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Abstract

Despite recent advances in discourse pars-
ing and causality detection, the automatic
recognition of argumentation structure of
authentic texts is still a very challeng-
ing task. To approach this problem, we
collected a small corpus of German mi-
crotexts in a text generation experiment,
resulting in texts that are authentic but
of controlled linguistic and rhetoric com-
plexity. We show that trained annotators
can determine the argumentation struc-
ture on these microtexts reliably. We ex-
periment with different machine learning
approaches for automatic argumentation
structure recognition on various levels of
granularity of the scheme. Given the com-
plex nature of such a discourse under-
standing tasks, the first results presented
here are promising, but invite for further
investigation.

1 Introduction

Automatic argumentation recognition has many
possible applications, including improving docu-
ment summarization (Teufel and Moens, 2002),
retrieval capabilities of legal databases (Palau and
Moens, 2011), opinion mining for commercial
purposes, or also as a tool for assessing public
opinion on political questions.

However, identifying and classifying arguments
in naturally-occurring text is a very challenging
task for various reasons: argumentative strategies
and styles vary across texts genres; classifying ar-
guments might require domain knowledge; fur-
thermore, argumentation is often not particularly
explicit – the argument proper is being infiltrated
with the full range of problems of linguistic ex-
pression that humans have at their disposal.

Although the amount of available texts featur-
ing argumentative behaviour is growing rapidly in

the web, we suggest there is yet one resource miss-
ing that could facilitate the development of auto-
matic argumentation recognition systems: Short
texts with explicit argumentation, little argumenta-
tively irrelevant material, less rhetorical gimmicks
(or even deception), in clean written language.

For this reason, we conducted a text generation
experiment, designed to control the linguistic and
rhetoric complexity of written ‘microtexts’. These
texts have then been annotated with argumentation
structures. We present first results of automatic
classification of these arguments on various levels
of granularity of the scheme.

The paper is structured as follows: In the next
section we describe related work. Section 3
presents the annotation scheme and an agreement
study to prove the reliability. Section 4 describes
the text generation experiment and the resulting
corpus. Section 5 and 6 present the results of our
first attempts in automatically recognizing the ar-
gumentative structure of those texts. Finally, Sec-
tion 7 concludes with a summary and an outlook
on future work.

2 Related Work

There exist a few ressources for the study of ar-
gumentation, most importantly perhaps the AIF
database, the successor of the Araucaria corpus
(Reed et al., 2008), that has been used in dif-
ferent studies. It contains several annotated En-
glish datasets, most interestingly for us one cov-
ering online newspaper articles. Unfortunately,
the full source text is not part of the download-
able database, which is why the linguistic ma-
terial surrounding the extracted segments is not
easy to retrieve for analysis. Instead of manu-
ally annotating, Cabrio and Villata (2012) cre-
ated an argumentation resource by extracting ar-
gumentations from collaborative debate portals,
such as debatepedia.org, where arguments are al-
ready classified into pro and con classes by the
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users. Unfortunately, those arguments are them-
selves small texts and their internal argumenta-
tive structure is not marked up. Finally, to the
best of our knowledge, the only existing corpus
of German newspaper articles, essays or editori-
als annotated with argumentation structure is that
used by Stede and Sauermann (2008), featuring
ten commentaries from the Potsdam Commentary
Corpus (Stede, 2004). Although short, these texts
are rhetorically already quite complex and often
have segments not relevant to the argument.1

In terms of automatic recognition, scientific
documents of different fields have been studied in-
tensively in the Argumentative Zoning approach
or in similar text zoning approaches (Teufel and
Moens, 2002; Teufel et al., 2009; Teufel, 2010;
Liakata et al., 2012; Guo et al., 2013). Here, sen-
tences are classified into different functional or
conceptual roles, grouped together with adjacent
sentences of the same class to document zones,
which induces a flat partitioning of the text. A va-
riety of machine learning schemes have been ap-
plied here.

Another line of research approaches argumen-
tation from the perspective of Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988)
and works with argumentation-enriched RST trees
(Azar, 1999; Green, 2010). However, we do not
consider RST to be the best level for representing
argumentation, due to its linearization constraints
(Peldszus and Stede, 2013a, sec. 3). Nevertheless,
noteworthy advances have been made recently in
rhetorical parsing (Hernault et al., 2010; Feng and
Hirst, 2012). Whether hybrid RST argumenta-
tion structures will profit similarly remains to be
shown. A more linguistically oriented approach
is given with the TextCoop platform (Saint-Dizier,
2012) for analyzing text on the discourse level
with emphasis on argumentation.

One step further, Feng and Hirst (2011) concen-
trate on types of arguments and use a statistical
approach to classify already identified premises
and conclusions into five common argumentation
schemes (Walton et al., 2008).

3 Annotation Scheme

Our representation of the argumentation structure
of a text is based on Freeman’s theory of ar-
gumentation structure (Freeman, 1991; Freeman,

1We intend to use this resource, when we move on to ex-
periment with more complex texts.

2011).2 Its central idea is to model argumen-
tation as a hypothetical dialectical exchange be-
tween the proponent, who presents and defends
his claims, and the opponent, who critically ques-
tions them in a regimented fashion. Every move in
such a dialectical exchange corresponds to a struc-
tural element in the argument graph. The nodes of
this graph represent the propositions expressed in
text segments (round nodes are proponent’s nodes,
square ones are opponent’s nodes), the arcs be-
tween those nodes represent different supporting
(arrow-head links) and attacking moves (circle-
head links). The theory distinguishes only a few
general supporting and attacking moves. Those
could be specified further with a more fine grained
set, as provided for example by the theory of ar-
gumentation schemes (Walton et al., 2008). Still,
we focus on the coarse grained set, since this re-
duces the complexity of the already sufficiently
challenging task of automatic argument identifica-
tion and classifcation. Our adaption of Freeman’s
theory and the resulting annotation scheme is de-
scribed in detail and with examples in (Peldszus
and Stede, 2013a).

3.1 Reliability of annotation

The reliability of the annotation scheme has been
evaluated in two experiments. We will first reca-
pitulate the results of a previous study with naive
annotators and then present the new results with
expert annotators.

Naive annotators: In (Peldszus and Stede,
2013b), we presented an agreement study with
26 naive and untrained annotators: undergradu-
ate students in a “class-room annotation” szenario,
where task introduction, guideline reading and the
actual annotation is all done in one obligatory
90 min. session and the subjects are likely to
have different experience with annotation in gen-
eral, background knowledge and motivation. We
constructed a set of 23 microtexts (each 5 seg-
ments long) covering different linearisations of
several combinations of basic argumentation con-
structs. An example text and the corresponding
argumentation structure graph is shown in Fig-
ure 1. On these texts, the annotators achieved
moderate agreement3 for certain aspects of the ar-

2The theory aims to integrate the ideas of Toulmin (1958)
into the argument diagraming techniques of the informal
logic tradition (Beardsley, 1950; Thomas, 1974) in a system-
atic and compositional way.

3Agreement is measured in Fleissκ (Fleiss, 1971).
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gument graph (e.g.κ=.52 in distinguishing pro-
ponent and opponent segments, orκ=.58 in des-
tinguishing supporting and attacking segments),
yet only a marginal agreement ofκ=.38 on the
full labelset describing all aspects of the argument
graph. However, we could systematically identify
subgroups performing much better than average
using clustering techniques: e.g. a subgroup of
6 annotators reached a relatively high IAA agree-
ment ofκ=.69 for the full labelset and also high
agreement with gold data.

Expert annotators: Here, we present the re-
sults of an agreement study with three expert an-
notators: two of them are the guideline authors,
one is a postdoc in computational linguistics. All
three are familiar with discourse annotation tasks
in general and specifically with this annotation
scheme. They annotated the same set of 23 mi-
crotexts and achieved a high agreement ofκ=.83
on the full labelset describing all aspects of the ar-
gument graph. The distinction between supporting
and attacking was drawn with very high agreement
of κ=.95, the one between proponent and oppo-
nent segments even with perfect agreement.

Since argumentation structures can be reliably
annotated using this scheme, we decided to create
a small corpus of annotated microtexts.

4 Dataset

The corpus used in this study consists of two parts:
on the one hand, the 23 microtexts used in the an-
notation experiments just described; on the other
hand, 92 microtexts that have been collected in a
controlled text generation experiment. We will de-
scribe this experiment in the following subsection.

4.1 Microtext generation experiment

We asked 23 probands to discuss a controversial
issue in a short text of 5 segments. A list of 17
of these issues was given, concerning recent po-
litical, moral, or everyday’s life questions. Each
proband was allowed to discuss at maximum five
of the given questions. Probands were instructed
to first think about the pros & cons of the con-
troversial question, about possible refutation and
counter-refutations of one side to the other. On
this basis, probands should decide for one side
and write a short persuasive text (corresponding
to the standards of the written language), arguing
in favour of their chosen position.

The written texts were required to have a length

of five segments. We decided not to bother our
probands with an exact definition of a segment,
as this would require the writers to reliably iden-
tify different complex syntactic constructions. In-
stead, we simply characterized it as a clause or
a sentence, expressing an argumentative point on
its own. We also required all segments to be ar-
gumentatively relevant, in the sense that they ei-
ther formulate the main claim of the text, sup-
port the main claim or another segment, or attack
the main claim or another segment. This require-
ment was put forward in order to prevent digres-
sion and argumentatively irrelevant but common
segment types, such as theme or mood setters, as
well as background information. Furthermore, we
demanded that at least one possible objection to
the main claim be considered in the text, leaving
open the choice of whether to counter that objec-
tion or not. Finally, the text should be written in
such a way that it would be understandable with-
out having the question as a headline.

In total, 100 microtexts have been collected.
The five most frequently chosen issues are:

• Should the fine for leaving dog excrements
on sideways be increased?

• Should shopping malls generally be allowed
to open on Sundays?

• Should Germany introduce the death
penalty?

• Should public health insurance cover treat-
ments in complementary and alternative
medicine?

• Should only those viewers pay a TV licence
fee who actually want to watch programs of-
fered by public broadcasters?

4.2 Cleanup and annotation

Since we aim for a corpus of clean, yet authen-
tic argumentation, all texts have been checked for
spelling and grammar errors. As a next step, the
texts were segmented into elementary units of ar-
gumentation. Due to the (re-)segmentation, not all
texts conform to the length restriction of five seg-
ments, they can be one segment longer or shorter.
Unfortunately, some probands wrote more than
five main clauses, yielding texts with up to ten seg-
ments. We decided to shorten these texts down
to six segments by removing segments that ap-
pear redundant or negligible. This removal also
required modifications in the remaining segments
to maintain text coherence, which we made as

90



[Energy-saving light bulbs contain a considerable amount
of toxic substances.]1 [A customary lamp can for instance
contain up to five milligrams of quicksilver.]2 [For this rea-
son, they should be taken off the market,]3 [unless they
are virtually unbreakable.]4 [This, however, is simply not
case.]5

(a) (b)

node id rel. id full label target
1 1 PSNS (n+2)
2 2 PSES (n-1)
3 3 PT (0)
4 4 OAUS (r-3)
5 5 PARS (n-1)

(c)

Figure 1: An example microtext: the (translated) segmentedtext in (a), the argumentation structure graph
in (b), the segment-based labeling representation in (c).

minimal as possible. Another source of problems
were segments that do not meet our requirement
of argumentative relevance. Some writers did not
concentrate on discussing the thesis, but moved
on to a different issue. Others started the text
with an introductory presentation of background
information, without using it in their argument.
We removed those segments, again with minimal
changes in the remaining segments. Some texts
containing several of such segments remained too
short after the removal and have been discarded
from the dataset.

After cleanup, 92 of the 100 written texts re-
mained for annotation of argumentation structure.
We found that a few texts did not meet the require-
ment of considering at least one objection to the
own position. In a few other texts, the objection is
not present as a full segment, but rather implicitly
mentioned (e.g. in a nominal phrase or participle)
and immediatly rejected in the very same segment.
Those segments are to be annotated as a support-
ing segment according to the guidelines, since the
attacking moves cannot be expressed as a relation
between segments in this case.

We will present some statistics of the resulting
dataset at the end of the following subsection.

5 Modelling

In this section we first present, how the argu-
mentation structure graphs can be interpreted as
a segment-wise labelling that is suitable for au-
tomatic classification. We then describe the set
of extracted features and the classifiers set up for
recognition.

5.1 Preparations

In the annotation process, every segment is as-
signed one and only one function, i.e. every node
in the argumentative graph has maximally one out-
going arc. The graph can thus be reinterpreted as
a list of segment labels.

Every segment is labeled on different levels:
The ‘role’-level specifies the dialectical role (pro-
ponent or opponent). The ‘typegen’-level specifies
the general type, i.e. whether the segment presents
the central claim (thesis) of the text, supports or
attacks another segment. The ‘type’-level addi-
tionally specifies the kind of support (normal or
example) and the kind of attack (rebutter or under-
cutter). Whether a segment’s function holds only
in combination with that of another segment (com-
bined) or not (simple) is represented on the ‘com-
bined’-level. The target is finally specified by a
position relative identifier: The offset-x. . . 0. . . +x
identifies the targeted segment, relative from the
position of the current segment. The prefix ‘n’
states that the proposition of the node itself is the
target, while the prefix ‘r’ states that the relation
coming from the node is the target.4

The labels of each separate level can be merged
to form a complex tagset. We interpret the re-
sult as a hierarchical tagset as it is presented in
Figure 2. The label ‘PSNS(n+2)’ for example
stands for a proponent’s segment, giving normal,
non-combined support to the next but one seg-
ment, while ‘OAUS(r-1)’ represents an opponent’s
segment, undercutting the relation established by
the immediately previous segment, not combined.
Figure 1c illustrates the segment-wise labelling for
the example microtext.

The dataset with its 115 microtexts has 8183
word tokens, 2603 word types and 579 segments
in total. The distribution of the basic labels and
the complex ‘role+type’ level is presented in Ta-
ble 1. The label distribution on the ‘role+type’
level shows that most of the opponent’s attacks are
rebutting attacks, directed against the central claim

4Segments with combined function (as e.g. linked sup-
porting arguments) are represented by equal relation ids,
which is why segments can have differing node and relation
ids. However, for the sake of simplicity, we will only con-
sider example of non-combined nature in this paper.
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Figure 2: The hierarchy of segment labels.

or its premises directly (OAR>OAU). In contrast,
the proponent’s counters of these attack are typi-
cally untercutting attacks, directed against the at-
tack relation (PAU>PAR). This is due to the au-
thor’s typical strategy of first conceding some as-
pect in conflict with the main claim and then ren-
dering it irrelevant or not applicable without di-
rectly challenging it. Note however, that about
40% of the opponents objections have not been
countered by the proponent (OA*>PA*).

5.2 Features

All (unsegmented) texts have been automatically
split into sentences and been tokenized by the
OpenNLP-tools. The mate-pipeline then pro-
cessed the tokenized input, yielding lemmati-
zation, POS-tags, word-morphology and depen-
dency parses (Bohnet, 2010). The annotated gold-
standard segmentation in the dataset was then au-
tomatically mapped to the automatic sentence-
splitting/tokenization, in order to be able to ex-
tract exactly those linguistic features present in the
gold-segments. Using this linguistic output and
several other resources, we extracted the follow-
ing features:

Lemma Unigrams: We add a set of binary fea-
tures for every lemma found in the present seg-
ment, in the preceding and the subsequent seg-
ment in order to represent the segment’s context
in a small window.

Lemma Bigrams: We extracted lemma bi-
gramms of the present segment.

POS Tags: We add a set of binary features for
every POS tag found in the present, preceding and
subsequent segment.

Main verb morphology: We added binary fea-
tures for tempus and mood of the segment’s main
verb, as subjunctive mood might indicate antici-
pated objections and tempus might help to identify
the main claim.

Dependency triples: The dependency parses
were used to extract features representing depen-

dency triples (relation, head, dependent) for each
token of the present segment. Two features sets
were built, one with lemma representations, the
other with POS tag representations of head and de-
pendent.

Sentiment: We calculate the sentiment value of
the current segment by summing the values of all
lemmata marked as positive or negative in Sen-
tiWS (Remus et al., 2010).5

Discourse markers: For every lemma in the
segment that is listed as potentially signalling a
discourse relation (cause, concession, contrast,
asymmetriccontrast) in a lexicon of German dis-
course markers (Stede, 2002) we add a binary
feature representing the occurance of the marker,
and one representing the occurance of the relation.
Again, discourse marker / relations in the preced-
ing and subsequent segment are registered in sep-
arate features.

First three lemmata: In order to capture
sentence-initial expressions that might indicate ar-
gumentative moves, but are not strictly defined as
discourse markers, we add binary features repre-
senting the occurance of the first three lemmata.

Negation marker presence: We use a list of 76
German negation markers derived in (Warzecha,
2013) containing both closed class negation opera-
tors (negation particles, quantifiers and adverbials
etc.) and open class negation operators (nouns like
“denial” or verbs like “refuse”) to detect negation
in the segment.

Segment position: The (relative) position of
the segment in the text might be helpful to identify
typical linearisation strategies of argumentation.

In total a number of ca. 19.000 features has
been extracted. The largest chunks are bigrams
and lemma-based dependencies with ca. 6.000
features each. Each set of lemma unigrams (for

5We are aware that this summation is a rather trivial and
potentially error-prone way of deriving an overall sentiment
value from the individual values of the tokens, but postpone
the use of more sophisticated methods to future work.
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level role typegen type comb target role+type
labels P (454) T (115) T (115) / (115) n-4 (26) PT (115)

O (125) S (286) SN (277) S (426) n-3 (52) PSN (265)
A (178) SE (9) C (38) n-2 (58) PSE (9)

AR (112) n-1 (137) PAR (12)
AU (66) 0 (115) PAU (53)

n+1 (53) OSN (12)
n+2 (35) OSE (0)
r-1 (54) OAR (100)
r-2 (7) OAU (13)
. . .

# of lbls 2 3 5 3 16 9

Table 1: Label distribution on the basic levels and for illustration on the complex ‘role+type’ level.
Labels on remaining complex level combine accoringly: ‘role+type+comb’ with in total 12 different
labels and ‘role+type+comb+target’ with 48 different labels found in the dataset.

the present, preceding, and subsequent segment)
has around 2.000 features.

5.3 Classifiers

For automatic recognition we compare classifiers
that have frequently been used in related work:
Naïve Bayes (NB) approaches as in (Teufel and
Moens, 2002), Support Vector Machines (SVM)
and Conditional Random Fields (CRF) as in (Li-
akata et al., 2012) and maximum entropy (Max-
Ent) approaches as in (Guo et al., 2013) or (Teufel
and Kan, 2011). We used the Weka data mining
software, v.3.7.10, (Hall et al., 2009) for all ap-
proaches, except MaxEnt and CRF.

Majority : This classifier assignes the most fre-
quent class to each item. We use it as a lower
bound of performance. The used implementation
is Weka’s ZeroR.

One Rule: A simple but effective baseline is
the one rule classification approach. It selects and
uses the one feature whose values can describe the
class majority with the smallest error rate. The
used implementation is Weka’s OneR with stan-
dard parameters.

Naïve Bayes: We chose to apply a feature se-
lected Naïve Bayes classifier to better cope with
the large and partially redundant feature set.6 Be-
fore training, all features are ranked accoring to
their information gain observed on the training set.
Features with information gain≯ 0 are excluded.

SVM: For SVMs, we used Weka’s wrapper to
LibLinear (Fan et al., 2008) with the Crammer and
Singer SVM type and standard wrapper parame-
ters.

6With feature selection, we experienced better scores with
the Naïve Bayes classifier, the only exception being the most
complex level ‘role+type+comb+target’, where only very few
features reached the information gain threshold.

MaxEnt : The maximum entropy classifiers are
trained and tested with the MaxEnt toolkit (Zhang,
2004). We used at maximum 50 iterations of L-
BFGS parameter estimation without a Gaussian
prior.

CRF: For the implementation of CRFs we
chose Mallet (McCallum, 2002). We used the
SimpleTagger interface with standard parameters.

Nonbinary features have been binarized for the
MaxEnt and CRF classifiers.

6 Results

All results presented in this section have been
produced in 10 repetitions (with different random
seeds) of 10-fold cross validation, i.e. for each
score we have 100 fold-specific values of which
we can calculate the average and the standard devi-
ation. We report A(ccuracy), micro-averaged F(1-
score) as a class-frequency weighted measure and
Cohen’sκ (Cohen, 1960) as a measure focussing
on less frequent classes. All scores are given in
percentages.

6.1 Comparing classifiers

A comparison of the different classifiers is shown
in Table 2. Due to the skewed label distribution,
the majority classifier places the lower bounds
already at a quite high level for the ‘role’ and
‘comb’-level. Also note that the agreement be-
tween predicted and gold for the majority classi-
fier is equivalent to chance agreement and thusκ
is 0 on every level, even though there are F-scores
near the .70.

Bold values in Table 2 indicate highest aver-
age. However note, that differences of one or two
percent points between the non-baseline classifiers
are not significant, due to the variance over the
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level Majority OneR CRF
A F κ A F κ A F κ

role 78±1 69±1 0±0 83±3 79±4 33±13 86±5 84±6 49±16
typegen 49±1 33±1 0±0 58±3 47±3 23±7 68±7 67±8 46±12
type 48±1 31±1 0±0 56±3 45±3 22±6 62±7 58±8 38±10
comb 74±1 62±1 0±0 81±4 77±4 44±12 84±5 81±7 55±13
target 24±1 9±1 0±0 37±5 29±4 24±6 47±11 45±11 38±12
role+typegen 47±1 30±1 0±0 56±3 45±3 22±6 67±7 65±8 49±11
role+type 46±1 29±1 0±0 54±3 43±3 21±6 61±7 56±8 38±11
role+type+comb 41±1 24±1 0±0 50±4 38±3 19±6 56±7 51±8 36±9
role+type+comb+target 20±1 7±1 0±0 28±4 19±3 18±5 36±10 30±9 28±10
level Naïve Bayes MaxEnt LibLinear

A F κ A F κ A F κ
role 84±5 84±5 52±14 86±4 85±5 52±15 86±4 84±4 50±14
typegen 74±5 74±5 57±8 70±6 70±6 51±10 71±5 71±5 53±9
type 68±5 67±5 52±8 63±6 62±6 43±9 65±6 62±6 44±9
comb 74±6 75±5 42±11 84±5 81±7 56±12 84±3 81±4 54±10
target 38±6 38±6 29±6 47±8 44±8 37±9 48±5 44±5 38±6
role+typegen 69±6 69±6 55±9 68±7 67±7 51±10 69±5 67±6 52±9
role+type 61±5 61±5 45±7 63±6 61±6 45±9 64±5 60±5 45±8
role+type+comb 53±6 51±6 36±8 58±6 54±7 41±8 61±5 56±5 44±8
role+type+comb+target 22±4 19±4 16±4 36±6 33±6 29±6 39±5 32±4 31±5

Table 2: Classifier performance comparison: Percent average and standard deviation in 10 repetitions of
10-fold cross-validation of A(ccuracy), micro averages ofF1-scores, and Cohen’sκ.

folds on this rather small dataset.
The Naïve Bayes classifier profits from the fea-

ture selection on levels with a small number of
labels and gives best results for the ‘type(gen)’
and ‘role+typegen’ levels. On the most complex
level with 48 possible labels, however, perfor-
mance drops even below the OneR baseline, be-
cause features do not reach the information gain
threshold. The MaxEnt classifier performs well on
the ‘role’ and ‘comb’, as well as on the ‘role+type’
levels. It reaches the highest F-score on the most
complex level, although the highest accuracy and
agreement on this levels is achieved by the SVM,
indicating that the SVM accounted better for the
less frequent labels. The SVM generally per-
forms well in terms of accuracy and specifically on
the most interesting levels for future applications,
namely in target identification and the complex
‘role+type’ and ‘role+type+comb+target’ levels.
For the CRF classifier, we had hoped that ap-
proaching the dataset as a sequence labelling prob-
lem would be of advantage. However, applied out
of the box as done here, it did not perform as well
as the segment-based MaxEnt or SVM classifier.

6.2 Feature ablation on ‘role+type’ level

We performed feature ablation tests with multi-
ple classifiers on multiple levels. For the sake of
brevity, we only present the results of the SVM
and MaxEnt classifiers here on the ‘role+type’
level. The results are shown in Table 3. Bold val-

ues indicate greatest impact, i.e. strongest loss in
the upper leave-one-feature-out half of the table
and highest gain in the lower only-one-feature half
of the table.

The greatest loss is produced by leaving out the
discourse marker features. We assume that this
impact can be attributed to the useful abstraction
of introducing the signalled discourse relation as a
features, since the markers are also present in other
features (as lemma unigrams, perhaps first three
lemma or even lemma dependencies) that produce
minor losses.

For the single feature runs, lemma unigrams
produce the best results, followed by discourse
markers and other lemma features as bigrams,
first three lemma and lemma dependencies. Note
that negation markers, segment position and senti-
ment perform below or equal to the majority base-
line. Whether at least the sentiment feature can
prove more useful when we apply a more sophisti-
cated calculation of a segment’s sentiment value is
something we want to investigate in future work.
POS-tag based features are around the OneR base-
line in terms of F-score andκ, but less accurate.

Interestingly, when using the LibLinear SVM,
lemma bigrams have a larger impact on the overall
performance than lemma based dependency triples
in both tests, even for a language with a relatively
free word order as German. This indicates that
the costly parsing of the sentences might not be
required after all. However, this difference is not
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Features LibLinear MaxEnt
A F κ A F κ

all 64±5 60±5 45±8 63±6 61±6 45±9
all w/o dependencies lemma 64±5 60±5 46±8 62±6 60±6 44±9
all w/o dependencies pos 65±5 61±5 46±8 63±6 61±7 45±9
all w/o discourse markers 62±5 59±5 43±8 61±7 58±7 42±9
all w/o first three lemma 64±5 60±5 44±8 63±6 60±7 44±9
all w/o lemma unigrams 63±5 60±5 45±8 62±6 60±7 44±9
all w/o lemma bigrams 63±5 60±5 44±8 62±6 60±6 44±9
all w/o main verb morph 64±5 60±5 45±8 62±6 60±6 43±9
all w/o negation marker 64±5 60±6 45±8 63±6 61±7 45±9
all w/o pos 64±5 61±5 45±8 63±6 60±7 44±8
all w/o segment position 64±5 60±5 45±8 63±6 61±6 45±9
all w/o sentiment 64±5 60±5 45±8 62±6 60±6 44±9
only dependencies lemma 56±4 47±4 27±6 56±6 49±7 30±8
only dependencies pos 42±6 41±6 18±8 41±7 40±7 16±9
only discourse markers 56±6 53±6 34±9 53±6 52±7 30±10
only first three lemma 54±6 52±6 33±9 50±6 48±6 26±8
only lemma unigrams 59±5 55±5 37±8 59±6 56±7 38±8
only lemma bigrams 59±4 53±5 34±8 55±7 51±7 30±9
only main verb morph 49±6 39±4 16±7 52±5 41±6 20±6
only negation marker 25±14 19±8 0±4 46±5 29±5 0±0
only pos 45±6 45±6 24±9 46±8 45±7 23±10
only segment position 31±12 25±10 4±7 46±5 29±6 0±0
only sentiment 22±14 15±11 -1±3 46±5 29±6 0±0

Table 3: Feature ablation tests on the ‘role+type’ level: Percent average and standard deviation in 10
repetitions of 10-fold cross-validation of A(ccuracy), micro averages of F1-scores, and Cohen’sκ.

as clear for the MaxEnt classifier.

6.3 Class specific results

Finally, we present class-specific results of the
MaxEnt classifier for the ‘role+type’ level in Ta-
ble 4. Frequent categories give good results, but
for low-frequency classes there are just not enough
instances in the dataset. We hope improve this by
extending the corpus by corresponding examples.

label Precision Recall F1-score
PT 75±12 74±13 74±11
PSN 65±8 79±7 71±6
PSE 1±6 1±6 1±6
PAR 12±29 12±27 11±24
PAU 57±26 49±24 50±22
OSN 1±12 1±12 1±12
OAR 54±18 42±16 46±13
OAU 8±27 7±23 7±23

Table 4: MaxEnt class-wise results on the
‘role+type’ level: Percent average and stan-
dard deviation in 10 repetitions of 10-fold cross-
validation of Precision, Recall and F1-score.

7 Summary and outlook

We have presented a small corpus of German
microtexts that features authentic argumentations,
yet has been collected in a controlled fashion to
reduce the amount of distracting or complicated

rhetorical phenomena, focussing instead on the ar-
gumentative moves. The corpus has been anno-
tated with a scheme that –as we have shown– can
be reliably used by trained and experienced anno-
tators. To get a first impression of the performance
of frequently used modelling approaches on our
dataset, we experimented with different classifiers
with rather out-of-the-box parameter settings on
various levels of granularity of the scheme. Given
the complex nature of such a discourse under-
standing tasks, the first results presented here are
promising, but invite for further investigation.

We aim to generate a significantly larger corpus
of argumentative microtexts by a crowd-sourced
experiment. For the improvement of models, we
consider various strategies: Integrating top down
constraints on the argumentation structure, as done
in (Guo et al., 2013) for the zoning of scientific
documents, is one option. Hierarchical models
that apply classifiers along the levels of our la-
bel hierarchy are another option. Furthermore, we
want to explore sequence labelling models in more
detail. Ultimately, the goal will be to apply these
methods to authentic news-paper commentaries.
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