 

5 Conclusion and Future Work 

In this paper, we proposed GLANCE, a text vis-

ualization tool, which provides graphical display 

of corpus data. Our goal is to assist language 

learners in glancing at the graphics and grasping 

the lexical knowledge quickly and intuitively. To 

evaluate the efficiency and effectiveness of 

GLANCE, we conducted a preliminary user 

study with ten non-native ESL learners. The re-

sults revealed that visualization format outper-

formed plain text format. 

Many avenues exist for future research and 

improvement. We attempt to expand the single 

word to phrase level. For example, the colloca-

tion behaviors are expected to be deduced and 

displayed. Moreover, we are interested in sup-

porting more lexical phenomena, such as hypo-

nyms, to provide learners with more lexical rela-

tions of the word with other words. 
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Abstract

This paper aims to provide an effective
interface for progressive refinement of
pattern-based information extraction sys-
tems. Pattern-based information extrac-
tion (IE) systems have an advantage over
machine learning based systems that pat-
terns are easy to customize to cope with
errors and are interpretable by humans.
Building a pattern-based system is usually
an iterative process of trying different pa-
rameters and thresholds to learn patterns
and entities with high precision and recall.
Since patterns are interpretable to humans,
it is possible to identify sources of errors,
such as patterns responsible for extract-
ing incorrect entities and vice-versa, and
correct them. However, it involves time
consuming manual inspection of the ex-
tracted output. We present a light-weight
tool, SPIED, to aid IE system develop-
ers in learning entities using patterns with
bootstrapping, and visualizing the learned
entities and patterns with explanations.
SPIED is the first publicly available tool to
visualize diagnostic information of multi-
ple pattern learning systems to the best of
our knowledge.

1 Introduction

Entity extraction using rules dominates commer-
cial industry, mainly because rules are effective,
interpretable by humans, and easy to customize to
cope with errors (Chiticariu et al., 2013). Rules,
which can be hand crafted or learned by a sys-
tem, are commonly created by looking at the con-
text around already known entities, such as surface
word patterns (Hearst, 1992) and dependency pat-
terns (Yangarber et al., 2000). Building a pattern-
based learning system is usually a repetitive pro-
cess, usually performed by the system developer,

of manually examining a system’s output to iden-
tify improvements or errors introduced by chang-
ing the entity or pattern extractor. Interpretabil-
ity of patterns makes it easier for humans to iden-
tify sources of errors by inspecting patterns that
extracted incorrect instances or instances that re-
sulted in learning of bad patterns. Parameters
range from window size of the context in surface
word patterns to thresholds for learning a candi-
date entity. At present, there is a lack of tools
helping a system developer to understand results
and to improve results iteratively.

Visualizing diagnostic information of a system
and contrasting it with another system can make
the iterative process easier and more efficient. For
example, consider a user trying to decide on the
context’s window size in surface words patterns.
And the user deliberates that part-of-speech (POS)
restriction of context words might be required for
a reduced window size to avoid extracting erro-
neous mentions.1 By comparing and contrasting
extractions of two systems with different parame-
ters, the user can investigate the cases in which the
POS restriction is required with smaller window
size, and whether the restriction causes the system
to miss some correct entities. In contrast, compar-
ing just accuracy of two systems does not allow
inspecting finer details of extractions that increase
or decrease accuracy and to make changes accord-
ingly.

In this paper, we present a pattern-based entity
learning and diagnostics tool, SPIED. It consists
of two components: 1. pattern-based entity learn-
ing using bootstrapping (SPIED-Learn), and 2. vi-
sualizing the output of one or two entity learning
systems (SPIED-Viz). SPIED-Viz is independent
of SPIED-Learn and can be used with any pattern-
based entity learner. For demonstration, we use
the output of SPIED-Learn as an input to SPIED-

1A shorter context size usually extracts entities with
higher recall but lower precision.
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Viz. SPIED-Viz has pattern-centric and entity-
centric views, which visualize learned patterns
and entities, respectively, and the explanations for
learning them. SPIED-Viz can also contrast two
systems by comparing the ranks of learned enti-
ties and patterns. In this paper, as a concrete ex-
ample, we learn and visualize drug-treatment (DT)
entities from unlabeled patient-generated medical
text, starting with seed dictionaries of entities for
multiple classes. The task was proposed and fur-
ther developed in Gupta and Manning (2014b)
and Gupta and Manning (2014a).

Our contributions in this paper are: 1. we
present a novel diagnostic tool for visual-
ization of output of multiple pattern-based
entity learning systems, and 2. we release the
code of an end-to-end pattern learning sys-
tem, which learns entities using patterns in a
bootstrapped system and visualizes its diag-
nostic output. The pattern learning code is
available at http://nlp.stanford.edu/
software/patternslearning.shtml.
The visualization code is available at
http://nlp.stanford.edu/software/
patternviz.shtml.

2 Learning Patterns and Entities

Bootstrapped systems have been commonly used
to learn entities (Riloff, 1996; Collins and Singer,
1999). SPIED-Learn is based on the system de-
scribed in Gupta and Manning (2014a), which
builds upon the previous bootstrapped pattern-
learning work and proposed an improved mea-
sure to score patterns (Step 3 below). It learns
entities for given classes from unlabeled text by
bootstrapping from seed dictionaries. Patterns
are learned using labeled entities, and entities are
learned based on the extractions of learned pat-
terns. The process is iteratively performed until
no more patterns or entities can be learned. The
following steps give a short summary of the itera-
tive learning of entities belonging to a class DT:

1. Data labeling: The text is labeled using the
class dictionaries, starting with the seed dic-
tionaries in the first iteration. A phrase
matching a dictionary phrase is labeled with
the dictionary’s class.

2. Pattern generation: Patterns are generated us-
ing the context around the positively labeled
entities to create candidate patterns for DT.

3. Pattern learning: Candidate patterns are
scored using a pattern scoring measure and
the top ones are added to the list of learned
patterns for DT. The maximum number of
patterns learned is given as an input to the
system by the developer.

4. Entity learning: Learned patterns for the class
are applied to the text to extract candidate en-
tities. An entity scorer ranks the candidate
entities and adds the top entities to DT’s dic-
tionary. The maximum number of entities
learned is given as an input to the system by
the developer.

5. Repeat steps 1-4 for a given number of itera-
tions.

SPIED provides an option to use any of the pat-
tern scoring measures described in (Riloff, 1996;
Thelen and Riloff, 2002; Yangarber et al., 2002;
Lin et al., 2003; Gupta and Manning, 2014b). A
pattern is scored based on the positive, negative,
and unlabeled entities it extracts. The positive and
negative labels of entities are heuristically deter-
mined by the system using the dictionaries and the
iterative entity learning process. The oracle labels
of learned entities are not available to the learning
system. Note that an entity that the system consid-
ered positive might actually be incorrect, since the
seed dictionaries can be noisy and the system can
learn incorrect entities in the previous iterations,
and vice-versa. SPIED’s entity scorer is the same
as in Gupta and Manning (2014a).

Each candidate entity is scored using weights of
the patterns that extract it and other entity scoring
measures, such as TF-IDF. Thus, learning of each
entity can be explained by the learned patterns that
extract it, and learning of each pattern can be ex-
plained by all the entities it extracts.

3 Visualizing Diagnostic Information

SPIED-Viz visualizes learned entities and patterns
from one or two entity learning systems, and the
diagnostic information associated with them. It
optionally uses the oracle labels of learned enti-
ties to color code them, and contrast their ranks
of correct/incorrect entities when comparing two
systems. The oracle labels are usually determined
by manually judging each learned entity as cor-
rect or incorrect. SPIED-Viz has two views: 1. a
pattern-centric view that visualizes patterns of one
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Figure 3: When the user click on the compare icon for an entity, the explanations of the entity extraction
for both systems (if available) are displayed. This allows direct comparison of why the two systems
learned the entity.

to two systems, and 2. an entity centric view that
mainly focuses on the entities learned. Figure 1
shows a screenshot of the entity-centric view of
SPIED-Viz. It displays following information:

Summary: A summary information of each sys-
tem at each iteration and overall. It shows
for each system the number of iterations, the
number of patterns learned, and the number
of correct and incorrect entities learned.

Learned Entities with provenance: It shows
ranked list of entities learned by each system,
along with an explanation of why the entity
was learned. The details shown include the
entity’s oracle label, its rank in the other sys-
tem, and the learned patterns that extracted
the entity. Such information can help the user
to identify and inspect the patterns responsi-
ble for learning an incorrect entity. The inter-
face also provides a link to search the entity
along with any user provided keywords (such
as domain of the problem) on Google.

System Comparison: SPIED-Viz can be used to
compare entities learned by two systems. It
marks entities that are learned by one system
but not by the other system, by either display-
ing a trophy sign (if the entity is correct), a
thumbs down sign (if the entity is incorrect),
or a star sign (if the oracle label is not pro-
vided).

The second view of SPIED-Viz is pattern-
centric. Figure 2 shows a screenshot of the pattern-
centric view. It displays the following informa-
tion.

Summary: A summary information of each sys-
tem including the number of iterations and

number of patterns learned at each iteration
and overall.

Learned Patterns with provenance: It shows
ranked list of patterns along with the entities
it extracts and their labels. Note that each pat-
tern is associated with a set of positive, neg-
ative and unlabeled entities, which were used
to determine its score.2 It also shows the per-
centage of unlabeled entities extracted by a
pattern that were eventually learned by the
system and assessed as correct by the oracle.
A smaller percentage means that the pattern
extracted many entities that were either never
learned or learned but were labeled as incor-
rect by the oracle.

Figure 3 shows an option in the entity-centric
view when hovering over an entity opens a win-
dow on the side that shows the diagnostic informa-
tion of the entity learned by the other system. This
direct comparison is to directly contrast learning
of an entity by both systems. For example, it can
help the user to inspect why an entity was learned
at an earlier rank than the other system.

An advantage of making the learning entities
component and the visualization component inde-
pendent is that a developer can use any pattern
scorer or entity scorer in the system without de-
pending on the visualization component to provide
that functionality.

2Note that positive, negative, and unlabeled labels are dif-
ferent from the oracle labels, correct and incorrect, for the
learned entities. The former refer to the entity labels consid-
ered by the system when learning the pattern, and they come
from the seed dictionaries and the learned entities. A positive
entity considered by the system can be labeled as incorrect
by the human assessor, in case the system made a mistake in
labeling data, and vice-versa.
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4 System Details

SPIED-Learn uses TokensRegex (Chang and
Manning, 2014) to create and apply surface word
patterns to text. SPIED-Viz takes details of
learned entities and patterns as input in a JSON
format. It uses Javascript, angular, and jquery to
visualize the information in a web browser.

5 Related Work

Most interactive IE systems focus on annotation
of text, labeling of entities, and manual writing
of rules. Some annotation and labeling tools are:
MITRE’s Callisto3, Knowtator4, SAPIENT (Li-
akata et al., 2009), brat5, Melita (Ciravegna et al.,
2002), and XConc Suite (Kim et al., 2008). Akbik
et al. (2013) interactively helps non-expert users
to manually write patterns over dependency trees.
GATE6 provides the JAPE language that recog-
nizes regular expressions over annotations. Other
systems focus on reducing manual effort for de-
veloping extractors (Brauer et al., 2011; Li et al.,
2011). In contrast, our tool focuses on visualizing
and comparing diagnostic information associated
with pattern learning systems.

WizIE (Li et al., 2012) is an integrated environ-
ment for annotating text and writing pattern ex-
tractors for information extraction. It also gener-
ates regular expressions around labeled mentions
and suggests patterns to users. It is most similar
to our tool as it displays an explanation of the re-
sults extracted by a pattern. However, it is focused
towards hand writing and selection of rules. In ad-
dition, it cannot be used to directly compare two
pattern learning systems.

What’s Wrong With My NLP?7 is a tool for
jointly visualizing various natural language pro-
cessing formats such as trees, graphs, and entities.
It can be used alongside our system to visualize
the patterns since we mainly focus on diagnostic
information.

6 Future Work and Conclusion

We plan to add a feature for a user to provide
the oracle label of a learned entity using the in-
terface. Currently, the oracle labels are assigned
offline. We also plan to extend SPIED to visualize

3http://callisto.mitre.org
4http://knowtator.sourceforge.net
5http://brat.nlplab.org
6http://gate.ac.uk
7https://code.google.com/p/whatswrong

diagnostic information of learned relations from a
pattern-based relation learning system. Another
avenue of future work is to evaluate SPIED-Viz
by studying its users and their interactions with
the system. In addition, we plan to improve the
visualization by summarizing the diagnostic infor-
mation, such as which parameters led to what mis-
takes, to make it easier to understand for systems
that extract large number of patterns and entities.

In conclusion, we present a novel diagnostic
tool for pattern-based entity learning that visual-
izes and compares output of one to two systems.
It is light-weight web browser based visualization.
The visualization can be used with any pattern-
based entity learner. We make the code of an end-
to-end system freely available for research pur-
pose. The system learns entities and patterns using
bootstrapping starting with seed dictionaries, and
visualizes the diagnostic output. We hope SPIED
will help other researchers and users to diagnose
errors and tune parameters in their pattern-based
entity learning system in an easy and efficient way.
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Abstract

Exploring an online conversation can be
very difficult for a user, especially when
it becomes a long complex thread. We fol-
low a human-centered design approach to
tightly integrate text mining methods with
interactive visualization techniques to sup-
port the users in fulfilling their informa-
tion needs. The resulting visual text ana-
lytic system provides multifaceted explo-
ration of asynchronous conversations. We
discuss a number of open challenges and
possible directions for further improve-
ment including the integration of interac-
tive human feedback in the text mining
loop, applying more advanced text analy-
sis methods with visualization techniques,
and evaluating the system with real users.

1 Introduction

With the rapid adoption of Web-based social me-
dia, asynchronous online conversations are be-
coming extremely common for supporting com-
munication and collaboration. An asynchronous
conversation such as a blog may start with a news
article or an editorial opinion, and later generate a
long and complex thread as comments are added
by the participants (Carenini et al., 2011). Con-
sider a scenario, where a reader opens a blog con-
versation about Obama’s healthcare policy. The
reader wants to know why people are supporting
or opposing ObamaCare. However, since some
related discussion topics like student loan and job
recession are introduced, the reader finds it hard
to keep track of the comments about ObamaCare,
which end up being buried in the long discussion.
This may lead to an information overload problem,
where the reader gets overwhelmed, starts to skip
comments, and eventually leaves the conversation
without satisfying her information needs (Jones et
al., 2004).

How can we support the user in performing this
and similar information seeking tasks? Arguably,
supporting this task requires tight integration be-
tween Natural Language Processing (NLP) and in-
formation visualization (InfoVis) techniques, but
what specific text analysis methods should be ap-
plied? What metadata of the conversation could be
useful to the user? How this data should be visual-
ized to the user? And even more importantly, how
NLP and InfoVis techniques should be effectively
integrated? Our hypothesis is that to answer these
questions effectively, we need to apply human-
centered design methodologies originally devised
for generic InfoVis (e.g., (Munzner, 2009; Sedl-
mair et al., 2012)). Starting from an analysis of
user behaviours and needs in the target conversa-
tional domain, such methods help uncover useful
task and data abstractions that can guide system
design. On the one hand, task and data abstrac-
tions can characterize the type of information that
needs to be extracted from the conversation; on the
other hand, they can inform the design of the vi-
sual encodings and interaction techniques. More
tellingly, as both the NLP and the InfoVis compo-
nents of the resulting system refer to a common set
of task and data abstractions, they are more likely
to be consistent and synergistic.

We have explored this hypothesis in developing
ConVis, a visual analytic system to support the in-
teractive analysis of blog conversations. In the first
part of the paper, we describe the development of
ConVis, from characterizing the domain of blogs,
its users, tasks and data, to designing and imple-
menting specific NLP and InfoVis techniques in-
formed by our user-centered design. In the second
part of the paper, starting from an informal evalu-
ation of Convis and a comprehensive literature re-
view, we discuss several ideas on how ConVis (and
similar systems) could be further improved and
tested. These include the integration of interac-
tive human feedback in the text mining techniques
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(which are based on Machine Learning), the cou-
pling of even more advanced NLP methods with
the InfoVis techniques, and the challenges in run-
ning evaluations of ConVis and similar interfaces.

2 Related Work

While in the last decade, NLP and InfoVis meth-
ods have been investigated to support the user in
making sense of conversational data, most of this
work has been limited in several ways.

For example, earlier works on visualizing
asynchronous conversations primarily investigated
how to reveal the thread structure of a conversation
using tree visualization techniques, such as using
a mixed-model visualization to show both chrono-
logical sequence and reply relationships (Venolia
and Neustaedter, 2003), thumbnail metaphor using
a sequence of rectangles (Wattenberg and Millen,
2003; Kerr, 2003), and radial tree layout (Pascual-
Cid and Kaltenbrunner, 2009). However, such vi-
sualizations did not focus on analysing the actual
content (i.e., the text) of the conversations, which
is something that according to our user-centred de-
sign users are very interested in.

On the other hand, text mining approaches
that perform content analysis of the conversations,
such as finding primary themes (or topics) within
conversations (Sack, 2000; Dave et al., 2004), or
visualizing the content evolution over time (Wei et
al., 2010; Viégas et al., 2006), often did not derive
their visual encodings and interactive techniques
from task and data abstractions based on a detailed
analysis of specific user needs and requirements in
the target domains.

Furthermore, more on the technical side, the
text analysis methods employed by these ap-
proaches are not designed to exploit the spe-
cific characteristics of asynchronous conversations
(e.g., use of quotation). Recently, (Joty et al.,
2013b) has shown that topic segmentation and la-
beling models are more accurate when these spe-
cific characteristics are taken into account. The
methods presented in (Joty et al., 2013b) are
adopted in ConVis.

In general, to the best of our knowledge, no
previous work has applied user-centred design to
tightly integrate text mining methods with interac-
tive visualization in the domain of asynchronous
conversations.

3 Domains and User Activities

Conversational domains: The phenomenal adop-
tion of novel Web-based social media has lead to
the rise of textual conversations in many different
modalities. While email remains a fundamental
way of communicating for most people, other con-
versational modalities such as blogs, microblogs
(e.g., Twitter) and discussion fora have quickly be-
come widely popular. Since the nature of data and
tasks may vary significantly from one domain to
the other, rather than trying to build an one-size-
fit-all interface, we follow a design methodology
that is driven by modeling the tasks and usage
characteristics in a specific domain.

In this work, we focus on blogs, where people
can express their thoughts and engage in online
discussions. Due to the large number of comments
with complex thread structure (Joty et al., 2013b),
mining and visualizing blog conversations can be-
come a challenging problem. However, the visual-
ization can be effective for other threaded discus-
sions (e.g., news stories, Youtube comments).

Users: As shown in Table 1, blog users can be
categorized into two groups based on their activ-
ities: (a) participants who already contributed to
the conversations, and (b) non-participants who
wish to join the conversations or analyze the con-
versations. Depending on different user groups the
tasks might vary as well, something that needs to
be taken into account in the design process.

For example, imagine a participant who has ex-
pressed her opinion about a major political issue.
After some time, she may become interested to
know what comments were made supporting or
opposing her opinion, and whether those com-
ments require a reply right away. On the contrary,
a non-participant, who is interested in joining the
ongoing conversation on that particular political
issue, may want to decide whether and how she
should contribute by quickly skimming through a
long thread of blog comments. Another group of
users may include the analysts, a policy maker for
instance, who does not wish to join the conversa-
tion, but may want to make an informed decision
based on a summary of arguments used to support
or oppose the political issue.

Once the conversation becomes inactive (i.e.,
no further comments are added), still a distinction
may remain between the activities of participants
and non-participants on tasks (see Table 1). In our
work, we have initially concentrated on supporting
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User
types

Ongoing conver-
sation

Inactive/past conver-
sation

Participant Already joined the
conversation (wants
to get updated and
possibly make new
comments)

Wants to delve into
the past conversations
and re-examine what
was discussed, what
she commented on,
what other people
replied, etc.

Non-
participant

Potential partici-
pant (wants to join
the conversation)
Analyst (wants to
analyze the ongo-
ing conversation,
but does not intend
to join)

Wants to analyze and
gain insight about the
past conversation.

Table 1: User categorization for asynchronous
conversation.

the non-participant’s activity on an inactive con-
versation (as opposed to an ongoing conversation).

4 Designing ConVis: From Tasks to NLP
and InfoVis Techniques

We now briefly describe our design approach for
integrating text mining techniques with interactive
visualization in ConVis. We first characterize the
domain of blogs and perform the data and tasks
abstraction according to the nested model of de-
sign study (Munzner, 2009). We then mine the
data as appeared to be essential from that data and
task analysis, followed by iteratively refining the
design of ConVis that aims to effectively support
the identified blog reading tasks (A more detailed
analysis of the task abstractions and visual design
is provided in (Hoque and Carenini, 2014)).

4.1 Tasks
To understand the blog reading tasks, we re-
viewed the literature focusing on why and how
people read blogs. From the analysis, we
found that the primary goals of reading blogs in-
clude information seeking, fact checking, guid-
ance/opinion seeking, and political surveillance
(Kaye, 2005). People may also read blogs to con-
nect to their communities of interest (Dave et al.,
2004; Mishne, 2006), or just for fun/ enjoyment
(Baumer et al., 2008; Kaye, 2005).

Some studies have also revealed interesting be-
havioural patterns of blog readers. For example,
people often look for variety of opinions and have
tendencies to switch from one topic to another
quickly (Singh et al., 2010; Munson and Resnick,

2010). In addition, they often exhibit exploratory
behaviour, i.e., they quickly skim through a few
posts about a topic before delving deeper into its
details (Zinman, 2011). Therefore, the interface
should facilitate open-ended exploration, by pro-
viding navigational cues that help the user to seek
interesting comments.

From the analyses of primary goals of blog
reading, we compile a list of tasks and the asso-
ciated data variables that one would wish to visu-
alize for these tasks. These tasks can be framed
as a set of questions, for instance, ‘what do peo-
ple say about topic X?’, ‘how other people’s view-
points differ from my current viewpoint on topic
X?’, ‘what are some interesting/funny comments
to read?’ We then identify the primary data vari-
ables involved in these tasks and their abstract
types. For instance, most of these questions in-
volve topics discussed and sentiments expressed
in the conversation. Note that some questions may
additionally require to know people-centric infor-
mation and relate such information to the visual-
ization design. We also identify a set of meta-
data to be useful cues for navigating a conversa-
tion (the position of the comments, thread struc-
ture, and comment length) (Narayan and Cheshire,
2010; Baumer et al., 2008). We choose to encode
the position of the comments (ordinal) as opposed
to their timestamps (quantitative); since the exact
timestamp of a comment is less important to users
than its chronological position with respect to the
other comments (Baumer et al., 2008).

4.2 Text Analysis

Since most of the blog reading tasks we identi-
fied involved topics and sentiments expressed in
the conversation, we applied both topic modeling
and sentiment analysis on a given conversation.

In topic modeling, we group the sentences of a
blog conversation into a number of topical clusters
and label each cluster by assigning a short infor-
mative topic descriptor (i.e., a keyphrase). To find
the topical clusters and their associated labels, we
apply the topic segmentation and labeling models
recently proposed by (Joty et al., 2013b) for asyn-
chronous conversations, and successfully evalu-
ated on email and blog datasets. More specifically,
for topic segmentation, we use their best unsu-
pervised topic segmentation model LCSeg+FQG,
which extends the generic lexical cohesion based
topic segmenter (LCSeg) (Galley et al., 2003)
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Figure 1: A snapshot of ConVis showing a blog conversation from Slashdot, where the user has hovered
the mouse over a topic element (‘major army security’) that highlights the connecting visual links, brush-
ing the related authors(right), and providing visual prominence to the related comments in the Thread
Overview (middle).

to consider a fine-grain conversational structure
of the conversation, i.e., the Fragment Quotation
Graph (FQG) (Carenini et al., 2007). The FQG
captures the reply relations between text frag-
ments, which are extracted by analyzing the actual
body of the comments, thus provides a finer rep-
resentation of the conversation than the reply-to
structure. Similarly, the topic labels are found by
using their best unsupervised graph-based rank-
ing model (i.e., BiasedCorank) that extracts rep-
resentative keyphrases for each topical segment
by combining informative clues from initial sen-
tences of the segment and the fine-grain conversa-
tional structure, i.e., the FQG.

For sentiment analysis, we apply the Seman-
tic Orientation CALculator (SO-CAL) (Taboada
et al., 2011), which is a lexicon-based approach
(i.e., unsupervised) for determining sentiment of
a text. Its performance is consistent across vari-
ous domains and on completely unseen data, thus
making a suitable tool for our purpose. We define
five different polarity intervals (-2 to +2), and for
each comment we count how many sentences fall
in any of these polarity intervals to compute the
polarity distribution for that comment.

While designing and implementing ConVis, we
have been mainly working with blog conversations
from two different sources: Slashdot1— a technol-
ogy related blog site, and Daily Kos2— a political
analysis blog site.

1http://slashdot.org
2http://www.dailykos.com

4.3 Designing Interactive Visualization

Upon identifying the tasks and data variables, we
design the visual encoding and user interactions.
Figure 1 shows an initial prototype of ConVis. 3

It is designed as an overview + details interface,
since it has been found to be more effective for
text comprehension tasks than other approaches
such as zooming and focus+context (Cockburn et
al., 2008). The overview consists of what was dis-
cussed by whom (i.e., topics and authors) and a
visual summary of the whole conversation (i.e.,
the Thread Overview), while the detailed view
represents the actual conversation. The Thread
Overview visually represents each comment of
the discussion as a horizontal stacked bar, where
each stacked bar encodes three different meta-
data (comment length, position of the comment
in the thread, and depth of the comment within
the thread). To express the sentiment distribution
within a comment, the number of sentences that
belong to a particular sentiment orientation is in-
dicated by the width of each cell within a stacked
bar. A set of five diverging colors was used to vi-
sualize this distribution in a perceptually meaning-
ful order, ranging from purple (highly negative) to
orange (highly positive). Thus, the distribution of
colors in the Thread Overview can help the user to
perceive the kind of conversation they are going to
deal with. For example, if the Thread Overview is

3https://www.cs.ubc.ca/cs-research/lci/research-
groups/natural-language-processing/ConVis.html
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mostly in strong purple color, then the conversa-
tion has many negative comments.

The primary facets of the conversations, namely
topics and authors are presented in a circular
layout around the Thread Overview. Both top-
ics and authors are positioned according to their
chronological order in the conversation starting
from the top, allowing the user to understand how
the conversation evolves as the discussion pro-
gresses. The font size of facet items helps the
user to quickly identify what are the mostly dis-
cussed themes and who are the most dominant
participants within a conversation. Finally, the
facet elements are connected to their correspond-
ing comments in the Thread Overview via subtle
curved links indicating topic-comment-author re-
lationships. While a common way to relate various
elements in multiple views is synchronized visual
highlighting, we choose visual links to connect
related entities. This was motivated by the find-
ings that users can locate visually linked elements
in complex visualizations more quickly and with
greater subjective satisfaction than plain highlight-
ing (Steinberger et al., 2011). Finally, the Conver-
sation View displays the actual text of the com-
ments in the discussion as a scrollable list. At
the left side of each comment, the following meta-
data are presented: title, author name, photo, and a
stacked bar representing the sentiment distribution
(mirrored from Thread Overview).

Exploring Conversations: ConVis sup-
ports multi-faceted exploration of conversations
through a set of lightweight interactions (Lam,
2008) that can be easily triggered without causing
drastic modifications to the visual encoding. The
user can explore interesting topics/ authors by
hovering the mouse on them, which highlights
the connecting curved links and related comments
in the Thread Overview (see Figure 1). As such,
one can quickly understand how multiple facet
elements are related, which is useful for the tasks
that require the user to interpret the relationships
between facets. If the reader becomes further
interested in specific topic/ author, she can
subsequently click on it, resulting in drawing a
thick vertical outline next to the corresponding
comments in the Thread Overview. Such outlines
are also mirrored in the Conversation View.
Moreover, the user can select multiple facet items
(for instance a topic and an author) to quickly
understand who said about what topics.

Besides exploring by the topics/ authors, the
reader can browse individual comments by hover-
ing and clicking on them in the Thread Overview,
that causes to highlight its topic and scrolling to
the relevant comment in the Conversation View.
Thus, the user can easily locate the comments that
belong to a particular topic and/or author. More-
over, the keyphrases of the relevant topic and sen-
timents are highlighted in the Conversation View
upon selection, providing more details on demand
about what makes a particular comment positive/
negative or how it is related to a particular topic.

5 Further Challenges and Directions

After implementing the prototype, we ran an infor-
mal evaluation (Lam et al., 2012) with five target
users (age range 18 to 24, 2 female) to evaluate
the higher levels of the nested model (Munzner,
2009), where the aim was to collect anecdotal ev-
idence that the system met its design goals. The
participants’ feedback from our evaluation sug-
gests that ConVis can help the user to identify
the topics and opinions expressed in the conver-
sation; supporting the user in exploring comments
of interest, even if they are buried near the end of
the thread. We also identified further challenges
from the observations and participants feedback.
Based on our experience and literature review, we
provide potential directions to address these chal-
lenges as we describe below.

5.1 Human in the Loop: Interactive Topic
Revision

Although the topic modeling method we applied
enhances the accuracy over traditional methods
for non-conversational text, the informal evalua-
tion reveals that still the extracted topics may not
always match user’s information need. In some
cases, the results of topic modeling can mismatch
with the reference set of topics/ concepts described
by human (Chuang et al., 2013). Even the in-
terpretations of topics can vary among people ac-
cording to expertise and the current task in hand.
In fact, during topic annotations by human experts,
there was considerable disagreement on the num-
ber of topics and on the assignment of sentences
to topic clusters (Joty et al., 2013b). Depending
on user’s mental model and current tasks, the topic
modeling results may require to be more specific
in some cases, and more generic in other cases. As
such, the topic model needs to be revised based
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on user feedback to better support her analysis
tasks. Thus, our goal is to support a human-in-
the-loop topic modeling for asynchronous conver-
sations via interactive visualization.

There have been some recent works for incorpo-
rating user supervision in probabilistic topic mod-
els (e.g., Latent Dirichlet Allocation (LDA)) by
adding constraints in the form of must-link and
cannot-link (Andrzejewski et al., 2009; Hu et al.,
2011), or in the form of a one-to-one mapping be-
tween LDA’s latent topics and user tags (Ramage
et al., 2009). The feedback from users has been
also integrated through visualizations, that steers a
semi-supervised topic model (Choo et al., 2013).

In contrast to the above-mentioned methods that
are designed for generic documents, we are fo-
cusing on how our topic modeling approach that
is specific to asynchronous conversations, can be
steered by the end-users. We are planning to com-
bine a visual interface for expressing the user’s in-
tention via a set of actions, and a semi-supervised
version of the topic model that can be iteratively
refined from such user actions.

A set of possible topic revision operations are
shown in Figure 2. Splitting a topic into further
sub-topics can be useful when the user wants to
explore the conversation at a finer-topic granular-
ity (Figure 2(a)). A merging operation serves the
opposite purpose, i.e., when the user wants to ana-
lyze the conversation at a coarser topic granularity
(Figure 2(b)). Together, these two operations are
intended to help the user in dynamically changing
the granularity levels of different topics.

Since each topic is currently represented by a
set of keyphrases, they can also be effectively
used to revise the topic model. Consider an ex-
ample, where the sentences related to two dif-
ferent keyphrases, namely ‘Obama health policy’
and ‘job recession’ are grouped together under the
same topic. The user may realize that the sen-
tences related to ‘job recession’ should have been
separated from its original topic into a new one
(Figure 2(c)). Finally, topic assignment modifi-
cation can be performed, when the domain ex-
pert believes that a group of sentences are wrongly
grouped/clustered (Figure 2(d)) by the system.

In order to design the interactive visualization
and algorithms for incorporating user feedback, a
number of open questions need to be answered.
Some of these questions are related to the user re-
quirement analysis of the problem domain, e.g.,

(a) Split (b) Merge

(c) Create topic by a
keyphrase

(d) Topic assignment
modification

Figure 2: Four different possible user actions for
topic revision

what are the tasks for exploring asynchronous con-
versation that require the introduction of user feed-
back to refine the topic model? What data should
be shown to the user to help her decide what topic
refinement actions are appropriate?

In terms of designing the set of interaction tech-
niques, the aim is to define a minimum set of
model refinement operations, and allowing the
user to express these operations from the visual
interface in a way that enhances the ability to pro-
vide feedback. A domain expert could possibly
express these operations through the direct manip-
ulation method (e.g., dragging a topic node over
another). A related open question is: how can we
minimize the cognitive load associated with inter-
preting the modeling results and deciding the next
round of topic revision operations?

From the algorithmic perspective, the most cru-
cial challenge seems to be devising an efficient
semi-supervised method in the current graph-
based topic segmentation and labeling framework
(Joty et al., 2013b). It needs to be fast enough to
respond to the user refinement actions and update
results in an acceptable period of time. In addition,
determining the number of topics is a challenging
problem when running the initial model and when
splitting a topic further.

5.2 Coupling Advanced NLP Methods with
Interactive Visualizations

In light of the informal evaluation, we also investi-
gate how current NLP methods are supporting the
tasks we identified and what additional methods
could be incorporated? For example, one of the
crucial data variable in most of the tasks is opin-
ion. However, during the evaluation two users did
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not find the current sentiment analysis sufficient
enough in revealing whether a comment is sup-
porting/ opposing a preceding one. It seems that
opinion seeking tasks (e.g., ‘why people were sup-
porting or opposing an opinion?’) would require
the reader to know the argumentation flow within
the conversation, namely the rhetorical structure
of each comment (Joty et al., 2013a) and how
these structures are linked to each other.

An early work (Yee and Hearst, 2005) at-
tempted to organize the comments using a tree-
map like layout, where the parent comment is
placed on top as a text block and the space below
the parent node is divided between supporting and
opposing statements. We plan to follow this idea
in ConVis, but incorporating a higher level dis-
course relation analysis of the conversations and
detecting controversial topics.

Incorporating additional complex text analysis
results into the visualization may require us to re-
visit some of the higher levels of the nested model,
i.e., data abstraction and visual encoding. It may
impose further tradeoffs for visual encoding; for
instance how can we visually represent the argu-
mentation structure within a conversation? How
can we represent such structure, while preserv-
ing the data already found to be useful such as
topic and thread structure? How can we represent
that a topic is controversial? Besides text analysis
results, some additional facets can become more
useful to the participants (e.g., moderation scores,
named entities), while an existing facet being less
useful. In such cases, allowing the user to dynam-
ically change the facets of interest can be useful.

5.3 Evaluation in the Wild

While controlled experiments allow us to mea-
sure the user performance on specific tasks for the
given interface, they may not accurately capture
real world uses scenario (Lam et al., 2012). In this
context, an ecologically valid evaluation of Con-
Vis would be to allow the users to use the system
to read their own conversations of interest over an
extended period of time. Such longitudinal study
would provide valuable insights regarding the util-
ity of the interface.

Evaluating the topic refinement approach for
asynchronous conversation can be even more chal-
lenging. An initial approach could be to formu-
late some quantitative evaluation metrics, that help
us understand whether the iterative feedback from

the user would improve the resultant topic model
in terms of agreement with the reference set of
topics described by human annotators. However,
such approach would not capture the subjective
differences of the users in interpreting the topic
model. It would be more interesting to see, how
much users would actually care about providing
the feedback to refine the model in a real world
scenario? What refinement operations would be
performed more often? Would these operations
eventually support the user to perform some anal-
ysis tasks more effectively?

6 Conclusions

Understanding the user behaviours, needs, and re-
quirements in the target domain is critical in ef-
fectively combining NLP and InfoVis techniques.
In this paper, we apply a visualization design
method (Munzner, 2009) to identify what infor-
mation should be mined from the conversation as
well as how the visual encoding and interaction
techniques should be designed. We claim that the
NLP and the InfoVis components of the resulting
system, ConVis, are more consistent and better in-
tegrated, because they refer to a common set of
task and data abstractions. In future work, we aim
to explore a set of open challenges that were moti-
vated by an initial informal evaluation of ConVis.
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Abstract

Users with large text collections are of-
ten faced with one of two problems; ei-
ther they wish to retrieve a semantically-
relevant subset of data from the collection
for further scrutiny (needle-in-a-haystack)
or they wish to glean a high-level un-
derstanding of how a subset compares to
the parent corpus in the context of afore-
mentioned semantic dimensions (forest-
for-the-trees). In this paper, I describe
MUCK1, an open-source toolkit that ad-
dresses both of these problems through a
distributed text processing engine with an
interactive visualization interface.

1 Introduction

As gathering large text collections grows increas-
ingly feasible for non-technical users, individu-
als such as journalists, marketing/communications
analysts, and social scientists are accumulating
vast quantities of documents in order to address
key strategy or research questions. But these
groups often lack the technical skills to work with
large text collections, in that the conventional ap-
proaches they employ (content analysis and indi-
vidual document scrutiny) are not suitable for the
scale of the data they have gathered. Thus, users
require tools with the capability to filter out irrel-
evant documents while drilling-down to the docu-
ments that they are most interested in investigating
with closer scrutiny. Furthermore, they require the
capability to then evaluate their subset in context,
as the contrast in attributes between their subset
and the full corpora can often address many rele-
vant questions.

This paper introduces a work-in-progress: the
development of a toolkit that aids non-technical

1Mechanical Understanding of Contextual Knowledge

users of large text collections by combining se-
mantic search and semantic visualization methods.
The purpose of this toolkit is two-fold: first, to
ease the technical burden of working with large-
scale text collections by leveraging semantic infor-
mation for the purposes of filtering a large collec-
tion of text down to the select sample documents
that matter most to the user; second, to allow the
user to visually explore semantic attributes of their
subset in comparison to the rest of the text collec-
tion.

Thus, this toolkit comprises two components:

1. a distributed text processing engine that de-
creases the cost of annotating massive quan-
tities of text data for natural language infor-
mation

2. an interactive visualization interface that en-
ables exploration of the collection along se-
mantic dimensions, which then affords sub-
sequent document selection and subset-to-
corpora comparison

The text processing engine is extensible, en-
abling the future development of plug-ins to al-
low for tasks beyond the included natural language
processing tasks, such that future users can em-
bed any sentence- or document-level task to their
processing pipeline. The visualization interface is
built upon search engine technologies to decrease
search result latency to user requests, enabling a
high level of interactivity.

2 Related work

The common theme of existing semantic search
and semantic visualization methods is to enable
the user to gain greater, meaningful insight into the
structure of their document collections through the
use of transparent, trustworthy methods (Chuang
et al., 2012; Ramage et al., 2009). The desired in-
sight can change depending on the intended task.
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For some applications, users are understood to
have a need to find a smaller, relevant subset of
articles (or even a single article) in a vast collec-
tion of documents, which we can refer to as a
needle-in-a-haystack problem. For others, users
simply require the ability to gain a broad but de-
scriptive summary of a semantic concept that de-
scribes these text data, which we can refer to as a
forest-for-the-trees problem.

For example, marketers and social scientists of-
ten study news data, as the news constitute a vi-
tally important source of information that guide
the agendas of marketing strategy and inform
many theories underlying social behavior. How-
ever, their interests are answered at the level of
sentences or documents that contain the concepts
or entities that they care about. This need is often
not met through simple text querying, which can
return too many or too few relevant documents and
sentences. This is an example of a needle-in-a-
haystack problem, which has been previously ad-
dressed through the application of semantic search
(Guha et al., 2003). Much of the literature on
semantic search, in which semantic information
such as named entity, semantic web data, or simple
document categories are added to the individual-
level results of a simple query in order to bolster
the relevance of resulting query hits. This type
of information has proven to be useful in filtering
out irrelevant content for a wide array of informa-
tion retrieval tasks (Blanco et al., 2011; Pound et
al., 2010; Hearst, 1999b; Hearst, 1999a; Liu et al.,
2009; Odijk et al., 2012).

Remaining in the same narrative, once a sub-
set of relevant documents has been created, these
users may wish to see how the semantic charac-
teristics of their subset contrast to the parent col-
lection from which it was drawn. A marketer may
have a desire to see how the tone of coverage in
news related to their client’s brand compares to
the news coverage of other brands of a similar
type. A social scientist may be interested to see
if one news organization covers more politicians
than other news organizations. This is an exam-
ple of a forest-for-the-trees problem. This type of
problem has been addressed through the applica-
tion of semantic visualization, which can be use-
ful for trend analysis and anomaly detection in text
corpora (Fisher et al., 2008; Chase et al., 1998;
Hearst and Karadi, 1997; Hearst, 1995; Ando et
al., 2000).

The toolkit outlined in this paper leverages both
of these techniques in order to facilitate the user’s
ability to gain meaningful insight into various se-
mantic attributes of their text collection while also
retrieving semantically relevant documents.

3 Overview of System From User
Perspective

The ordering of a user’s experience with this
toolkit is as follows:

1. Users begin with a collection of unstructured
text documents, which must be made avail-
able to the system (e.g., on a local or network
drive or as a list of URLs for remote content)

2. Users specify the types of semantic detail rel-
evant to their analysis (named entities, senti-
ment, etc.), and documents are then parsed,
annotated, and indexed.

3. Users interact with the visualization in or-
der to create the subset of documents or sen-
tences they are interested in according to se-
mantic dimensions of relevance

4. Once a view has been adequately configured
using the visual feedback, users are able to re-
trieve the documents or sentences referenced
in the visualization from the document store

Items 2 and 3 are further elaborated in the sec-
tions on the backend and frontend.

4 Backend

The distributed processing engine is driven by a
task planner, which is a framework for chaining
per-document tasks. As diagrammed in figure 1,
the system creates and distributes text processing
tasks needed to satisfy the user’s level of semantic
interest according to the dependencies between the
various integrated third-party text processing li-
braries. Additionally, this system does not possess
dependencies on additional third-party large-scale
processing frameworks or message queueing sys-
tems, which makes this toolkit useful for relatively
large (i.e. millions of documents) collections as it
does not require configuration of other technolo-
gies beyond maintaining a document store2 and a
search index.

2http://www.mongodb.com
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Figure 1: The architecture of the backend system.

Task planner and resolver system The se-
mantic information extraction process occurs via
defining a series of tasks for each document. This
instantiates a virtual per-document queues of pro-
cessing tasks. These queues are maintained by
a task planner and resolver, which handles all of
the distribution of processing tasks through the
use of local or cloud resources3. This processing
model enables non-technical users to describe a
computationally-intensive, per-document process-
ing pipeline without having to perform any tech-
nical configuration beyond specifying the level of
processing detail output desired.

NLP task Currently, this system only incor-
porates the full Stanford CoreNLP pipeline4,
which processes each document into its (likely)
constituent sentences and tokens and annotates
each sentence and token for named entities,
parts-of-speech, dependency relations, and senti-
ment (Toutanova et al., 2003; Finkel et al., 2005;
De Marneffe et al., 2006; Raghunathan et al.,
2010; Lee et al., 2011; Lee et al., 2013; Re-
casens et al., 2013; Socher et al., 2013). This ex-
traction process is extensible, meaning that future
tasks can be defined and included in the processing
queue in the order determined by the dependen-
cies of the new processing technology. Additional
tasks at the sentence- or document-level, such as
simple text classification using the Stanford Clas-
sifier (Manning and Klein, 2003), are included in
the development roadmap.

3http://aws.amazon.com
4Using most recent version as of writing (v3.1)

5 Frontend

A semantic dimension of interest is mapped to a
dimension of the screen as a context pane, as di-
agrammed in figure 2. Corpora-level summaries
for each dimension are provided within each con-
text pane for each semantic category, whereas the
subset that the user interactively builds is visual-
ized in the focus pane of the screen. By brushing
each of semantic dimensions, the user can drill-
down to relevant data while also maintaining an
understanding of the semantic contrast between
their subset and the parent corpus.

This visualization design constitutes a multiple-
view system (Wang Baldonado et al., 2000), where
a single conceptual entity can be viewed from sev-
eral perspectives. In this case, the semantic con-
cepts extracted from the data can be portrayed in
several ways. This system maps semantic dimen-
sions to visualization components using the fol-
lowing interaction techniques:

Navigational slaving Users must first make an
initial selection for data by querying for a spe-
cific item of interest; a general text query (ideal
for phrase matching), a named entity, or even an
entity that served in a specific dependency relation
(such as the dependent of an nsubj relation). This
selection propagates through the remaining com-
ponents of the interface, such that the remaining
semantic dimensions are manipulated in the con-
text of the original query.

Focus + Context Users can increase their under-
standing of the subset by zooming into a relevant
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Figure 2: The wireframe of the frontend system.

selection in a semantic dimension (e.g. time).

Brushing Users can further restrict their sub-
set by highlighting categories or ranges of interest
in semantic dimensions (e.g. document sources,
types of named entities). Brushing technique is
determined by whether the semantic concept is
categorical or continuous.

Filtering The brushing and context panes serve
as filters, which restrict the visualized subset to
only documents containing the intersection of all
brushed characteristics.

This visualization design is enabled through the
use of a distributed search engine5, which enables
the previously defined interactivity through three
behaviors:

Filters Search engines enable the restriction
of query results according to whether a query
matches the parameters of a filter, such as whether
a field contains text of a specific pattern.

Facets Search engines also can return subsets of
documents structured along a dimension of inter-
est, such as by document source types (if such in-
formation was originally included in the index).

Aggregations Aggregations allow for bucketing
of relevant data and metrics to be calculated per

5http://www.elasticsearch.com

bucket. This allows the swift retrieval of docu-
ments in a variety of structures, providing the hi-
erarchical representation required for visualizing
a subset along multiple semantic dimensions de-
fined above.

Nesting All of these capabilities can be stacked
upon each other, allowing for the multiple view
system described above.

The visualization components are highly inter-
active, since the application is built upon a two-
way binding design paradigm6 between the DOM
and the RESTful API of the index (Bostock et al.,
2011).

6 Discussion and future work

This paper presents a work-in-progress on the de-
velopment of a system that enables the extraction
and visualization of large text collections along se-
mantic dimensions. This system is open-source
and extensible, so that additional per-document
processing tasks for future semantic extraction
procedures can be easily distributed. Additionally,
this system does not possess requirements beyond
maintaining a document store and a search index.

6http://www.angularjs.org
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Abstract 

Our research investigation focuses on the role of 
humans in supplying corrected examples in active 
learning cycles, an important aspect of deploying 
active learning in practice.  In this paper, we dis-
cuss sampling strategies and sampling sizes in set-
ting up an active learning system for human ex-
periments in the task of content analysis, which 
involves labeling concepts in large volumes of 
text.  The cost of conducting comprehensive hu-
man subject studies to experimentally determine 
the effects of sampling sizes and sampling sizes is 
high. To reduce those costs, we first applied an 
active learning simulation approach to test the ef-
fect of different sampling strategies and sampling 
sizes on machine learning (ML) performance in 
order to select a smaller set of parameters to be 
evaluated in human subject studies. 

1 Introduction 

Social scientists often use content analysis to 
understand the practices of groups by analyzing 
texts such as transcripts of interpersonal commu-
nication. Content analysis is the process of iden-
tifying and labeling conceptually significant fea-
tures in text, referred to as “coding” (Miles and 
Huberman, 1994). For example, researchers 
studying leadership might look for evidence of 
behaviors such as “suggesting or recommending” 
or “inclusive reference” expressed in email mes-
sages. However, analyzing text is very labor-
intensive, as the text must be read and under-
stood by a human. Consequently, important re-
search questions in the qualitative social sciences 
may not be addressed because there is too much 
data for humans to analyze in a reasonable time. 

A few researchers have tried automatic tech-
niques on content analysis problems. For exam-
ple, Crowston et al. (2012) manually developed a 
classifier to identify codes related to group 
maintenance behavior in free/libre open source 
software (FLOSS) teams. Others have applied 
machine-learning (ML) techniques. For example, 
Ishita et al. (2010) used ML to automatically 

classify sections of text within documents on ten 
human values taken from the Schwartz’s Value 
Inventory. Broadwell et al. (2012) developed 
models to classify sociolinguistic behaviors to 
infer social roles (e.g., leadership). On the best 
performing codes, these approaches achieve ac-
curacies from 60–80%, showing the potential of 
automatic qualitative content analysis. However, 
these studies all limited their reports to a subset 
of codes used by the social scientists, due in part 
to the need for a large volume of training data.  

The state-of-the-art ML approaches for con-
tent analysis require researchers to obtain a large 
amount of annotated data upfront, which is often 
costly or impractical. An active learning ap-
proach which uses human correction during the 
steps of active learning could potentially help 
produce a large amount of annotated data while 
minimizing the cost of human annotation effort.  
Unlike other text annotation tasks, the code an-
notation for content analysis requires significant 
cognitive effort, which may limit, or even nulli-
fy, the benefits of active learning.   

We are building an active machine learning 
system to semi-automate the process of content 
analysis, and are planning to study the human 
role in such machine learning systems.  
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Figure 1. Active learning for semi-automatic 

content analysis. 
 

As illustrated in Figure 1, the system design in-
corporates building a classifier from an initial set 
of hand-coded examples and iteratively improv-
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ing the model by having human annotators cor-
rect new examples identified by the system  

Little is yet known about the optimal number 
of machine annotations to be presented to human 
annotators for correction, and how the sample 
sizes of machine annotations affect ML perfor-
mance. Also, existing active learning sampling 
strategies to pick out the most “beneficial” ex-
amples for human correction to be used in the 
next round of ML training have not been tested 
in the context of social science data, where con-
cept codes may be multi-dimensional or hierar-
chical, and the problem may be multi-label (one 
phrase or sentence in the annotated text has mul-
tiple labels). Also, concept codes tend to be very 
sparse in the text, resulting in a classification 
problem that has both imbalance—the non-
annotated pieces of text (negative examples) tend 
to be far more frequent that annotated text—and 
rarity, where there may not be enough examples 
of some codes to achieve a good classifier.  

The cost of conducting comprehensive human 
subject studies to experimentally determine the 
effects of sampling sizes and sampling sizes is 
high. Therefore, we first applied an active learn-
ing simulation approach to test the effect of dif-
ferent sampling strategies and sampling sizes on 
machine learning (ML) performance. This allows 
the human subject studies to involve a smaller set 
of parameters to be evaluated. 

2 Related Work 

For active learning in our system, we are using 
what is sometimes called pool-based active 
learning, where a large number of unlabeled ex-
amples are available to be the pool of the next 
samples. This type of active learning has been 
well explored for text categorization tasks (Lewis 
and Gale, 1994; Tong and Koller 2000; Schohn 
and Cohn 2000). This approach often uses the 
method of uncertainty sampling to pick new 
samples from the pool, both with probability 
models to give the “uncertainty” (Lewis and 
Gale, 1994) and with SVM models, where the 
margin numbers give the “uncertainty” (Tong 
and Koller 2000; Schohn and Cohn 2000). While 
much of the research focus has been on the sam-
pling method, some has also focused on the size 
of the sample, e.g. in Schohn and Cohn (2000), 
sample sizes of 4, 8, 16, and 32 were used, where 
the result was that smaller sizes gave a steeper 
learning curve with a greater classification cost, 
and the authors settled on a sample size of 8. For 

additional active learning references, see the Set-
tles (2009) survey of active learning literature. 

This type of active learning has also been 
used in the context of human correction. One 
such system is described in Mandel et al. (2006), 
using active learning for music retrieval, where 
users were presented with up to 6 examples of 
songs to label. Another is the DUALLIST system 
described in Settles (2011) and Settles and Zhu 
(2012) where human experiments were carried 
out for text classification and other tasks.  While 
most active learning experiments focus on reduc-
ing the number of examples to achieve an accu-
rate model, there has been some effort to model 
the reduction of the cost of human time in anno-
tation, where the human time is non-uniform per 
example.  Both the systems in Culotta and 
McCallum (2005) and in Clancy et al. (2012) for 
the task of named entity extraction, modeled hu-
man cost in the context of sequential information 
extraction tasks.  However, one difference be-
tween these systems and ours is that all of the 
tasks studied in these systems did not require 
annotators to have extensive training to annotate 
complex concept codes.  

3 Problem 

We worked with a pilot project in which 
researchers are studying leadership in open 
source software groups by analyzing open source 
developer emails. After a year of part-time 
annotation by two annotators, the researchers 
developed a codebook that provides a definition 
and examples for 35 codes. The coders achieved 
an inter-annotator agreement (kappa) of about 
80%, and annotated about 400 email threads, 
consisting of about 3700 sentences. We used 
these coded messages as the “gold standard” data 
for our study. However, only 15 codes had more 
than 25 instances in the gold standard set. The 
most common code (“Explanation/Rationale/ 
Background”) occurred only 319 times.  

In our pilot correction experiments, annota-
tors tried correcting samples of sizes ranging 
from about 50 to about 400. Anecdotal evidence 
indicates that annotators liked to annotate sample 
sizes of about 100 in order to achieve good focus 
on a particular code definition at one time, but 
without getting stressed with too many examples.  
Part of the required focus is that annotators need 
to refresh their memory on any particular code at 
the start of annotation, so switching frequently 
between different codes is cognitively taxing. 
This desired sample size contrasts with prior ac-
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tive learning systems that employ much smaller 
sample sizes, in the range of 1 to 20.  

We are currently in the process of setting up 
the human experiments to test our main research 
question of achieving an accurate model for con-
tent analysis using a minimum of human effort. 

In this paper, we discuss two questions for 
active learning in order to have annotators cor-
rect an acceptable number of machine annota-
tions that are most likely to increase the perfor-
mance of the ML model in each iteration. These 
are:  how do different sample sizes and different 
sampling strategies of machine annotations pre-
sented to human annotators for correction in each 
round affect ML performance?  

4 Active Learning Simulation Setup 

In a similar strategy to that of Clancy et al. 
(2012), we carried out a preliminary investiga-
tion by conducting an active learning simulation 
on our gold standard data. The simulation starts 
with a small initial sample, and uses active learn-
ing where we “correct” the sample labels by tak-
ing labels from the gold standard corpus. For our 
simulation experiments, we separated the gold 
standard data randomly into a training set of 90% 
of the examples, 3298 sentences, and a test set of 
10%, 366 sentences.  

In the experimental setup, we used a version 
of libSVM that was modified to produce num-
bers of distance to the margin of the SVM classi-
fication. We implemented the multi-label classi-
fication by classifying each label separately 
where some sentences have the selected label 
and all others were counted as “negative” labels. 
We used svm weights to handle the problem of 
imbalance in the negative examples. After exper-
imentation with different combinations of fea-
tures, we used a set of features that was best 
overall for the codes: unigram tokens lowercased 
and filtered by stop words, bigrams, orthographic 
features from capitalization, the token count, and 
the role of the sender of the email. 

For an initial sample, we randomly chose 3 
positive and 3 negative examples from the de-
velopment set to be the initial training set used 
for all experimental runs. We carried out experi-
ments with a number of sample sizes, b, ranging 
over 5, 10, 20, 40, 50, 60, 80 and 100 instances. 

For experiments on methods used to select 
correction examples, we have chosen to experi-
ment with sampling methods similar to those 
found in Lewis and Gale (1994) and Lewis 
(1995) using a random sampling method, where 

a new sample is chosen randomly from the re-
maining examples in the development set, a rele-
vance sampling method, where a new sample is 
chosen as the b number of most likely labeled 
candidates in the development set with the larg-
est distance from the margin of the SVM classi-
fication, and an uncertainty sampling method, 
where a new sample is chosen as the b number of 
candidates in the region of uncertainty on either 
side of the margin of the SVM classification. 

5 Preliminary Results 

In this simulation experiment, the pool size is 
quite small (3664 examples) compared to the 
large amount of unlabeled data that is normally 
available for active learning, and would be avail-
able for our system under actual use. We tested 
the active learning simulation on 8 codes. There 
was no clear winning sampling strategy out of 
the 3 we used in the simulation experiment but 
random sampling (5 out of 8 codes) appeared to 
be the one that most often produced the highest 
Fß2 score in the shortest number of iterations. 
Figure 2 shows the Fß2 score for each sampling 
strategy based on code “Opinion/Preference” 
using sample sizes 5 and 100 respectively.  

As for sampling sizes, we did not observe a 
large difference in the evolution of the Fß2 score 
between the various sample sizes, and the learn-
ing curves in Figure 2, shown for the sample siz-
es of 5 and 100, are typical. This means that we 
should be able to use larger sample sizes for hu-
man subject studies to achieve the same im-
provements in performance as with the smaller 
sample sizes, and can carry out the experiments 
to relate the cost of human annotation with in-
creases in performance. 

 

 
Figure 2. Active ML performance for code 
Opinion/Preference. 
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6 Conclusion and Future Work 

Our findings are inconclusive as we have yet to 
run the active learning simulations on all the 
codes. However, preliminary results are directing 
us towards using larger sample sizes and then 
experimenting with random and uncertainty 
sampling in the human subject studies.  

From our experiments with the different 
codes, we found the performance on less fre-
quent codes to be problematic as it is difficult for 
the active learning system to identify potential 
positive examples to improve the models. While 
the system performance may improve to handle 
such sparse cases, it may be better to modify the 
codebook instead. We plan to give the user feed-
back on the performance of the codes at each 
iteration of the active learning and support modi-
fications to the codebook, for example, the user 
may wish to drop some codes or collapse them 
according to some hierarchy. After all, if a code 
is not found in the text, it is hard to argue for its 
theoretical importance.  

We are currently completing the design of 
the parameters of the active learning process for 
the human correction experiments on our pilot 
project with the codes about leadership in open 
source software groups. We will also be testing 
and undergoing further development of the user 
interface for the annotators.  

Our next step will be to test the system on 
other projects with other researchers. We hope to 
gain more insight into what types of coding 
schemes and codes are easier to learn than oth-
ers, and to be able to guide social scientists into 
developing coding schemes that are not only 
based on the social science theory but also useful 
in practice to develop an accurate classifier for 
very large amounts of digital text. 
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Abstract

We present LDAvis, a web-based interac-
tive visualization of topics estimated using
Latent Dirichlet Allocation that is built us-
ing a combination of R and D3. Our visu-
alization provides a global view of the top-
ics (and how they differ from each other),
while at the same time allowing for a deep
inspection of the terms most highly asso-
ciated with each individual topic. First,
we propose a novel method for choosing
which terms to present to a user to aid in
the task of topic interpretation, in which
we define the relevance of a term to a
topic. Second, we present results from a
user study that suggest that ranking terms
purely by their probability under a topic is
suboptimal for topic interpretation. Last,
we describe LDAvis, our visualization
system that allows users to flexibly explore
topic-term relationships using relevance to
better understand a fitted LDA model.

1 Introduction

Recently much attention has been paid to visual-
izing the output of topic models fit using Latent
Dirichlet Allocation (LDA) (Gardner et al., 2010;
Chaney and Blei, 2012; Chuang et al., 2012b; Gre-
tarsson et al., 2011). Such visualizations are chal-
lenging to create because of the high dimensional-
ity of the fitted model – LDA is typically applied
to many thousands of documents, which are mod-
eled as mixtures of dozens (or hundreds) of top-
ics, which themselves are modeled as distributions
over thousands of terms (Blei et al., 2003; Griffiths
and Steyvers, 2004). The most promising basic
technique for creating LDA visualizations that are
both compact and thorough is interactivity.

We introduce an interactive visualization sys-
tem that we call LDAvis that attempts to answer

a few basic questions about a fitted topic model:
(1) What is the meaning of each topic?, (2) How
prevalent is each topic?, and (3) How do the topics
relate to each other? Different visual components
answer each of these questions, some of which are
original, and some of which are borrowed from ex-
isting tools.

Our visualization (illustrated in Figure 1) has
two basic pieces. First, the left panel of our visual-
ization presents a global view of the topic model,
and answers questions 2 and 3. In this view, we
plot the topics as circles in the two-dimensional
plane whose centers are determined by comput-
ing the distance between topics, and then by us-
ing multidimensional scaling to project the inter-
topic distances onto two dimensions, as is done
in (Chuang et al., 2012a). We encode each topic’s
overall prevalence using the areas of the circles,
where we sort the topics in decreasing order of
prevalence.

Second, the right panel of our visualization de-
picts a horizontal barchart whose bars represent
the individual terms that are the most useful for in-
terpreting the currently selected topic on the left,
and allows users to answer question 1, “What is
the meaning of each topic?”. A pair of overlaid
bars represent both the corpus-wide frequency of
a given term as well as the topic-specific frequency
of the term, as in (Chuang et al., 2012b).

The left and right panels of our visualization are
linked such that selecting a topic (on the left) re-
veals the most useful terms (on the right) for inter-
preting the selected topic. In addition, selecting a
term (on the right) reveals the conditional distribu-
tion over topics (on the left) for the selected term.
This kind of linked selection allows users to exam-
ine a large number of topic-term relationships in a
compact manner.

A key innovation of our system is how we deter-
mine the most useful terms for interpreting a given
topic, and how we allow users to interactively ad-

63



Figure 1: The layout of LDAvis, with the global topic view on the left, and the term barcharts (with
Topic 34 selected) on the right. Linked selections allow users to reveal aspects of the topic-term relation-
ships compactly.

just this determination. A topic in LDA is a multi-
nomial distribution over the (typically thousands
of) terms in the vocabulary of the corpus. To inter-
pret a topic, one typically examines a ranked list of
the most probable terms in that topic, using any-
where from three to thirty terms in the list. The
problem with interpreting topics this way is that
common terms in the corpus often appear near the
top of such lists for multiple topics, making it hard
to differentiate the meanings of these topics.

Bischof and Airoldi (2012) propose ranking
terms for a given topic in terms of both the fre-
quency of the term under that topic as well as the
term’s exclusivity to the topic, which accounts for
the degree to which it appears in that particular
topic to the exclusion of others. We propose a sim-
ilar measure that we call the relevance of a term
to a topic that allows users to flexibly rank terms
in order of usefulness for interpreting topics. We
discuss our definition of relevance, and its graphi-
cal interpretation, in detail in Section 3.1. We also
present the results of a user study conducted to de-
termine the optimal tuning parameter in the defini-
tion of relevance to aid the task of topic interpreta-

tion in Section 3.2, and we describe how we incor-
porate relevance into our interactive visualization
in Section 4.

2 Related Work

Much work has been done recently regarding the
interpretation of topics (i.e. measuring topic “co-
herence”) as well as visualization of topic models.

2.1 Topic Interpretation and Coherence

It is well-known that the topics inferred by LDA
are not always easily interpretable by humans.
Chang et al. (2009) established via a large
user study that standard quantitative measures of
fit, such as those summarized by Wallach et al.
(2009), do not necessarily agree with measures of
topic interpretability by humans. Ramage et al.
(2009) assert that “characterizing topics is hard”
and describe how using the top-k terms for a given
topic might not always be best, but offer few con-
crete alternatives.

AlSumait et al. (2009), Mimno et al. (2011),
and Chuang et al. (2013b) develop quantitative
methods for measuring the interpretability of top-

64



ics based on experiments with data sets that come
with some notion of topical ground truth, such as
document metadata or expert-created topic labels.
These methods are useful for understanding, in a
global sense, which topics are interpretable (and
why), but they don’t specifically attempt to aid the
user in interpreting individual topics.

Blei and Lafferty (2009) developed “Turbo Top-
ics”, a method of identifying n-grams within LDA-
inferred topics that, when listed in decreasing or-
der of probability, provide users with extra in-
formation about the usage of terms within top-
ics. This two-stage process yields good results on
experimental data, although the resulting output
is still simply a ranked list containing a mixture
of terms and n-grams, and the usefulness of the
method for topic interpretation was not tested in a
user study.

Newman et al. (2010) describe a method for
ranking terms within topics to aid interpretability
called Pointwise Mutual Information (PMI) rank-
ing. Under PMI ranking of terms, each of the ten
most probable terms within a topic are ranked in
decreasing order of approximately how often they
occur in close proximity to the nine other most
probable terms from that topic in some large, ex-
ternal “reference” corpus, such as Wikipedia or
Google n-grams. Although this method correlated
highly with human judgments of term importance
within topics, it does not easily generalize to topic
models fit to corpora that don’t have a readily
available external source of word co-occurrences.

In contrast, Taddy (2011) uses an intrinsic mea-
sure to rank terms within topics: a quantity called
lift, defined as the ratio of a term’s probability
within a topic to its marginal probability across
the corpus. This generally decreases the rankings
of globally frequent terms, which can be helpful.
We find that it can be noisy, however, by giving
high rankings to very rare terms that occur in only
a single topic, for instance. While such terms may
contain useful topical content, if they are very rare
the topic may remain difficult to interpret.

Finally, Bischof and Airoldi (2012) develop and
implement a new statistical topic model that infers
both a term’s frequency as well as its exclusivity
– the degree to which its occurrences are limited
to only a few topics. They introduce a univari-
ate measure called a FREX score (“FRequency
and EXclusivity”) which is a weighted harmonic
mean of a term’s rank within a given topic with

respect to frequency and exclusivity, and they rec-
ommend it as a way to rank terms to aid topic in-
terpretation. We propose a similar method that is
a weighted average of the logarithms of a term’s
probability and its lift, and we justify it with a user
study and incorporate it into our interactive visu-
alization.

2.2 Topic Model Visualization Systems

A number of visualization systems for topic mod-
els have been developed in recent years. Sev-
eral of them focus on allowing users to browse
documents, topics, and terms to learn about the
relationships between these three canonical topic
model units (Gardner et al., 2010; Chaney and
Blei, 2012; Snyder et al., 2013). These browsers
typically use lists of the most probable terms
within topics to summarize the topics, and the vi-
sualization elements are limited to barcharts or
word clouds of term probabilities for each topic,
pie charts of topic probabilities for each document,
and/or various barcharts or scatterplots related to
document metadata. Although these tools can be
useful for browsing a corpus, we seek a more com-
pact visualization, with the more narrow focus of
quickly and easily understanding the individual
topics themselves (without necessarily visualizing
documents).

Chuang et al. (2012b) develop such a tool,
called “Termite”, which visualizes the set of topic-
term distributions estimated in LDA using a ma-
trix layout. The authors introduce two measures
of the usefulness of terms for understanding a
topic model: distinctiveness and saliency. These
quantities measure how much information a term
conveys about topics by computing the Kullback-
Liebler divergence between the distribution of top-
ics given the term and the marginal distribution
of topics (distinctiveness), optionally weighted
by the term’s overall frequency (saliency). The
authors recommend saliency as a thresholding
method for selecting which terms are included in
the visualization, and they further use a seriation
method for ordering the most salient terms to high-
light differences between topics.

Termite is a compact, intuitive interactive visu-
alization of the topics in a topic model, but by only
including terms that rank high in saliency or dis-
tinctiveness, which are global properties of terms,
it is restricted to providing a global view of the
model, rather than allowing a user to deeply in-
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spect individual topics by visualizing a potentially
different set of terms for every single topic. In
fact, Chuang et al. (2013a) describe the use of a
“topic-specific word ordering” as potentially use-
ful future work.

3 Relevance of terms to topics

Here we define relevance, our method for ranking
terms within topics, and we describe the results of
a user study to learn an optimal tuning parameter
in the computation of relevance.

3.1 Definition of Relevance

Let φkw denote the probability of term w ∈
{1, ..., V } for topic k ∈ {1, ...,K}, where V de-
notes the number of terms in the vocabulary, and
let pw denote the marginal probability of termw in
the corpus. One typically estimates φ in LDA us-
ing Variational Bayes methods or Collapsed Gibbs
Sampling, and pw from the empirical distribution
of the corpus (optionally smoothed by including
prior weights as pseudo-counts).

We define the relevance of term w to topic k
given a weight parameter λ (where 0 ≤ λ ≤ 1) as:

r(w, k | λ) = λ log(φkw) + (1− λ) log
(φkw

pw

)
,

where λ determines the weight given to the prob-
ability of term w under topic k relative to its lift
(measuring both on the log scale). Setting λ = 1
results in the familiar ranking of terms in decreas-
ing order of their topic-specific probability, and
setting λ = 0 ranks terms solely by their lift. We
wish to learn an “optimal” value of λ for topic in-
terpretation from our user study.

First, though, to see how different values of λ
result in different ranked term lists, consider the
plot in Figure 2. We fit a 50-topic model to the
20 Newsgroups data (details are described in Sec-
tion 3.2) and plotted log(lift) on the y-axis vs.
log(φkw) on the x-axis for each term in the vo-
cabulary (which has size V = 22, 524) for a given
topic. Figure 2 shows this plot for Topic 29, which
occurred mostly in documents posted to the “Mo-
torcycles” Newsgroup, but also from documents
posted to the “Automobiles” Newsgroup and the
“Electronics” Newsgroup. Graphically, the line
separating the most relevant terms for this topic,
given λ, has slope −λ/(1− λ) (see Figure 2).

For this topic, the top-5 most relevant terms
given λ = 1 (ranking solely by probability)
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Figure 2: Dotted lines separating the top-10 most
relevant terms for different values of λ, with the
most relevant terms for λ = 2/3 displayed and
highlighted in blue.

are {out, #emailaddress, #twodigitnumer, up,
#onedigitnumber}, where a “#” symbol denotes
a term that is an entity representing a class of
things. In contrast to this list, which contains glob-
ally common terms and which provides very lit-
tle meaning regarding motorcycles, automobiles,
or electronics, the top-5 most relevant terms given
λ = 1/3 are {oil, plastic, pipes, fluid, and lights}.
The second set of terms is much more descriptive
of the topic being discussed than the first.

3.2 User Study

We conducted a user study to determine whether
there was an optimal value of λ in the definition of
relevance to aid topic interpretation. First, we fit
a 50-topic model to the D = 13, 695 documents
in the 20 Newsgroups data which were posted to a
single Newsgroup (rather than two or more News-
groups). We used the Collapsed Gibbs Sampler
algorithm (Griffiths and Steyvers, 2004) to sample
the latent topics for each of the N = 1, 590, 376
tokens in the data, and we saved their topic assign-
ments from the last iteration (after convergence).
We then computed the 20 by 50 table, T , which
contains, in cell Tgk, the count of the number of
times a token from topic k ∈ {1, ..., 50} was as-
signed to Newsgroup g ∈ {1, ..., 20}, where we
defined the Newsgroup of a token to be the News-
group to which the document containing that to-
ken was posted. Some of the LDA-inferred top-
ics occurred almost exclusively (> 90% of occur-
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rences) in documents from a single Newsgroup,
such as Topic 38, which was the estimated topic
for 15,705 tokens in the corpus, 14,233 of which
came from documents posted to the “Medicine”
(or “sci.med”) Newsgroup. Other topics occurred
in a wide variety of Newsgroups. One would ex-
pect these “spread-out” topics to be harder to in-
terpret than the “pure” topics like Topic 38.

In the study we recruited 29 subjects among our
colleagues (research scientists at AT&T Labs with
moderate familiarity with text mining techniques
and topic models), and each subject completed an
online experiment consisting of 50 tasks, one for
each topic in the fitted LDA model. Task k (for
k ∈ {1, ..., 50}) was to read a list of five terms,
ranked from 1-5 in order of relevance to topic k,
where λ ∈ (0, 1) was randomly sampled to com-
pute relevance. The user was instructed to identify
which “topic” the list of terms discussed from a
list of three possible “topics”, where their choices
were names of the Newsgroups. The correct an-
swer for task k (i.e. our “ground truth”) was de-
fined as the Newsgroup that contributed the most
tokens to topic k (i.e. the Newsgroup with the
largest count in the kth column of the table T ), and
the two alternative choices were the Newsgroups
that contributed the second and third-most tokens
to topic k.

We anticipated that the effect of λ on the proba-
bility of a user making the correct choice could be
different across topics. In particular, for “spread-
out” topics that were inherently difficult to inter-
pret, because their tokens were drawn from a wide
variety of Newsgroups (similar to a “fused” topic
in Chuang et al. (2013b)), we expected the propor-
tion of correct responses to be roughly 1/3 no mat-
ter the value of λ used to compute relevance. Sim-
ilarly, for very “pure” topics, whose tokens were
drawn almost exclusively from one Newsgroup,
we expected the task to be easy for any value of λ.
To account for this, we analyzed the experimental
data by fitting a varying-intercepts logistic regres-
sion model to allow each of the fifty topics to have
its own baseline difficulty level, where the effect
of λ is shared across topics. We used a quadratic
function of λ in the model (linear, cubic and quar-
tic functions were explored and rejected).

As expected, the baseline difficulty of each
topic varied widely. In fact, seven of the topics
were correctly identified by all 29 users,1 and one

1Whose ground truth labels were Medicine (twice), Mis-

●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

Lambda (optimal value is about 0.6)

P
ro

po
rt

io
n 

of
 C

or
re

ct
 R

es
po

ns
es

Trial data for middle tercile of topics

● Binned responses (bin size = 40)
50% Intervals
95% Intervals
Quadratic Fit

Figure 3: A plot of the proportion of correct re-
sponses in a user study vs. the value of λ used to
compute the most relevant terms for each topic.

topic was incorrectly identified by all 29 users.2

For the remaining 42 topics we estimated a topic-
specific intercept term to control for the inher-
ent difficulty of identifying the topic (not just due
to its tokens being spread among multiple News-
groups, but also to account for the inherent famil-
iarity of each topic to our subject pool – subjects,
on average, were more familiar with “Cars” than
“The X Window System”, for example).

The estimated effects of λ and λ2 were 2.74 and
-2.34, with standard errors 1.03 and 1.00. Taken
together, their joint effect was statistically signif-
icant (χ2 p-value = 0.018). To see the estimated
effect of λ on the probability of correctly identi-
fying a topic, consider Figure 3. We plot binned
proportions of correct responses (on the y-axis)
vs. λ (on the x-axis) for the 14 topics whose esti-
mated topic-specific intercepts fell into the middle
tercile among the 42 topics that weren’t trivial or
impossible to identify. Among these topics there
was roughly a 67% baseline probability of correct
identification. As Figure 3 shows, for these topics,
the “optimal” value of λ was about 0.6, and it re-
sulted in an estimated 70% probability of correct
identification, whereas for values of λ near 0 and

cellaneous Politics, Christianity, Gun Politics, Space (Astron-
omy), and Middle East Politics.

2The ground truth label for this topic was “Christianity”,
but the presence of the term “islam” or “quran” among the
top-5 for every value of λ led each subject to choose “Mis-
cellaneous Religion”.
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1, the estimated proportions of correct responses
were closer to 53% and 63%, respectively. We
view this as evidence that ranking terms according
to relevance, where λ < 1 (i.e. not strictly in de-
creasing order of probability), can improve topic
interpretability.

Note that in our experiment, we used the collec-
tion of single-posted 20 Newsgroups documents
to define our “ground truth” data. An alternative
method for collecting “ground truth” data would
have been to recruit experts to label topics from
an LDA model. We chose against this option be-
cause doing so would present a classic “chicken-
or-egg” problem: If we use expert-labeled topics
in an experiment to learn how to summarize top-
ics so that they can be interpreted (i.e. “labeled”),
we would only re-learn the way that our experts
were instructed, or allowed, to label the topics in
the first place! If, for instance, the experts were
presented with a ranked list of the most probable
terms for each topic, this would influence the in-
terpretations and labels they give to the topics, and
the experimental result would be the circular con-
clusion that ranking terms by probability allows
users to recover the “expert” labels most easily.
To avoid this, we felt strongly that we should use
data in which documents have metadata associated
with them. The 20 Newsgroups data provides an
externally validated source of topic labels, in the
sense that the labels were presented to users (in
the form of Newsgroup names), and users sub-
sequently filled in the content. It represents, es-
sentially, a crowd-sourced collection of tokens, or
content, for a certain set of topic labels.

4 The LDAvis System

Our interactive, web-based visualization system,
LDAvis, has two core functionalities that enable
users to understand the topic-term relationships in
a fitted LDA model, and a number of extra features
that provide additional perspectives on the model.

First and foremost, LDAvis allows one to se-
lect a topic to reveal the most relevant terms for
that topic. In Figure 1, Topic 34 is selected, and
its 30 most relevant terms (given λ = 0.34, in this
case) populate the barchart to the right (ranked
in order of relevance from top to bottom). The
widths of the gray bars represent the corpus-wide
frequencies of each term, and the widths of the
red bars represent the topic-specific frequencies of
each term. A slider allows users to change the

value of λ, which can alter the rankings of terms
to aid topic interpretation. By default, λ is set to
0.6, as suggested by our user study in Section 3.2.
If λ = 1, terms are ranked solely by φkw, which
implies the red bars would be sorted from widest
(at the top) to narrowest (at the bottom). By com-
paring the widths of the red and gray bars for a
given term, users can quickly understand whether
a term is highly relevant to the selected topic be-
cause of its lift (a high ratio of red to gray), or
its probability (absolute width of red). The top 3
most relevant terms in Figure 1 are “law”, “court”,
and “cruel”. Note that “law” is a common term
which is generated by Topic 34 in about 40% of
its corpus-wide occurrences, whereas “cruel” is a
relatively rare term with very high lift in Topic 34
– it occurs almost exclusively in this topic. Such
properties of the topic-term relationships are read-
ily visible in LDAvis for every topic.

On the left panel, two visual features provide
a global perspective of the topics. First, the ar-
eas of the circles are proportional to the relative
prevalences of the topics in the corpus. In the
50-topic model fit to the 20 Newsgroups data,
the first three topics comprise 12%, 9%, and
6% of the corpus, and all contain common, non-
specific terms (although there are interesting dif-
ferences: Topic 2 contains formal debate-related
language such as “conclusion”, “evidence”, and
“argument”, whereas Topic 3 contains slang con-
versational language such as “kinda”, “like”, and
“yeah”). In addition to visualizing topic preva-
lence, the left pane shows inter-topic differences.
The default for computing inter-topic distances is
Jensen-Shannon divergence, although other met-
rics are enabled. The default for scaling the set of
inter-topic distances defaults to Principal Compo-
nents, but other algorithms are also enabled.

The second core feature of LDAvis is the abil-
ity to select a term (by hovering over it) to reveal
its conditional distribution over topics. This dis-
tribution is visualized by altering the areas of the
topic circles such that they are proportional to the
term-specific frequencies across the corpus. This
allows the user to verify, as discussed in Chuang et
al. (2012a), whether the multidimensional scaling
of topics has faithfully clustered similar topics in
two-dimensional space. For example, in Figure 4,
the term “file” is selected. In the majority of this
term’s occurrences, it is drawn from one of several
topics located in the upper left-hand region of the
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Figure 4: The user has chosen to segment the fifty topics into four clusters, and has selected the green
cluster to populate the barchart with the most relevant terms for that cluster. Then, the user hovered over
the ninth bar from the top, “file”, to display the conditional distribution over topics for this term.

global topic view. Upon inspection, this group of
topics can be interpreted broadly as a discussion
of computer hardware and software. This verifies,
to some extent, their placement, via multidimen-
sional scaling, into the same two-dimensional re-
gion. It also suggests that the term “file” used in
this context refers to a computer file. However,
there is also conditional probability mass for the
term “file” on Topic 34. As shown in Figure 1,
Topic 34 can be interpreted as discussing the crim-
inal punishment system where “file” refers to court
filings. Similar discoveries can be made for any
term that exhibits polysemy (such as “drive” ap-
pearing in computer- and automobile-related top-
ics, for example).

Beyond its within-browser interaction capabil-
ity using D3 (Bostock et al., 2011), LDAvis
leverages the R language (R Core Team, 2014)
and specifically, the shiny package (Rstudio,
2014), to allow users to easily alter the topical
distance measurement as well as the multidimen-
sional scaling algorithm to produce the global
topic view. In addition, there is an option to ap-
ply k-means clustering to the topics (as a function

of their two-dimensional locations in the global
topic view). This is merely an effort to facilitate
semantic zooming in an LDA model with many
topics where ‘after-the-fact’ clustering may be an
easier way to estimate clusters of topics, rather
than fitting a hierarchical topic model (Blei et al.,
2003), for example. Selecting a cluster of topics
(by clicking the Voronoi region corresponding to
the cluster) reveals the most relevant terms for that
cluster of topics, where the term distribution of a
cluster of topics is defined as the weighted average
of the term distributions of the individual topics in
the cluster. In Figure 4, the green cluster of topics
is selected, and the most relevant terms, displayed
in the barchart on the right, are predominantly re-
lated to computer hardware and software.

5 Discussion

We have described a web-based, interactive visu-
alization system, LDAvis, that enables deep in-
spection of topic-term relationships in an LDA
model, while simultaneously providing a global
view of the topics, via their prevalences and sim-
ilarities to each other, in a compact space. We
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also propose a novel measure, relevance, by which
to rank terms within topics to aid in the task
of topic interpretation, and we present results
from a user study that show that ranking terms
in decreasing order of probability is suboptimal
for topic interpretation. The LDAvis visual-
ization system (including the user study data) is
currently available as an R package on GitHub:
https://github.com/cpsievert/LDAvis.

For future work, we anticipate performing a
larger user study to further understand how to fa-
cilitate topic interpretation in fitted LDA mod-
els, including a comparison of multiple methods,
such as ranking by Turbo Topics (Blei and Laf-
ferty, 2009) or FREX scores (Bischof and Airoldi,
2012), in addition to relevance. We also note the
need to visualize correlations between topics, as
this can provide insight into what is happening on
the document level without actually displaying en-
tire documents. Last, we seek a solution to the
problem of visualizing a large number of topics
(say, from 100 - 500 topics) in a compact way.
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Abstract

Existing algorithms for understanding
large collections of documents often pro-
duce output that is nearly as difficult
and time consuming to interpret as read-
ing each of the documents themselves.
Topic modeling is a text understanding
algorithm that discovers the “topics” or
themes within a collection of documents.
Tools based on topic modeling become in-
creasingly complex as the number of top-
ics required to best represent the collec-
tion increases. In this work, we present
Hiérarchie, an interactive visualization
that adds structure to large topic models,
making them approachable and useful to
an end user. Additionally, we demonstrate
Hiérarchie’s ability to analyze a diverse
document set regarding a trending news
topic.

1 Introduction

In computational linguistics and related fields, sig-
nificant work has been invested in the development
of algorithms for gaining insight from large bod-
ies of text. The raw output of these techniques
can be so complex that it is just as difficult and
time consuming to understand as reading the text.
Therefore, it is an especially challenging problem
to develop visualizations that add analytic value,
making complex analysis accessible by helping a
user to understand and interact with the output of
these algorithms.

Topic Modeling is a common, data-driven tech-
nique for summarizing the content of large text
corpora. This technique models documents as dis-
tributions of topics and topics as distributions of
words. In practice, topic models are used to pro-
vide a high-level overview and guided exploration
of a corpus. Prior work by others (Chaney and

Blei, 2012) and by the author (Smith et al., 2014)
has focused on visualizing the results of topic
modeling to support these two goals, but these
visualizations do not scale beyond 10 to 20 top-
ics1. Topic models with a small number of top-
ics may not accurately represent very diverse cor-
pora; instead, representative topic models require
a number of topics an order of magnitude higher,
for which current visualization methods are not
suitable. We propose a visualization that displays
hierarchically arranged topics. As opposed to a
flat model, which can be thought of as an un-
ordered heap of topics, a hierarchical structure al-
lows a user to “drill into” topics of interest, mean-
ing this technique supports directed exploration of
a corpus regardless of the number of topics in the
model.

Although methods that use inherently hierarchi-
cal generative models do exist, we take a simple
recursive approach that scales to large datasets and
does not change or depend on the underlying topic
modeling implementation. In principle, this tech-
nique could be applied to a range of topic model-
ing algorithms. We present this hierarchical model
to the user through an intuitive interactive visual-
ization, Hiérarchie. Additionally, we demonstrate
the capability with a Case Study on analyzing the
news coverage surrounding the Malaysia Airlines
flight that went missing on March 8, 2014.

2 Related Work

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003b) is an unsupervised algorithm for perform-
ing statistical topic modeling that uses a “bag of
words” approach, treating each document as a set
of unordered words. Each document is repre-
sented as a probability distribution over some top-
ics, and each topic is a probability distribution over

1Either the visualization becomes too confusing to under-
stand or using the visualization to explore the corpus takes
too much time — or both.
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words. LDA is an effective, scalable approach to
modeling a large text corpus; however, the result
is a flat topic model with no hierarchical structure
for a visualization to exploit.

Approaches exist for learning topic hierarchies
from data, such as the Nested Chinese restaurant
process (Blei et al., 2003a) and Pachinko Alloca-
tion (Li and McCallum, 2006). These approaches
build the intuitions of the hierarchy into the mod-
eling algorithm. This adds additional complexity
and tightly couples the hierarchical process with
the underlying modeling algorithm.

Our Hierarchical Topic Modeling method uses
a simple top-down recursive approach of splitting
and re-modeling a corpus to produce a hierarchi-
cal topic model that does not require a specific un-
derlying topic modeling algorithm. This work is
most similar to Dirichlet Compound Multinomial
Latent Dirichlet Allocation, DCM-LDA, which
processes the corpus via a bottom-up approach.
DCM-LDA first trains unique topic models based
on co-occurrence of words in each document, and
then clusters topics across documents (Mimno and
McCallum, 2007).

Existing visualizations support analysis and ex-
ploration of topic models. Topical Guide (Gardner
et al., 2010), TopicViz (Eisenstein et al., 2012),
and the topic visualization of (Chaney and Blei,
2012) provide visualization and interaction with
topic models for corpus exploration and under-
standing. These visualizations typically repre-
sent topics as word clouds, where the topic model
as a whole is presented as an unordered set of
topics. This approach is not optimal for effi-
cient exploration and understanding, and the sea
of word clouds quickly becomes overwhelming as
the number of topics grows. Termite (Chuang et
al., 2012) uses a tabular layout to represent a topic
model and supports easy comparison of words
within and across topics. The Termite visualiza-
tion organizes the model into clusters of related
topics based on word overlap. This visualization
technique is space saving and the clustering speeds
corpus understanding. Our approach clusters top-
ics by document overlap instead of word overlap
and is hierarchical, providing multiple levels of re-
lated topics for intuitive corpus exploration.

Nested lists, icicle plots (Kruskal and
Landwehr, 1983), and treemaps (Shneider-
man, 1998) are commonly used for visualizing
hierarchical data, but they have limitations and do

not easily support data-dense hierarchies, such as
hierarchical topic models. Nested lists can be hard
to navigate as they fail to maintain the same size
and approximate structure during exploration. An
icicle plot, which is a vertical representation of
a partition chart, suffers from similar rendering
constraints and limits positioning, sizing, and
readability of text labeling. Treemaps use nested
rectangles to display hierarchical data, but have
been criticized as not cognitively plausible (Fab-
rikant and Skupin, 2005), making them difficult
to interpret. Additionally, as is the case for
nested lists and icicle plots, treemaps obscure the
structure of the underlying data to accommodate
layout and sizing constraints.

Hiérarchie uses an interactive sunburst
chart (Stasko et al., 2000), which is a partition
chart with radial orientation that supports visual-
izing large or small hierarchies without requiring
scrolling or other interaction. The sunburst chart
implementation used by Hiérarchie is directly
based upon the Sequences Sunburst (Rodden,
2013) and Zoomable Sunburst (Bostock, 2012b)
examples that are implemented in the Data-Driven
Documents library (Bostock, 2012a).

3 Hierarchical Topic Modeling

The HLDA algorithm takes a simple, top-down
approach for producing hierarchical topic models
by recursively splitting and re-modeling a corpus.
Standard LDA discovers the distribution of words
in topics and topics in documents through an infer-
ence process; our implementation uses Gibbs sam-
pling (Griffiths and Steyvers, 2004) for inference.
As a result of this process, each word in a docu-
ment is assigned to a topic. At the end of sampling,
HLDA uses these word-to-topic assignments to
construct new synthetic documents for each topic
from each of the initial documents. These syn-
thetic documents contain only those words from
the original document that are assigned to the topic
and make up the synthetic corpus for the topic. So,
if there are 10 topics in the topic model, up to 10
new synthetic documents — one for each topic —
will be created for each document, and these doc-
uments will be merged into the topic’s synthetic
corpus.

For each topic, t, we then construct a new topic
model, mt, using the synthetic corpus correspond-
ing to t. The discovered topics in mt represent
the subtopics of t. This process, illustrated in
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Figure 1: Overview of the HLDA algorithm. The algorithm runs LDA over the original corpus which
results in a topic model and word-topic assignments. These word-topic assignments are used to create
synthetic documents — one for each document/topic pair. The synthetic documents are grouped into
synthetic corpora by topic, and LDA is run for each of the synthetic corpora. This process continues
recursively until the synthetic corpus and documents are too small to model. The result is a hierarchy of
topic distributions.

Figure 1, can be repeated recursively, until the
synthetic corpus and synthetic documents are too
small to model.2 While the number of topics at
each level in the hierarchy must be specified, the
overall number of topics discovered by this ap-
proach is a byproduct of the algorithm.

This modeling approach is a wrapper algorithm
that can be applied to any modeling approach that
assigns individual tokens in documents to specific
topics.

4 Hiérarchie

To effectively visualize the topic hierarchy out-
put from HLDA, it is important to properly con-
vey the relevance and structure of the topics. In-
tuitive interaction with the visualization is impor-
tant so users can easily explore topics and identify
patterns. Without effective visualization, forming
conclusions becomes as difficult as approaching
the raw documents without the benefit of algorith-
mic analysis.

In practice, a diverse set of visualizations are
used to display hierarchical data. An effective vi-
sualization of a hierarchical topic model should
support the following Use Cases:

1. Accuracy - display topics without hiding or
skewing the hierarchical structure

2. Granularity - interact with the visualization

2This is parameterized and can be set based on tolerable
quality degradation from short documents or small corpora.

to explore the topics at all levels of the hier-
archy

3. Accessibility - view the underlying data as-
sociated with the topics

Many of the visualizations we considered for
viewing topic hierarchies obscure or misrepresent
the true structure of their underlying data, largely
due to the amount of space required for rendering.
Others provide less skewing of the structure, yet,
for large hierarchies, require a high degree of user
interaction (clicking and navigating) to expose the
underlying data. We found that a sunburst chart is
best suited to our purposes as it supports visual-
izing large or small hierarchies without requiring
scrolling or other interaction. Unlike other hierar-
chical visualizations, the sunburst can accommo-
date the size of a typical computer screen without
hiding or minimizing structure.

Figure 2 displays a top-level view of the
Hiérarchie visualization for a dataset of Tweets,
Reddit comments, and news articles regarding the
Malaysia Airlines flight. Each level of the hierar-
chical topic model is represented as a ring of the
Sunburst chart where the arcs comprising the rings
represent the individual topics. By not labeling
each arc, or “slice,” within the sunburst, the high-
level overview of the hierarchical topic model is
presented to the user with minimal complexity.

The initial, high-level view of the sunburst
chart follows the design principle of overview
first, zoom and filter, details on demand (Shnei-
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Figure 2: The top-level view of the Hiérarchie visualization. This visualization uses a sunburst chart,
which is optimal for displaying the topic hierarchy created by the HLDA algorithm without hiding or
skewing the hierarchical structure.

derman, 1996) and does not display details for ev-
ery topic, requiring user interaction to expose ad-
ditional data. In our sunburst visualization, user
interaction allows for exploration of the informa-
tion at a finer granularity. When hovering over a
topic of interest, the words of the topic are dis-
played in the empty center of the sunburst. This is
an efficient use of space and prevents disorienta-
tion, since minimal eye movement is required be-
tween the slice of interest (where the user’s mouse
is located) and the center list of topics.

When a user selects a slice of interest, the sun-
burst zooms in to display the selected topic and
sub-topics. This allows the user to analyze a spe-
cific section of the hierarchy. This interaction is
shown in Figures 4 and 5. The sunburst has re-
oriented to display the selected sub-topic, (plane,
crash, crashed) as the visualization root.

To provide a clean and meaningful display of
topic information for each slice, only one slice’s
information can be shown at a time. As the sun-
burst zooms to display selected topics, it is use-
ful to provide context for the location of the topic
within the overall topic hierarchy. Therefore, two
contextual visualizations — a breadcrumb trail
and a contextual anchor — are provided. Bread-
crumb trails are often utilized to provide context
during navigation, such as when navigating a file
structure or large retail website. The breadcrumb

trail displays the hierarchical path leading to the
current topic (Aery, 2007). A contextual anchor,
or contextual snapshot (Mindek et al., 2013), is
used to provide additional context to the user. The
contextual anchor displays the entire hierarchical
topic model to the user at all times. When the user
selects a topic slice to view a section of the hier-
archy in more detail, the contextual anchor high-
lights the position of the selected topic within the
hierarchical topic model. This offers context to
the user, regardless of their location within the hi-
erarchy. An example of the breadcrumb trail and
contextual anchor is displayed in Figure 3.

5 Case Study

The search for Malaysia Flight MH-370 was on-
going during the composition of this paper, with
few clues indicating what might have actually oc-
curred. In an attempt to organize the various the-
ories, we collected 1600 Tweets and 970 Red-
dit comments containing the keyword “MH370”
in addition to 27 Daily Beast articles returned by
a URL filter for any of the key words “malay,”
“370”, “flight,” “missing,” “hijack,” “radar,” “pi-
lot,” “plane,” “airplane,” and “wreckage.” This
corpus offers a diverse sampling of discussion
concerning the missing airliner that is too large
for a human alone to quickly analyze. We pro-
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Figure 3: Our simple breadcrumb trail and contex-
tual anchor offer constant context as the user ex-
plores the visualization. Highlighted slices within
the contextual anchor are those currently dis-
played in the sunburst visualization.

cessed the corpus with HLDA using 10 topics for
each level. This number of topics balances gran-
ularity and accuracy. Using too many narrow top-
ics results in information overload, whereas too
few broad topics could be difficult to understand3.
We then visualized the resulting hierarchical topic
model with Hiérarchie as shown in Figure 2. As
we were most interested in looking at the vari-
ous theories surrounding the flight, we chose to
explore one of the high-level topics, (plane, peo-
ple, pilot, think, know), in more detail, because
many of this topic’s sub-topics suggest specific
theories related to the outcome of MH-370. Ta-
ble 1 shows the 10 sub-topics for the “theory”
topic represented by their 3 most probable terms.
The bolded topics are those that suggest theories.
Figure 4 shows the sunburst graph reoriented af-
ter the selection of the main “theory” topic. The
sunburst graph is labeled with the sub-topics that
represent the selection of interesting theories.

These topics suggest four primary theories: that
the plane landed, the plane crashed, the plane
was hijacked by terrorists, or the pilot crashed
the plane in an act of suicide. Hovering over the
(plane, crash, crashed) topic shows the sub topics,
and clicking the topic reorients the sunburst chart,

3Deviating from this number slightly may also be effec-
tive, and experimentation is required to determine the num-
ber of topics that is the best fit for the current data set and end
goal.

plane, crash, crashed
plane, landed, land
plane, think, people

pilot, plane, hijacking
terrorist, terrorism, passports

suicide, pilot, ocean
Shah, Anwar, political

plane, China, world
phone, phones, cell

evidence, think, make

Table 1: The 10 high-level topics of the model
generated from running HLDA on the Malaysia
Flight MH-370 corpus. The bolded topics suggest
specific theories regarding the status of the plane.

crash, water, crashed
failure, catastrophic, mayday

mechanical, failure, days
plane, ocean, did
plane, error, lost

Table 2: A selection of the sub-topics of discus-
sion surrounding a plane crash scenario. These
sub-topics suggest more detailed discussion. For
example, that the plane crash may have resulted
from a catastrophic mechanical failure or other er-
ror.

as shown in Figure 5. The sub-topics under (plane,
crash, crashed) suggest more detailed discussion
of a crash scenario, such as the plane crashing into
the water, and that there may have been a catas-
trophic mechanical failure or other error. Table 2
contains a selection of these sub-topics.

An alternate theory is suggested by the (terror-
ist, terrorism, passports) topic, which is shown in
Figure 6. The sub-topics here suggest more de-
tailed discussion involving terrorism as the cause
for the plane’s disappearance. Table 3 contains a
selection of these sub-topics.

The hierarchical topic model produced by
HLDA and visualized with Hiéarchie provide au-
tomated organization of the many theories regard-
ing the missing Malaysian airliner. The high-level
overview provides a quick summary of all of the
discussion surrounding the event, while the hi-
erarchical organization and intuitive exploration
allows the discussion, and specifically each the-
ory, to be explored in depth, exposing potentially
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passports, stolen, using
terrorists, crash, terrorist

Muslim, Muslims, Islamic
attack, going, terror

responsibility, common, group

Table 3: A selection of the sub-topics of discus-
sion surrounding a terrorism scenario. These sub-
topics include more details, such as the discussion
of stolen passports, relevant to the theory that the
plane disappearance is the result of an act of ter-
rorism.

Figure 4: Sub-categories of interest have been
purposely numbered for clarity. 1:(plane, crash,
crashed); 2: (plane, landed, land); 3: (terrorist,
terrorism, passports); 4: (suicide, pilot, ocean).

relevant information. Organizing all of this data
by hand would be difficult and time consuming.
This intuitive visualization in combination with
our method for organizing the underlying data
transforms a disparate corpus of documents into
a useful and manageable information source.

6 Future Work and Conclusion

The Hiéarchie visualization and related hierarchi-
cal topic modeling algorithm support the under-
standing and exploration of text corpora that are
too large to read. Although existing topic mod-
eling algorithms effectively process large corpora,
the resulting topic models are difficult to interpret
in their raw format. Current visualization meth-
ods only scale to a small number of topics, which
cannot accurately represent a diverse corpus. Ad-
ditional structure is required to organize a repre-
sentative topic model of a large dataset into an un-

Figure 5: Clicking the (plane, crash, crashed)
topic slice in the top-level (plane, people, pilot)
visualization reorients the sunburst to display the
slice as its root, enabling more detailed explo-
ration of sub-topics.

Figure 6: The(terrorist, terrorism, passports)
topic slice in the top-level (plane, people, pilot)
visualization.
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derstandable and navigable analysis tool.
Our approach visualizes the hierarchical topic

model produced by the HLDA algorithm to sup-
port intuitive, directed browsing of topical struc-
ture within a diverse collection of documents. As
demonstrated in the Malaysia Airlines case study,
this technique can be used to quickly gain insight
about the diverse speculation surrounding a signif-
icant, inconclusive event. Hiéarchie enables users
to examine and gain insight from large, diverse
datasets more efficiently than if they had to inter-
pret complicated algorithmic output or read raw
documents.

The sunburst visualization provides a clear
overview of the structure of the model; however,
individual topics are currently represented as lists
of words ordered by their probability for the topic.
This is non-optimal for topic understanding. Ad-
ditionally, this topic information is displayed on
hover, which does not easily support making com-
parisons between topics. Future work includes im-
plementing alternative techniques for displaying
the topic information and performing an evalua-
tion to determine which technique is most appro-
priate for the intended use cases.

Future work also includes adding additional in-
formation to the visualization through color and
topic placement. In the current implementation,
topic slices are currently colored by the most
prevalent topic word. Coloring slices by sentiment
or other topic-level metrics will enrich the visual-
ization and improve the user’s ability to quickly
discern different topics and their meaning within
the model as a whole. Similarly, topic position in
the sunburst does not currently provide any useful
information. One possible layout is based on topic
covariance, which is a metric of topic relatedness
based on the frequency of topic pair co-occurrence
within the documents of the corpus. An improved
sunburst layout could take into account topic co-
variance to optimize the layout such that related
topics were positioned together at each level of the
hierarchy.
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Abstract

Analysis tools based on topic models are
often used as a means to explore large
amounts of unstructured data. Users of-
ten reason about the correctness of a model
using relationships between words within
the topics or topics within the model. We
compute this useful contextual informa-
tion as term co-occurrence and topic co-
variance and overlay it on top of stan-
dard topic model output via an intuitive
interactive visualization. This is a work
in progress with the end goal to combine
the visual representation with interactions
and online learning, so the users can di-
rectly explore (a) why a model may not
align with their intuition and (b) modify
the model as needed.

1 Introduction

Topic modeling is a popular technique for analyz-
ing large text corpora. A user is unlikely to have
the time required to understand and exploit the raw
results of topic modeling for analysis of a corpus.
Therefore, an interesting and intuitive visualiza-
tion is required for a topic model to provide added
value. A common topic modeling technique is La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
which is an unsupervised algorithm for perform-
ing statistical topic modeling that uses a “bag of
words” approach. The resulting topic model repre-
sents the corpus as an unrelated set of topics where
each topic is a probability distribution over words.
Experienced users who have worked with a text
corpus for an extended period of time often think
of the thematic relationships in the corpus in terms
of higher-level statistics such as (a) inter-topic cor-
relations or (b) word correlations. However, stan-
dard topic models do not explicitly provide such
contextual information to the users.

Existing tools based on topic models, such
as Topical Guide (Gardner et al., 2010), Top-
icViz (Eisenstein et al., 2012), and the topic vi-
sualization of (Chaney and Blei, 2012) support
topic-based corpus browsing and understanding.
Visualizations of this type typically represent stan-
dard topic models as a sea of word clouds; the in-
dividual topics within the model are presented as
an unordered set of word clouds — or something
similar — of the top words for the topic1 where
word size is proportional to the probability of the
word for the topic. A primary issue with word
clouds is that they can hinder understanding (Har-
ris, 2011) due to the fact that they lack information
about the relationships between words. Addition-
ally, topic model visualizations that display topics
in a random layout can lead to a huge, inefficiently
organized search space, which is not always help-
ful in providing a quick corpus overview or assist-
ing the user to diagnose possible problems with
the model.

The authors of Correlated Topic Models (CTM)
(Lafferty and Blei, 2006) recognize the limitation
of existing topic models to directly model the cor-
relation between topics, and present an alterna-
tive algorithm, CTM, which models the correla-
tion between topics discovered for a corpus by us-
ing a more flexible distribution for the topic pro-
portions in the model. Topical n-gram models
(TNG) (Wang et al., 2007) discover phrases in
addition to topics. TNG is a probabilistic model
which assigns words and n-grams based on sur-
rounding context, instead of for all references in
the corpus. These models independently account
for the two limitations of statistical topic modeling
discussed in this paper by modifying the underly-
ing topic modeling algorithm. Our work aims to
provide a low-cost method for incorporating this

1This varies, but typically is either the top 10 to 20 words
or the number of words which hold a specific portion of the
distribution weight.
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information as well as visualizing it in an effec-
tive way. We compute summary statistics, term
co-occurrence and topic covariance, which can be
overlaid on top of any traditional topic model. As
a number of application-specific LDA implemen-
tations exist, we propose a meta-technique which
can be applied to any underlying algorithm.

We present a relationship-enriched visualiza-
tion to help users explore topic models through
word and topic correlations. We propose inter-
actions to support user understanding, validation,
and refinement of the models.

2 Group-in-a-box Layout for Visualizing
a Relationship-Enriched Topic Model

Existing topic model visualizations do not eas-
ily support displaying the relationships between
words in the topics and topics in the model. In-
stead, this requires a layout that supports intuitive
visualization of nested network graphs. A group-
in-a-box (GIB) layout (Rodrigues et al., 2011) is a
network graph visualization that is ideal for our
scenario as it is typically used for representing
clusters with emphasis on the edges within and
between clusters. The GIB layout visualizes sub-
graphs within a graph using a Treemap (Shneider-
man, 1998) space filling technique and layout al-
gorithms for optimizing the layout of sub-graphs
within the space, such that related sub-graphs are
placed together spatially. Figure 1 shows a sample
group-in-a-box visualization.

We use the GIB layout to visually separate top-
ics of the model as groups. We implement each
topic as a force-directed network graph (Fruchter-
man and Reingold, 1991) where the nodes of the
graph are the top words of the topic. An edge ex-
ists between two words in the network graph if
the value of the term co-occurrence for the word
pair is above a certain threshold,2 and the edge is
weighted by this value. Similarly, the edges be-
tween the topic clusters represent the topic covari-
ance metric. Finally, the GIB layout optimizes the
visualization such that related topic clusters are
placed together spatially. The result is a topic visu-
alization where related words are clustered within
the topics and related topics are clustered within
the overall layout.

2There are a variety of techniques for setting this thresh-
old; currently, we aim to display fewer, stronger relationships
to balance informativeness and complexity of the visualiza-
tion

Figure 1: A sample GIB layout from (Rodrigues
et al., 2011). The layout visualizes clusters dis-
tributed in a treemap structure where the partitions
are based on the size of the clusters.

3 Relationship Metrics

We compute the term and topic relationship in-
formation required by the GIB layout as term
co-occurrence and topic covariance, respectively.
Term co-occurrence is a corpus-level statistic that
can be computed independently from the LDA al-
gorithm. The results of the LDA algorithm are re-
quired to compute the topic covariance.

3.1 Corpus-Level Term Co-Occurrence
Prior work has shown that Pointwise Mutual
Information (PMI) is the most consistent scor-
ing method for evaluating topic model coher-
ence (Newman et al., 2010). PMI is a statistical
technique for measuring the association between
two observations. For our purposes, PMI is used
to measure the correlation between each term pair
within each topic on the document level3. The
PMI is calculated for every possible term pair in
the ingested data set using Equation 1. The visu-
alization uses only the PMI for the term pairs for
the top terms for each topic, which is a small sub-
set of the calculated PMI values. Computing the
PMI is trivial compared to the LDA calculation,
and computing the values for all pairs allows the
job to be run in parallel, as opposed to waiting for
the results of the LDA job to determine the top
term pairs.

PMI(x, y) = log
p(x, y)
p(x)p(y)

(1)

The PMI measure represents the probability of
observing x given y and vice-versa. PMI can be

3We use document here, but the PMI can be computed at
various levels of granularity as required by the analyst intent.
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positive or negative, where 0 represents indepen-
dence, and PMI is at its maximum when x and y
are perfectly associated.

3.2 Topic Covariance
To quantify the relationship between topics in the
model, we calculate the topic covariance metric
for each pair of topics. To do this, we use the
theta vector from the LDA output. The theta vec-
tor describes which topics are used for which doc-
uments in the model, where theta(d,i) represents
how much the ith topic is expressed in document
d. The equations for calculation the topic covari-
ance are shown below.

γdi =
θdi∑
j(θdj)

(2)

γi =
1
D

∑
d

(γdi) (3)

σ(i, j) =
1
D

∑
d

(γdi − γi)(γdj − γj)) (4)

4 Visualization

The visualization represents the individual topics
as network graphs where nodes represent terms
and edges represent frequent term co-occurrence,
and the layout of the topics represents topic co-
variance. The most connected topic is placed in
the center of the layout, and the least connected
topics are placed at the corners. Figure 2 shows
the visualization for a topic model generated for
a 1,000 document NSF dataset. As demonstrated
in Figure 3, a user can hover over a topic to see
the related topics4. In this example, the user has
hovered over the {visualization, visual, interac-
tive} topic, which is related to {user, interfaces},
{human, computer, interaction}, {design, tools},
and {digital, data, web} among others. Unlike
other topical similarity measures, such as cosine
similarity or a count of shared words, the topic co-
variance represents topics which are typically dis-
cussed together in the same documents, helping
the user to discover semantically similar topics.

On the topic level, the size of the node in the
topic network graph represents the probability of
the word given the topic. By mapping word proba-
bility to the area of the nodes instead of the height

4we consider topics related if the topic co-occurrence is
above a certain pre-defined threshold.

Figure 2: The visualization utilizes a group-in-a-
box-inspired layout to represent the topic model as
a nested network graph.

of words, the resulting visual encoding is not af-
fected by the length of the words, a well-known
issue with word cloud presentations that can visu-
ally bias longer terms. Furthermore, circles can
overlap without affecting a user’s ability to visu-
ally separate them, and lead to more compact and
less cluttered visual layout. Hovering over a word
node highlights the same word in other topics as
shown in Figure 4.

This visualization is an alternative interface
for Interactive Topic Modeling (ITM) (Hu et al.,
2013). ITM presents users with topics that can be
modified as appropriate. Our preliminary results
show that topics containing highly-weighted sub-
clusters may be candidates for splitting, whereas
positively correlated topics are likely to be good
topics, which do not need to be modified. In fu-
ture work, we intend to perform an evaluation to
show that this visualization enhances quality and
efficiency of the ITM process.

To support user interactions required by the
ITM algorithm, the visualization has an edit mode,
which is shown in Figure 5. Ongoing work in-
cludes developing appropriate visual operations to
support the following model-editing operations:

1. Adding words to a topic
2. Removing words from a topic
3. Requiring two words to be linked within a

topic (must link)
4. Requiring two words to be forced into sepa-

rate topics (cannot link)

5 Conclusion and Future Work

The visualization presented here provides a novel
way to explore topic models with incorporated
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Figure 3: The user has hovered over the most-
central topic in the layout, which is the most con-
nected topic. The hovered topic is outlined, and
the topic name is highlighted in turquoise. The
topic names of the related topics are also high-
lighted.

Figure 4: The visualization where the user has
hovered over a word of interest. The same word
is highlighted turquoise in other topics.

Figure 5: The edit mode for the visualization.
From this mode, the user can add words, remove
words, or rename the topic.

term and topic correlation information. This is a
work in progress with the end goal to combine the
visual representation with interactive topic mod-
eling to allow users to explore (a) why a model
may not align with their intuition and (b) modify
the model as needed. We plan to deploy the tool
on real-world domain users to iteratively refine the
visualization and evaluate it in ecologically valid
settings.
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