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Abstract
Eye-movements in reading exhibit frequency
spillover effects: fixation durations on a word are
affected by the frequency of the previous word. We
explore the idea that this effect may be an emer-
gent property of a computationally rational eye-
movement strategy that is navigating a tradeoff be-
tween processing immediate perceptual input, and
continued processing of past input based on mem-
ory. We present an adaptive eye-movement con-
trol model with a minimal capacity for such pro-
cessing, based on a composition of thresholded se-
quential samplers that integrate information from
noisy perception and noisy memory. The model
is applied to the List Lexical Decision Task and
shown to yield frequency spillover—a robust prop-
erty of human eye-movements in this task, even
with parafoveal masking. We show that spillover in
the model emerges in approximately optimal con-
trol policies that sometimes process memory rather
than perception. We compare this model with one
that is able to give priority to perception over mem-
ory, and show that the perception-priority policies
in such a model do not perform as well in a range
of plausible noise settings. We explain how the
frequency spillover arises from a counter-intuitive
but fundamental property of sequenced thresholded
samplers.

1 Introduction and overview

Our interest is in understanding how eye-
movements are controlled in service of linguis-
tic tasks involving reading—more specifically,
how saccadic decisions are conditioned on the
moment-by-moment state of incremental percep-
tual and cognitive processing. The phenomena
we are concerned with here are spillover effects,
where fixation durations on a word are affected by
linguistic properties of the prior word or words.
The specific idea we explore is that spillover ef-
fects may be emergent properties of a computa-
tionally rational control strategy that is navigating
a tradeoff between processing immediate percep-
tual input, and continued processing of past input
based on a memory of recent stimuli.

The paper is organized as follows. We first
review evidence that eye-movement control in
reading is strategically adaptive, and describe our

theoretical approach. We then review evidence
from gaze-contingent eye-tracking paradigms—
some existing and some new—that suggests that
frequency spillover is not driven exclusively by
parafoveal preview of upcoming words. We take
this as evidence that frequency spillover may be
driven in part by processing of words that con-
tinues after the eyes have moved away. We then
extend an existing adaptive control model of eye-
movements with a minimal capacity for such con-
tinued processing, by allowing it to process a
memory of past input. The model is based on
a simple composition of thresholded sequential
samplers that integrate information from noisy
perception and noisy memory. Threshold parame-
ters define the control policy and their values de-
termine how processing resources are allocated
to perception and memory. We provide a com-
putational rationality analysis of the model’s pol-
icy space: First, we show that frequency spillover
emerges in top-performing policies, where perfor-
mance is evaluated on the same task and payoff
given to human participants. Second, we show
that a model capable of spillover does no worse
than an otherwise identical model that can elim-
inate spillover by always attending to perception
when it can, and that the spillover-capable poli-
cies in such a model do no worse than spillover-
incapable ones across the speed-accuracy tradeoff
curve, and in fact do better in some portions of
the noise parameter space. Finally, we trace the
origin of the effect to a counter-intuitive but fun-
damental property of the dynamics of sequenced
thresholded samplers.

2 Adaptive control of eye-movements:
Evidence and theoretical approach

A growing body of evidence suggests that eye-
movements in reading are strategic adaptations
that manifest at the level of individual fixations.
For example, Rayner and Fischer (1996) showed
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that when participants are searching for a partic-
ular word in a text rather than reading for full
comprehension, saccade durations are shortened
and the magnitude of frequency effects is reduced.
Wotschack (2009) showed that readers assigned
the task of proofreading read more slowly and per-
formed more second-pass reading with fewer skips
than in a control reading-for-comprehension task.

People also adapt reading behavior to within-
task manipulations of difficulty and payoff.
Wotschack (2009) showed that people change
their reading behavior in response to manipula-
tions of the difficulty of comprehension questions.
Lewis et al. (2013) showed that people adapt their
eye movements in response to changes in quanti-
tative task payoffs. Payoffs emphasizing speed at
the expense of accuracy result in shorter fixation
durations and lower accuracies.

We seek to develop a model that can explain
such variation in eye-movement behavior as a ra-
tional adaptation to the task (including utility) and
the internal oculomotor and cognitive architecture
(Lewis et al., 2013). Such a model would permit a
computational rationality analysis (Lewis et al., to
appear) because the problem of rational behavior
is defined in part by the bounded mechanisms of
the posited computational architecture.

We constrain our architectural assumptions by
building on existing theories of oculomotor archi-
tecture, such as E-Z Reader (Reichle et al., 2009).
But we enrich these architectures with explicit as-
sumptions about the policy space of saccadic con-
trol, and with assumptions about the processing of
noisy perception and memory. This enriched ar-
chitecture is then embedded in a minimal cogni-
tive system that is capable of performing a com-
plete experimental task. The complete model af-
fords computational rationality analyses because it
can be used to derive the implications of saccadic
control policies for task performance.

3 The nature of spillover effects

Our aim in this section is to establish a link be-
tween spillover and the continued processing of
past input based on memory. Consider a pair of
words in sequence: wordn−1 and wordn. There
are three natural explanations for how the fre-
quency of wordn−1 could affect the duration of
fixations on wordn. (1) During fixation of wordn,
perceptual information from wordn−1 is available
in the parafovea and continues to be processed.
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Figure 1: Frequency spillover in the List Lexical
Decision Task. Single fixation durations (fixations
when the word was fixated only once) on words
as a function of the fixated and previous word’s
frequency. Frequencies are binned by a median
split; error bars are bootstrapped standard errors.

We call this the parafoveal review explanation.
(2) During fixation on wordn−1, perceptual infor-
mation from wordn is available in the parafovea;
the frequency of wordn−1 affects the degree to
which this information is processed, and this in
turns affects the subsequent fixation duration on
wordn. We call this the parafoveal preview expla-
nation. (3) During fixation of wordn, processing
of wordn−1 continues based on some memory of
the perception of wordn−1, and this processing is
affected by the frequency of wordn−1. We call this
the memory explanation.

It is unlikely that spillover is driven by
parafoveal review because the effective visual field
in reading does not extend to the left of the current
word (Rayner et al., 1980).

The standard paradigm for investigating the re-
lationship between spillover effects and parafoveal
preview is some form of parafoveal masking
(Rayner, 1975): a nonveridical preview of wordn

is shown until the eye crosses an invisible bound-
ary just before wordn, at which point wordn is
shown. When participants are not informed of
the manipulation or do not notice it, they do not
exhibit frequency spillover (Henderson and Fer-
reira, 1990; Kennison and Clifton, 1995; White et
al., 2005). However, when participants are aware
of preview being unavailable or not veridical, the
spillover frequency effect remains (White et al.,
2005; Schroyens et al., 1999). These results sug-
gest that parafoveal preview (or review) cannot be
the only explanation of spillover and therefore the
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Figure 2: Example dynamics of a decision to saccade from wordn−1 to wordn. The memory-driven
attention shift decision can delay the start of perceptual sampling on the next word, potentially creating
spillover. A detailed description of the dynamics depicted in this figure is in §4.

memory explanation warrants consideration. We
now summarize unpublished data consistent with
these findings in a simple linguistic task that we
also use to test the new model reported below.

Spillover in the List Lexical Decision Task
(LLDT). We use the List Lexical Decision Task
(LLDT) (Lewis et al., 2013), an extension of a task
introduced by Meyer and Schvaneveldt (1971). In
the LLDT participants must determine whether
a list of six strings contains all words, or con-
tains a single nonword. All strings are four char-
acters in length and separated by six character
spaces. The task was designed to require sequen-
tial eye-movements and contact with the mental
lexicon (but not higher-level linguistic process-
ing), to minimize parafoveal processing (via the
wide spacing), and to yield a high proportion of
single-fixation durations (via short strings).

Two versions of the task were performed by
separate participant groups. In the masked con-
dition, we used a gaze-contingent moving window
paradigm wherein all strings but the fixated string
were replaced with hashmarks (####). In the un-
masked condition, all six strings remained visible.

Figure 1 shows the effects of word frequency on
single fixation durations. The main result of cur-
rent interest is that frequency spillover is evident
in both conditions, despite the wide spacing in the
unmasked condition, and the complete denial of
parafoveal preview in the masked condition.

The work reviewed above and our new data
are consistent with an account of spillover in
which both parafoveal preview (if available) and
memory-based processing are operative. Our con-
cern here is with the latter: understanding how a
noisy memory of recently seen stimuli might be
incorporated into an adaptive oculomotor architec-
ture, and exploring whether rational exploitation
of that memory might lead to spillover.

4 A model of saccadic control with noisy
memory for recent perception

Our new model extends the one presented in Lewis
et al. (2013) to include a noisy memory that
buffers perceptual input. We develop it in the con-
text of the LLDT, but its essential elements are not
tied to this task. It is most easily understood by
first considering the dynamics of a single decision
to saccade from one word to the next, as presented
in Figure 2. After describing these dynamics we
summarize the model’s key assumptions and asso-
ciated mathematical specification.

The dynamics of a decision to saccade from
wordn−1 to wordn. The eye first fixates
wordn−1. Some time passes before information
from the retina becomes available for perceptual
processing (the eye-brain lag, EBL in Figure 2). A
sequence of noisy perceptual samples then arrive
and are integrated via an incremental and noisy
Bayesian update of a probability distribution over
lexical hypotheses in a manner described below.
The perceptual samples are also buffered by stor-
ing them in a memory that contains samples from
only one word. When the probability of one of the
hypotheses reaches the saccade threshold, saccade
planning is initiated. Perceptual sampling (marked
as free sampling in Figure 2 because its length is
not under adaptive control) continues in parallel
with saccade planning until the fixation ends, and
then for another EBL amount longer (these are
samples received at the retina during the fixation
and only now arriving at the lexical processor).

The model then switches to sampling from its
memory, continuing to update the distribution over
lexical hypotheses until one of the hypotheses
reaches an attention shift threshold. If this thresh-
old had already been reached during the earlier
perceptual sampling stages, attention shifts in-
stantly. Otherwise attention remains on wordn−1

even if the eye has saccaded to wordn, and the eye-
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brain lag on wordn is completed. Perceptual sam-
ples from wordn will not be processed until atten-
tion is shifted away from the memory-based pro-
cessing of wordn−1. Thus the memory processing
on wordn−1 may delay processing of perceptual
samples from wordn; perceptual samples arriving
during this time are buffered in the memory. In
this way the posterior update is a limited compu-
tational resource and its relative allocation to per-
ception or memory is determined by the saccade
and attention shift thresholds. To the extent that
the time to reach the attention shift threshold is
sensitive to the frequency of wordn−1, the model
may exhibit a spillover frequency effect.

Lexical processing as rise-to-threshold deci-
sionmaking. The decisions to plan a saccade,
shift attention, and make a motor response are re-
alized as Multi-hypothesis Sequential Probability
Ratio Tests (Baum and Veeravalli, 1994; Dragalin
et al., 2000). At each timestep, the model per-
forms a Bayes update based on a noisy sample
drawn from perception or memory, with the pos-
terior at each timestep becoming the prior for the
next timestep. Our choice of word representation
follows Norris (2006) in representing a letter as a
unit-basis vector encoding and a word as a con-
catenation of such vectors.

To generate a perceptual sample, mean-zero
Gaussian perception noise with standard devia-
tion (SD) σp is added to each component of the
word representation vector. Each perceptual sam-
ple is also stored in a memory buffer, and mem-
ory samples are generated by uniformly draw-
ing a stored sample from memory (with replace-
ment), and adding an additional mean-zero Gaus-
sian memory noise with SD σm to each posi-
tion. Before each Bayesian update, whether us-
ing a sample from perception or memory, mean-
zero Gaussian update noise with SD σu is added to
each component of the word representation vector.
Thus a Bayes update from a perceptual sample in-
cludes two noise terms, while a Bayes update from
a memory sample includes three noise terms. All
noises are drawn independently. The three SD’s,
σp, σm and σu, are free parameters in the model,
and we explore their implications below.

The model uses the update specified in the ap-
pendix in Lewis et al. (2013) except for the noise
generation specified above and the consequent
change in the likelihood computation. The lexical

hypotheses are updated as follows:

Prnew(Sk|sk, T ) =
Pr(sk|Sk, T )Prold(Sk, T )∑
S Pr(sk|Sk, T )Prold(Sk, T )

(1)

where sk is a sample generated as above from the
letterstring (word or nonword) in the current posi-
tion k, Sk is the hypothesis that the string at posi-
tion k is S, and T is a multinomial distribution re-
flecting the current belief of (a) whether this is an
all-words trial and (b) otherwise, where the non-
word is located. The eye movement planning and
attention shift decisions are conditioned on the dis-
tribution of probabilities Pr(Sk) for all strings in
the current position. When the maximum of these
probabilities crosses a saccade planning threshold
θs, saccade planning begins. When the maximum
crosses the attention shift threshold θa, attention
shifts to the next word1. Each sample takes 10ms,
a fixed discretization parameter.

The likelihood of drawing perceptual or mem-
ory sample s for a string S is computed from the
unit-basis word representation as follows:

Pr(s|S) =
∏

i

f(si;µi, σ) (2)

where i indexes the unit-basis vector representa-
tion of sample s and some true letterstring S (and
so µi is either 0 or 1), σ is the sampling noise
(dependent on whether the samples are memory
or perceptual samples as specified below), and
f(x;µ, σ) is the probability density function of the
normal distribution with mean µ and standard de-
viation σ.

We simplify the likelihood computation for
memory samples by treating the perception and
memory samples as independent. For present
purposes this assumption may be treated as a
bound on the architecture. The σ in Equa-
tion 2 is

√
(σ2

p + σ2
u) for perceptual samples and√

(σ2
p + σ2

m + σ2
u) for memory samples. At each

sample the string-level probabilities in each posi-
tion are aggregated to the multinomial trial-level
decision variable T as described above. Given T
the model computes the probability of a word trial
Pr(W) or nonword trial Pr(N ) = 1 − Pr(W).
When either of these probabilities exceeds the mo-
tor response threshold θr, motor response plan-
ning commences.

1Because there is a fixed set of memory samples available,
the attention shift decision is not guaranteed to converge, un-
like the saccade threshold. It nearly always converges, but we
use a 30-sample deadline to prevent infinite sequences.
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Figure 3: Spillover effects generated by the top 5% of policies across different settings of memory, per-
ception, and update noise. On each distinct machine defined by a combination of noise settings, policies
(settings of θs, θm, θr) were evaluated by the same task payoff given to human participants in the exper-
iment described in §3. Boxplots show spillover effects of the top-performing 5% of policies. Spillover
effects are the difference in mean single fixation durations on wordn when wordn−1 is low frequency
and when wordn−1 is high frequency (low/high determined by median split). The highest noise settings
in the bottom row are not shown because performance was near-chance even for the best policies.

The prior probability of an all-words trial is 0.5,
so the prior probability of a word in each position
k is 1− 0.5

6 . Therefore, we set the prior probabili-
ties of words in each position to corpus frequency
counts (Kučera and Francis, 1967), normalized to
sum to this value, 1 − 0.5

6 . Nonword probabilities
are uniformly distributed over the remainder, 0.5

6 .

Oculomotor and Manual Architecture. The
remainder of the architectural parameters are stage
durations that are simulated as gamma deviates
with means based on previous work or indepen-
dently estimated from data. The key parameters
for present purposes are the 50ms mean eye-brain
lag and 125ms saccade planning time, following
Reichle et al. (2009), and the 40ms mean sac-
cade execution time, based on estimates from our
own human participants. The standard deviation
of each distribution is 0.3 times the mean. We
transform the means and standard deviations into
scale and shape parameters for a Gamma distri-
bution and then draw duration values from these
Gammas independently for every word and trial.

5 A computational rationality analysis

We explore whether spillover effects might be a
signature of computationally rational behavior in
two ways. First, we evaluate a space of policies
(parameterized by θs, θm, θr) against the task pay-
off given to our human participants, and show that

top-performing policies yield frequency spillover
consistent with human data, and poor-performing
policies do not. Second, we extend the model’s
policy space to allow it to prioritize perception
over memory samples when both are available
(eliminating spillover in those policies), and show
that the spillover portions of the policy space per-
form better than non-spillover ones under any im-
posed speed-accuracy tradeoff in plausible noise
settings, and never perform worse.

In computational rationality analyses, we dis-
tinguish between policy parameters, fixed archi-
tecture parameters, and free architecture parame-
ters. Policy parameters are determined by select-
ing those policies that maximize a given task pay-
off, given the hypothesized architectural bounds.
Fixed architecture parameters are based on pre-
vious empirical or theoretical work. Free archi-
tecture parameters can be fit to data or explored
to show the range of predictions with which the
model is compatible. We focus here on the lat-
ter, showing not only that the model is compatible
with human data, but that it is incompatible with
results significantly different from the human data.

Our first evaluation of the model asks the ques-
tion of whether we see spillover effects emerging
in approximately optimal policies under our as-
sumptions about mechanism and task. We eval-
uated our model in the LLDT, under the balanced
payoff presented in Lewis et al. (2013), the same
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Figure 4: Normalized spillover effect in model (vs. memory noise) and human participants. We define
normalized spillover as the ratio of the spillover (wordn−1) frequency effect size to the foveal (wordn)
frequency effect size; this normalizes against scale differences between high and low noise architectures.
Left: Mean normalized spillover effect at different memory noises for best performing 5% of policies
with and without memory sampling, and worst 50% performing policies. Right: Mean human spillover
effect sizes in masked and unmasked versions of LLDT.

payoff given to our participants in the unpublished
masking experiment described above. We ex-
plored a discretized policy space as follows: we let
θs range between 0.199 and 0.999 in steps of 0.05;
θm between 0.19999 and 0.99999 in steps of 0.05,
and also include θm = 0 which prevents memory
sampling; and θr between 0.599 and 0.999 in steps
of 0.1. We explored all 1530 permutations.

Figure 3 shows the distribution of spillover ef-
fect sizes in the top 5% of policies (evaluated by
task payoff, not fit to human data), for a range
of noise parameter settings (at higher noise set-
tings, even the best policies are close to chance
performance). The top 5% of policies average 7.78
points per trial across the noise and policy range,
and the bottom 50% average 1.32 points. The fig-
ure shows that top-performing policies show lit-
tle to no spillover when update noise is low, posi-
tive but small spillover effects when update noise
is moderate, and sizable positive spillover effects
when update noise is relatively high. These results
are consistent with spillover as a rational adapta-
tion to belief update noise.

Figure 4 (left panel) shows normalized spillover
effects (the ratio of the wordn−1 frequency effect
to the wordn frequency effect) for the best poli-
cies, the bottom 50% of policies, and the best
policies constrained with a memory threshold of
zero (θm = 0). When θm = 0, the spillover ef-
fect is zero as expected. The top performing poli-
cies in the unconstrained space generate nonzero
spillover effects that are consistent with the human

data, but the poor performing policies do not (Fig-
ure 4, right panel). We know that the top perform-
ing policies exploit memory because they do yield
nonzero spillover effects, and the values of θm are
nonzero for these policies.

Our second evaluation asks whether a model
that is constrained to always give priority to pro-
cessing perceptual samples over memory samples
will perform better than the present model, which
has the flexibility to give priority to memory over
perception. To explore this, we added a single bi-
nary policy parameter, the perceptual priority bit.
If this bit is set, then the model has the choice be-
tween memory sampling from wordn−1 and per-
ceptual sampling from wordn, it always chooses
the latter. Such an option is not available in the
previous model—there is no setting of the saccade
and memory thresholds that will always use mem-
ory samples when only they are available, but also
never choose to use memory samples when per-
ceptual samples can be used. With the perceptual
priority bit set, the model is capable of exploiting
the least noisy samples available to it, but is inca-
pable of exhibiting spillover effects.

Figure 5 shows speed-accuracy tradeoffs for
the model, with the perceptual-priority bit not set
(spillover-capable) and set (spillover-incapable),
in three representative noise settings. Individual
points are policies and the lines mark the best ac-
curacy available at a particular reaction time for
the two classes of policies; i.e. these lines repre-
sent the best speed-accuracy tradeoff possible for
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both spillover-capable and -incapable policies. In
the left plot of the figure, noise is low enough over-
all such that responses are very fast and spillover-
capable policies do no worse and no better than
spillover-incapable policies. In the middle plot,
update noise is higher, and the optimal speed-
accuracy tradeoff is better for the model that can
yield spillover, consistent with the exploitation of
memory sampling to mitigate update noise. In the
right plot, perception and memory noise are high
enough that it is not useful to sample from mem-
ory at the expense of perception. All the noise
settings we explored (see Figure 3 for the range)
yield one of these three patterns, or the uninter-
esting case of near-chance performance. In no
setting does the spillover-capable model perform
worse than the spillover-incapable one. The noise
settings cover a range from implausibly-high ac-
curacy to chance performance, and so we con-
clude that spillover-capable policies dominate, in
that they do no worse, and occasionally do better,
than those constrained to give priority to percep-
tion over memory.

6 Why spillover arises from sequenced
thresholded samplers

We have demonstrated through simulations that
the model yields frequency spillover through a
composed sequence of perception and memory
sampling. We have not yet addressed the ques-
tion of how or why this happens. Indeed, it is ini-
tially somewhat puzzling that an effect of priors
(set by lexical frequency) would persist after the
initial perceptual sampling threshold θp is passed,

because this fixed threshold must be exceeded no
matter the starting prior.

The crucial insight is that it is not always the
case that the true word hypothesis reaches the
threshold first; i.e., the decision to initiate saccade
planning may be based on (partial) recognition of
a different word than the true word. In such cases,
at the start of memory sampling, the hypothesis for
the true word is farther from the memory threshold
θm than if the true word had been (partially) recog-
nized. Incorrect decisions are more likely for low
frequency words, so in expectation the memory-
driven attention shift mechanism will start farther
from its threshold for low-frequency words, and
therefore take longer to reach threshold, delaying
the following word more.

We constructed a minimal two-sampler exam-
ple to clearly illustrate this phenomenon. The left-
most panel of Figure 6 illustrates the dynamics of
such a trial. In this panel, the threshold is crossed
for the incorrect hypothesis (green line) in the first
sampler, triggering the start of the second sampler.
The second sampler recovers from the mistake, al-
lowing the correct (red) hypothesis to cross the
threshold, but at the cost of additional time. The
middle panel shows that incorrect (and thus eligi-
ble for recovery) trials are more frequent for low
priors. The rightmost panel shows that the finish-
ing time of the second sampler is proportional to
the prior probability of the correct hypothesis for
the first sampler. It is also inversely proportional
to accuracy (middle plot), consistent with inaccu-
rate trials driving the relationship between the first
sampler prior and second sampler finishing times.
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Figure 6: A simple example illustrating how the prior for a thresholded sampler affects its final posterior,
and therefore the prior for a subsequent coupled sampler, despite the fixed threshold. Left: An example
‘recovery’ trial for 500 hypotheses (words). Middle: Accuracy for the first sampler as a function of the
prior of the true hypothesis. Right: Second sampler finishing times as a function of to the true-hypothesis
prior in the first sampler.

7 Discussion and Conclusion

We briefly highlight the key properties of the
model that yield our result and how they may gen-
eralize beyond our particular implementation.

Post-perceptual processing. Although we
adopted a second MSPRT sampler, spillover may
arise from other processes with access to the pos-
terior of the perceptual sampling, such that it can
recover from perceptually misidentified words. In
the present model we investigated the possibil-
ity that post-perceptual memory-based processing
could be partially motivated by mitigating noise
in the update process itself. But it is almost cer-
tainly the case that post-perceptual processing is
required in the course of reading for indepen-
dent reasons, and such processing could also yield
spillover frequency effects in a way that the mem-
ory sampling process does. (A challenge for such
an alternate process is that spillover effects per-
sist in the LLDT in the absence of required higher
level syntactic or semantic processing).

A tradeoff between processing perception and
memory. The serial queuing model is a simple re-
alization (inspired by EZ-Reader (Reichle et al.,
1998)) of a limited resource that can be allocated
to perceptual and memory processing, but an alter-
native parallel attention machine might recover the
results, as long as it suffers from the same tradeoff
that processing the previous word from memory
will slow down processing of the fixated word.

Direct oculomotor control. In the present model
saccade planning is triggered directly by the per-

ceptual evidence accumulation process, and as
such is not obviously compatible with autonomous
saccade generation models like SWIFT (Engbert
et al., 2005). It may be possible to layer SWIFT’s
time-delayed foveal inhibition over a sequential
sampling process, but we note that spillover ef-
fects were part of the empirical motivation for
such delayed control.

The present model and results open several av-
enues for future work. These include the interac-
tions of memory-based or post-perceptual process-
ing with models of saccade planning that include
saccade targeting, re-targeting, and cancellation,
as well as buttonpress behavior (e.g. in the self-
paced moving window paradigm). The role that
parafoveal preview plays in spillover effects can
also be explored, including how the model (and
thus human participants) might navigate the trade-
off between using parafoveal preview information
(noisy due to eccentricity) and using memory of
past input in the service of a reading task. Fi-
nally, it is possible to explore the spillover expla-
nation in an architecture capable of higher-level
sentence processing in service of different reading
task goals.
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