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Introduction

This volume contains papers describing the CoNLL-2014 Shared Task and the participating systems.
This year, we continue the tradition of the Conference on Computational Natural Language Learning
(CoNLL) of having a high profile shared task in natural language processing, centered on automatic
grammatical error correction of English essays. The grammatical error correction task is impactful since
it is estimated that hundreds of millions of people in the world are learning English as a second language,
and they benefit directly from an automated grammar checker.

This task is a continuation of the CoNLL shared task in 2013. We have only one track in which
shared task participants are provided with an annotated training corpus, but are allowed to use additional
resources as long as they are publicly available. The training corpus, NUCLE (NUS Corpus of Learner
English), is a large collection of English essays written by students at the National University of
Singapore (NUS) who are non-native speakers of English. The essays were annotated by professional
English instructors at the NUS. As in other shared tasks, we provide a common test set with gold-standard
annotations, and a scorer to evaluate the submitted system output.

This year’s shared task requires a participating system to correct all error types present in an essay,
instead of only the five error types in the CoNLL-2013 shared task. Also, the evaluation metric has been
changed to F0.5, weighting precision twice as much as recall.

A total of 13 participating teams submitted system output and 12 of them submitted system description
papers. Many different approaches were adopted to perform grammatical error correction. We hope that
these approaches help to advance the state of the art in grammatical error correction, and that the test set
and scorer, which are freely available after the shared task, can be useful resources for those interested
in grammatical error correction.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and
Christopher Bryant
Organizers of the CoNLL-2014 Shared Task
May 2014
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Abstract

The CoNLL-2014 shared task was devoted
to grammatical error correction of all error
types. In this paper, we give the task defi-
nition, present the data sets, and describe
the evaluation metric and scorer used in
the shared task. We also give an overview
of the various approaches adopted by the
participating teams, and present the eval-
uation results. Compared to the CoNLL-
2013 shared task, we have introduced the
following changes in CoNLL-2014: (1)
A participating system is expected to de-
tect and correct grammatical errors of all
types, instead of just the five error types
in CoNLL-2013; (2) The evaluation metric
was changed from F1 to F0.5, to empha-
size precision over recall; and (3) We have
two human annotators who independently
annotated the test essays, compared to just
one human annotator in CoNLL-2013.

1 Introduction

Grammatical error correction is the shared task of
the Eighteenth Conference on Computational Nat-
ural Language Learning in 2014 (CoNLL-2014).
In this task, given an English essay written by a
learner of English as a second language, the goal
is to detect and correct the grammatical errors of
all error types present in the essay, and return the
corrected essay.

This task has attracted much recent research in-
terest, with two shared tasks Helping Our Own
(HOO) organized in 2011 and 2012 (Dale and Kil-
garriff, 2011; Dale et al., 2012), and a CoNLL

shared task on grammatical error correction orga-
nized in 2013 (Ng et al., 2013). In contrast to
previous CoNLL shared tasks which focused on
particular subtasks of natural language process-
ing, such as named entity recognition, semantic
role labeling, dependency parsing, or coreference
resolution, grammatical error correction aims at
building a complete end-to-end application. This
task is challenging since for many error types,
current grammatical error correction systems do
not achieve high performance and much research
is still needed. Also, tackling this task has far-
reaching impact, since it is estimated that hun-
dreds of millions of people worldwide are learn-
ing English and they benefit directly from an auto-
mated grammar checker.

The CoNLL-2014 shared task provides a forum
for participating teams to work on the same gram-
matical error correction task, with evaluation on
the same blind test set using the same evaluation
metric and scorer. This overview paper contains a
detailed description of the shared task, and is orga-
nized as follows. Section 2 provides the task def-
inition. Section 3 describes the annotated training
data provided and the blind test data. Section 4 de-
scribes the evaluation metric and the scorer. Sec-
tion 5 lists the participating teams and outlines the
approaches to grammatical error correction used
by the teams. Section 6 presents the results of the
shared task, including a discussion on cross anno-
tator comparison. Section 7 concludes the paper.

2 Task Definition

The goal of the CoNLL-2014 shared task is to
evaluate algorithms and systems for automati-
cally detecting and correcting grammatical errors
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present in English essays written by second lan-
guage learners of English. Each participating
team is given training data manually annotated
with corrections of grammatical errors. The test
data consists of new, blind test essays. Prepro-
cessed test essays, which have been sentence-
segmented and tokenized, are also made available
to the participating teams. Each team is to submit
its system output consisting of the automatically
corrected essays, in sentence-segmented and tok-
enized form.

Grammatical errors consist of many different
types, including articles or determiners, preposi-
tions, noun form, verb form, subject-verb agree-
ment, pronouns, word choice, sentence structure,
punctuation, capitalization, etc. However, most
prior published research on grammatical error cor-
rection only focuses on a small number of fre-
quently occurring error types, such as article and
preposition errors (Han et al., 2006; Gamon, 2010;
Rozovskaya and Roth, 2010; Tetreault et al., 2010;
Dahlmeier and Ng, 2011b). Article and preposi-
tion errors were also the only error types featured
in the HOO 2012 shared task. Likewise, although
all error types were included in the HOO 2011
shared task, almost all participating teams dealt
with article and preposition errors only (besides
spelling and punctuation errors). In the CoNLL-
2013 shared task, the error types were extended
to include five error types, comprising article or
determiner, preposition, noun number, verb form,
and subject-verb agreement. Other error types
such as word choice errors (Dahlmeier and Ng,
2011a) were not dealt with.

In the CoNLL-2014 shared task, it was felt that
the community is now ready to deal with all er-
ror types. Table 1 shows examples of the 28 error
types in the CoNLL-2014 shared task.

Since there are 28 error types in our shared task
compared to two in HOO 2012 and five in CoNLL-
2013, there is a greater chance of encountering
multiple, interacting errors in a sentence in our
shared task. This increases the complexity of our
shared task. To illustrate, consider the following
sentence:

Social network plays a role in providing
and also filtering information.

The noun number error networks needs to be cor-
rected (network → networks). This necessitates
the correction of a subject-verb agreement error

(plays → play). A pipeline system in which cor-
rections for subject-verb agreement errors occur
strictly before corrections for noun number errors
would not be able to arrive at a fully corrected
sentence for this example. The ability to correct
multiple, interacting errors is thus necessary in our
shared task. The recent work of Dahlmeier and Ng
(2012a) and Wu and Ng (2013), for example, is
designed to deal with multiple, interacting errors.

3 Data

This section describes the training and test data
released to each participating team in our shared
task.

3.1 Training Data

The training data provided in our shared task is
the NUCLE corpus, the NUS Corpus of Learner
English (Dahlmeier et al., 2013). As noted by
(Leacock et al., 2010), the lack of a manually an-
notated and corrected corpus of English learner
texts has been an impediment to progress in gram-
matical error correction, since it prevents com-
parative evaluations on a common benchmark test
data set. NUCLE was created precisely to fill this
void. It is a collection of 1,414 essays written
by students at the National University of Singa-
pore (NUS) who are non-native speakers of En-
glish. The essays were written in response to some
prompts, and they cover a wide range of topics,
such as environmental pollution, health care, etc.
The grammatical errors in these essays have been
hand-corrected by professional English instructors
at NUS. For each grammatical error instance, the
start and end character offsets of the erroneous text
span are marked, and the error type and the cor-
rection string are provided. Manual annotation is
carried out using a graphical user interface specif-
ically built for this purpose. The error annotations
are saved as stand-off annotations, in SGML for-
mat.

To illustrate, consider the following sentence at
the start of the sixth paragraph of an essay:

Nothing is absolute right or wrong.

There is a word form error (absolute→ absolutely)
in this sentence. The error annotation, also called
correction or edit, in SGML format is shown in
Figure 1. start par (end par) denotes the
paragraph ID of the start (end) of the erroneous

2



Type Description Example
Vt Verb tense Medical technology during that time [is → was] not advanced enough to

cure him.
Vm Verb modal Although the problem [would → may] not be serious, people [would →

might] still be afraid.
V0 Missing verb However, there are also a great number of people [who→ who are] against

this technology.
Vform Verb form A study in 2010 [shown→ showed] that patients recover faster when sur-

rounded by family members.
SVA Subject-verb agreement The benefits of disclosing genetic risk information [outweighs → out-

weigh] the costs.
ArtOrDet Article or determiner It is obvious to see that [internet→ the internet] saves people time and also

connects people globally.
Nn Noun number A carrier may consider not having any [child → children] after getting

married.
Npos Noun possessive Someone should tell the [carriers→ carrier’s] relatives about the genetic

problem.
Pform Pronoun form A couple should run a few tests to see if [their→ they] have any genetic

diseases beforehand.
Pref Pronoun reference It is everyone’s duty to ensure that [he or she → they] undergo regular

health checks.
Prep Preposition This essay will [discuss about→ discuss] whether a carrier should tell his

relatives or not.
Wci Wrong collocation/idiom Early examination is [healthy→ advisable] and will cast away unwanted

doubts.
Wa Acronyms After [WOWII → World War II], the population of China decreased

rapidly.
Wform Word form The sense of [guilty→ guilt] can be more than expected.
Wtone Tone (formal/informal) [It’s→ It is] our family and relatives that bring us up.
Srun Run-on sentences,

comma splices
The issue is highly [debatable, a→ debatable. A] genetic risk could come
from either side of the family.

Smod Dangling modifiers [Undeniable,→ It is undeniable that] it becomes addictive when we spend
more time socializing virtually.

Spar Parallelism We must pay attention to this information and [assisting → assist] those
who are at risk.

Sfrag Sentence fragment However, from the ethical point of view.
Ssub Subordinate clause This is an issue [needs→ that needs] to be addressed.
WOinc Incorrect word order [Someone having what kind of disease→What kind of disease someone

has] is a matter of their own privacy.
WOadv Incorrect adjective/

adverb order
In conclusion, [personally I→ I personally] feel that it is important to tell
one’s family members.

Trans Linking words/phrases It is sometimes hard to find [out→ out if] one has this disease.
Mec Spelling, punctuation,

capitalization, etc.
This knowledge [maybe relavant→ may be relevant] to them.

Rloc− Redundancy It is up to the [patient’s own choice→ patient] to disclose information.
Cit Citation Poor citation practice.
Others Other errors An error that does not fit into any other category but can still be corrected.
Um Unclear meaning Genetic disease has a close relationship with the born gene. (i.e., no cor-

rection possible without further clarification.)

Table 1: The 28 error types in the shared task.
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text span (paragraph ID starts from 0 by conven-
tion). start off (end off) denotes the char-
acter offset of the start (end) of the erroneous text
span (again, character offset starts from 0 by con-
vention). The error tag is Wform, and the correc-
tion string is absolutely.

The NUCLE corpus was first used in
(Dahlmeier and Ng, 2011b), and has been
publicly available for research purposes since
June 20111. All instances of grammatical errors
are annotated in NUCLE.

To help participating teams in their prepara-
tion for the shared task, we also performed au-
tomatic preprocessing of the NUCLE corpus and
released the preprocessed form of NUCLE. The
preprocessing operations performed on the NU-
CLE essays include sentence segmentation and
word tokenization using the NLTK toolkit (Bird
et al., 2009), and part-of-speech (POS) tagging,
constituency and dependency tree parsing using
the Stanford parser (Klein and Manning, 2003;
de Marneffe et al., 2006). The error annotations,
which are originally at the character level, are
then mapped to error annotations at the word to-
ken level. Error annotations at the word token
level also facilitate scoring, as we will see in Sec-
tion 4, since our scorer operates by matching to-
kens. Note that although we released our own
preprocessed version of NUCLE, the participating
teams were however free to perform their own pre-
processing if they so preferred.

NUCLE release version 3.2 was used in the
CoNLL-2014 shared task. In this version, 17 es-
says were removed from the first release of NU-
CLE since these essays were duplicates with mul-
tiple annotations. In addition, in order to facilitate
the detection and correction of article/determiner
errors and preposition errors, we performed some
automatic mapping of error types in the original
NUCLE corpus to arrive at release version 3.2. Ng
et al. (2013) gives more details of how the map-
ping was carried out.

The statistics of the NUCLE corpus (release 3.2
version) are shown in Table 2. The distribution of
errors among all error types is shown in Table 3.

While the NUCLE corpus is provided in our
shared task, participating teams are free to not use
NUCLE, or to use additional resources and tools
in building their grammatical error correction sys-
tems, as long as these resources and tools are pub-

1http://www.comp.nus.edu.sg/∼nlp/corpora.html

Training data Test data
(NUCLE)

# essays 1,397 50
# sentences 57,151 1,312
# word tokens 1,161,567 30,144

Table 2: Statistics of training and test data.

licly available and not proprietary. For example,
participating teams are free to use the Cambridge
FCE corpus (Yannakoudakis et al., 2011; Nicholls,
2003) (the training data provided in HOO 2012
(Dale et al., 2012)) as additional training data.

3.2 Test Data

Similar to CoNLL-2013, 25 NUS students, who
are non-native speakers of English, were recruited
to write new essays to be used as blind test data
in the shared task. Each student wrote two essays
in response to the two prompts shown in Table 4,
one essay per prompt. The first prompt was also
used in the NUCLE training data, but the second
prompt is entirely new and not used previously. As
a result, 50 new test essays were collected. The
statistics of the test essays are also shown in Ta-
ble 2.

Error annotation on the test essays was carried
out independently by two native speakers of En-
glish. One of them is a lecturer at the NUS Cen-
tre for English Language Communication, and the
other is a freelance English linguist with exten-
sive prior experience in error annotation of English
learners’ essays. The distribution of errors in the
test essays among the error types is shown in Ta-
ble 3. The test essays were then preprocessed in
the same manner as the NUCLE corpus. The pre-
processed test essays were released to the partic-
ipating teams. Similar to CoNLL-2013, the test
essays and their error annotations in the CoNLL-
2014 shared task will be made freely available af-
ter the shared task.

4 Evaluation Metric and Scorer

A grammatical error correction system is evalu-
ated by how well its proposed corrections or edits
match the gold-standard edits. An essay is first
sentence-segmented and tokenized before evalua-
tion is carried out on the essay. To illustrate, con-
sider the following tokenized sentence S written
by an English learner:

4



<MISTAKE start par="5" start off="11" end par="5" end off="19">
<TYPE>Wform</TYPE>
<CORRECTION>absolutely</CORRECTION>
</MISTAKE>

Figure 1: An example error annotation.

Error type Training % Test % Test %
data data data

(NUCLE) (Annotator 1) (Annotator 2)
Vt 3,204 7.1% 133 5.5% 150 4.5%
Vm 431 1.0% 49 2.0% 37 1.1%
V0 414 0.9% 31 1.3% 37 1.1%
Vform 1,443 3.2% 132 5.5% 91 2.7%
SVA 1,524 3.4% 105 4.4% 154 4.6%
ArtOrDet 6,640 14.8% 332 13.9% 444 13.3%
Nn 3,768 8.4% 215 9.0% 228 6.8%
Npos 239 0.5% 19 0.8% 15 0.5%
Pform 186 0.4% 47 2.0% 18 0.5%
Pref 927 2.1% 96 4.0% 153 4.6%
Prep 2,413 5.4% 211 8.8% 390 11.7%
Wci 5,305 11.8% 340 14.2% 479 14.4%
Wa 50 0.1% 0 0.0% 1 0.0%
Wform 2,161 4.8% 77 3.2% 103 3.1%
Wtone 593 1.3% 9 0.4% 15 0.5%
Srun 873 1.9% 7 0.3% 26 0.8%
Smod 51 0.1% 0 0.0% 5 0.2%
Spar 519 1.2% 3 0.1% 24 0.7%
Sfrag 250 0.6% 13 0.5% 5 0.2%
Ssub 362 0.8% 68 2.8% 10 0.3%
WOinc 698 1.6% 22 0.9% 54 1.6%
WOadv 347 0.8% 12 0.5% 27 0.8%
Trans 1,377 3.1% 94 3.9% 79 2.4%
Mec 3,145 7.0% 231 9.6% 496 14.9%
Rloc− 4,703 10.5% 95 4.0% 199 6.0%
Cit 658 1.5% 0 0.0% 0 0.0%
Others 1,467 3.3% 44 1.8% 49 1.5%
Um 1,164 2.6% 12 0.5% 42 1.3%
All types 44,912 100.0% 2,397 100.0% 3,331 100.0%

Table 3: Error type distribution of the training and test data. The test data were annotated independently
by two annotators.
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ID Prompt
1 “The decision to undergo genetic testing can only be made by the individual at risk for a disor-

der. Once a test has been conducted and the results are known, however, a new, family-related
ethical dilemma is born: Should a carrier of a known genetic risk be obligated to tell his or her
relatives?” Respond to the question above, supporting your argument with concrete examples.

2 While social media sites such as Twitter and Facebook can connect us closely to people in
many parts of the world, some argue that the reduction in face-to-face human contact affects
interpersonal skills. Explain the advantages and disadvantages of using social media in your
daily life/society.

Table 4: The two prompts used for the test essays.

There is no a doubt , tracking system
has brought many benefits in this infor-
mation age .

The set of gold-standard edits of a human annota-
tor is g = {a doubt → doubt, system → systems,
has → have}. Suppose the tokenized output sen-
tence H of a grammatical error correction system
given the above sentence is:

There is no doubt , tracking system has
brought many benefits in this informa-
tion age .

That is, the set of system edits is e = {a doubt
→ doubt}. The performance of the grammatical
error correction system is measured by how well
the two sets g and e match, in the form of recall
R, precision P , and F0.5 measure: R = 1/3, P =
1/1, F0.5 = (1 + 0.52)×RP/(R + 0.52 × P ) =
5/7.

More generally, given a set of n sentences,
where gi is the set of gold-standard edits for sen-
tence i, and ei is the set of system edits for sen-
tence i, recall, precision, and F0.5 are defined as
follows:

R =
∑n

i=1 |gi ∩ ei|∑n
i=1 |gi| (1)

P =
∑n

i=1 |gi ∩ ei|∑n
i=1 |ei| (2)

F0.5 =
(1 + 0.52)×R× P

R + 0.52 × P
(3)

where the intersection between gi and ei for sen-
tence i is defined as

gi ∩ ei = {e ∈ ei|∃g ∈ gi, match(g, e)} (4)

Note that we have adopted F0.5 as the evaluation
metric in the CoNLL-2014 shared task instead of

the standard F1 used in CoNLL-2013. F0.5 em-
phasizes precision twice as much as recall, while
F1 weighs precision and recall equally. When a
grammar checker is put into actual use, it is im-
portant that its proposed corrections are highly ac-
curate in order to gain user acceptance. Neglecting
to propose a correction is not as bad as proposing
an erroneous correction.

Similar to CoNLL-2013, we use the MaxMatch
(M2) scorer2 (Dahlmeier and Ng, 2012b) as the of-
ficial scorer in CoNLL-2014. The M2 scorer3 effi-
ciently searches for a set of system edits that max-
imally matches the set of gold-standard edits spec-
ified by an annotator. It overcomes a limitation of
the scorer used in HOO shared tasks, which can
return an erroneous score since the system edits
are computed deterministically by the HOO scorer
without regard to the gold-standard edits.

5 Approaches

45 teams registered to participate in the shared
task, out of which 13 teams submitted the out-
put of their grammatical error correction systems.
These teams are listed in Table 5. Each team is as-
signed a 3 to 4-letter team ID. In the remainder of
this paper, we will use the assigned team ID to re-
fer to a participating team. Every team submitted
a system description paper (the only exception is
the NARA team). Four of the 13 teams submitted
their system output only after the deadline (they
were given up to one week of extension). These
four teams (IITB, IPN, PKU, and UFC) have an
asterisk affixed after their team names in Table 5.

Each participating team in the CoNLL-2014
shared task tackled the error correction problem
in a different way. A full list summarizing each

2http://www.comp.nus.edu.sg/∼nlp/software.html
3A few minor bugs were fixed in the M2 scorer before it

was used in the CoNLL-2014 shared task.
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Team ID Affiliation
AMU Adam Mickiewicz University
CAMB University of Cambridge
CUUI Columbia University and the University of Illinois at Urbana-Champaign
IITB∗ Indian Institute of Technology, Bombay
IPN∗ Instituto Politécnico Nacional
NARA Nara Institute of Science and Technology
NTHU National Tsing Hua University
PKU∗ Peking University
POST Pohang University of Science and Technology
RAC Research Institute for Artificial Intelligence, Romanian Academy
SJTU Shanghai Jiao Tong University
UFC∗ University of Franche-Comté
UMC University of Macau

Table 5: The list of 13 participating teams. The teams that submitted their system output after the
deadline have an asterisk affixed after their team names. NARA did not submit any system description
paper.

team’s approach can be found in Table 6. While
machine-learnt classifiers for specific error types
proved popular in last year’s CoNLL-2013 shared
task, since this year’s task required the correction
of all 28 error types, teams tended to prefer meth-
ods that could deal with all error types simultane-
ously. In fact, most teams built hybrid systems that
made use of a combination of different approaches
to identify and correct errors.

One of the most popular approaches to non-
specific error type correction, incorporated to var-
ious extents in many teams’ systems, was the Lan-
guage Model (LM) based approach. Specifically,
the probability of a learner n-gram is compared
with the probability of a candidate corrected n-
gram, and if the difference is greater than some
threshold, an error was perceived to have been de-
tected and a higher scoring replacement n-gram
could be suggested. Some teams used this ap-
proach only to detect errors, e.g., IPN (Hernandez
and Calvo, 2014), which could then be corrected
by other methods, whilst other teams used other
methods to detect errors first, and then made cor-
rections based on the alternative highest n-gram
probability score, e.g., RAC (Boroş et al., 2014).
No single team used a uniquely LM-based solution
and the LM approach was always a component in
a hybrid system.

An alternative solution to correcting all er-
rors was to use a phrase-based statistical machine
translation (MT) system to “translate” learner En-
glish into correct English. Teams that followed the

MT approach mainly differed in terms of their at-
titude toward tuning; CAMB (Felice et al., 2014)
performed no tuning at all, IITB (Kunchukut-
tan et al., 2014) and UMC (Wang et al., 2014b)
tuned F0.5 using MERT, while AMU (Junczys-
Dowmunt and Grundkiewicz, 2014) explored a va-
riety of tuning options, ultimately tuning F0.5 us-
ing a combination of kb-MIRA and MERT. No
team used a syntax-based translation model, al-
though UMC did include POS tags and morphol-
ogy in a factored translation model.

With regard to correcting single error types,
rule-based (RB) approaches were also common in
most teams’ systems. A possible reason for this
is that some error types are more regular than oth-
ers, and so in order to boost accuracy, simple rules
can be written to make sure that, for example, the
number of a subject agrees with the number of
a verb. In contrast, it is a lot harder to write a
rule to consistently correct Wci (wrong colloca-
tion/idiom) errors. As such, RB methods were of-
ten, but not always, used as a preliminary or sup-
plementary stage in a larger hybrid system.

Finally, although there were fewer machine-
learnt classifier (ML) approaches than last year,
some teams still used various classifiers to correct
specific error types. In fact, CUUI (Rozovskaya
et al., 2014) only built classifiers for specific er-
ror types and did not attempt to tackle the whole
range of errors. SJTU (Wang et al., 2014a) also
preprocessed the training data into more precise
error categories using rules (e.g., verb tense (Vt)
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errors might be subcategorized into present, past,
or future tense etc.) and then built a single max-
imum entropy classifier to correct all error types.
See Table 6 to find out which teams tackled which
error types.

While every effort has been made to make clear
which team used which approach to correct which
set of error types, as there were more error types
than last year, it was sometimes impractical to fit
all this information into Table 6. For more infor-
mation on the specific methods used to correct a
specific error type, we must refer the reader to that
team’s CoNLL-2014 system description paper.

Table 6 also shows the linguistic features used
by the participating teams, which include lexical
features (i.e., words, collocations, n-grams), parts-
of-speech (POS), constituency parses, and depen-
dency parses.

While all teams in the shared task used the NU-
CLE corpus, they were also allowed to use addi-
tional external resources (both corpora and tools)
so long as they were publicly available and not
proprietary. Three teams also used last year’s
CoNLL-2013 test set as a development set in this
year’s CoNLL-2014 shared task. The external re-
sources used by the teams are also listed in Ta-
ble 6.

6 Results

All submitted system output was evaluated using
the M2 scorer, based on the error annotations pro-
vided by our annotators. The recall (R), pre-
cision (P ), and F0.5 measure of all teams are
shown in Table 7. The performance of the teams
varies greatly, from little more than five per cent to
37.33% for the top team.

The nature of grammatical error correction is
such that multiple, different corrections are of-
ten acceptable. In order to allow the participating
teams to raise their disagreement with the origi-
nal gold-standard annotations provided by the an-
notators, and not understate the performance of
the teams, we allow the teams to submit their
proposed alternative answers. This was also the
practice adopted in HOO 2011, HOO 2012, and
CoNLL-2013. Specifically, after the teams sub-
mitted their system output and the error annota-
tions on the test essays were released, we allowed
the teams to propose alternative answers (gold-
standard edits), to be submitted within four days
after the initial error annotations were released.

Team ID Precision Recall F0.5

CAMB 39.71 30.10 37.33
CUUI 41.78 24.88 36.79
AMU 41.62 21.40 35.01
POST 34.51 21.73 30.88
NTHU 35.08 18.85 29.92
RAC 33.14 14.99 26.68
UMC 31.27 14.46 25.37
PKU∗ 32.21 13.65 25.32
NARA 21.57 29.38 22.78
SJTU 30.11 5.10 15.19
UFC∗ 70.00 1.72 7.84
IPN∗ 11.28 2.85 7.09
IITB∗ 30.77 1.39 5.90

Table 7: Scores (in %) without alternative an-
swers. The teams that submitted their system out-
put after the deadline have an asterisk affixed after
their team names.

The same annotators who provided the error an-
notations on the test essays also judged the alter-
native answers proposed by the teams, to ensure
consistency. In all, three teams (CAMB, CUUI,
UMC) submitted alternative answers.

The same submitted system output was then
evaluated using the M2 scorer, with the original
annotations augmented with the alternative an-
swers. Table 8 shows the recall (R), precision (P ),
and F0.5 measure of all teams under this new eval-
uation setting.

The F0.5 measure of every team improves when
evaluated with alternative answers. Not surpris-
ingly, the teams which submitted alternative an-
swers tend to show the greatest improvements in
their F0.5 measure. Overall, the CUUI team (Ro-
zovskaya et al., 2014) achieves the best F0.5 mea-
sure when evaluated with alternative answers, and
the CAMB team (Felice et al., 2014) achieves the
best F0.5 measure when evaluated without alterna-
tive answers.

For future research which uses the test data of
the CoNLL-2014 shared task, we recommend that
evaluation be carried out in the setting that does
not use alternative answers, to ensure a fairer eval-
uation. This is because the scores of the teams
which submitted alternative answers tend to be
higher in a biased way when evaluated with alter-
native answers.

We are also interested in the analysis of the
system performance for each of the error types.
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Team ID Precision Recall F0.5

CUUI 52.44 29.89 45.57
CAMB 46.70 34.30 43.55
AMU 45.68 23.78 38.58
POST 41.28 25.59 36.77
UMC 43.17 19.72 34.88
NTHU 38.34 21.12 32.97
PKU∗ 36.64 15.96 29.10
RAC 35.63 16.73 29.06
NARA 23.83 31.95 25.11
SJTU 32.95 5.95 17.28
UFC∗ 72.00 1.90 8.60
IPN∗ 11.66 3.17 7.59
IITB∗ 34.07 1.66 6.94

Table 8: Scores (in %) with alternative answers.
The teams that submitted their system output af-
ter the deadline have an asterisk affixed after their
team names.

Computing the recall of an error type is straight-
forward as the error type of each gold-standard
edit is provided. Conversely, computing the pre-
cision of each of the 28 error types is difficult as
the error type of each system edit is not available
since the submitted system output only contains
corrected sentences with no indication of the er-
ror type of the system edits. Predicting the error
type out of the 28 types for a particular system
edit not found in gold-standard annotation can be
tricky and error-prone. Therefore, we decided to
compute the per-type performance based on recall.
The recall scores when distinguished by error type
are shown in Tables 9 and 10.

6.1 Cross Annotator Comparison

To measure the agreement between our two an-
notators, we computed Cohen’s Kappa coefficient
(Cohen, 1960) for identification, which measures
the extent to which annotators agreed which words
needed correction and which did not, regardless
of the error type or correction. We obtained a
Kappa coefficient value of 0.43, indicating mod-
erate agreement (since it falls between 0.40 and
0.60). While this may seem low, it is worth point-
ing out that the Kappa coefficient does not take
into account the fact that there is often more than
one valid way to correct a sentence.

In addition to computing the performance of
each team against the gold standard annotations of
both annotators with and without alternative anno-

tations, we also had an opportunity to compare the
performance of each team’s system against each
annotator individually.

A recent concern is that there can be a high
degree of variability between individual annota-
tors which can dramatically affect a system’s out-
put score. For example, in a much simplified er-
ror correction task concerning only the correction
of prepositions, Tetreault and Chodorow (2008)
showed an actual difference of 10% precision and
5% recall between two annotators. Table 11 hence
shows the precision (P ), recall (R), and F0.5

scores for all error types against the gold standard
annotations of each CoNLL-2014 annotator indi-
vidually.

The results show that there can indeed be a high
amount of disagreement between two annotators,
the most noticeable being precision in the UFC
system: precision was 70% for Annotator 2 but
only 28% for Annotator 1. This 42% difference is,
however, likely to be an extreme case, and most
teams show little more than 10% variation in pre-
cision and 5% variation in F0.5. Recall remained
fairly constant between annotators. 10% is still
a large margin however, and these results rein-
force the idea that error correction systems should
be judged against the gold-standard annotations of
multiple annotators.

Table 12 additionally shows how each annotator
compares against each other; i.e., what score An-
notator 1 gets if Annotator 2 was the gold standard
(part (a) of Table 12) and vice versa (part (b)).

The low F0.5 scores of 45.36% and 38.54% rep-
resent an upper bound for system performance on
this data set and again emphasize the difficulty of
the task. The low human F0.5 scores imply that
there are many ways to correct a sentence.

7 Conclusions

The CoNLL-2014 shared task saw the participa-
tion of 13 teams worldwide to evaluate their gram-
matical error correction systems on a common test
set, using a common evaluation metric and scorer.
The best systems in the shared task achieve an
F0.5 score of 37.33% when it is scored without
alternative answers, and 45.57% with alternative
answers. There is still much room for improve-
ment in the accuracy of grammatical error correc-
tion systems. The evaluation data sets and scorer
used in our shared task serve as a benchmark for
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Team ID Annotator 1 Annotator 2
P R F0.5 P R F0.5

AMU 27.30 13.55 22.69 35.49 12.90 26.29
CAMB 24.96 19.62 23.67 35.22 20.29 30.70
CUUI 26.05 15.60 22.97 36.91 16.37 29.51
IITB 23.33 0.88 3.82 24.18 0.66 2.99
IPN 5.80 1.25 3.36 9.62 1.51 4.63
NARA 13.54 19.20 14.38 18.74 19.69 18.92
NTHU 22.19 11.38 18.64 31.48 11.79 23.60
PKU 21.53 8.36 16.37 27.47 7.72 18.17
POST 22.39 13.89 19.94 29.53 13.42 23.81
RAC 19.68 8.28 15.43 28.52 8.80 19.70
SJTU 21.08 3.09 9.75 24.64 2.59 9.12
UFC 28.00 0.59 2.70 70.00 1.06 4.98
UMC 20.41 8.78 16.14 26.63 8.38 18.55

Table 11: Performance (in %) for each team’s output scored against the annotations of a single annotator.

P R F0.5

50.47 32.29 45.36

(a)

P R F0.5

37.14 45.38 38.54

(b)

Table 12: Performance (in %) for output of one gold standard annotation scored against the other gold
standard annotation: (a) The score of Annotator 1 if Annotator 2 was the gold standard, (b) The score of
Annotator 2 if Annotator 1 was the gold standard.

future research on grammatical error correction4.
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Abstract

This paper describes our submission to the
CoNLL 2014 shared task on grammatical
error correction using a hybrid approach,
which includes both a rule-based and an
SMT system augmented by a large web-
based language model. Furthermore, we
demonstrate that correction type estima-
tion can be used to remove unnecessary
corrections, improving precision without
harming recall. Our best hybrid system
achieves state-of-the-art results, ranking
first on the original test set and second on
the test set with alternative annotations.

1 Introduction

Grammatical error correction has attracted con-
siderable interest in the last few years, especially
through a series of ‘shared tasks’. These efforts
have helped to provide a common ground for eval-
uating and comparing systems while encouraging
research in the field. These shared tasks have pri-
marily focused on English as a second or foreign
language and addressed different error types. The
HOO 2011 task (Dale and Kilgarriff, 2011), for
example, included all error types whereas HOO
2012 (Dale et al., 2012) and the CoNLL 2013
shared task (Ng et al., 2013) were restricted to only
two and five types respectively.

In this paper, we describe our submission to the
CoNLL 2014 shared task (Ng et al., 2014), which
involves correcting all the errors in essays writ-
ten in English by students at the National Univer-
sity of Singapore. An all-type task poses a greater
challenge, since correcting open-class types (such
as spelling or collocation errors) requires different
correction strategies than those in closed classes
(such as determiners or prepositions).

In this scenario, hybrid systems or combinations
of correction modules seem more appropriate and

typically produce good results. In fact, most of
the participating teams in previous shared tasks
have used a combination of modules or systems
for their submissions, even for correcting closed-
class types (Dahlmeier et al., 2011; Bhaskar et
al., 2011; Rozovskaya et al., 2011; Ivanova et al.,
2011; Rozovskaya et al., 2013; Yoshimoto et al.,
2013; Xing et al., 2013; Kunchukuttan et al., 2013;
Putra and Szabo, 2013; Xiang et al., 2013).

In line with previous research, we present a hy-
brid approach that employs a rule-based error cor-
rection system and an ad-hoc statistical machine
translation (SMT) system, as well as a large-scale
language model to rank alternative corrections and
an error type filtering technique.

The remainder of this paper is organised as fol-
lows: Section 2 describes our approach and each
component in detail, Section 3 presents our experi-
ments using the CoNLL 2014 shared task develop-
ment set and Section 4 reports our official results
on the test set. Finally, we discuss the performance
of our system and present an error analysis in Sec-
tion 5 and conclude in Section 6.

2 Approach

We tackle the error correction task using a pipeline
of processes that combines results from multiple
systems. Figure 1 shows the interaction of the
components in our final hybrid system, producing
the results submitted to the CoNLL 2014 shared
task. The following sections describe each of these
components in detail.

2.1 Rule-based error correction system
(RBS)

The rule-based system is a component of the Self-
Assessment and Tutoring (SAT) system, a web
service developed at the University of Cambridge
aimed at helping intermediate learners of English
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Figure 1: Overview of components and interac-
tions in our final hybrid system.

in their writing tasks1 (Andersen et al., 2013). The
original SAT system provides three main function-
alities: 1) text assessment, producing an overall
score for a piece of text, 2) sentence evaluation,
producing a sentence-level quality score, and 3)
word-level feedback, suggesting specific correc-
tions for frequent errors. Since the focus of the
shared task is on strict correction (as opposed to
detection), we only used the word-level feedback
component of the SAT system.

This module uses rules automatically derived
from the Cambridge Learner Corpus2 (CLC)
(Nicholls, 2003) that are aimed at detecting error-
ful unigrams, bigrams and trigrams. In order to
ensure high precision, rules are based on n-grams
that have been annotated as incorrect at least five
times and at least ninety per cent of the times
they occur. In addition to these corpus-derived
rules, many cases of incorrect but plausible deriva-
tional and inflectional morphology are detected by
means of rules derived from a machine-readable
dictionary. For further details on specific compo-
nents, we refer the reader to the aforementioned
paper.

Given an input text, the rule-based system pro-
duces an XML file containing a list of suggested
corrections. These corrections can either be ap-
plied to the original text or used to generate mul-
tiple correction candidates, as described in Sec-
tion 2.3.

2.2 SMT system

We follow a similar approach to the one described
by Yuan and Felice (2013) in order to train an SMT

1The latest version of the system, called ‘Write
& Improve’, is available at http://www.cambridge
english.org/writeandimprovebeta/.

2More information at http://www.cambridge
.org/elt/catalogue/subject/custom/item36
46603/

system that can ‘translate’ from incorrect into cor-
rect English. Our training data comprises a set of
different parallel corpora, where the original (in-
correct) sentences constitute the source side and
corrected versions based on gold standard anno-
tations constitute the target side. These corpora
include:

• the NUCLE v3.1 corpus (Dahlmeier et al.,
2013), containing around 1,400 essays writ-
ten in English by students at the National
University of Singapore (approx. 1,220,257
tokens in 57,152 sentences),

• phrase alignments involving corrections ex-
tracted automatically from the NUCLE cor-
pus (with up to 7 tokens per side), which are
used to boost the probability of phrase align-
ments that involve corrections so as to im-
prove recall,

• the CoNLL 2014 shared task development
set, containing 50 essays from the previous
year’s test set (approx. 29,207 tokens in 1,382
sentences),

• the First Certificate in English (FCE) cor-
pus (Yannakoudakis et al., 2011), contain-
ing 1,244 exam scripts and 2 essays per
script (approx. 532,033 tokens in 16,068 sen-
tences),

• a subset of the International English Lan-
guage Testing System (IELTS) examination
dataset extracted from the CLC corpus, con-
taining 2,498 exam scripts and 2 essays per
script (approx. 1,361,841 tokens in 64,628
sentences), and

• a set of sentences from the English Vo-
cabulary Profile3 (EVP), which have been
modified to include artificially generated er-
rors (approx. 351,517 tokens in 18,830 sen-
tences). The original correct sentences are a
subset of the CLC and come from examina-
tions at different proficiency levels. The ar-
tificial error generation method aims at repli-
cating frequent error patterns observed in the
NUCLE corpus on error-free sentences, as
described by Yuan and Felice (2013).

3Sentences were automatically scraped from http://
www.englishprofile.org/index.php?option=
com_content&view=article&id=4&Itemid=5
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Word alignment was carried out using pialign
(Neubig et al., 2011), after we found it outper-
formed GIZA++ (Och and Ney, 2000; Och and
Ney, 2003) and Berkeley Aligner (Liang et al.,
2006; DeNero and Klein, 2007) in terms of pre-
cision and F0.5 on the development set. Instead
of using heuristics to extract phrases from the
word alignments learnt by GIZA++ or Berker-
ley Aligner, pialign created a phrase table directly
from model probabilities.

In addition to the features already defined by pi-
align, we added character-level Levenshtein dis-
tance to each mapping in the phrase table. This
was done to allow for the fact that, in error correc-
tion, most words translate into themselves and er-
rors are often similar to their correct forms. Equal
weights were assigned to these features.

We then built a lexical reordering model using
the alignments created by pialign. The maximum
phrase length was set to 7, as recommended in the
SMT literature (Koehn et al., 2003; Koehn, 2014).

The IRSTLM Toolkit (Federico et al., 2008)
was used to build a 4-gram target language model
with Kneser–Ney smoothing (Kneser and Ney,
1995) on the correct sentences from the NUCLE,
full CLC and EVP corpora.

Decoding was performed with Moses (Koehn et
al., 2007), using the default settings and weights.
No tuning process was applied. The resulting sys-
tem was used to produce the 10 best correction
candidates for each sentence in the dataset, which
were further processed by other modules.

Segmentation, tokenisation and part-of-speech
tagging were performed using NLTK (Bird et
al., 2009) for consistency with the shared task
datasets.

2.3 Candidate generation

In order to integrate corrections from multiple sys-
tems, we developed a method to generate all the
possible corrected versions of a sentence (candi-
dates). Candidates are generated by computing all
possible combinations of corrections (irrespective
of the system from which they originate), includ-
ing the original tokens to allow for a ‘no correc-
tion’ option. The list of candidates produced for
each sentence always includes the original (un-
modified) sentence plus any other versions derived
from system corrections.

In order for a combination of corrections to gen-
erate a valid candidate, all the corrections must be

Figure 2: An example showing the candidate gen-
eration process.

Model CE ME UE P R F0.5
SMT IRSTLM 651 2766 1832 0.2621 0.1905 0.2438
Microsoft Web
N-grams

666 2751 1344 0.3313 0.1949 0.2907

Table 1: Performance of language models on the
development set after ranking the SMT system’s
10-best candidates per sentence. CE: correct ed-
its, ME: missed edits, UE: unnecessary edits, P:
precision, R: recall.

compatible; otherwise, the candidate is discarded.
We consider two or more corrections to be com-
patible if they do not overlap, in an attempt to
avoid introducing accidental errors. In addition,
if different correction sets produce the same can-
didate, we only keep one. Figure 2 illustrates the
candidate generation process.

2.4 Language model ranking

Generated candidates are ranked using a language
model (LM), with the most probable candidate be-
ing selected as the final corrected version.

We tried two different alternatives for ranking:
1) using the target LM embedded in our SMT sys-
tem (described in Section 2.2) and 2) using a large
n-gram LM built from web data. In the latter
case, we used Microsoft Web N-gram Services,
which provide access to large smoothed n-gram
language models (with n=2,3,4,5) built from web
documents (Gao et al., 2010). All our experiments
are based on the 5-gram ‘bing-body:apr10’ model.

The ranking performance of these two models
was evaluated on the 10-best hypotheses generated
by the SMT system for each sentence in the devel-
opment set. Table 1 shows the results from the
M2 Scorer (Dahlmeier and Ng, 2012), the official
scorer for the shared task that, unlike previous ver-
sions, weights precision twice as much as recall.

Results show that using Microsoft’s Web LM
yields better performance, which is unsurprising
given the vast amounts of data used to build that
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System CE ME UE P R F0.5
RBS 95 3322 107 0.4703 0.0278 0.1124
SMT 452 2965 690 0.3958 0.1323 0.2830

Table 2: Results of individual systems on the de-
velopment set.

model. For this reason, we adopt Microsoft’s
model for all further experiments.

We also note that without normalisation, higher
probabilities may be assigned to shorter sentences,
which can introduce a bias towards preferring
deletions or skipping insertions.

2.5 Type filtering

Analysing performance by error type is very valu-
able for system development and tuning. How-
ever, this can only be performed for corrections
in the gold standard (either matched or missed).
To estimate types for unnecessary corrections, we
defined a set of heuristics that analyse differences
in word forms and part-of-speech tags between
the original phrases and their system corrections,
based on common patterns observed in the train-
ing data. We had previously used a similar strat-
egy to classify errors in our CoNLL 2013 shared
task submission (Yuan and Felice, 2013) but have
now included a few improvements and rules for
new types. Estimation accuracy is 50.92% on the
training set and 67.57% on the development set,
which we consider to be acceptable for our pur-
poses given that the final test set is more similar to
the development set.

Identifying types for system corrections is not
only useful during system development but can
also be exploited to filter out and reduce the num-
ber of proposed corrections. More specifically, if
a system proposes a much higher number of un-
necessary corrections than correct suggestions for
a specific error type, we can assume the system is
actually degrading the quality of the original text,
in which case it is preferable to filter out those er-
ror types. Such decisions will lower the total num-
ber of unnecessary edits, thus improving overall
precision. However, they will also harm recall,
unless the number of matched corrections for the
error type is zero (i.e. unless Ptype = 0). To avoid
this, only corrections for types having zero preci-
sion should be removed.

3 Experiments and results

We carried out a series of experiments on the de-
velopment set using different pipelines and com-
binations of systems in order to find an optimal
setting. The following sections describe them in
detail.

3.1 Individual system performance

Our first set of experiments were aimed at inves-
tigating individual system performance on the de-
velopment set, which is reported in Table 2. Re-
sults show that the SMT system has much better
performance, which is expected given that it has
been trained on texts similar to those in the test
set.

3.2 Pipelines

Since corrections from the RBS and SMT systems
are often complementary, we set out to explore
combination schemes that would integrate correc-
tions from both systems. Table 3 shows results for
different combinations, where RBS and SMT in-
dicate all corrections from the respective systems,
subscript ‘c’ indicates candidates generated from
a system’s individual corrections, subscript ‘10-
best’ indicates the 10-best list of candidates pro-
duced by the SMT system, ‘>’ indicates a pipeline
where the output of one system is the input to the
other and ‘+’ indicates a combination of candi-
dates from different systems. All these pipelines
use the RBS system as the first processing step in
order to perform an initial correction, which is ex-
tremely beneficial for the SMT system.

Results reveal that the differences between
these pipelines are small in terms of F0.5, although
there are noticeable variations in precision and re-
call. The best results are achieved when the 10
best hypotheses from the SMT system are ranked
with Microsoft’s LM, which confirms our results
in Table 1 showing that the SMT LM is outper-
formed by a larger web-based model.

A simple pipeline using the RBS system first
and the SMT system second (#3) yields per-
formance that is better than (or comparable to)
pipelines #1, #2 and #4, suggesting that there is no
real benefit in using more sophisticated pipelines
when only the best hypothesis from the SMT sys-
tem is used. However, performance is improved
when the 10 best SMT hypotheses are considered.
The only difference between pipelines #5 and #6
lies in the way corrections from the RBS system
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# Pipeline CE ME UE P R F0.5 ↑
1 RBS > SMTc > LM 372 3045 481 0.4361 0.1088 0.2723
2 RBSc + SMTc > LM 400 3017 485 0.4520 0.1171 0.2875
3 RBS > SMT 476 2941 738 0.3921 0.1393 0.2877
4 RBSc > LM > SMT 471 2946 718 0.3961 0.1378 0.2881
5 RBS > SMT10-best > LM 678 2739 1368 0.3314 0.1984 0.2922
6 RBSc > LM > SMT10-best > LM 681 2736 1366 0.3327 0.1993 0.2934

Table 3: Results for different system pipelines on the development set.

System CE ME UE P R F0.5
RBSc > LM > SMT10-best > LM 681 2736 1366 0.3327 0.1993 0.2934
RBSc > LM > SMT10-best > LM > Filter 681 2736 1350 0.3353 0.1993 0.2950

Table 4: Results for individual systems on the development set.

are handled. In the first case, all corrections are
applied at once whereas in the second, the sug-
gested corrections are used to generate candidates
that are subsequently ranked by our LM, often dis-
carding some of the suggested corrections.

3.3 Filtering

As described in Section 2.5, we can evaluate per-
formance by error type in order to identify and re-
move unnecessary corrections. In particular, we
tried to optimise our best hybrid system (#6) by
filtering out types with zero precision. Table 5
shows type-specific performance for this system,
where three zero-precision types can be identi-
fied: Reordering (a subset of Others that we treat
separately), Srun (run-ons/comma splices) and Wa
(acronyms). Although reordering was explicitly
disabled in our SMT system, a translation table
can still include this type of mappings if they are
observed in the training data (e.g. ‘you also can’
→ ‘you can also’).

In order to remove such undesired corrections,
the following procedure was applied: first, in-
dividual corrections were extracted by compar-
ing the original and corrected sentences; second,
the type of each extracted correction was pre-
dicted, subsequently deleting those that matched
unwanted types (i.e. reordering, Srun or Wa); fi-
nally, the set of remaining corrections was applied
to the original text. This method improves pre-
cision while preserving recall (see Table 4), al-
though the resulting improvement is not statisti-
cally significant (paired t-test, p > 0.05).

4 Official evaluation results

Our submission to the CoNLL 2014 shared task is
the result of our best hybrid system, described in
the previous section and summarised in Figure 1.
The official test set comprised 50 new essays (ap-
prox. 30,144 tokens in 1,312 sentences) written in
response to two prompts, one of which was also
included in the training data.

Systems were evaluated using the M2 Scorer,
which uses F0.5 as its overall measure. As in previ-
ous years, there were two evaluation rounds. The
first one was based on the original gold-standard
annotations provided by the shared-task organis-
ers whereas the second was based on a revised
version including alternative annotations submit-
ted by the participating teams. Our submitted sys-
tem achieved the first and second place respec-
tively. The official results of our submission in
both evaluation rounds are reported in Table 6.

5 Discussion and error analysis

In order to assess how our system performed per
error type on the test set, we ran our type estima-
tion script and obtained the results shown in Ta-
ble 7. Although these results are estimated and
therefore not completely accurate,4 they can still
provide valuable insights, at least at a coarse level.
The following sections discuss our main findings.

5.1 Type performance

According to Table 7, our system achieves the best
performance for types WOadv (adverb/adjective
position) and Wtone (tone), but these results are

4Estimation accuracy was found to be 57.90% on the test
set.
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Error type CE ME UE P R F0.5
ArtOrDet 222 465 225 0.4966 0.3231 0.4485
Cit 0 6 0 – 0.0000 –
Mec 31 151 15 0.6739 0.1703 0.4235
Nn 138 256 136 0.5036 0.3503 0.4631
Npos 4 25 45 0.0816 0.1379 0.0889
Others 1 34 12 0.0769 0.0286 0.0575
Pform 1 25 22 0.0435 0.0385 0.0424
Pref 1 38 5 0.1667 0.0256 0.0794
Prep 61 249 177 0.2563 0.1968 0.2417
Reordering 0 1 12 0.0000 0.0000 –
Rloc- 13 115 80 0.1398 0.1016 0.1300
SVA 32 86 25 0.5614 0.2712 0.4624
Sfrag 0 4 0 – 0.0000 –
Smod 0 16 0 – 0.0000 –
Spar 4 30 0 1.0000 0.1176 0.4000
Srun 0 55 28 0.0000 0.0000 –
Ssub 7 64 15 0.3182 0.0986 0.2201
Trans 13 128 36 0.2653 0.0922 0.1929
Um 0 34 0 – 0.0000 –
V0 2 16 3 0.4000 0.1111 0.2632
Vform 28 90 68 0.2917 0.2373 0.2789
Vm 9 86 41 0.1800 0.0947 0.1525
Vt 18 137 53 0.2535 0.1161 0.2050
WOadv 0 12 0 – 0.0000 –
WOinc 2 35 71 0.0274 0.0541 0.0304
Wa 0 5 2 0.0000 0.0000 –
Wci 28 400 241 0.1041 0.0654 0.0931
Wform 65 161 54 0.5462 0.2876 0.4630
Wtone 1 12 0 1.0000 0.0769 0.2941
TOTAL 681 2736 1366 0.3327 0.1993 0.2934

Table 5: Type-specific performance of our best hy-
brid system on the development set. Types with
zero precision are marked in bold.

Test set CE ME UE P R F0.5
Original 772 1793 1172 0.3971 0.3010 0.3733
Revised 913 1749 1042 0.4670 0.3430 0.4355

Table 6: Official results of our system on the orig-
inal and revised test sets.

not truly representative as they only account for a
small fraction of the test data (0.64% and 0.36%
respectively).

The third best performing type is Mec, which
comprises mechanical errors (such as punctuation,
capitalisation and spelling mistakes) and repre-
sents 11.58% of the errors in the data. The remark-
ably high precision obtained for this error type
suggests that our system is especially suitable for
correcting such errors.

We also found that our system was particularly
good at enforcing different types of agreement, as
demonstrated by the results for SVA (subject–verb
agreement), Pref (pronoun reference), Nn (noun
number) and Vform (verb form) types, which add
up to 22.80% of the errors. The following example
shows a successful correction:

Error type CE ME UE P R F0.5
ArtOrDet 185 192 206 0.4731 0.4907 0.4766
Mec 86 219 16 0.8431 0.2820 0.6031
Nn 122 106 143 0.4604 0.5351 0.4736
Npos 2 13 59 0.0328 0.1333 0.0386
Others 0 30 10 0.0000 0.0000 –
Pform 8 26 21 0.2759 0.2353 0.2667
Pref 19 77 12 0.6129 0.1979 0.4318
Prep 100 159 144 0.4098 0.3861 0.4049
Reordering 0 0 7 0.0000 – –
Rloc- 23 89 116 0.1655 0.2054 0.1722
SVA 38 85 31 0.5507 0.3089 0.4762
Sfrag 0 4 0 – 0.0000 –
Smod 0 2 0 – 0.0000 –
Spar 0 10 0 – 0.0000 –
Srun 0 14 1 0.0000 0.0000 –
Ssub 8 39 19 0.2963 0.1702 0.2581
Trans 17 54 39 0.3036 0.2394 0.2881
Um 2 21 0 1.0000 0.0870 0.3226
V0 8 20 15 0.3478 0.2857 0.3333
Vform 31 93 46 0.4026 0.2500 0.3588
Vm 7 27 35 0.1667 0.2059 0.1733
Vt 26 108 40 0.3939 0.1940 0.3266
WOadv 10 11 0 1.0000 0.4762 0.8197
WOinc 1 33 37 0.0263 0.0294 0.0269
Wci 33 305 146 0.1844 0.0976 0.1565
Wform 42 49 29 0.5915 0.4615 0.5600
Wtone 4 7 0 1.0000 0.3636 0.7407
TOTAL 772 1793 1172 0.3971 0.3010 0.3733

Table 7: Type-specific performance of our submit-
ted system on the original test set.

ORIGINAL SENTENCE:
He or she has the right not to tell anyone .

SYSTEM HYPOTHESIS:
They have the right not to tell anyone .

GOLD STANDARD:
They have the right not to tell anyone .

In other cases, our system seems to do a good
job despite gold-standard annotations:

ORIGINAL SENTENCE:
This is because his or her relatives have the
right to know about this .

SYSTEM HYPOTHESIS:
This is because their relatives have the right
to know about this .

GOLD STANDARD:
This is because his or her relatives have the
right to know about this . (unchanged)

The worst performance is observed for Others
(including Reordering) and Srun, which only ac-
count for 1.69% of the errors. We also note that
Reordering and Srun errors, which had explicitly
been filtered out, still appear in our final results,
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which is due to differences in the edit extraction
algorithms used by the M2 Scorer and our own im-
plementation. According to our estimations, our
system has poor performance on the Wci type (the
second most frequent), suggesting it is not very
successful at correcting idioms and collocations.

Corrections for more complex error types such
as Um (unclear meaning), which are beyond the
scope of this shared task, are inevitably missed.

5.2 Deletions

We have also observed that many mismatches be-
tween our system’s corrections and the gold stan-
dard are caused by unnecessary deletions, as in the
following example:

ORIGINAL SENTENCE:
I could understand the feeling of the carrier .

SYSTEM HYPOTHESIS:
I understand the feeling of the carrier .

GOLD STANDARD:
I could understand the feeling of the carrier .
(unchanged)

This effect is the result of using 10-best hy-
potheses from the SMT system together with LM
ranking. Hypotheses from an SMT system can in-
clude many malformed sentences which are effec-
tively discarded by the embedded target language
model and additional heuristics. However, rank-
ing these raw hypotheses with external systems
can favour deletions, as language models will gen-
erally assign higher probabilities to shorter sen-
tences. A common remedy for this is normali-
sation but we found it made no difference in our
experiments.

In other cases, deletions can be ascribed to dif-
ferences in the domain of the training and test sets,
as observed in this example:

ORIGINAL SENTENCE:
Nowadays , social media are able to dissemi-
nate information faster than any other media .

SYSTEM HYPOTHESIS:
Nowadays , the media are able to disseminate
information faster than any other media .

GOLD STANDARD:
Nowadays , social media are able to dissemi-
nate information faster than any other media .
(unchanged)

5.3 Uncredited corrections

Our analysis also reveals a number of cases where
the system introduces changes that are not in-
cluded in the gold standard but we consider im-
prove the quality of a sentence. For example:

ORIGINAL SENTENCE:
Demon is not easily to be defeated and it is
required much of energy and psychological
support .

SYSTEM HYPOTHESIS:
Demon is not easily defeated and it requires
a lot of energy and psychological support .

GOLD STANDARD:
The demon is not easily defeated and it re-
quires much energy and psychological sup-
port .

Adding alternative corrections to the gold stan-
dard alleviates this problem, although the list of
alternatives will inevitably be incomplete.

There are also a number of cases where the sen-
tences are considered incorrect as part of a longer
text but are acceptable when they are evaluated in
isolation. Consider the following examples:

ORIGINAL SENTENCE:
The opposite is also true .

SYSTEM HYPOTHESIS:
The opposite is true .

GOLD STANDARD:
The opposite is also true . (unchanged)

ORIGINAL SENTENCE:
It has erased the boundaries of distance and
time .

SYSTEM HYPOTHESIS:
It has erased the boundaries of distance and
time . (unchanged)

GOLD STANDARD:
They have erased the boundaries of distance
and time .

In both cases, system hypotheses are perfectly
grammatical but they are considered incorrect
when analysed in context. Such mismatch is the
result of discrepancies between the annotation and
evaluation criteria: while the gold standard is an-
notated taking discourse into account, system cor-
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rections are proposed in isolation, completely de-
void of discursive context.

Finally, the inability of the M2 Scorer to com-
bine corrections from different annotators (as op-
posed to selecting only one annotator’s corrections
for the whole sentence) can also result in underes-
timations of performance. However, it is clear that
exploring these combinations during evaluation is
a challenging task itself.

6 Conclusions

We have presented a hybrid approach to error cor-
rection that combines a rule-based and an SMT
error correction system. We have explored dif-
ferent combination strategies, including sequen-
tial pipelines, candidate generation and ranking.
In addition, we have demonstrated that error type
estimations can be used to filter out unnecessary
corrections and improve precision without harm-
ing recall.

Results of our best hybrid system on the offi-
cial CoNLL 2014 test set yield F0.5=0.3733 for
the original annotations and F0.5=0.4355 for alter-
native corrections, placing our system in the first
and second place respectively.

Error analysis reveals that our system is partic-
ularly good at correcting mechanical errors and
agreement but is often penalised for unnecessary
deletions. However, a thorough inspection shows
that the system tends to produce very fluent sen-
tences, even if they do not match gold standard
annotations.
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Abstract

Statistical machine translation toolkits like
Moses have not been designed with gram-
matical error correction in mind. In or-
der to achieve competitive results in this
area, it is not enough to simply add more
data. Optimization procedures need to be
customized, task-specific features should
be introduced. Only then can the decoder
take advantage of relevant data.

We demonstrate the validity of the above
claims by combining web-scale language
models and large-scale error-corrected
texts with parameter tuning according to
the task metric and correction-specific fea-
tures. Our system achieves a result of
35.0% F0.5 on the blind CoNLL-2014 test
set, ranking on third place. A similar sys-
tem, equipped with identical models but
without tuned parameters and specialized
features, stagnates at 25.4%.

1 Introduction

There has been an increasing interest in using sta-
tistical machine translation (SMT) for the task
of grammatical error correction. Among the 16
teams that took part in the CoNLL-2013 Shared
Task (Ng et al., 2013), four teams described ap-
proaches that fully or partially used SMT in their
system. While in the previous year the correc-
tion task was restricted to just five error types,
the CoNLL-2014 Shared Task (Ng et al., 2014)
now requires a participating system to correct all
28 error types present in NUCLE (Dahlmeier et
al., 2013). Since the high number of error types
has made it harder to target each error category
with dedicated components, SMT with its abil-
ity to learn generic text transformations is now an
even more appealing approach.

With out-of-the-box machine translation toolk-
its like Moses (Koehn et al., 2007) being freely
available, the application of SMT to grammati-
cal error correction seems straightforward. How-
ever, Moses has not been designed as a grammar
correction system, the standard features and opti-
mization methods are geared towards translation
performance measured by the metrics used in the
SMT field. Training Moses on data that is relevant
for grammatical error correction is a step in the
right direction, but data alone is not enough. The
decoder needs to be able to judge the data based on
relevant features, parameter optimization needs to
be performed according to relevant metrics.

This paper constitutes the description of the
Adam Mickiewicz University (AMU) submission
to the CoNLL-2014 Shared Task on Grammatical
Error Correction. We explore the interaction of
large-scale data, parameter optimization, and task-
specific features in a Moses-based system. Related
work is presented in the next section, the system
setup is shortly described in Section 3. Sections 4
to 7 contain our main contributions.

In Section 4, we describe our implementation of
feature weights tuning according to the MaxMatch
(M2) metric by Dahlmeier and Ng (2012b) which
is the evaluation metric of the current CoNLL-
2014 Shared Task. Sections 5 and 6 deal with the
data-intensive aspects of our paper. We start by
extending the baseline system with a Wikipedia-
based language model and finish with a web-scale
language model estimated from CommonCrawl
data. Uncorrected/corrected data from the social
language learner’s platform Lang-8 is used to ex-
tend the translation models of our system.

Task-specific dense and sparse features are in-
troduced in Section 7. These features are meant to
raise the “awareness” of the decoder for grammat-
ical error correction. In Section 8, we discuss the
results of our submission and several intermediate
systems on the blind CoNLL-2014 test set.
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2 Related Work

Brockett et al. (2006) use SMT to correct count-
ability errors for a set of 14 mass nouns that pose
problems to Chinese ESL learners. For this very
restricted task they achieve a results of 61.81%
corrected mistakes. This work mentions minimum
error rate tuning according to BLEU.

A Moses-based system is described by Mizu-
moto et al. (2011) who correct grammatical errors
of learners of Japanese. This work is continued for
English in Mizumoto et al. (2012). The effect of
learner corpus size on various types of grammat-
ical errors is investigated. The additional large-
scale data originates from the social learner’s plat-
form Lang-8. We use similar resources.

Very interesting work is presented by
Dahlmeier and Ng (2012a). A custom beam-
search decoder for grammatical error correction
is introduced that incorporates discriminative
classifiers for specific error categories such as
articles and prepositions. The authors perform
parameter tuning and find PRO to work better
with M2

1 than MERT1. The specialized decoder
tuned with M2

1 is compared to Moses that has been
tuned with BLEU. As we show in Section 4.2, this
cannot be a fair comparison.

The CoNLL-2013 Shared Task (Ng et al., 2013)
saw a number of systems based entirely or par-
tially on translation approaches. Most notable
are Yuan and Felice (2013) and Yoshimoto et al.
(2013). Yuan and Felice (2013) apply Moses to all
five error types of the shared task and extend the
provided training data by adding other learner’s
corpora. They also experiment with generating
artificial errors. Improvement over the baseline
are small, but their approach to generate errors
shows promise. We successfully re-implement
their baseline. Yoshimoto et al. (2013) use Moses
for two error classes, prepositions and determin-
ers, for other classes they find classifier-based ap-
proaches and treelet language models to perform
better. None of the CoNLL-2013 SMT-based sys-
tems seems to use parameter tuning.

3 General System Setup

Our system is based on the phrase-based part of
the statistical machine translation system Moses
(Koehn et al., 2007). Only plain text data is used
for language model and translation model training.

1This is different from our findings for Moses, but may be
a property of their custom decoder.

External linguistic knowledge is introduced dur-
ing parameter tuning as the tuning metric relies on
the error annotation present in NUCLE. Phrase ta-
bles are binarized with the compact phrase table
(Junczys-Dowmunt, 2012), no reordering models
are used, the distortion limit is set to 0, effectively
prohibiting any reordering. Apart from that, our
basic setup is very similar to that of Yuan and Fe-
lice (2013). We adapted their 4-fold cross valida-
tion scheme on NUCLE to our needs and use a
similar baseline, now with 28 error types.

4 Parameter Tuning

The training of feature functions like translation
models or language models is only half the work
required to produce a state-of-the-art statistical
machine translation system. The other half relies
on parameter tuning.

During translation, Moses scores translations e
of string f by a log-linear model

log p(e|f) =
∑

i

λi log(hi(e, f))

where hi are feature functions and λi are feature
weights. Without parameter tuning, results may
be questionable as the choice of feature function
weights (everything else being identical) can turn
a mediocre system into a high-scoring system or
render a good system useless. This is illustrated in
Section 4.2 and by examples throughout the paper.

All our modifications to MERT, PRO, kb-MIRA
discussed in this section are publicly available2.

4.1 Tuning Scheme
To accommodate for parameter tuning, we mod-
ify the standard 4-fold cross validation procedure.
The test set in each of the four training/testing runs
is again divided into two halves. The first half is
treated as a tuning set, the second half as a test set.
Next, tuning set and test set are inverted in order
to tune and test a second time. Altogether, we per-
form four separate translation model training steps
and eight tuning/testing steps. Each tuning/test set
consists of ca. 7,000 sentences. We call this pro-
cedure 4×2-fold cross validation (4×2-CV). This
way the entire NUCLE corpus serves as training,
test, and tuning set. We also evaluate all our re-
sults on the CoNLL-2013 gold standard (ST-2013)
which has been made available with 28 error types
after the previous shared task.

2https://github.com/moses-smt/
mosesdecoder/fscorer
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4×2-CV ST-2013
Tuned with BLEU M2

0.5 BLEU M2
0.5

Untuned 85.52 14.02 70.38 19.05
BLEU 88.31 1.27 72.62 1.12
M2

0.5 87.76 15.43 71.99 16.73

Original 89.51 0.00 72.67 0.00

Table 1: Tuning with BLEU and M2

4.2 Tuning Metric

We refer to F0.5 computed by the M2 metric as
M2

0.5. Moses is bundled with several tuning tools
that can tune parameter vectors according to dif-
ferent MT tuning metrics. The most widely used
is BLEU (Papineni et al., 2002). We first attempt
minimum error rate tuning (MERT) (Och, 2003)
with BLEU, results are shown in Table 1. While
BLEU scores increase on both, 4×2-CV and ST-
2013, the effect on M2

0.5 is catastrophic3 though
not surprising. The baseline is so weak that it in-
troduces more errors than corrections, thus lower-
ing the similarity of the output and the reference
below the level of the similarity of the input and
the reference. MERT learns parameter weights
that disable nearly all correction attempts.

The obvious solution is to tune directly with
M2. M2 provides per-sentence sufficient statistics
and can easily4 be integrated with MERT. We re-
tune with M2 and see an improvement on 4×2-CV
but a significant decrease for ST-2013. BLEU in-
creases for this system despite the drop in M2.

This seems contradictory, but actually proves
our point about the necessity of parameter tuning.
Good luck should not be a basis for choosing pa-
rameters, in the case of a blind submission we have
a much better chance to reach good results betting
on optimized parameters. As we see later, this sit-
uation does not occur again for the more advanced
systems, tuned parameters do generally better.

4.3 Parameter Smoothing

Based on the results of Clark et al. (2011), it has
become good practice to tune systems between
three and five times and report average results in
order to cope with optimizer instability. Cettolo et
al. (2011) expand on this work and explore param-

3Which might explain why none of the Moses-based
CoNLL-2013 systems used parameter tuning.

4We run the original m2scorer Python code with an em-
bedded Python interpreter in MERT’s C++ source code.

System Concat. Average

NUCLE 15.16 15.43
NUCLE+CCLM 22.03 22.19
Final 25.93 26.26

Table 2: Effects of parameter weight smoothing
on three selected systems for 4×2-CV (CoNLL-
2014)

eter smoothing methods for different parameter
vectors obtained on the same tuning sets. They re-
port that parameter vector centroids averaged over
several tuning runs yield better than average re-
sults and reduce variation. Tuning three to five
times would require 24 to 40 tuning runs in our
setup. However, we already have eight parame-
ter vectors obtained from distinct tuning sets and
decide to average these parameters. This way we
hope to obtain a single vector of smoothed param-
eters that represents the entire NUCLE corpus.

Eventually, we retranslate the test sets accord-
ing to 4-fold cross validation using the respective
training data with this parameter vector. The same
parameters are later used with the full training data
to translate the CoNLL-2013 test set and the blind
CoNLL-2014 test set. As it turns out, averaging
parameter vectors across all parts has a consis-
tently positive effect for M2. This is shown in
Table 2, systems mentioned in the table are intro-
duced in Section 5 and Section 7.2.

4.4 Tuning Sparse Feature Weights

Tuning sparse features (Section 7.2) with M2

poses an unexpected challenge. Moses im-
plements two methods for feature-rich tuning:
PRO (Hopkins and May, 2011) and Batch k-best
MIRA (kb-MIRA) (Cherry and Foster, 2012) that
both function as drop-in replacements for MERT.
MERT cannot be used directly with sparse fea-
tures. When BLEU is used as a tuning metric,
Koehn and Haddow (2012) report results for PRO
on a par with MERT for a system with only dense
features. Unfortunately, this cannot be confirmed
for M2; we consistently see worse results than for
MERT using PRO or kb-MIRA.

PRO and kb-MIRA operate on sentence-level
while MERT computes M2 for the complete cor-
pus. Similar to Dahlmeier and Ng (2012a), we use
sentence-level M2 as an approximation. We sus-
pect that M2 might not be distinctive enough in a
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Figure 1: Language model corpus size versus M2

sentence-based scenario.
Koehn and Haddow (2012) also explore a

method they call “PRO-MERT” where PRO and
MERT are run in turns. The parameter vector
calculated by PRO serves as a starting point for
MERT which optimizes dense features and in the
case of existing sparse features a scalar weight that
is multiplied with all sparse feature weights.

While this method does not seem to have any
advantage for BLEU-based tuning in a MT setting
it has a positive effect on tuning with M2. Re-
sults for sparse features are now not worse than
when tuned with MERT alone in a dense fea-
ture scenario. Additionally to “PRO-MERT”, we
implemented “kb-MIRA-MERT” which seems to
display better convergence. As in the case of
dense feature functions, we smooth sparse feature
weights by averaging over all eight tuning steps.

All reported results in this paper have been
tuned according to M2

0.5, systems with dense fea-
tures use MERT, systems with sparse features kb-
MIRA-MERT. All results are given for parameter
vectors that have been smoothed over eight opti-
mizer runs from 4×2-CV.

5 Adding Language Model Data

With parameter tuning working, we can now ex-
plore the effects of adding feature functions to our
system, starting with bigger language models.

All systems use one 5-gram language model
that has been estimated from the target side of the
parallel data available for training. In this section,
only NUCLE is used as parallel data, four times
3/4 of NUCLE for 4×2-CV and complete NUCLE

System 4×2-CV ST-2013

NUCLE 15.43 16.73
+WikiLM 19.18 23.10
+CCLM10% 21.57 25.71
+CCLM 22.19 27.43

Table 3: Results for increasing language models
size on both shared task scenarios

for ST-2013. If additional parallel data is added to
the training process (see Section 6), the target data
is concatenated with NUCLE and a new 5-gram
language model is estimated.

The additional language models discussed in
this section form separate feature functions,
i.e. they are weighted separately from the target
data language model. We experiment with three
models that have been estimated using KenLM’s
(Heafield, 2011) modified Kneser-Ney estimation
tool (Heafield et al., 2013):

WikiLM – a 3-gram model estimated from the
entire English Wikipedia (2014-01-02). The
raw text corpus consists of 3.2×109 tokens.

CCLM10% – a 3-gram model estimated from
10% of the English CommonCrawl data
(4.4×1010 tokens) described by Buck et al.
(2014). The full corpus data has been made
publicly available by the authors.

CCLM – a 5-gram model estimated from the en-
tire CommonCrawl data (4.4×1011 tokens).
This model has been created and made avail-
able to us by Kenneth Heafield. A newer ver-
sion is publicly available (Buck et al., 2014).

Results are shown in Table 3. Improvements
seem to be proportionate to the order of magnitude
of the language model training corpora (Figure 1).
M2

0.5 improves by nearly 7% for 4×2-CV and by
more than 10% on ST-2013.

6 Adding Translation Model Data

SMT systems for grammatical error correction can
be trained on unannotated data. For the 28 error-
type task from CoNLL-2014, we do not need the
linguistically rich error annotations present in NU-
CLE to add more training data. It suffices to have
parallel data in which the source text contains er-
rors and the target text has been corrected. For
English, such data is available.
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System 4×2-CV ST-2013

NUCLE+CCLM 22.19 27.43
+L8-NAIST 23.34 31.20
+L8 25.02 33.52

NUCLE+CCLM 17.50 29.01
+L8-NAIST 14.54 30.84
+L8 17.48 30.14

Table 4: Adding parallel data from Lang-8. Top
results are for tuned systems, bottom results for
untuned systems.

6.1 Lang-8

Mizumoto et al. (2011) published5 a list of
learner’s corpora that were scraped from the so-
cial language learning site Lang-8 (http://
lang-8.com). For our first experiments we use
entries from “Lang-8 Learner Corpora v1.0” with
English as the learned language, we do not care
for the native language of the user. Only entries
for which at least one sentence has been corrected
are taken into account. Sentences without correc-
tions from such entries are treated as error-free and
mirrored on the target side of the corpus. Even-
tually, we obtain a corpus of 2,567,969 sentence
pairs with 28,506,540 tokens on the uncorrected
source side. No noise-filtering is applied. We call
this resource L8-NAIST. Yoshimoto et al. (2013)
use this resource for sub-elements of their system
at the CoNLL-2013 Shared Task, but end up with
half the number of sentences. This seems to be
caused by noise-reduction.

We further investigate the effect of adding even
greater parallel resources. Lang-8 is scraped for
additional entries and we manage to nearly double
the size of the corpus to 3,733,116 sentences with
51,259,679 tokens on the source side. This joint
resource is labeled L8.

During training, the additional data is concate-
nated with all training corpora in our setup (3/4 of
NUCLE for 4×2-CV and all of NUCLE for the
final system).

Results are presented in Table 4. We extend the
previous best system NUCLE+CCLM with L8-
NAIST and L8. For tuned systems (top), results
improve for both evaluation settings with growing
corpus size. In the case of untuned systems (bot-
tom) results are entirely inconclusive.

5http://cl.naist.jp/nldata/lang-8

6.2 Error Selection

Yuan and Felice (2013) generate artificial errors
to add more training data to their system. We
prefer actual errors, but the Lang-8 data may be
too error-prone as the general level of proficiency
seems to be lower than that of the NUCLE essays.
We therefore select errors that match NUCLE er-
ror types and replace all other errors with their cor-
responding corrections.

For each pair of sentences, a sequence of dele-
tions and insertions is computed with the LCS al-
gorithm (Maier, 1978) that transform the source
sentence into the target sentence. Adjacent deleted
words are concatenated, adjacent inserted words
result in a phrase insertion. A deleted phrase fol-
lowed directly by a phrase insertion is interpreted
as a phrase substitution. Substitutions are gener-
alized if they consist of common substrings. Gen-
eralizations are encoded by the regular expression
(\w{3,}) and a back-reference, e.g. \1. Ta-
ble 5 contains the 20 most frequent patterns ex-
tracted from NUCLE, 666 patterns with a fre-
quency of five or higher remain. Next, we perform
the same computation for the to-be-adapted data.
Edits that match patterns from our list are kept,
other edits are replaced with their corrections.

Although results (Table 6) with error selection
increase for 4×2-CV, the NUCLE+CCLM+L8A
seems to generalize poorly to new data, there is a
significant drop for the external test set. Compared
to NUCLE+CCLM+L8 (prec.: 59.80, rec.: 15.95)
the error adapted (prec.: 70.07, rec.: 8.52) is much
more conservative.

Inspired by this, we also try a combination
(NUCLE+CCLM+L8AT as in Adapted Tuning)
of both systems by tuning with the adapted NU-
CLE+CCLM+L8A, but applying the weights to
the unadapted system NUCLE+CCLM+L8. This
results in a gain of 5% for ST-2013. It seems that
the unadapted Lang8 data introduces a substan-
tial amount of noise that interferes with the tuning
process. Weights obtained from the cleaned data
seem to better approximate the true weight vector
and also work with unadapted data without sac-
rificing recall. In the remainder of the paper we
use this training/tuning scheme for all newly in-
troduced systems.

7 Task-Specific Features

The systems presented so far relied on default fea-
tures available in Moses. In this section we will
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Pattern Freq. Pattern Freq.

sub(«(\w{3,})»,«\1s») 2441 ins(«an») 222
ins(«the») 2364 sub(«(\w{3,})d»,«\1») 181
del(«the») 1624 del(«of») 178
sub(«(\w{3,})s»,«\1») 1110 sub(«is»,«are») 166
ins(«,») 961 ins(«of») 166
ins(«a») 663 del(«a») 160
sub(«(\w{3,})»,«\1d») 253 sub(«(\w{3,})y»,«\1ies») 150
del(«,») 244 ins(«to») 148
del(«.») 227 sub(«is»,«was») 147
sub(«(\w{3,})»,«\1ed») 222 sub(«the»,«a») 132

Table 5: 20 most frequent patterns extracted from NUCLE 3.0

System 4×2-CV ST-2013

NUCLE+CCLM+L8 25.02 33.52
NUCLE+CCLM+L8A 26.82 28.67
NUCLE+CCLM+L8AT 26.82 38.59

Table 6: Results of error selection

extend the translation model with features tailored
to the task of grammatical error correction.

7.1 Dense Features

In Moses, translation models are described by a
set of dense features: phrase translation probabil-
ities, lexical scores, and a phrase penalty (Koehn
et al., 2003). In the grammatical error correction
scenario where source and target phrases are often
identical or similar, it might be useful to inform
the decoder about the differences in a phrase pair.

We extend translation models with a word-
based Levenshtein distance feature (Levenshtein,
1966) that captures the number of edit operations
required to turn the source phrase into the target
phrase. Each phrase pair in the phrase table is
scored with ed(s,t) where d is the word-based dis-
tance function, s is the source phrase, t is the tar-
get phrase. The exponential function is used be-
cause Moses relies on a log-linear model. In the
log-linear model, the edit distances of all phrase
pairs used to translate a sentence sum to the total
number of edits that have been applied to produce
the target sentence. Note that the Lang-8 data has
not been processed for noise-reduction, this fea-
ture should take care of the problem and penal-
ize sentences that have diverged to much from the
source. Table 7 contains examples of phrase pairs

Source (s) Target (t) ed(s,t)

a short time . short term only . 20.0855
a situation into a situation 2.7183
a supermarket . a supermarket . 1.0000
able unable 2.7183

Table 7: Dense Levenshtein feature examples.

and their Levenshtein distance feature.
We extend the currently best system NU-

CLE+CCLM+L8AT with the Levenshtein dis-
tance feature. Results are shown in Table 8
(+LD). For 4×2-CV small improvements can be
observed, the effect is more significant for ST-
2013. It can be concluded that this very simple
modification of the standard translation model is a
beneficial extension of SMT for grammatical cor-
rection.

7.2 Sparse Features

Sparse features are a relatively new addition to
Moses (Hasler et al., 2012). Unlike dense fea-
tures, they are optional and unrestricted in num-
ber, thousands of different sparse features may
be used. A verbose version of the above men-
tioned LD feature is implemented as a sparse
feature. Each edit operation is annotated with
the operation type and the words that take part
in the operation. The decoder can now learn
to favor or penalize specific edits during tuning.
As before in the case of error adaption patterns
from Section 6.2, we generalize substitution op-
erations if common substrings of a length equal
to or greater than three characters appear in corre-
sponding source and target phrases. In the end,
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System 4×2-CV ST-2013

NUCLE+CCLM+L8AT 26.82 38.59
+LD 27.34 40.21

+SF 27.58 40.60

Table 8: Results for dense Levenshtein distance
(LD) and sparse pattern features (SF). Each com-
ponent extends the previous system cumulatively.

we obtain sparse features that look exactly like
these patterns. Features that correspond to pat-
terns that had a frequency below 5 in NUCLE are
mapped to del(OTHER), ins(OTHER), and
sub(OTHER1,OTHER2). Contrary to the Lev-
enshtein distance feature, the sparse features are
computed during decoding.

Sparse features are added to the system which
has already been extended with the dense Lev-
enshtein feature. Results in Table 8 (+SF) show
small, but consistent gains. LD and SF are linearly
dependent as the total sum of triggered sparse fea-
tures should be equal to the value of LD for a sen-
tence, but we still observe positive effects. Sparse
feature tuning is currently a work-around with du-
bious effects, it can be expected that results might
be more significant once this problem is solved.
Based on these results, we choose the last system
NUCLE+CCLM+L8AT+LD+SF as our final sys-
tem for the CoNLL-2014 Shared Task.

8 Results for blind CoNLL-2014 test set

Our final system achieves an official result of
35.01% M2

0,5 (“Submission” in Table 9) on the
blind CoNLL-2014 Shared Task test set (ST-
2014). Due to a tight time frame, this system suf-
fered from missing words in an incorrectly filtered
language model and too few tuning iterations. Af-
ter the submission we retrained the same system
and achieve a score of 35.38% M2

0,5. Table 9
contains the results for incrementally added fea-
tures, starting with the baseline, ending with the
final system. The addition of a web-scale lan-
guage model results in similar improvements as
for 4×2-CV and ST-2013. Additional unadapted
parallel training data from Lang-8 (+L8) has a very
modest effect on ST-2014. This improves with
the mixed tuning scheme (+L8AT) which shows
that the gains for ST-2013 are not a one-time ef-
fect. Surprising are the substantial gains due to
the dense Levenshtein feature and the sparse fea-

System P R M2
0.5

Submission 41.62 21.40 35.01

NUCLE 49.85 5.19 18.32
+CCLM 50.39 9.90 27.72

+L8 37.67 14.07 28.21
+L8AT 37.02 17.94 30.53

+LD 39.41 22.15 34.10
+SF 41.72 22.00 35.38

NUCLE 36.59 9.96 23.84
+CCLM 27.92 18.68 25.41

+L8 25.06 26.75 25.38
+L8AT 24.49 34.89 26.04

+LD 25.94 36.41 27.52
+SF 25.94 36.41 27.52

Table 9: Performance of chosen systems on the
CoNLL-2014 test set. Bottom results are untuned.

tures. We suspect that the task-specific features
allow the decoder to better exploit the potential of
the Lang-8 data. This is verified by training NU-
CLE+CCLM+LD+SF which scores only 25.82%.

To support our claim concerning the impor-
tance of parameter tuning, we also provide the per-
formance of the same systems on ST-2014 with
standard parameters (bottom of Table 9). With
one exception, we see significant improvements
with tuning. The untuned systems display very
similar results which would make it difficult to
choose among the configurations (untuned +LD
and +LD+SF are actually the same system). One
might conclude incorrectly that the new features
and additional resources have very little effect on
the final results and miss a gain of ca. 8%.

Table 10 contains the ranking for all participat-
ing systems. Our system ranks on third place (see
the Shared Task proceedings (Ng et al., 2014) for
more information on the other systems), loosing
by 2.32% and 1.78% against the first two teams.
We win with a quite significant margin of 4.13%
over the next best system. Compared to the top-
two systems we suffer from lower recall, a prob-
lem which should be attacked in the future.

Participants were invited to submit alternative
answers for evaluation, i.e. answers that were gen-
erated by their system and considered to be cor-
rect alternatives to the provided gold standard.
These answers were checked by human annota-
tors. Only three teams submitted alternative an-
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Rank Team ID P R M2
0.5

1 CAMB 39.71 30.10 37.33
2 CUUI 41.78 24.88 36.79
3 AMU 41.62 21.40 35.01
4 POST 34.51 21.73 30.88
5 NTHU 35.08 18.85 29.92
6 RAC 33.14 14.99 26.68
7 UMC 31.27 14.46 25.37
8 PKU 32.21 13.65 25.32
9 NARA 21.57 29.38 22.78
10 SJTU 30.11 5.10 15.19
11 UFC 70.00 1.72 7.84
12 IPN 11.28 2.85 7.09
13 IITB 30.77 1.39 5.90

Table 10: Shared Task results for submission with-
out alternative answers. AMU is our result.

swers: CAMB, CUUI, and UMC. The results for
all teams improved when evaluated on these addi-
tional answers, naturally those teams that submit-
ted answers had the greatest gains. Our result with
additional answers is 38.58%, we remain on third
place after CUUI (45.57%) and CAMB (43.55%)
which switched places. However, we do not con-
sider the evaluation on alternative answers to be
meaningful as it is strongly biased.6

9 Conclusions

We have shown that pure-surface phrase-based
SMT can be used to achieve state-of-the-art re-
sults for grammatical error correction if suffi-
ciently large resources are combined with cor-
rectly executed parameter tuning and task-specific
features. For noisy data, it seems beneficial to tune
on cleaned data, but noise can be useful when cor-
recting unseen texts.

Most of the previous work that we reviewed
lacked the detail of parameter tuning that is com-
monly applied in SMT. In consequence, poten-
tially useful contributions rarely improved over the
baselines or were beaten by classifier-based ap-
proaches. Many good features might have been
overlooked or dismissed as unhelpful. Our find-
ings invite to re-evaluate these previous results.
The tools we extended for parameter tuning ac-

6We would accept alternative answers if all original sys-
tem submissions were to be analyzed by annotators not asso-
ciated with any team. If this is not possible due to consid-
erable costs and efforts, we would advocate to abandon the
current practice altogether.

cording to the M2 metric are publicly available and
we strongly suggest to use them in the future or to
adapt them to the particular task at hand. Param-
eter tuning of sparse features according to the M2

metric is ongoing research, but it seems the pro-
posed work-around is a viable option.

Since it is quite simple to implement the task-
specific features introduced in this paper, we rec-
ommend to use them whenever Moses is applied
in a similar setting.
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Abstract

The CoNLL-2014 shared task is an ex-
tension of last year’s shared task and fo-
cuses on correcting grammatical errors in
essays written by non-native learners of
English. In this paper, we describe the
Illinois-Columbia system that participated
in the shared task. Our system ranked sec-
ond on the original annotations and first on
the revised annotations.

The core of the system is based on the
University of Illinois model that placed
first in the CoNLL-2013 shared task. This
baseline model has been improved and ex-
panded for this year’s competition in sev-
eral respects. We describe our underly-
ing approach, which relates to our previ-
ous work, and describe the novel aspects
of the system in more detail.

1 Introduction

The topic of text correction has seen a lot of inter-
est in the past several years, with a focus on cor-
recting grammatical errors made by English as a
Second Language (ESL) learners. ESL error cor-
rection is an important problem since most writers
of English are not native English speakers. The in-
creased interest in this topic can be seen not only
from the number of papers published on the topic
but also from the three competitions devoted to
grammatical error correction for non-native writ-
ers that have recently taken place: HOO-2011
(Dale and Kilgarriff, 2011), HOO-2012 (Dale et
al., 2012), and the CoNLL-2013 shared task (Ng
et al., 2013).

In all three shared tasks, the participating sys-
tems performed at a level that is considered ex-
tremely low compared to performance obtained in
other areas of NLP: even the best systems attained
F1 scores in the range of 20-30 points.

The key reason that text correction is a diffi-
cult task is that even for non-native English speak-
ers, writing accuracy is very high, as errors are
very sparse. Even for some of the most com-
mon types of errors, such as article and preposi-
tion usage, the majority of the words in these cate-
gories (over 90%) are used correctly. For instance,
in the CoNLL training data, only 2% of preposi-
tions are incorrectly used. Because errors are so
sparse, it is more difficult for a system to identify a
mistake accurately and without introducing many
false alarms.

The CoNLL-2014 shared task (Ng et al., 2014)
is an extension of the CoNLL-2013 shared task
(Ng et al., 2013). Both competitions make use
of essays written by ESL learners at the National
University of Singapore. However, while the first
one focused on five kinds of mistakes that are com-
monly made by ESL writers – article, preposition,
noun number, verb agreement, and verb form –
this year’s competition covers all errors occurring
in the data. Errors outside the target group were
present in the task corpora last year as well, but
were not evaluated.

Our system extends the one developed by the
University of Illinois (Rozovskaya et al., 2013)
that placed first in the CoNLL-2013 competition.
For this year’s shared task, the system has been
extended and improved in several respects: we ex-
tended the set of errors addressed by the system,
developed a general approach for improving the
error-specific models, and added a joint inference
component to address interaction among errors.
See Rozovskaya and Roth (2013) for more detail.

We briefly discuss the task (Section 2) and give
an overview of the baseline Illinois system (Sec-
tion 3). Section 4 presents the novel aspects of the
system. In Section 5, we evaluate the complete
system on the development data and show the re-
sults obtained on test. We offer error analysis and a
brief discussion in Section 6. Section 7 concludes.
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Error type Rel. freq. Examples
Article (ArtOrDet) 14.98% *∅/The government should help encourage *the/∅

breakthroughs as well as *a/∅ complete medication
system .

Wrong collocation (Wci) 11.94% Some people started to *think/wonder if electronic
products can replace human beings for better perfor-
mances .

Local redundancy (Rloc-) 10.52% Some solutions *{as examples}/∅ would be to design
plants/fertilizers that give higher yield ...

Noun number (Nn) 8.49% There are many reports around the internet and on
newspaper stating that some users ’ *iPhone/iPhones
exploded .

Verb tense (Vt) 7.21% Through the thousands of years , most Chinese scholars
*are/{have been} greatly affected by Confucianism .

Orthography/punctuation (Mec) 6.88% Even British Prime Minister , Gordon Brown *∅/, has
urged that all cars in *britain/Britain to be green by
2020 .

Preposition (Prep) 5.43% I do not agree *on/with this argument that surveillance
technology should not be used to track people .

Word form (Wform) 4.87% On the other hand , the application of surveillance tech-
nology serves as a warning to the *murders/murderers
and they might not commit more murder .

Subject-verb agreement (SVA) 3.44% However , tracking people *are/is difficult and different
from tracking goods .

Verb form (Vform) 3.25% Travelers survive in desert thanks to GPS
*guide/guiding them .

Tone (Wtone) 1.29% Hence , as technology especially in the medical field
continues to get developed and updated , people {do
n’t}/{do not} risk their lives anymore .

Table 1: Example errors. In the parentheses, the error codes used in the shared task are shown. Note
that only the errors exemplifying the relevant phenomena are marked in the table; the sentences may
contain other mistakes. Errors marked as verb form include multiple grammatical phenomena that may
characterize verbs. Our system addresses all of the error types except “Wrong Collocation” and “Local
Redundancy”.

2 Task Description

Both the training and the test data of the CoNLL-
2014 shared task consist of essays written by stu-
dents at the National University of Singapore. The
training data contains 1.2 million words from the
NUCLE corpus (Dahlmeier et al., 2013) corrected
by English teachers, and an additional set of about
30,000 words that was released last year as a test
set for the CoNLL-2013 shared task. We use last
year’s test data as a development set; the results in
the subsequent sections are reported on this subset.

The CoNLL corpus error tagset includes 28 er-
ror categories. Table 1 illustrates the most com-
mon error categories in the training data; errors are

marked with an asterisk, and ∅ denotes a missing
word. Our system targets all of these, with the ex-
ception of collocation and local redundancy errors.
Among the less commonly occurring error types,
our system addresses tone (style) errors; these are
illustrated in the table.

It should be noted that the proportion of erro-
neous instances is several times higher in the de-
velopment data than in the training data for all of
the error categories. For example, while only 2.4%
of noun phrases in the training data have deter-
miner errors, in the development data 10% of noun
phrases have determiner errors.
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“Hence, the environmental *factor/factors also
*contributes/contribute to various difficulties,
*included/including problems in nuclear tech-
nology.”
Error type Confusion set
Noun number {factor, factors}
Verb Agreement {contribute, contributes}
Verb Form

{included, including,
includes, include}

Table 2: Sample confusion sets for noun num-
ber, verb agreement, and verb form.

3 The Baseline System

In this section, we briefly describe the Univer-
sity of Illinois system (henceforth Illinois; in the
overview paper of the shared task the system is re-
ferred to as UI) that achieved the best result in the
CoNLL-2013 shared task and which we use as our
baseline model. For a complete description, we
refer the reader to Rozovskaya et al. (2013).

The Illinois system implements five
independently-trained machine-learning clas-
sifiers that follow the popular approach to ESL
error correction borrowed from the context-
sensitive spelling correction task (Golding and
Roth, 1999; Carlson et al., 2001). A confusion
set is defined as a list of confusable words.
Each occurrence of a confusable word in text is
represented as a vector of features derived from a
context window around the target. The problem
is cast as a multi-class classification task and a
classifier is trained on native or learner data. At
prediction time, the model selects the most likely
candidate from the confusion set.

The confusion set for prepositions includes the
top 12 most frequent English prepositions (this
year, we extend the confusion set and also target
extraneous preposition usage). The article confu-
sion set is as follows: {a, the, ∅}.1 The confu-
sion sets for noun, agreement, and form modules
depend on the target word and include its morpho-
logical variants. Table 2 shows sample confusion
sets for noun, agreement, and form errors.

Each classifier takes as input the corpus doc-
uments preprocessed with a part-of-speech tag-

1∅ denotes noun-phrase-initial contexts where an article
is likely to have been omitted. The variants “a” and “an” are
conflated and are restored later.

ger2 and shallow parser3 (Punyakanok and Roth,
2001). The other system components use the pre-
processing tools only as part of candidate genera-
tion (e.g., to identify all nouns in the data for the
noun classifier).

The choice of learning algorithm for each clas-
sifier is motivated by earlier findings showing
that discriminative classifiers outperform other
machine-learning methods on error correction
tasks (Rozovskaya and Roth, 2011). Thus, the
classifiers trained on the learner data make use of
a discriminative model. Because the Google cor-
pus does not contain complete sentences but only
n-gram counts of length up to five, training a dis-
criminative model is not desirable, and we thus use
NB (details in Rozovskaya and Roth (2011)).

The article classifier is a discriminative model
that draws on the state-of-the-art approach de-
scribed in Rozovskaya et al. (2012). The model
makes use of the Averaged Perceptron (AP) algo-
rithm (Freund and Schapire, 1996) and is trained
on the training data of the shared task with rich
features. The article module uses the POS and
chunker output to generate some of its features and
candidates (likely contexts for missing articles).

The original word choice (the source article)
used by the writer is also used as a feature. Since
the errors are sparse, this feature causes the model
to abstain from flagging mistakes, resulting in low
recall. To avoid this problem, we adopt the ap-
proach proposed in Rozovskaya et al. (2012), the
error inflation method, and add artificial article er-
rors to the training data based on the error distribu-
tion on the training set. This method prevents the
source feature from dominating the context fea-
tures, and improves the recall of the system.

The other classifiers in the baseline system –
noun number, verb agreement, verb form, and
preposition – are trained on native English data,
the Google Web 1T 5-gram corpus (henceforth,
Google, (Brants and Franz, 2006)) with the Naı̈ve
Bayes (NB) algorithm. All models use word n-
gram features derived from the 4-word window
around the target word. In the preposition model,
priors for preposition preferences are learned from
the shared task training data (Rozovskaya and
Roth, 2011).

The modules targeting verb agreement and

2http://cogcomp.cs.illinois.edu/page/
software view/POS

3http://cogcomp.cs.illinois.edu/page/
software view/Chunker

36



verb form mistakes draw on the linguistically-
motivated approach to correcting verb errors pro-
posed in Rozovskaya et. al (2014).

4 The CoNLL-2014 System

The system in the CoNLL-2014 shared task is im-
proved in three ways: 1) Additional error-specific
classifiers: word form, orthography/punctuation,
and style; 2) Model combination; and 3) Joint in-
ference to address interacting errors. Table 3 sum-
marizes the Illinois and the Illinois-Columbia sys-
tems.

4.1 Targeting Additional Errors

The Illinois-Columbia system implements several
new classifiers to address word form, orthography
and punctuation, and style errors (Table 1).

4.1.1 Word Form Errors
Word form (Wform) errors are grammatical er-
rors that involve confusing words that share a
base form but differ in derivational morphology,
e.g. “use” and “usage” (see also Table 1). Con-
fusion sets for word form errors thus should in-
clude words that differ derivationally but share the
same base form. In contrast to verb form errors
where confusion sets specify all possible inflec-
tional forms for a given verb, here, the associated
parts-of-speech may vary more widely. An ex-
ample of a confusion set is {technique, technical,
technology, technological}.

Because word form errors encompass a wide
range of misuse, one approach is to consider ev-
ery word as an error candidate. We follow a more
conservative method and only attempt to correct
those words that occurred in the training data and
were tagged as word form errors (we cleaned up
that list by removing noisy annotations).

A further challenge in addressing word form er-
rors is generating confusion sets. We found that
about 45% of corrections for word form errors in
the development data are covered by the confusion
sets from the training data for the same word. We
thus derive the confusion sets using the training
data. Specifically, for every source word that is
tagged as a word form error in the training data,
the confusion set includes all labels to which that
word is mapped in the training data. In addition,
plural and singular forms are added for all words
tagged as nouns, and inflectional forms are added
for words tagged as verbs. For more detail on

correcting verb errors, we refer the reader to Ro-
zovskaya et al. (2014).

4.1.2 Orthography and Punctuation Errors
The Mec error category includes errors in
spelling, context-sensitive spelling, capitalization,
and punctuation. Our system addresses punctua-
tion errors and capitalization errors.

To correct capitalization errors, we collected
words that are always capitalized in the train-
ing and development data when not occurring
sentence-initially.

The punctuation classifier includes two mod-
ules: a learned component targets missing and
extraneous comma usage and is an AP classifier
trained on the learner data with error inflation.
A second, pattern-based component, complements
the AP model: it inserts missing commas by using
a set of patterns that overwhelmingly prefer the us-
age of a comma, e.g. when a sentence starts with
the word “hence”. The patterns are learned auto-
matically over the training data: specifically, us-
ing a sliding window of three words on each side,
we compiled a list of word n-gram contexts that
are strongly associated with the usage of a comma.
This list is then used to insert missing commas in
the test data.

4.1.3 Style Errors
The style (Wtone) errors marked in the corpus are
diverse, and the annotations are often not consis-
tent. We constructed a pattern-based system to
deal with two types of style errors that are com-
monly annotated. The first type of style edit avoids
using contractions of negated auxiliary verbs. For
example, it changes “do n’t” to “do not”. We use a
pattern-based classifier to identify such errors and
replace the contractions. The second type of style
edit encourages the use of a semi-colon to join
two independent clauses when a conjunctive ad-
verb is used. For example, it edits “[clause], how-
ever, [clause]” to “[clause]; however, [clause]”. To
identify such errors, we use a part-of-speech tag-
ger to recognize conjunctive adverbs signifying in-
dependent clauses: if two clauses are joined by the
pattern “, [conjunctive adverb],”, we will replace it
with “; [conjunctive adverb],”.

4.2 Modules not Included in the Final System

In addition to the modules described above, we at-
tempted to address two other common error cate-
gories: spelling errors and collocation errors. We
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Illinois
Classifiers Training data Algorithm
Article Learner AP with inflation
Preposition Native NB-priors
Noun number Native NB
Verb agreement Native NB
Verb form Native NB

Illinois-Columbia
Classifiers Training data Algorithm
Article Learner and native AP with infl. (learner) and NB-priors (native)
Preposition Learner and native AP with infl. (learner) and NB-priors (native)
Noun number Learner and native AP with infl. (learner) and NB (native)
Verb agreement Native AP with infl. (learner) and NB (native)
Verb form Native NB-priors
Word form Native NB-priors
Orthography/punctuation Learner AP and pattern-based
Style Learner Pattern-based
Model combination Section 4.3
Global inference Section 4.4

Table 3: The baseline (Illinois) system vs. the Illinois-Columbia system. AP stands for Averaged
Perceptron, and NB stands for the Naı̈ve Bayes algorithm.

describe these below even though they were not
included in the final system.

Regular spelling errors are noticeable but not
very frequent, and a number are not marked in
the corpus (for example, the word “dictronary” in-
stead of “dictionary” is not tagged as an error). We
used an open source package – “Jazzy”4 – to at-
tempt to automatically correct these errors to im-
prove context signals for other modules. However,
there are often multiple similar words that can be
proposed as corrections, and Jazzy uses phonetic
guidelines that sometimes lead to unintuitive pro-
posals (such as “doctrinaire” for “dictronary”). It
would be possible to extend the system with a filter
on candidate answers that uses n-grams or some
other context model to choose better candidates,
but the relatively small number of such errors lim-
its the potential impact of such a system.

Collocation errors are the second most common
error category accounting for 11.94% of all errors
in the training data (Table 1). We tried using the
Illinois context-sensitive spelling system5 to de-
tect these errors, but this system requires prede-
fined confusion sets to detect possible errors and
to propose valid corrections. The coverage of the
pre-existing confusion sets was poor – the system

4http://jazzy.sourceforge.net
5http://cogcomp.cs.illinois.edu/cssc/

could potentially correct only 2.5% of collocation
errors – and it is difficult to generate new con-
fusion sets that generalize well, which requires a
great deal of annotated training data. The sys-
tem performance was relatively poor because it
proposed many spurious corrections: we believe
this is due to the relatively limited context it uses,
which makes it particularly susceptible to making
mistakes when there are multiple errors in close
proximity.

4.3 Model Combination

Model combination is another key extension of the
Illinois system.

In the Illinois-Columbia system, article, prepo-
sition, noun, and verb agreement errors are each
addressed via a model that combines error predic-
tions made by a classifier trained on the learner
data with the AP algorithm and those made by
the NB model trained on the Google corpus. The
AP classifiers all make use of richer sets of fea-
tures than the native-trained classifiers: the article,
noun number, and preposition classifiers employ
features that use POS information, while the verb
agreement classifier also makes use of dependency
features extracted using a parser (de Marneffe et
al., 2008). For more detail on the features used
in the agreement module, we refer the reader to
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Rozovskaya et al. (2014). Finally, all of the AP
models use the source word of the author as a fea-
ture and, similar to the article AP classifier (Sec-
tion 3), implement the error inflation method. The
combined model generates a union of corrections
produced by the components.

We found that for every error type, the com-
bined model is superior to each of the single classi-
fiers, as it combines the advantages of both of the
classifiers so that they complement one another.
In particular, while each of the learner and native
components have similar precision, since the pre-
dictions made differ, the recall of the combined
model improves.

4.4 Joint Inference

One of the mistakes typical for Illinois system
were inconsistent predictions. Inconsistent predic-
tions occur when the classifiers address grammat-
ical phenomena that interact at the sentence level,
e.g. noun number and verb agreement. To ad-
dress this problem, the Illinois-Columbia system
makes use of global inference via an Integer Lin-
ear Programming formulation (Rozovskaya and
Roth, 2013). Note that Rozovskaya and Roth
(2013) also describe a joint learning model that
performs better than the joint inference approach.
However, the joint learning model is based on
training a joint model on the Google corpus, and
is not as strong as the individually-trained classi-
fiers of the Illinois-Columbia system that combine
predictions from two components – NB classifiers
trained on the native data from the Google corpus
and AP models trained on the learner data (Sec-
tion 4.3).

5 Experimental Results

In Sections 3 and 4, we described the individual
system components that address different types of
errors. In this section, we show how the system
improves when each component is added into the
system. In this year’s competition, systems are
compared using F0.5 measure instead of F1. This
is because in error correction good precision is
more important than having a high recall, and the
F0.5 reflects that by weighing precision twice as
much as recall. System output is scored with the
M2 scorer (Dahlmeier and Ng, 2012).

Table 4 reports performance results of each in-
dividual classifier. In the final system, the arti-
cle, preposition, noun number, and verb agree-

Model P R F0.5
Articles (AP) 38.97 8.85 23.19
Articles (NB-priors) 47.34 6.01 19.93
Articles (Comb.) 38.73 10.93 25.67
Prep. (AP) 34.00 0.5 2.35
Prep. (NB-priors) 33.33 0.79 3.61
Prep. (Comb.) 30.06 1.17 5.13
Noun number (NB) 44.74 5.48 18.39
Noun number (AP) 82.35 0.41 2.01
Noun number (Comb.) 45.02 5.57 18.63
Verb agr. (AP) 38.56 1.23 5.46
Verb agr. (NB) 63.41 0.76 3.64
Verb agr. (Comb.) 41.09 1.55 6.75
Verb form (NB-priors) 59.26 1.41 6.42
Word form (NB-priors) 57.54 3.02 12.48
Mec (AP; patterns) 48.48 0.47 2.26
Style (patterns) 84.62 0.64 3.13

Table 4: Performance of classifiers targeting
specific errors.

Model P R F0.5
The baseline (Illinois) system

Articles 38.97 8.85 23.19
+Prepositions 39.24 9.35 23.93
+Noun number 42.13 14.83 30.79
+Subject-verb agr. 42.25 16.06 31.86
+Verb form 43.19 17.20 33.17

Model Combination
+Model combination 42.72 20.19 34.92

Additional Classifiers
+Word form 43.39 21.54 36.07
+Mec 43.70 22.04 36.52
+Style 44.22 21.54 37.09

Joint Inference
+Joint Inference 44.28 22.57 37.13

Table 5: Results on the development data. The
top part of the table shows the performance of the
baseline (Illinois) system from last year.

P R F0.5
Scores based on the original annotations
41.78 24.88 36.79
Scores based on the revised annotations
52.44 29.89 45.57

Table 6: Results on Test.
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ment classifiers use combined models, each con-
sisting of a classifier trained on the learner data
and a classifier trained on native data. We report
performance of each such component separately
and when they are combined. The results show
that combining models boosts the performance of
each classifier: for example, the performance of
the article classifier improves by more than 2 F0.5
points. It should be noted that results are com-
puted with respect to all errors present in the data.
For this reason, recall is low.

Next, in Table 5, we show the contribution of
the novel components over the baseline system on
the development set. As described in Section 3,
the baseline Illinois system consists of five indi-
vidual components; their performance is shown in
the top part of the table. Note that although for the
development set we make use of last year’s test
set, these results are not comparable to the perfor-
mance results reported in last year’s competition
that used the F1 measure. Overall, the baseline
system achieves an F0.5 score of 33.17 on the de-
velopment set.

Then, by applying the model combination tech-
nique introduced in Section 4.3, the performance
is improved to 34.92. By adding modules to tar-
get three additional error types, the overall perfor-
mance becomes 37.09. Finally, the joint inference
technique (see Section 4.4) slightly improves the
performance further. The final system achieves an
F0.5 score of 37.13.

Table 6 shows the results on the test set provided
by the organizers. As was done previously, the
organizers also offered another set of annotations
based on the combination of revised official anno-
tations and accepted alternative annotations pro-
posed by participants. Performance results on this
set are also shown in Table 6.

6 Discussion and Error Analysis

Here, we present some interesting errors that our
system makes on the development set and discuss
our observations on the competition. We analyze
both the false positive errors and those cases that
are missed by our system.

6.1 Error Analysis

Stylistic preference Surveillance technology
such as RFID (radio-frequency identification) is
one type of examples that has currently been im-
plemented.

Here, our system proposes a change to plural
for the noun “technology”. The gold standard
solution instead proposes a large number of cor-
rections throughout that work with the choice of
the singular “technology”. However, using the
plural “technologies” as proposed by the Illinois-
Columbia system is quite acceptable, and a com-
parable number of corrections would make the rest
of the sentence compatible. Note also that the
gold standard proposes the use of commas around
the phrase “such as RFID (radio-frequency iden-
tification)”, which could also be omitted based on
stylistic considerations alone.

Word choice The high accuracy in utiliz-
ing surveillance technology eliminates the
*amount/number of disagreements among people.

The use of “amount” versus “number” depends
on the noun to which the term attaches. This could
conceivably be achieved by using a rule and word
list, but many such rules would be needed and each
would have relatively low coverage. Our system
does not detect this error.

Presence of multiple errors Not only the details
of location will be provided, but also may lead to
find out the root of this kind of children trading
agency and it helps to prevent more this kind of
tragedy to happen on any family.

The writer has made numerous errors in this
sentence. To determine the correct preposition in
the marked location requires at least the preced-
ing verb phrase to be corrected to “from happen-
ing”; the extraneous “more” after “prevent” in turn
makes the verb phrase correction more unlikely as
it perturbs the contextual clues that a system might
learn to make that correction. Our system pro-
poses a different preposition – “in” – that is better
than the original in the local context, but which is
not correct in the wider context.

Locally coherent, globally incorrect People’s
lives become from increasingly convenient to al-
most luxury, thanks to the implementation of in-
creasingly technology available for the Man’s life.

In this example, the system proposes to delete
the preposition “from”. This correctiom improves
the local coherency of the sentence. However, the
resulting construction is not consistent with “to al-
most luxury”, suggesting a more complex correc-
tion (changing the word “become” to “are going”).
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Cascading NLP errors In this, I mean that we
can input this device implant into an animal or
birds species, for us to track their movements and
actions relating to our human research that can
bring us to a new regime.

The word “implant” in the example sentence
has been identified as a verb by the system and
not a noun due to the unusual use as part of the
phrase “device implant”. As a result, the system
incorrectly proposes the verb form correction “im-
planted”.

6.2 Discussion

The error analysis suggests that there are three sig-
nificant challenges to developing a better gram-
mar correction system for the CoNLL-2014 shared
task: identifying candidate errors; modeling the
context of possible errors widely enough to cap-
ture long-distance cues where necessary; and
modeling stylistic preferences involving word
choice, selection of plural or singular, standards
for punctuation, use of a definite or indefinite arti-
cle (or no article at all), and so on. For ESL writ-
ers, the tendency for multiple errors to be made in
close proximity means that global decisions must
be made about sets of possible mistakes, and a sys-
tem must therefore have a quite sophisticated ab-
stract model to generate the basis for consistent
sets of corrections to be proposed.

7 Conclusion

We have described our system that participated in
the shared task on grammatical error correction.
The system builds on the elements of the Illinois
system that participated in last year’s shared task.
We extended and improved the Illinois system in
three key dimensions, which we presented and
evaluated in this paper. We have also presented
error analysis of the system output and discussed
possible directions for future work.
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Abstract 

This paper describes RACAI’s (Research 

Institute for Artificial Intelligence) hy-

brid grammatical error correction system. 

This system was validated during the par-

ticipation into the CONLL’14 Shared 

Task on Grammatical Error Correction. 

We offer an analysis of the types of er-

rors detected and corrected by our sys-

tem, we present the necessary steps to re-

produce our experiment and also the re-

sults we obtained. 

1 Introduction 

Grammatical error correction (GEC) is a com-

plex task mainly because of the natural depend-

encies between the words of a sentence both at 

the lexical and the semantic levels, leave it aside 

the morphologic and syntactic levels, an intrinsic 

and complex attribute specific to the human lan-

guage. Grammatical error detection and correc-

tion received a significant level of interest from 

various research groups both from the academic 

and commercial environments. A testament to 

the importance of this task is the long history of 

challenges (e.g. Microsoft Speller Challenge and 

CONLL Shared Task) (Hwee et al., 2014) that 

had the primary objective of proving a common 

testing ground (i.e. resources, tools and gold 

standards) in order to assess the performance of 

various methods and tools for GEC, when ap-

plied to identical input data. 

In the task of GEC, one can easily distinguish 

two separate tasks: grammatical error detection 

and grammatical error correction. Typically, 

there are three types of approaches: statistical, 

rule-based and hybrid. The difficulty of detecting 

and correcting an error depends on its class.  

(a) Statistical approaches rely on building 

statistical models (using surface forms or 

syntactic labels) that are used for detecting 

and correcting local errors. The typical 

statistical approach is to model how likely 

the occurrence of an event is, given a his-

tory of preceding events. Thus, statistical 

approaches easily adaptable to any lan-

guage (requiring only training data in the 

form of raw or syntactically labeled text) 

are very good guessers when it comes to 

detecting and correcting collocations, idi-

oms, typos and small grammatical inad-

vertences such as the local gender and 

case agreements. The main impediments 

of such systems are two-fold: (1) they are 

resource consuming techniques 

(memory/storage) and they are highly de-

pendent on data – large and domain 

adapted datasets are required in order to 

avoid the data-scarceness specific issue 

and currently they rely only on a limited 

horizon of events; (2) they usually lack 

semantic information and favoring high-

occurring events is not always the best 

way of detecting and correcting grammat-

ical errors. 

(b) Rule-based approaches embed linguistic 

knowledge in the form of machine parsa-

ble rules that are used to detect errors and 
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describe via transformations how various 

error types should be corrected. The 

drawbacks to rule-based system are (1) the 

extensive effort required to build the rule-

set, (2) regardless of the size of the rule-

set, given the variability of the human lan-

guage it is virtually impossible to capture 

all possible errors and (3) the large num-

ber of exceptions to rules. 

(c) Hybrid systems that combine both rule-

based and statistical approaches are plau-

sible to overcome the weaknesses of the 

two methodologies if the mixture of the 

two components is done properly. Detec-

tion of errors can be achieved statistically 

and rule-based, the task of the hybrid ap-

proach being to resolve any conflicts that 

arise between the outputs of the two ap-

proaches.  

However, even the most advanced systems are 

only able to distinguish between a limited num-

ber of error types and the task of correcting an 

error is even more difficult. Along the typical set 

of errors that are handled by typical correction 

systems (punctuation, capitalization, spelling, 

typos, verb tense, missing verb, etc.), CONLL’s 

GEC task introduces some hard cases which re-

quire a level of semantic analysis: local redun-

dancy, unclear meaning, parallelism, etc.  

2 External tools and resources  

One step in the preparation phase was the 

analysis of the types of errors. The training set 

was automatically processed with our Bermuda 

tool (Boroș et al., 2013): it underwent sentence 

splitting, tokenization, part of speech tagging, 

lemmatization and also chunking. Comparing the 

original and the corrected sentences, we could 

rank the types of mistakes.  

The most frequent ones, i.e. occurring more 

than 1000 times, are presented in the following 

table:  

 

Type of error Occurrences Percent 

use of articles and de-

terminers 

6647 14.98 

wrong collocations or 

idioms 

5300 11.94 

local redundancies 4668 10.52 

noun number 3770 8.49 

tenses 3200 7.21 

punctuation and orthog-

raphy 

3054 6.88 

use of prepositions 2412 5.43 

word form 2160 4.87 

subject-verb agreement 1527 3.44 

Verb form 1444 3.25 

Link word/phrases 1349 3.04 

Table 1. The most frequent types of mistakes 

in the training data 

There are also some less frequent errors: pro-

noun form, noun possessive form, word order of 

adjectives and adverbs, etc. Some of these can be 

solved by means of rules, others by accessing 

lexical resources and others are extremely diffi-

cult to deal with. 

As far as the test data are concerned, the error 

distribution according to their types is the fol-

lowing: 

Type of error Occurrences 

in official-

2014.0.m2 

Occurrences 

in official-

2014.1.m2 

use of articles and 

determiners 332 437 

wrong collocations 

or idioms 339 462 

local redundancies 94 194 

noun number 214 222 

tenses 133 146 

punctuation and 

orthography 227 474 

use of prepositions 95 152 

word form 76 104 

subject-verb 

agreement 107 148 

Verb form 132 88 

Link word/phrases 93 78 

Table 2. The most frequent types of mistakes 

in the test data 

Roughly, the same types of mistakes are more 

frequent in the test set, just like as in the training 

set. 

For collocations and idioms, as well as for cor-

rect prepositions use, we consider that only lexi-

cal resources can be of help. They can take the 

form of a corpus or lists of words that subcatego-

rize for prepositional phrases obligatorily headed 

by a certain preposition (see section 3.2). We 

adopted the former solution: we used Google 1T 

n-grams corpus (see section 2.2) from which the 

selectional restrictions can be learned quite suc-

cessfully. However, dealing with collocations is 

difficult, as correction does not involve only syn-

tax, but also semantics. Changing a word in a 

sentence usually implies changing the meaning 

of the sentence as a whole. Nevertheless, a solu-

tion can be found: as mistakes in collocations 

involve the use of a related word (synonyms), a 
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resource such as the WordNet can be of help. 

When the word used in the sentence and the one 

occurring in the corpus can be found in the same 

synset (or even in synsets in direct relation), the 

correction could be made. Otherwise, it is risky 

to try. In any scenario, this remains as future 

work for us. 

2.1 RACAI NLP Tools 

We have used our in-house Bermuda software 

suite (Boroș et al., 2013), (Boroș and 

Dumitrescu, 2013) to perform text pre-

processing. As the tool is well documented in the 

cited papers above, we summarize its main func-

tionalities concerning the task at hand and the 

algorithms behind them. 

Tokenization. A basic necessary prepro-

cessing step that needs to be applied from the 

beginning as most tools work on a certain to-

kenization format. Bermuda uses a custom-built, 

language dependent tokenizer. Based on regular 

expressions, it detects and splits words such as 

[haven’t] into [have] and [n’t]; [boy’s] into [boy] 

and [’s], while leaving abbreviations like [dr.] or 

[N.Y.] as a single token.  

Part-of-speech (POS) tagger. Tagging is es-

sential to determine each word’s part of speech 

and thus its role in the sentence. Each word is 

tagged with a morpho-syntactic descriptor, called 

MSD. The English language has around 100 

MSDs defined, while more inflected languages, 

like Romanian – a Latin-derived language, uses 

over 600. An MSD completely characterizes the 

word morphologically and syntactically
1
. For 

example, ‘Np’ refers to a proper noun while 

‘Ncns’ refers to a common (c) noun (N) that has 

a neuter (n) gender and is in singular form (ex: 

zoo, zone). Our tagger is based on a neural net-

work, introduced in (Boroș et al., 2013). Overall, 

the Bermuda POS Tagger obtains very high ac-

curacy rates (>98%) even on the more difficult, 

highly inflected languages. 

Lemmatization. The Bermuda Lemmatizer is 

based on the MIRA algorithm (Margin Infused 

Relaxed Algorithm) (Crammer and Singer, 

2003). We treat lemmatization as a tagging task, 

in which each individual letter of the surface 

word is tagged as either remaining unchanged, 

being removed or transformed to another letter. 

The lemmatizer was trained and tested on an 

English lexicon containing a number of around 

120K surface-lemma-MSD entries.  

                                                 
1
 Full description of MSDs can be found at : 

http://nl.ijs.si/ME/V4/msd/html/msd-en.html 

2.2 Google 1T corpus 

A good performing language model is a very im-

portant resource for the current task, as it allows 

discriminating between similar phrases by com-

paring their perplexities.  

Although we had several corpora available to 

extract surface-based language models from, we 

preferred to use a significantly larger model than 

we could create: Google 1T n-gram corpus 

(Brants and Franz, 2006). This 4 billion n-gram 

corpus should provide high-quality perplexity 

estimations. However, loading 4*10^9 n-grams 

without any compression scheme would require, 

even by today’s standards, a large amount of 

memory. For example, using SRILM (Stolcke, 

2002) which uses 33 bytes per n-gram, would 

require a total of ~116GB of RAM. The article 

by Adam Pauls and Dan Klein (2011) describes 

an ingenious way to create a data structure that 

reduces the amount of RAM needed to load the 

1T corpus. However, the system they propose is 

written in Java, a language that is object-

oriented, and which, for any object, introduces an 

additional overhead. Furthermore, they do not 

implement any smoothing method for the 1T 

corpus, defaulting to the +1 “stupid smoothing” 

as they themselves named it, relying on the fact 

that smoothing is less relevant with a very large 

corpus.  For these reasons, coupled with the dif-

ficulty to understand and modify other persons’ 

code, we wrote our language model software. 

We based our implementation around Pauls and 

Klein’s sorted array idea, with a few modifica-

tions. Firstly, we encoded the unigrams in a sim-

ple HashMap instead of a value-rank array. Sec-

ondly, we wrote a multi-step n-gram reader and 

loader. Thirdly, we implemented the Jelinek-

Mercer smoothing method instead of the simple 

+1 smoothing. Using deleted interpolation we 

computed the lambda parameters for the JM 

smoothing; we further built a stand-alone server 

that would load the smoothed n-gram probabili-

ties and could be queried over TCP-IP either for 

an n-gram (max 5-gram – direct probability) or 

for an entire sentence (compute its perplexity). 

The entire software was written in C++ to avoid 

Java’s overhead problems. Overall, the simpli-

fied ranked array encoding allowed us to obtain 

very fast response times (under a millisecond per 

query) with a moderate memory usage: the entire 

1T corpus was loaded in around 60GB of RAM, 

well below our development server memory lim-

it.   
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We are aware of the limitations of this corpus: 

as data was collected from the web, mistakes will 

occur in it. 

We also need a language model that can esti-

mate the probability of parts of speech. By learn-

ing a model from the parts of speech we can 

learn to discriminate between words different 

forms. Grantedly, a part of speech language 

model can promote a grammatically “more” cor-

rect but semantically inferior sentence over a 

semantically sound one, due to assigning a high-

er probability  to a more common part of speech 

sequence in the sentence.  Our experiments show 

that, generally, a part of speech language model 

helps text quality overall.  

Our initial idea for this POS language model 

was to use the same 1T corpus that we could an-

notate using our tagging tools. However, given 

the limited context, performance would have 

been acceptable at the 5-gram level, decreasing 

to the point of simply picking the most common 

part of speech for the unigrams, as no context 

exists for them. As such, we used the following 

available monolingual resources for English: the 

News CRAWL corpus (2007-2012 editions), 

Europarl, UN French-English Corpus, the News 

Commentary, our own cleaned English Wikipe-

dia dump. The total size of the raw text was 

around 20GB. We joined and annotated the files 

and extracted all the 1-5 grams, using the same 

format as the 1T corpus. We then used another 

instance of the language model software to load 

this POS LM and await the main system perplex-

ity estimation requests. Overall, the part of 

speech language model turned out to be rather 

small (a hard-disk footprint of only 315MB of 

binary part of speech LM compared to the 57GB 

of surface model compressed data). This is nor-

mal, as the entire part of speech MSD vocabulary 

for English is around 100 tags, compared to the 

more than 13 million surface forms (unigrams) in 

the 1T corpus.  

3 RACAI’s Hybrid Grammatical Error 

Correction System  

3.1 An overview of the system 

In many cases, statistical methods are preferable 

over rule-based systems since they only rely on 

large available raw corpora instead of hand-

crafted rules that are difficult to design and are 

limited by the effort invested by human experts 

in their endeavor.  

However, a purely statistical method is not 

always able to validate rarely used expressions 

and always favors frequency over fine grained 

compositions.  

As a rule of thumb, hybrid systems are always 

a good choice in tasks where the complexity ex-

ceeds the capacity of converting knowledge into 

formal rules and large scale training data is 

available for developing statistical models.  

Our GEC system has three cascaded phases 

divided between two modules: (a) in the first 

phase, a statistical surface based and a POS LM 

are used to solve orthographic errors inside the 

input sentences, thus enhancing the quality of the 

NLP processing for the second stage; (b) a rule-

based system is used to detect typical grammati-

cal errors, which are labeled and then (c) correct-

ed using a statistical method to validate between 

automatically generated candidates. 

3.2 The statistical component 

Typos are a distinctive class of errors found in 

texts written by both native and non-native Eng-

lish speakers which do not violate any explicit 

(local agreement related) grammatical con-

straints. Most POS tagging systems handle pre-

viously unseen words through suffix analysis and 

are able (using the local context) to assign a tag 

which is conformant with the tags of the sur-

rounding words. Such errors cannot be detected 

by applying rules, since it is impossible to have 

lexicons that cover the entire possible vocabulary 

of a language.   

The typical approach is to generate spelling al-

ternatives for words that are outside the vocabu-

lary and to use a LM to determine the most likely 

correct word form. However, when relying on 

simple distance functions such as the unmodified 

Levenstein it is extremely difficult to differenti-

ate between spelling alternatives even with the 

help of contextual information. There are multi-

ple causes for this type of errors, starting from 

the lack of language knowledge (typically non-

native speakers rely on phonetic similarity when 

spelling words) to speed (usually results in miss-

ing letters) or keyboard related (multiple keys 

touched at once). The distance function we used 

for scoring alternatives uses a weighted Leven-

stein algorithm, which was tuned on the TREC 

dataset. 

3.3 The rule based error detection and cor-

rection 

As previously mentioned, not all grammatical 

errors are automatically detectable by pure statis-

tical methods. In our experiments we noticed 

frequent cases where the LM does not provide 
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sufficient support to distinguish between true 

grammatical errors and simply unusual but 

grammatically correct expressions.    

For the present shared task we concentrated on 

a subset of potential errors. Our rules aimed the 

correction of the verb tense especially in time 

clauses, the use of the short infinitive after 

modals, the position of frequency adverbs in a 

sentence, subject-verb agreement, word order in 

interrogative sentences, punctuation accompany-

ing certain lexical elements, the use of articles, of 

correlatives, etc.              

For the sake of an easier understanding of our 

rule-based component of the GEC system, we 

will start by introducing some technical details 

about how the rule interpreter works, emphasiz-

ing on the structure of the configuration file, the 

input modality and the general pointers on writ-

ing rules. In our approach we treat error detec-

tion and error correction separately, in a two-

stage system. The configuration file contains a 

set of language dependent rules, each rule being 

uniquely identified by the label and its body.  

The role of using labels is two-fold: (1) they pro-

vide guidance and assistance to the user in navi-

gating through the structure of the configuration 

file (when editing or creating new rules); (2) they 

play a crucial role in the error correction process 

and serve as common denominators for different 

classes of errors. 

Our rule description system is inspired after 

the time-independent logic function (combina-

tional logic) paradigm, which stipulates that a 

fixed input size logical function, described 

through a stochastic list of input/output depend-

ence sequence, through a process of logical min-

imization, this function can be implemented as 

an array of “AND” gates, followed by an array of 

“OR” gates. Thus, in our configuration file, each 

rule is described by a set of string pairs (i0 r0, i1 

r1… in rn) which act as “AND” gates – we refer 

to this as a sub-instance of a rule. At this point, a 

sub-instance is activated only if all constraints 

are met. The “OR” gate array is simulated by 

adding rules with the same label. This way, if 

any sub-instance is active then the rule is consid-

ered active and we proceed to the errror correc-

tion step. 

Every pair (ik rk) is a single Boolean input of a 

sub-instance. A rule is checked against every 

token inside an utterance, from left to right. rk is 

a regular expression which, depending on the 

value of ik, is applied to the word’s surface form 

(s), the word’s lemma (l) or the word’s MSD 

(m). ik can also select if the regular expression 

should be applied to a neighboring token. To ex-

emplify, we have extracted two sections from our 

configuration file: (a) the modal infinitive com-

mon error for non-native English speakers (also 

found in the development set of CONLL) (lines 1 

to 7) and (b) the possible missing comma case 

(line 8): 
 

1) modal_infinitive: s must   s+1 to s-1 ^!a 

2) modal_infinitive: s could  s+1 to  

3) modal_infinitive: s can    s+1 to 

4) modal_infinitive: s might  s+1 to 

5) modal_infinitive: s may    s+1 to 

6) modal_infinitive: s would  s+1 to 

7) modal_infinitive: s should s+1 to 

8) pmc: s which m-1 ^((?!COMMA).)*$ 

Table 3: a sample of error detection rules 

 

The “modal_infinitive” rule is complex and it 

is described using 7 sub-instances, which share 

an identical label. Line 1 of the configuration 

excerpt contains three pairs as opposed to the 

other sub-instances. This does not contradict the 

combinational logic paradigm, since we can con-

sider this rule as having a fixed input size of 

three and, as a result of logic minimization, the 

third parameter for 6 of the seven instances falls 

into the “DON’T CARE” special input class. The 

first ikrk pair (“s must”) is used to check if the 

surface form (“s”) of the current word is “must”.  

The second pair (“s+1 to”) checks if the word 

form of the next token is “to”.  The third pair  

(“s-1 ^!a”) verifies that the collocation “a must 

to” does not accidentally trigger this rule. This 

rule will detect the error in “I must to go...”, but 

will licence a sequence like “This book is a must 

to read...”.  

The error detection rules that we designed for 

the CONLL shared task are created, as an exter-

nal resource for the program, on the basis of the 

mistakes observed in the training set and can be 

updated/extended any time .  

In the error correction phase, for every error 

type we encompass, we provide the necessary 

transformations (at token level) through which 

the initial word sequence that generated this error 

should be corrected. The configuration file of 

this module is straightforward: rule-labels are 

marked as strings at the beginning of a new line; 

for each label, we provide a set of transformation 

rules, that are contained in the following tab-

indented lines; once a new line does not start 

with a TAB character, it should either be empty 

or contain the label for a different error type. the 

correction phase, multiple sentence candidates 

are automatically generated (based on the trans-

formation rules) and they are checked against the 
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language model to see which one yields the low-

est perplexity. That is, once an error is found, its 

correction way tends to be applied provided that 

the language model offers another solution. 

As an example, suppose that the rule for de-

tecting a possible missing comma (pmc in Table 

3, line 8) was fired.  The corresponding correc-

tion rule is described as below: 

 
pmc:  

$w-1 , $w  

$w-1 $w  

 

The "pmc" rule is activated if the word 

"which" is not preceded by a comma. Since it is 

not always the case that the wordform "which" 

should be preceded by this punctuation mark, in 

our error correction system step we generate two 

candidates: (a) one in which we insert a comma 

before "which" and (b) one in which we keep the 

word sequence untouched. 

4 Results and Conclusions 

The RACAI hybrid GEC system obtained a pre-

cision of 31.31%, a recall of 14.23% and an F0.5 

score of 25.25% on the test set provided by the 

CONLL shared task on Grammatical Error Cor-

rection.  

We presented our system and the resources we 

used in the development process. All the data 

and tools required to run a similar experiment are 

available online and we are currently working on 

developing a self-contained GEC system that 

will be made publicly available.   

Future development plans include the en-

hancement of the lexicons we use for English 

and the extension of this system for Romanian. 

Furthermore, we plan to include an extended 

method for solving collocations errors based on 

the synsets of Princeton WordNet (PWN) (Fell-

baum, 1989). 
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Abstract

This paper presents a rule-based approach
for correcting grammatical errors made
by non-native speakers of English. The
approach relies on the differences in the
outputs of two POS taggers. This paper
is submitted in response to CoNLL-2014
Shared Task.

1 Introduction

A part-of-speech (POS) tagger, like any other soft-
ware, has a set of inputs and outputs. The input
for a POS tagger is a group of words and a tagset,
and the output is a POS tag for a word (Jurafsky
and Martin, 2009). Given that a software is bound
to provide incorrect output for an incorrect input
(garbage in, garbage out), it is quite likely that tag-
gers trained to tag grammatically correct sentences
(the expected input) would not tag grammatically
incorrect sentences properly. Furthermore, it is
possible that the output of two different taggers for
a given incorrect input would be different.

For this shared task, the POS taggers used were
the Stanford Parser, which was used to preprocess
the training and test data (Ng et al., 2014) and the
TreeTagger (Schmid, 1994). The Stanford Parser
employs unlexicalized PCFG1 (Klein and Man-
ning, 2003), whereas the TreeTagger uses decision
trees. The TreeTagger is freely available2, and its
performance is comparable to that of the Stanford
Log-Linear Part-of-Speech Tagger (Toutanova et
al., 2003). Since the preprocessed dataset was al-
ready annotated with POS tags, the Stanford Log-
Linear POS Tagger was not used.

If the annotation of preprocessed data differed
from that of the TreeTagger, it was assumed that
the sentence might have grammatical errors. Once
an error was detected it was corrected using the

1Probabilistic Context-Free Grammar
2http://www.cis.uni-muenchen.de/⇠schmid/tools/TreeTagger/

Nodebox English Linguistics library3 (De Bleser
et al., 2002).

2 Error Detection

The POS tag for each token in the data was com-
pared with the tag given by the TreeTagger. Sen-
tences were considered grammatically incorrect
upon meeting the following conditions:

• The number of tags in the preprocessed
dataset for a given sentence should be equal
to the number of tags returned by the Tree-
Tagger for the same sentence.

• There should be at least one token with dif-
ferent POS tags.

As an exception, if the taggers differed only on the
first token, such that the Stanford Parser tagged it
as NNP or NNPS, then the sentence was not con-
sidered for correction, as this difference can be
attributed to the capitalisation of the first token,
which the Stanford Parser interprets as a proper
noun.

Table 1 shows the precision (P) and the recall
(R) scores of this method for detecting erroneous
sentences in the training and test data. The low
recall score indicates that for most of the incorrect
sentences, the output of the taggers was identical.

2.1 Preprocessing
The output of the TreeTagger was modified so that
it had the same tag set as that used by the Stan-
ford Parser. The differences in the output tagset is
displayed in the Table 2.

2.2 Errors
Where the mismatch of tags is indicative of error,
it does not offer insight into the nature of the er-
ror and thus does not aid in error correction per se.
For example, the identification of a token as VBD

3http://nodebox.net/code/index.php/Linguistics

49



Dataset Total Erroneous Sentences with Erroneous Sentences P R
Sentences Tag Mismatch Identified Correctly

Training 21860 26282 11769 44.77 53.83
Test 1176 642 391 60.90 33.24
Test (Alternative)† 1195 642 398 61.99 33.30
† consists of additional error annotations provided by the participating teams.

Table 1: Performance of Error Detection.

TreeTagger Stanford Parser
Tagset Tagset
( -LRB-
) -RRB-
NP NNP
NPS NNPS
PP PRP
SENT .

Table 2: Comparison of Tagsets.

(past tense) by one tagger and as VBN (past par-
ticiple) another does not imply that the mistake is
necessarily a verb tense (Vt) error. Table 4 lists
some of the errors detected by this approach.

3 Error Correction

Since mismatched tag pairs did not consistently
correspond to a particular error type, not all er-
rors detected were corrected. Certain errors were
detected using hand-crafted rules.

3.1 Subject-Verb Agreement (SVA) Errors
SVA errors were corrected with aid of dependency
relationships provided in the preprocessed data. If
a singular verb (VBZ) referred to a plural noun
(NNS) appearing before it, then the verb was made
plural. Similarly, if the singular verb (VBZ) was
the root of the dependency tree and was referred
to by a plural noun (NNS), then it was changed to
the plural.

3.2 Verb Form (Vform) Errors
If a modal verb (MD) preceded a singular verb
(VBZ), then the second verb was changed to the
bare infinitive form. Also, if the preposition
to preceded a singular verb, then the verb was
changed to its bare infinitive form.

3.3 Errors Detected by POS Tag Mismatch
If a token followed by a noun is tagged as an ad-
jective (JJ) in the preprocessed data and as an ad-

Dataset P R F�=0.5

Training 23.89 0.31 1.49
Test 70.00 1.72 7.84
Test (Alternative) 72.00 1.90 8.60

Table 3: Performance of the Approach.

verb (RB) by the TreeTagger, then the adverbial
morpheme -ly was removed, resulting in the ad-
jective. For example, completely is changed to
complete in the second sentence of the fifth para-
graph of the essay 837 (Dahlmeier et al., 2013).
On the other hand, adverbs (RB) in the prepro-
cessed dataset that were labelled as adjectives (JJ)
by the TreeTagger were changed into their corre-
sponding adverbs.

A token preceded by the verb to be, tagged as
JJ by the Stanford Parser and identified by the
TreeTagger as a verb is assumed to be a verb
and accordingly converted into its past partici-
ple. Finally, the tokens labelled NNS and VBZ
by the Stanford Parser and the TreeTagger respec-
tively are likely to be Mec4 or Wform5 errors.
These tokens are replaced by plural nouns hav-
ing same initial substring (this is achieved using
the get close matches API of the difflib Python
library).

The performance of this approach, as measured
by the M2 scorer (Dahlmeier and Ng, 2012), is
presented in Table 3.

4 Conclusion

The approach used in this paper is useful in de-
tecting mainly verb form, word form and spelling
errors. These errors result in ambiguous or incor-
rect input to the POS tagger, thus forcing it to pro-
duce incorrect output. However, it is quite likely
that with a different pair of taggers, different rules

4Punctuation, capitalisation, spelling, typographical er-
rors

5Word form
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nid 829
Sentence This caused problem like the appearance
Stanford Parser DT VBD NN IN DT NN
TreeTagger DT VBN NN IN DT NN
Error Type Vt
nid 829
Sentence but also to reforms the land
Stanford Parser CC RB TO VB DT NN
TreeTagger CC RB TO NNS DT NN
Error Type Wci
nid 840
Sentence India , their population amount to
Stanford Parser NNP , PRP$ NN VB TO
TreeTagger NNP , PRP$ NN NN TO
Error Type Vform (This was not an error in the training corpus.)
nid 1051
Sentence Singapore is currently a develop country
Stanford Parser NNP VBZ RB DT JJ NN
TreeTagger NNP VBZ RB DT VB NN
Error Type Vform
nid 858
Sentence Therefore most of China enterprisers focus
Stanford Parser RB JJS IN NNP VBZ NN
TreeTagger RB RBS IN NNP NNS VBP
Error Type Wform
nid 847
Sentence and social constrains faced by engineers
Stanford Parser CC JJ NNS VBN IN NNS
TreeTagger CC JJ VBZ VBN IN NNS
Error Type Mec

Table 4: Errors Detected.

would be required to correct these errors. Errors
concerning noun number, determiners and prepo-
sitions, which constitute a large portion of errors
committed by L2 learners (Chodorow et al., 2010;
De Felice and Pulman, 2009; Gamon et al., 2009),
were not addressed in this paper. This is the main
reason for low recall.
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Abstract

We describe our approach to grammatical er-
ror correction presented in the CoNLL Shared
Task 2014. Our work is focused on error detec-
tion in sentences with a language model based
on syntactic tri-grams and bi-grams extracted
from dependency trees generated from 90% of
the English Wikipedia. Also, we add a naïve
module to error correction that outputs a set
of possible answers, those sentences are scored
using a syntactic n-gram language model. The
sentence with the best score is the final sug-
gestion of the system.
The system was ranked 11th, evidently this

is a very simple approach, but since the begin-
ning our main goal was to test the syntactic
n-gram language model with a big corpus to
future comparison.

1 Introduction

Grammatical error correction is a difficult task
to solve even for humans, because there are a
lot of phenomena that can occur in a sentence.
One example of the difficulty of the task is that
the annotators of the training and test data in
the NUCLE (Dahlmeier et al., 2013) differs
in the corrections that they made to the sen-
tences, those differences in the annotations are
mostly because depend on uncontrolled con-
ditions, such knowledge, emotional state and
the environment of the annotator at the mo-
ment that the task is performed. This time
the shared task is more difficult than the last
year (Ng and Wu et al., 2013) that considered
only five types of errors, and this time the task
consist into correct all the grammatical errors
in the NUCLE (Ng and Wu et al., 2014).
We are interested into test the behaviour of

different methods used in different NLP task
with the syntactic n-grams as a resource, in or-

der to set a baseline to future work. There is
work that probes that there is an improvement
using syntactic n-grams in (Sidorov and Ve-
lasquez et al., 2014) where the author uses syn-
tactic n-grams as machine learning features,
another example of the use of syntactic n-
grams occurred in the CoNLL 2013 Shared
Task in (Sidorov and Gupta et al., CoNLL
2013), but they used a different approach from
us.
Until the moment we do not have a com-

parison with the same method that we used in
this task using normal n-grams, still our hy-
pothesis is that syntactic n-grams allow us to
relate words that in a common n-gram model
wouldn’t be related and that can outperform
the results.
For example, in the sentence:
"Genetic risk refers more to your chance of

inheriting a disorder or disease ."
Some common tri-grams are "to your

chance", "your chance of", "chance of inher-
iting". The word chance can not be related
to the words "disorder" or "disease", unless we
use 5-grams or 7-grams, unlike with the syn-
tactic tri-grams that as can be appreciated in
the Table 3 the relation between this words are
normally included.
Another hypothesis is that a low probability

in a syntactic n-gram is an indicator that exist
a wrong token in the portion of a dependency
tree. A simple example of this intuition can be
seen in the Table 1 for the sentence "This will
, if not already , caused problems as there are
very limited spaces for us ." from the training
data in the NUCLE. The bold words are wrong
tokens annotated in the training data and the
numbers are the token number in the sentence.
As can be observed the low probability syn-

tactic tri-grams include the wrong tokens. The
problem is to establish a threshold in the prob-
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qi Syntactic tri-grams
0.0 ’are-12 spaces-15 us-17 True’
0.0 ’spaces-15 limited-14 us-17 False’
0.00004 ’caused-8 will-2 are-12 False’
0.00004 ’caused-8 will-2 not-5 False’
0.00004 ’caused-8 will-2 This-1 True’
0.00004 ’caused-8 will-2 problems-9 False’
0.00029 ’caused-8 not-5 are-12 False’
0.00047 ’caused-8 are-12 as-10 True’
0.00054 ’are-12 spaces-15 limited-14 True’
0.00054 ’caused-8 are-12 spaces-15 True’
0.00057 ’caused-8 are-12 there-11 True’
0.00065 ’caused-8 problems-9 are-12 False’
0.00109 ’spaces-15 limited-14 very-13 True’
0.00194 ’caused-8 not-5 already-6 True’
0.00314 ’caused-8 not-5 problems-9 False’
0.00522 ’caused-8 not-5 if-4 True’
0.22841 ’are-12 as-10 there-11 False’
0.375 ’are-12 as-10 spaces-15 False’
0.75510 ’are-12 there-11 spaces-15 False’
1.0 ’ROOT-0 caused-8 are-12 True’
1.0 ’ROOT-0 caused-8 not-5 True’
1.0 ’ROOT-0 caused-8 problems-9 True’
1.0 ’ROOT-0 caused-8 will-2 True’
1.0 ’not-5 if-4 already-6 False’

Table 1: Ordered probabilities of syntactic tri-
grams. The wrong tokens are "caused", "are"
and "spaces".

abilities to consider as wrong a syntactic tri-
gram and separate the wrong tokens from the
correct ones.

2 Resources

For the language model we used a Wikipedia
dump as training data (Wikipedia, 2013)
and extracted the text with the Multithread
Wikipedia Extractor (Souza, 2012) then was
tokenized with the Stanford Tokenizer (Man-
ning et al., ). There are about 87 millions of
sentences and 1,480 millions of tokens.
To generate the dependency trees we used

the Stanford Parser 3.2 (Socher et al., 2013),
but for the syntactic n-gram language model
we only took 90% of the sentences randomly
chosen. The parsing task took a lot of time to
be made with our computing resources and we
had to use threads with the Stanford Parser,
unfortunately this increases the amount of
memory required by the software, so we had

to exclude the sentences with more than one
hundred token. At the end we parsed about
75 millions of sentences.
The dependency trees were generated as

Stanford typed dependencies (Marneffe et al.,
2006), in specific in the collapsed with prop-
agation version as described in (Marneffe et
al., 2008). One example of this kind of de-
pendencies can be seen in the Figure 2. As
can be observed the collapsed with propaga-
tion typed dependencies can break the tree, so
strictly this is a directed graph with the gram-
matical relations in the edges and the words of
the sentence in the nodes, though as conven-
tion we will continue referring it as a tree. In
total there are about 1,166 million grammati-
cal relations.
In the error detection phase we used

the information provided with the NUCLE
(Dahlmeier et al., 2013), specifically the to-
kens, POS and the grammatical relations from
the test data in CoNLL style. From the train-
ing data we only made some calculations about
the kinds of errors that occur with higher fre-
quency and we used this information to in-
clude some rules in the correction phase.

3 System description

3.1 Syntactic n-gram language model
We used the dependency trees from Wikipedia
corpus to generate the syntactic n-grams in the
non-continuous form as described in (Sidorov,
2013) and in the book (Sidorov, Book 2013),
but there is an significant difference, the cur-
rent work with syntactic n-grams was made
with the basic dependencies, and as we said
before, we are using the dependencies that
collapses the prepositions and propagates the
conjunctions. The tree in Figure 1 is in the Ba-
sic representation and the differences with the
collapsed and propagated dependencies can be
appreciated in the Figure 2.
This change allow us to increase the scope of

the relations between content words, but also
it makes difficult to find preposition errors, so
our system do not consider preposition correc-
tion.
The tables 2 and 3 show the syntactic tri-

grams generated whit each one of the depen-
dency representations, but without the rela-
tions for lack of space. As can be observed the
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Genetic risk refers more to your chance of in-
heriting a disorder or disease

ROOT-0

refers-3

risk-2 more-4 to-5

chance-7Genetic-1

your-6 of-8

inheriting-9

disorder-11

a-10 or-12 disease-13

root

nsubj dobj
prep

amod pobj

poss prep

pcomp

dobj

det cc
conj

Figure 1: Basic dependencies.

Genetic risk refers more to your chance of in-
heriting a disorder or disease

ROOT-0

refers-3

risk-2 more-4 chance-7

Genetic-1
your-6 inheriting-9

disorder-11

disease-13a-10

root

nsubj dobj
prep_to

amod
poss prepc_of

dobj

dobj

det conj_or

Figure 2: Collapsed dependencies with propa-
gation.

word "chance" in the basic dependencies is not
directly related with the words "disorder" and
"disease", on the contrary with the collapsed
and propagated dependencies.

w1 w2 w3 Continuous
to-5 chance-7 of-8 True
to-5 chance-7 your-6 True
refers-3 to-5 chance-7 True
refers-3 risk-2 Genetic-1 True
of-8 inheriting-9 disorder-11 True
inheriting-9 disorder-11 a-10 True
inheriting-9 disorder-11 disease-13 True
inheriting-9 disorder-11 or-12 True
chance-7 of-8 inheriting-9 True
ROOT-0 refers-3 to-5 True
ROOT-0 refers-3 risk-2 True
ROOT-0 refers-3 more-4 True
refers-3 risk-2 to-5 False
refers-3 risk-2 more-4 False
refers-3 more-4 to-5 False
disorder-11 a-10 disease-13 False
disorder-11 a-10 or-12 False
disorder-11 or-12 disease-13 False
chance-7 your-6 of-8 False

Table 2: Syntactic tri-grams from the basic
dependencies.

w1 w2 w3 Continuous
refers-3 chance-7 inheriting-9 True
refers-3 chance-7 your-6 True
refers-3 risk-2 Genetic-1 True
inheriting-9 disorder-11 a-10 True
inheriting-9 disorder-11 disease-13 True
chance-7 inheriting-9 disorder-11 True
chance-7 inheriting-9 disease-13 True
ROOT-0 refers-3 chance-7 True
ROOT-0 refers-3 risk-2 True
ROOT-0 refers-3 more-4 True
refers-3 risk-2 chance-7 False
refers-3 risk-2 more-4 False
refers-3 more-4 chance-7 False
inheriting-9 disorder-11 disease-13 False
disorder-11 a-10 disease-13 False
chance-7 your-6 inheriting-9 False

Table 3: Syntactic tri-grams from the col-
lapsed with propagation dependencies.

Next we show the maximum likelihood es-
timations that we calculated for this language
model. Where w1, w2, w3 ∈ W and W is the
set of words of the sentence, r1, r2 ∈ R with R
as the set of grammatical relations between the
words and c ∈ {True, False}, with True rep-
resenting a continuous syntactic n-gram and
False a non-continuous syntactic n-gram.
In equation (1) we take the maximum value

between the probability estimation of the tri-
gram with and without grammatical relations
in order to favour the complete tri-gram.
Even with a big corpus as Wikipedia and

with the non-continuous syntactic tri-grams
these estimations can produce zeros in the
probabilities, then we have to draw upon a
back-off, so, we add other estimations.
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q1 = max(q(w1|w2, w3; r1, r2; c),
q(w1|w2, w3; c))

(1)

q2 = max(q(w3|w1, w2; r1, r2; c),
q(w3|w1, w2; c))

(2)

Notice that equation (2) is similar to (1),
both evaluate the same syntactic tri-gram, but
with a different word of interest.

q3 =
{

min(q(w2|w1; r1), q(w3|w2; r2)) if c = T rue

min(q(w2|w1; r1), q(w3|w1; r2)) if c = F alse

(3)

q4 =
{

min(q(w2|w1), q(w3|w2)) if c = T rue

min(q(w2|w1), q(w3|w1)) if c = F alse

(4)

q5 = max(q3, q4) (5)

q6 =
{

min(q(w1|w2; r1), q(w2|w3; r2)) if c = T rue

min(q(w1|w2; r1), q(w1|w3; r2)) if c = F alse

(6)

q7 =
{

min(q(w1|w2), q(w2|w3)) if c = T rue

min(q(w1|w2), q(w1|w3)) if c = F alse

(7)

q8 = max(q6, q7) (8)

When the probabilities in equations (1) and
(2) are equal to zero, we add a back-off es-
timation based in syntactic bi-grams, since a
syntactic tri-gram is formed of two syntactic
bi-grams or grammatical relations with differ-
ent probabilities, but both or one of them can
contain wrong tokens, so we decided to penal-
ize the complete probability estimation of the
syntactic tri-gram by choosing the min proba-
bility between the two relations. In the equa-
tions (3), (4), (6) and (7) a min operation is
included to penalize the low probability in a
syntactic bi-gram that corresponds to a syn-
tactic tri-gram. In the equations (5) and (8)
the max operation plays the same role as in
equations (1) and (2).
The final expression of the model is shown

in equation (9).

qstri =



q1 if q1 > 0
q2 if q1 = 0 and q2 > 0
q5 if q2 = 0 and q5 > 0
q8 if q5 = 0 and q8 > 0
0 Otherwise

(9)
Where qstri = q(w1, w2, w3; r1, r2; c) and

represents the probability of the syntactic tri-
gram.
The syntactic tri-grams continuous and non-

continuous produced a vast amount of data,
for that reason we only took about 1,660 mil-
lions of syntactic tri-grams to made the lan-
guage model. This data can be downloaded
from (Syntactic N-grams, 2014).

3.2 Detection and correction
In order to detect errors in the test data of NU-
CLE (Dahlmeier et al., 2013), we extract the
Stanford typed dependencies from the conll-
style file and to be congruent with the data of
our language model excluded the punct gram-
matical relations. Then we obtain the syn-
tactic tri-grams and probabilities of each sen-
tence. The assumption is that low probability
in a syntactic tri-gram makes it a candidate
to be wrong, since grammatical errors could
produce trees with portions where grammati-
cal relations are unseen in the training data or
with a low probability.

qi Syntactic tri-grams
0.0 refers-3 more-4 chance-7 False
0.0 refers-3 risk-2 chance-7 False
0.0 refers-3 chance-7 your-6 True
0.0 refers-3 chance-7 inheriting-9 True
0.00015 refers-3 risk-2 Genetic-1 True
0.00023 refers-3 risk-2 more-4 False
0.00355 chance-7 your-6 inheriting-9 False
0.00355 chance-7 inheriting-9 disorder-11 True
0.00609 inheriting-9 disorder-11 disease-13 True
0.00609 inheriting-9 disorder-11 a-10 True
0.00609 inheriting-9 disorder-11 disease-13 False
0.02128 disorder-11 a-10 disease-13 False
1.0 ROOT-0 refers-3 more-4 True
1.0 ROOT-0 refers-3 risk-2 True
1.0 ROOT-0 refers-3 chance-7 True
1.0 chance-7 inheriting-9 disease-13 True

Table 4: Ordered probabilities of the syntactic
tri-grams.

To add the wrong syntactic tri-grams to a
set E we include two parameters, α = 0.0001
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which is a threshold and ξ = 0.5 that is a
percentage. To decide whose syntactic tri-
grams must be in the set E, we sort them up-
wardly as in the table 4, if satisfy the condition
(qi < α) and (qi >= ξqi+1) for i ∈ {1, 2, ..., un-
til the first exception } the syntactic tri-gram
is added to the set E. The fixed values of α
and ξ were selected by experimentation.

w1 w2 w3 Continuous
refers-3 more-4 chance-7 False
refers-3 risk-2 chance-7 False
refers-3 chance-7 your-6 True
refers-3 chance-7 inheriting-9 True

Table 5: Set of possible wrong syntactic tri-
grams.

The syntactic tri-grams in the table 5 are
the selected as suspicious to be wrong with
the above considerations. All the tokens can
be part of a grammatical error, but to get re-
placement candidates of all of them can in-
crease the complexity of the task and with the
window of time that we had to accomplish the
task, so we decided to select words in the set E
to be considered as wrong tokens. We counted
the total amount of occurrences of each token
in the set E and took the two with higher val-
ues.

Count Tokens
4 refers-3
4 chance-7
1 more-4
1 risk-2
1 your-6
1 inheriting-9

Table 6: Possible wrong tokens.

We chose the best candidates that can re-
place each word in the sentence and gener-
ate new sentences with each one of the can-
didates in his different combinations. Is easy
to see that can be a lot of sentences, consid-
ering that each word can have more than one
candidate and that each sentence could have
more than one wrong token to be replaced. To
obtain the candidates to each suspicious to-
ken we search in our training data, words that
start with the stemmed form of the selected to-
ken and that depends of the same word with

the same relation, also we add the lemmatized
word. The lemmatization was made with the
WordNetLemmatizer and the stemming with
LancasterStemmer, both from NLTK. Also we
applied as we said some naïve rules based on
the most frequent errors in the training cor-
pus from NUCLE, for example, when the sus-
picious token is a pronoun or a common verb
as "have" or "do" we replace them with their
conjugations.
For the example in table 6, we have the

respective candidates in table 7. Visibly the
word "chants" has nothing to do with the origi-
nal token to be replaced, it shows the main rea-
son of why we have low score, the rules used in
the correction phase are very simple. For this
example, the word "chance" stemmed with the
LancasterStemmer is "chant", then the search
of words in the grammatical relations that de-
pends on the word "refers" and with the same
relation, outputs the word "chants".

Tokens Candidates
refers refers
chance-7 chance, chants

Table 7: Candidates.

The possible sentences generated for this ex-
ample are "Genetic risk refers more to your
chance of inheriting a disorder or disease ."
and "Genetic risk refers more to your chants
of inheriting a disorder or disease .".
In this example the first sentence is the se-

lected as the answer by the system. As can
be appreciated the word chants just worsen
the second sentence. This capacity to discrim-
inate the wrong sentence is what draws our
attention to continue with future work.
With this conditions our system produced

3613 new sentences from the original 1312. To
choose the final answer from the set of pro-
posed sentences for each sentence, we only sum
all the probabilities of the syntactic tri-grams
of each sentence, naturally the sentence with a
higher mass of probability is the final proposed
answer.

4 Evaluation

Our official results in the CoNLL 2014 Shared
Task on grammatical error correction of the
NUCLE and evaluated with the official scorer
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(Dahlmeier and Ng, 2012) are shown in the ta-
ble 8. The organizers provide all the resources.

Without alternative annotation
Recall 2.85
Precision 11.28
F_0.5 7.09
With alternative annotation
Recall 3.17
Precision 11.66
F_0.5 7.59

Table 8: Results in the CoNLL 2014 Shared
Task .

The scoring without alternative answers was
made with gold edits of the annotators and the
scoring with alternative annotation includes
answers proposed by 3 teams that participated
on the Shared Task and were judged by the
annotators.

5 Conclusions

The result of the system was not good or as we
expected, first because our approach is simple
and was motivated to test the use of a syntac-
tic n-grams language model, second because
the poor election of candidates to correct the
errors. However, this task gave us the oppor-
tunity to test the behaviour in different condi-
tions and now we have a reference to improve
our system.

6 Future work

We have a lot of work to do, in order to sup-
port the use of this kind of resources. First
we have to compare the same method that
we used, but with a common n-gram language
model. Second is necessary to make a more
general language model that can be used with
syntactic 4-grams or more, and analyse how
this increase can affect the recall. Third find a
way to made more efficient the consult of the
resources.
Also we need to add a more wise method to

correct the detected errors, including prepo-
sitions. The fact that we did not take into
account this type of error does not mean that
is not possible to do it with this resources, so
we have to propose an alternative that takes
into account this and other types of errors.
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Abstract

In this paper, we propose two enhance-
ments to a statistical machine translation
based approach to grammar correction for
correcting all error categories. First, we
propose tuning the SMT systems to op-
timize a metric more suited to the gram-
mar correction task (F-β score) rather than
the traditional BLEU metric used for tun-
ing language translation tasks. Since the
F-β score favours higher precision, tun-
ing to this score can potentially improve
precision. While the results do not indi-
cate improvement due to tuning with the
new metric, we believe this could be due
to the small number of grammatical er-
rors in the tuning corpus and further in-
vestigation is required to answer the ques-
tion conclusively. We also explore the
combination of custom-engineered gram-
mar correction techniques, which are tar-
geted to specific error categories, with the
SMT based method. Our simple ensem-
ble methods yield improvements in recall
but decrease the precision. Tuning the
custom-built techniques can help in in-
creasing the overall accuracy also.

1 Introduction

Grammatical Error Correction (GEC) is an inter-
esting and challenging problem and the existing
methods that attempt to solve this problem take
recourse to deep linguistic and statistical analy-
sis. In general, GEC may partly assist in solv-
ing natural language processing (NLP) tasks like
Machine Translation, Natural Language Genera-
tion etc. However, a more evident application of
GEC is in building automated grammar checkers
thereby non-native speakers of a language. The
goal is to have automated tools to help non-native

speakers to generate good content by correcting
grammatical errors made by them.

The CoNLL-2013 Shared Task (Ng et al., 2013)
was focussed towards correcting some of the most
frequent categories of grammatical errors. In con-
trast, the CoNLL-2014 Shared Task (Ng et al.,
2014) set the goal of correcting all grammatical
errors in the text. For correcting specific error
categories, custom methods are generally devel-
oped, which exploit deep knowledge of the prob-
lem to perform the correction (Han et al., 2006;
Kunchukuttan et al., 2013; De Felice and Pulman,
2008). These methods are generally the state-of-
the-art for the concerned error categories, but a lot
of engineering and research effort is required for
correcting each error category. So, the custom de-
velopment approach is infeasible for correcting a
large number of error categories.

Hence, for correction of all the error categories,
generic methods have been investigated - gen-
erally using language models or statistical ma-
chine translation (SMT) systems. The language
model based method (Lee and Seneff, 2006; Kao
et al., 2013) scores sentences based on a lan-
guage model or count ratios of n-grams obtained
from a large native text corpus. But this method
still needs a candidate generation mechanism for
each error category. On the other hand, the SMT
based method (Brockett et al., 2006) formulates
the grammar correction problem as a problem of
translation of incorrect sentences to correct sen-
tences. SMT provides a natural unsupervised
method for identifying candidate corrections in
the form of the translation model, and a method
for scoring them with a variety of measures in-
cluding the language model score. However, the
SMT method requires a lot of parallel non-native
learner corpora. In addition, the machinery in
phrase based SMT is optimized towards solving
the language translation problem. Therefore, the
community has explored approaches to adapt the
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SMT method for grammar correction (Buys and
van der Merwe, 2013; Yuan and Felice, 2013).
These include use of factored SMT, syntax based
SMT, pruning of the phrase table, disabling or re-
ordering, etc. The generic SMT approach has per-
formed badly as compared to the specific custom
made approaches (Yuan and Felice, 2013).

Our system also builds upon the SMT methods
and tries to address the above mentioned lacunae
in two ways:

• Tuning the SMT model to a metric suitable
for grammar correction (i.e.F-β metric), in-
stead of the BLEU metric.

• Combination of custom-engineered methods
and SMT based methods, by using classifier
based for some error categories.

Section 2 describes our method for tuning the
SMT system to optimize the F-β metric. Sec-
tion 3 explains the combination of classifier based
method with the SMT method. Section 4 lists our
experimental setup. Section 5 analyzes the results
of our experiments.

2 Tuning SMT system for F-β score

We model our grammar correction system as a
phrase based SMT system which translates gram-
matically incorrect sentences to grammatically
correct sentences. The phrase based SMT system
selects the best translation for a source sentence by
searching for a candidate translation which maxi-
mizes the score defined by the maximum entropy
model for phrase based SMT defined below:

P (e,a|f) = exp
∑

i

λihi(e,a, f)

where,
hi: feature function for the ith feature. These are
generally features like the phrase/lexical transla-
tion probability, language model score, etc.
λi: the weight parameter for the ith feature.

The weight parameters (λi) define the relative
weights given to each feature. These parame-
ter weights are learnt during a process referred to
as tuning. During tuning, a search over the pa-
rameter space is done to identify the parameter
values which maximize a measure of translation
quality over a held-out dataset (referred to as the
tuning set). One of the most widely used met-
rics for tuning is the BLEU score (Papineni et

al., 2002), tuned using the Minimum Error Rate
Training (MERT) algorithm (Och, 2003). Since
BLEU is a form of weighted precision, along with
a brevity penalty to factor in recall, it is suitable
in the language translation scenario, where fidelity
of the translation is an important in evaluation of
the translation. Tuning to BLEU ensures that the
parameter weights are set such that the fidelity of
translations is high.

However, ensuring fidelity is not the major chal-
lenge in grammar correction since the meaning of
most input sentences is clear and most don’t have
any grammatical errors. The metric to be tuned
must ensure that weights are learnt such that the
features most relevant to correcting the grammar
errors are given due importance and that the tun-
ing focuses on the grammatically incorrect parts
of the sentences. The F-β score, as defined for
the CoNLL shared task, is the most obvious metric
to measure the accuracy of grammar correction on
the tuning set. We choose the F-β metric as a score
to be optimized using MERT for the SMT based
grammar correction model. By choosing an appro-
priate value of β, it is possible to tune the system
to favour increased recall/precision or a balance of
both.

3 Integrating SMT based and
error-category specific systems

As discussed in Section 1, the generic SMT based
correction based systems are inferior in their cor-
rection capabilities compared to the error-category
specific correction systems which have been cus-
tom engineered for the task. A reasonable solution
to make optimum use of both the approaches is to
develop custom modules for correcting high im-
pact and the most frequent error categories, while
relying on the SMT method for correcting other
error categories. We experiment with two ap-
proaches for integrating the SMT based and error-
category specific systems, and compare both with
the baseline SMT approach:

• Correct all error categories using the SMT
method, followed by correction using the
custom modules.

• Correct only the error categories not han-
dled by the custom modules using the SMT
method, followed by correction using the
custom modules.
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The error categories for which we built cus-
tom modules are noun number, determiner and
subject-verb agreement (SVA) errors. These er-
rors are amongst the most common errors made
by non-native speakers. The noun number and
determiner errors are corrected using the classifi-
cation model proposed by Rozovskaya and Roth
(2013), where the label space is a cross-product
of the label spaces of the possible noun number
and determiners. We use the feature-set proposed
by Kunchukuttan et al. (2013). SVA correction
is done using a prioritized, conditional rule based
system described by Kunchukuttan et al. (2013).

4 Experimental Setup

We used the NUCLE Corpus v3.1 to build a
phrase based SMT system for grammar correction.
The NUCLE Corpus contains 28 error categories,
whose details are documented in Dahlmeier et al.
(2013). We split the corpus into training, tuning
and test sets are shown in Table 1.

Set Document Count Sentence Count
train 1330 54284
tune 20 854
test 47 2013

Table 1: Details of data split for SMT training

The phrase based system was trained using
the Moses1 system, with the grow-diag-final-
and heuristic for extracting phrases and the msd-
bidirectional-fe model for lexicalized reordering.
We tuned the trained models using Minimum Er-
ror Rate Training (MERT) with default parame-
ters (100 best list, max 25 iterations). Instead of
BLEU, the tuning metric was the F-0.5 metric. We
trained 5-gram language models on all the sen-
tences from NUCLE corpus using the Kneser-Ney
smoothing algorithm with SRILM 2.

The classifier for noun number and article cor-
rection is a Maximum Entropy model trained
on the NUCLE v2.2 corpus using the MALLET
toolkit. Details about the resources and tools
used for feature extraction are documented in
Kunchukuttan et al. (2013).

1http://www.statmt.org/moses/
2http://goo.gl/4wfLVw

5 Results and Analysis

Table 2 shows the results on the development set
for different experimental configurations gener-
ated by varying the tuning metrics, and the method
of combining the SMT model and custom correc-
tion modules. Table 3 shows the same results on
the official CoNLL 2014 dataset without alterna-
tive answers.

5.1 Effect of tuning with F-0.5 score
We observe that both precision and recall drop
sharply when the SMT model is tuned with the
F-0.5 metric (system S2), as compared to tuning
with the traditional BLEU metric (system S1). We
observe that system S2 proposes very few correc-
tions (82) as compared to system S1 (188), which
contributes to the low recall of system S2. There
are very few errors in the tuning set (202) which
may not be sufficient to reliably tune the system
to the F-0.5 score. It would be worth investigating
the effect of number of errors in the tuning set on
the accuracy of the system.

5.2 Effect of integrating the SMT and custom
modules

Comparing the results of systems S1, S3 and S5, it
is clear that using the SMT method alone gives the
highest F-0.5 score. However, the recall is higher
for systems which use the custom modules for
some error categories. The recall is highest when
custom modules as well as SMT method are used
for the high impact error categories. The above
observation is a consequence of the fact that the
custom modules have higher recall for certain er-
ror categories compared to the SMT method. The
lower precision of custom modules is due to the
large number of false positives. If the custom
modules are optimized for higher precision, then
the overall ensemble can also achieve higher pre-
cision and consequently higher F-0.5 score. Thus,
the integration of SMT method and custom mod-
ules can be beneficial in improving the overall ac-
curacy of the SMT system.

6 Conclusion

We explored two approaches to adapting the SMT
method for the problem of grammatical correc-
tion. Tuning the SMT system to the F-β metric did
not improve performance over the BLEU-based
tuning. However, we plan to further investigate
to understand the reasons for this behaviour. We
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Id SMT Data Custom Modules Tuning Metric %P %R %F-0.5
S1

All errors

No BLEU 62.23 11.53 33.12
S2 No F-0.5 55.32 5.13 18.71
S3 Yes BLEU 10.99 26.33 12.44
S4 Yes F-0.5 9.80 22.98 11.07
S5 All errors, except Nn,

ArtOrDet, SVA
Yes BLEU 10.15 23.96 11.47

Table 2: Experimental Results for various configurations on the development set

Id SMT Data Custom Modules Tuning Metric %P %R %F-0.5
S1

All errors

No BLEU 38.81 4.15 14.53
S2 No F-0.5 30.77 1.39 5.90
S3 Yes BLEU 29.02 17.98 25.85
S4 Yes F-0.5 28.23 16.72 24.81
S5 All errors, except Nn,

ArtOrDet, SVA
Yes BLEU 28.67 17.29 25.34

Table 3: Experimental Results for various configurations on the CoNLL-2014 test set without alternatives

also plan to explore tuning for recall and other al-
ternative metrics which could be useful in some
scenarios. An ensemble of the SMT method and
custom methods for some high impact error cate-
gories was shown to increase the recall of the sys-
tem, and with proper optimization of the system
can also improve the overall accuracy of the cor-
rection system.
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Abstract 

This paper describes the POSTECH gram-

matical error correction system. Various 

methods are proposed to correct errors 

such as rule-based, probability n-gram 

vector approaches and router-based ap-

proach. Google N-gram count corpus is 

used mainly as the correction resource. 

Correction candidates are extracted from 

NUCLE training data and each candidate 

is evaluated with development data to ex-

tract high precision rules and n-gram 

frames. Out of 13 participating teams, our 

system is ranked 4th on both the original 

and revised annotation.    

1 Introduction 

Automatic grammar error correction (GEC) is 

widely used by learners of English as a second 

language (ESL) in written tasks. Many methods 

have been proposed to correct grammatical errors; 

these include methods based on rules (Naber, 

2003), on statistical machine translation (Brockett 

et al., 2006), on machine learning, and on n-grams 

(Alam et al., 2006). Early research (Han et al., 

2006; De Felice, 2008; Knight & Chander, 1994; 

Nagata et al., 2006) on error correction for non-

native text was based on well-formed corpora.  

Most recent work (Cahill et al., 2013; 

Rozovskaya & Roth, 2011; Wu & Ng, 2013) has 

used machine learning methods that rely on a GE- 

tagged corpus such as NUCLE, Japanese English 

Learner corpus, and Cambridge Learner Corpus 

(Dahlmeier et al., 2013; Izumi et al., 2005; 

Nicholls, 2003), because well-formed and GE-

tagged approaches are closely related to each 

other, can be synergistically combined. Therefore, 

research using both types of data has also been 

conducted (Dahlmeier & Ng, 2011). Moreover, a 

meta-classification method using several GE-

tagged corpora and a native corpus has been pro-

posed to correct the grammatical errors (Seo et al., 

2012). A meta-classifier approach has been pro-

posed to combine a language model and error-spe-

cific classification for correction of article and 

preposition errors (Gamon, 2010). Web-scale 

well-formed corpora have been successfully ap-

plied to grammar error correction tasks instead of 

using error-tagged data (Bergsma et al., 2009; 

Gamon et al., 2009; Hermet et al., 2008). Espe-

cially in the CoNLL-2013 grammar error correc-

tion shared task, many of the high-ranked teams 

(Kao et al., 2013; Mark & Roth, 2013; Xing et al., 

2013) exploited the Google Web-1T n-gram cor-

pus. The major advantage of using these web-

scale corpora is that extremely large quantities of 

data are publicly available at no additional costs; 

thus fewer data sparseness problems arise com-

pared to previous approaches based on error-

tagged corpora. 

We also use the Google Web-1T n-gram corpus. 

We extract the candidate pairs (original erroneous 

text and its correction) from NUCLE training data. 

We use a router to choose the best frame to com-

pare the n-gram score difference between the orig-

inal and replacement in a given candidate pair.  

The intuition of our grammar error correction 

method is the following: First, if the uni-gram 

count is less than some threshold, we assume that 

the word is erroneous. Second, if the replacement 

word n-gram has more frequent than the original 

word n-gram, it presents strong evidence for cor-

rection. Third, depending on the candidate pair, 

tailored n-gram frames help to correct errors ac-

curately. Fourth, only high precision method and 

rules are applied. If correction precision on a can-

didate pair is less than 30% in development data, 
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we do not make a correction for the candidate pair 

at runtime. 

In the CoNLL-Shared Task, objectives were 

presented yearly. In 2012, the objective was to 

correct article and preposition errors; in 2013, it 

was to correct article, preposition, noun number, 

verb form, and subject-verb agreement errors. 

This year, the objective is to correct all errors. 

Thus, our method should also correct prepro-

cessing and spelling errors.  Detailed description 

of the shared task set up, data set, and evaluation 

about the CoNLL-2014 Shared Task is explained 

in (Ng et al., 2014) 

2 Data and Recourse  

The Google Web-1T corpus contains 1012 words 

of running text and the counts for all 109 five-word 

sequences that appear > 40 times (Brants & Franz, 

2006). We used the NUS Corpus of Learner Eng-

lish (NUCLE) training data to extract the candi-

date pairs and CoNLL-2013 Official Shard Task 

test data as development data.  We used the Stan-

ford parser (De Marneffe & Manning, 2008) to 

extract part-of-speech, dependency, and constitu-

ency trees.  

3 Method 

3.1 Overall Process 

We correct the errors in the following order: 

Tokenizing → spelling error correction → punc-

tuation error correction → N-gram Vector Ap-

proach for Noun number (Nn) → Router-based 

                                                 
1 http://abisource.com/projects/enchant/ 

Correction (Deletion Correction → Insertion Cor-

rection → Replacement) for various error types → 

Rule-based method for verb errors. Between each 

pair of step, we parse, tag, and tokenize again us-

ing the Stanford parser because the previous cor-

rection affects parsing, tagging, and tokenizing re-

sults.  

3.2 Preprocessing 

Because the correction task is no longer restricted 

to five error types, tokenizing and spelling error 

correction have become critical for error correc-

tion. To detect tokenizing error such as “civiliza-

tions.It”, a re-tokenzing process is necessary. If a 

word contains a comma, punctuation (e.g., ‘,’ or 

‘.’) and the word count in Google n-gram is less 

than some threshold (here, 1000), we tokenize the 

word, e.g., as “civilizations . It”. We also correct 

spelling errors by referring to the Google n-gram 

word count. If the word uni-gram count is less 

than a threshold (here, 60000) and the part-of-

speech (POS) tag is not NNP or NNPS, we assume 

that the word has o  ne or more errors. The thresh-

old is set based on the development set. We use 

the Enchant Python Library to correct the spelling 

errors1. However, using only one best result is not 

very accurate. Thus, among the best results in the 

Enchant Python Library, we select the one best 

word, i.e. that word with the highest frequency in 

the Google n-gram corpus. Using NUCLE train-

ing data, rules are constructed for comma, punc-

tuation, and other errors (Table 3).  

 

 

 
Figure 1. Overall Process of Router-based Correction 

 

66



3.3 Candidate Generation 

Selecting appropriate correction candidates is crit-

ical for the precision of the method. In article and 

noun number correction, the number of candidates 

is small: ‘a’,’an’,’the’ in article correction, ‘plural’ 

or ‘singular’ in noun number correction. However, 

the number of correction candidates can be unlim-

ited in wrong collocation/idiom errors. Reducing 

the number of candidates is important in the gram-

mar error correction task.  

 

Nn Correction Candidate: noun number correc-

tion has just one replacement candidate. If the 

word is plural, its correction candidate is singular, 

and vice versa. The language tool2 can perform 

these changes. 

 

Other Correction Candidate: for corrections 

other than noun number, candidates are selected 

from the GE-tagged corpus. A total of 4206 pairs 

were extracted. We use the notation of candidate 

pair (o→r), which links the original word (o) and 

its correction candidate (r). In the deletion correc-

tion step, we determine whether or not the word 

should be deleted. In the insertion correction step, 

we select the insertion position in a sentence as a 

space between two words. If o is ∅, insertion cor-

rection is required; if r is ∅, the pair deletion cor-

rection is required. We use the Stanford constitu-

ency parser (De Marneffe & Manning, 2008) to 

extract a noun phrase; if it does not contain a de-

terminer or article, we insert one in front of the 

noun phrase; if the noun in the noun phrase is sin-

gular, ‘the’, ‘a’, and, ‘an’ are selected an insertion 

candidates; if the noun is plural, only ‘the’ is se-

lected as an insertion candidate. We only apply in-

sertion correction at ArtOrDet, comma errors, and 

preposition; we skip insertion correction for other 

error types because selecting an insertion position 

is difficult and if every position is selected as in-

sertion position, precision decrease. 

 

4 N-gram Approach 

We used the following notation. 

N(o) n-gram vector in original sentence 

N(r) n-gram vector in replacement sen-

tence 

n(o)i i th element in N(o) 

𝑛(𝑟)𝑖 i th element in N(r) 

N[i:j] n-gram vector from i th element to 

j th element 

                                                 
2http://www.languagetool.org 

 

Web-scale data have also been used successfully 

in many other research areas, such as lexical dis-

ambiguation (Bergsma et al., 2009). Most NLP 

systems resolve ambiguities with the help of a 

large corpus of text, e.g.: 

• The system tried to decide {among, between} 

the two confusable words.  

Disambiguation accuracy increases with the size 

of the corpus. Many systems incorporate the web 

count into their selection process. For the above 

example, a typical web-based system would query 

a search engine with the sequences “decide among 

the” and “decide between the” and select the can-

didate that returns the most hits. Unfortunately, 

this approach would fail when disambiguation re-

quires additional context. Bergsma (2009) sug-

gested using the context of samples of various 

lengths and positions. For example, from the 

above the example sentence, the following 5-gram 

patterns can be extracted: 

 

•  system tried to decide {among, between}  

•  tried to decide {among, between} the 

•  to decide {among, between} the two 

• decide {among, between} the two confusable 

• {among, between} the two confusable words 

 

Similarly, four 4-gram patterns, three 3-gram pat-

terns and two 2-gram patterns are extracted by 

spanning the target. A score for each pattern is cal-

culated by summing the log-counts. This method 

was successfully applied in lexical disambigua-

tion. Web-scale data were used with the count in-

formation specified as features. Kao et al. (2013) 

used a “moving window (MW)” : 

 
𝑀𝑊𝑖,𝑘(w) = {𝑤𝑖−𝑗 , … , 𝑤𝑖−𝑗+(𝑘−1), 𝑗 = 0, 𝑘 − 1}  (1) 

 

where 𝑖  denotes the position of the word, k the 

window size and w the original or replacement 

word at position 𝑖. The window size is set to 2 to 

5 words. MW is the same concept as the SUMLM: 

 

𝑆𝑖,𝑘(𝑤) = ∑ 𝑐𝑜𝑢𝑛𝑡(𝑛𝑔𝑟𝑎𝑚)

𝑛𝑔𝑟𝑎𝑚∈𝑀𝑊𝑘(𝑤)

(2) 

Both approaches apply the sum of all MWs in (1).  

Our approach is based on the MW method. The 

difference is that instead of summing all the MWs, 

we consider only one best MW which is referred 

to here as a frame. The following sentences 
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demonstrate the case when the following words 

are the crucial features to correct errors: 

•  I will do it (in→at) home. 

•  We need (an→∅) equipment to solve problems. 

However, following sentences demonstrate the 

case when preceding words is the crucial feature 

to correct errors: 

•  One (are→is) deemed to death at a later stage . 

•  But data that (shows→show) the rising of life 

expectancies 

We investigated which frame is the best based on 

the development set, then router is trained to de-

cide on the frame depending on the candidate pair.  

 

4.1 Router-based N-gram Correction 

A frame is a sequence of words around the target 

position. A frame is divided into a preceding 

frame and a following frame. The target position 

can be either a position of a target word (Figure 

2a) or a position in which a candidate word is 

judged to be necessary (Figure 2b). Once the size 

(i.e., number of words) of frames is chosen, sev-

eral forms of frames (n; m) with different sizes of 

preceding (n) and following (m) words are possi-

ble. 

 

 
Figure 2.  Frame for n-gram 

 

The router is designed to take care of two stages 

(training, run-time) error correction. During train-

ing, the router selects the best frame for each can-

didate pair. By testing each candidate pair with 

each frame in the development data; the frame 

with the best precision is selected as the best 

frame among (1;1), (1;2), (1;3), (2;1),(2:2), etc.  

 At the end of the training stage, the router has 

a list of pairs (x) which matches the best frame (y) 

associated with it (Table 1) as a result of compar-

ing each candidate pair with one in the develop-

ment corpus. 

During runtime, the router assigns each candi-

date pair to the best frame to produce the output 

sentence (Figure 1). For example, for a sentence 

“This ability is not seen 40 years back where the 

technology advances were not as good as now .” 

the candidate pair for correction (back→ ago) is 

suggested. The best frame assigned by the router 

for this pair (1;1), which is “years back where”. 

The best candidate frame for this is “year ago 

where”. At this point, we query the count of 

“years back where” and “years ago where” from 

the Google N-gram Count Corpus; these counts 

are 46 and 1815 respectively. Because the count 

of “years ago where” is greater than that of “years 

back where”, the former is selected as the correct 

form. As a result, the sentence “This ability is not 

seen 40 years back where the technology ad-

vances were not as good as now.” is corrected to 

“This ability is not seen 40 years ago where the 

technology advances were not as good as now.” 

Some words are allowed to have multiple best 

frames; in all the best frames, if a candidate word 

sequence is more frequent than an original word 

sequence in the Google count, then correction is 

made. The multiple frames are also trained from 

the development data set.  

4.2 Probability n-gram Vector 

We use the probability n-gram Vector approach to 

correct Nn. Most errors are corrected using the 

router-based method; however, training the router 

for every noun is difficult because the number of 

nouns is extremely large. Moreover, for noun 

number, we found that rather than considering one 

direction or one frame of n-gram, every direction 

of n-gram should be considered for better perfor-

mance such as forward, backward, and two-way. 

Thus, the probability n-gram vector algorithm is 

applied only in the noun number error correction.  

We propose the probability n-gram vector method 

to correct grammatical errors to consider both di-

rections, forward and backward. In a forward n-

gram, the probability of each word is estimated 

Table 1. Example of Trained Router 

x (o→r) y 

(another→other) (1;3) 

(less→fewer) (1;3) 

(rise→raise) (1;2) 

(back→ago) (1;1) 

(could→can) (2;1) 

(well→good) (2;1) 

(near→∅) No correction 
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depending on the preceding word. On the other 

hand, in a backward n-gram the probability of 

each word is estimated depending on the follow-

ing words. When the probability of a candidate 

word is higher than original word, we replace the 

original with the candidate word in the correction 

step. 

Probability n-gram vectors are generated from the 

original word and a candidate word (Figure 3). 

Rather than using a single sequence of n-gram 

probability, we apply contexts of various lengths 

and positions. We applied the probability infor-

mation using the Google n-gram count infor-

mation as in the following equation: 

 P(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1) =
𝐶(𝑤𝑖−2,𝑤𝑖−1𝑤𝑖)

𝐶(𝑤𝑖−2,𝑤𝑖−1)
 

 

Moreover, rather than calculating one word’s 

probability given n words such as 

P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, 𝑤𝑖−3), our model calculates the 

probability of m words given an n word sequence. 

The following is an example 4-gram with forward 

probability: 

• m = 3, n = 1 P(𝑤𝑖−2, 𝑤𝑖−1𝑤𝑖|𝑤𝑖−3) 

• m = 2, n = 2 P(𝑤𝑖−1, 𝑤𝑖|𝑤𝑖−3, 𝑤𝑖−2) 

• m = 1, n = 3 P(𝑤𝑖|𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1). 

We construct a 40-dimensional probability vector 

with forward and backward probabilities consid-

ering of twenty 5-grams, twelve 4-grams, six 3-

gram, and two 2-gram. Additionally, the elements 

of the n-gram vector are detailed in Table 2. 

 

Back-Off Model: A high-order n-gram is more 

effective than a low-order n-gram. Thus, we ap-

plied back-off methods (Katz, 1987) to assign 

higher priority to higher order probabilities. If all 

elements in 5-gram vectors are 0 for both the orig-

inal and candidate sentence, which means 

∑ {𝑛(𝑜)𝑖 + 𝑛(𝑟)𝑖} = 019
𝑖=0 , we consider 4-gram 

vectors (N[20:31]). If 4-gram vectors are 0, we con-

sider 3-gram vectors. Moreover, when the pro-

posed method calculates each of the forward, 

backward and two-way probabilities, the back-off 

method is used to get each score.  

 

Correction: Here, we explain the process of error 

correction using n-gram vectors. First, we gener-

ate Nn error candidates. Second, we construct the 

n-gram probability vector for each candidate. The  

back-off method is applied in N(o)+N(r), The vec-

tor contains various directions and ranges of prob-

abilities of words given a sample sentence. We 

then calculate forward n-gram score by summing 

even elements in the vector. We calculate the 

backward n-gram by summing odd elements in 

Table 2. Next, the two-way n-gram is calculated 

by summing all elements for both directions n-

gram. If forward, backward, and two-way n-

grams have higher probabilities for the candidate 

word, we select the candidate as corrected word 

(Figure 3). 

Table 2: The elements of n-gram vector  

5-GRAM 

𝑛0 = 𝑃(𝑤𝑖|𝑤𝑖+1𝑤𝑖+2𝑤𝑖+3𝑤𝑖+4) backward 

𝑛1 = 𝑃(𝑤𝑖|𝑤𝑖−4𝑤𝑖−3𝑤𝑖−2𝑤𝑖−1) forward 

𝑛2 = 𝑃(𝑤𝑖𝑤𝑖+1|𝑤𝑖+2𝑤𝑖+3𝑤𝑖+4) backward 

…….. 

4-GRAM 

𝑛20 = 𝑃(𝑤𝑖|𝑤𝑖+1𝑤𝑖+2𝑤𝑖+3) backward 

𝑛21 = 𝑃(𝑤𝑖|𝑤𝑖−3𝑤𝑖−2𝑤𝑖−1) forward 

…….. 

 

3-GRAM 

𝑛32 = 𝑃(𝑤𝑖|𝑤𝑖+1𝑤𝑖+2) backward 

𝑛33 = 𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1) forward 

𝑛34 = 𝑃(𝑤𝑖𝑤𝑖+1|𝑤𝑖+2) backward 

𝑛35 = 𝑃(𝑤𝑖−1𝑤𝑖|𝑤𝑖−2) forward 

𝑛36 = 𝑃(𝑤𝑖−1𝑤𝑖|𝑤𝑖+1) backward 

𝑛37 = 𝑃(𝑤𝑖𝑤𝑖+1|𝑤𝑖−1) forward 

2-GRAM 

𝑛38 = 𝑃(𝑤𝑖|𝑤𝑖+1) backward 

𝑛39 = 𝑃(𝑤𝑖|𝑤𝑖−1) forward 

 

 
Figure 3. Overall process of Nn Correction 
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5 Verb Correction (Rule-based)  

There are several types of verb errors in non-na-

tive text such as verb tense, verb modal, missing  

verb, verb form, and subject-verb-agreement 

(SVA). Among these errors, we attempt to correct 

SVA errors using rule-based methods (Table 3). 

In non-native text, parsing and tagging errors are 

inevitable, and it may cause false alarm. Thus, in-

stead of dependency parsing to find subject and 

verb, we consider the preceding five words be-

cause erroneous sentences often contain depend-

ency errors. Moreover, in erroneous sentences, 

POS tagging accuracy is lower than native text. 

Thus, NN and VB are misclassified, as are VBZ 

and NNS. A rule is used that encodes the relevant 

linguistic knowledge that these words or POSs 

should not occur in the five positions preceding 

the VBZ: ‘NN’, ’this’, ’it’ ,’one’, ’VBG’. Moreover, 
words that preceded and follow ‘which’ should 
agree in verb form, as indicated in Rule3 and 
Rule4. 
 

6 Experiment 

The CoNLL-2014 training data consist of 1,397 

articles together with gold-standard annotation. 

Algorithm Rule1-Comma 
1: function rule1( toksent,  tokpos) 

2: for i ← 0 … len(toksent) do 

3: if  toksent[i] in [ However’, ‘Therefore’, ‘Thus’] and not  toksent[i + 1] == ‘,’  then 
4: toksent[i]= toksent[i] + ‘ ,’ 

 

Algorithm Rule2-preposition 
1: function rule2( toksent,  tokpos) 

2: for i ← 0 … len(toksent) do 

3: if  toksent[i] = ‘according’ and not  toksent [i+1] = ‘to’ 
4:  toksent [i+1] = ‘to ‘+  toksent [i+1] 

 

Algorithm Rule3-Subject Verb Agreement 

1: function rule3( toksent,  tokpos) 

2: for i ← 0 … len(toksent) do 

3: if  toksent[i] is ‘which’ 
4: if  tokpos[i − 1] == ‘NNS’ and  tokpos[i + 1] == ‘VBZ’  then 

5: toksent[i + 1]= changeWordForm (toksent[i + 1], ‘VBP’) 

6: else if  tokpos[i − 1]  == ‘NNS’ and  tokpos[i + 1] == ‘NNS’ then 

7: toksent[i + 1]=  =changeWordForm(toksent[i + 1], ‘VBP’) 

8: else if  tokpos[i − 1] == ‘NN’ and  tokpos[i + 1]== ‘are’ then 

9: toksent[i + 1]=  = is 
10: else if  tokpos[i − 1] == ‘NN’ and  tokpos[i + 1] in [‘VBP’,’VB’,’NN’] then 

11: toksent[i + 1]=  = makePlural(toksent[i + 1]) 

 

Algorithm Rule4-Subject Verb Agreement 

1: function rule4( toksent,  tokpos) 

2: for i ← 0 … len(toksent) do 

3: if not ( tokpos[i]is ′VBZ′ and [‘NN’,’this’,’it’,’one’,’VBG’] in  tokpos[i − 5: i]) then 

4:  tokcand←changeWordForm( tokword[i], ‘VBP’) 

5: else if not ( tokpos[i]is ′VBP′ and [‘I’,’we’,’they’,’and’] in  toksent[i − 5: i]) then 

6:  tokcand ←changeWordForm( tokword[i], ‘VBZ’) 

7: else if not ( tokpos[i]is ′NN′ and [‘be’,’ing’] in  toksent[i − 5: i]) then 

8:  tokcand←changeWordForm( tokword[i], ‘VBN’) 

9:         original = ngramCount( toksent), candidate =ngramCount(tokcand) 

10: If original < candidate then 
11: Return tokcand 

Table 3. Examples of Rules  
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The documents are a subset of the NUS Corpus of 

Learner English (NUCLE). We use the Max-

Match (M2) scorer provided by the CoNLL-2014 

Shared Task. The M2 scorer works by using the 

set that maximally matches the set of gold-stand-

ard edits specified by the annotator as being equal 

to the set of system edits that are automatically 

computed and used in scoring (Dahlmeier & Ng, 

2012). The official evaluation metric is F0.5, 

weighting precision twice as much as recall. We 

achieve F0.5 of 30.88; precision of 34.51; recall 

of 21.73 in the original annotation (Table 4). After 

original official annotations announced by organ-

izers (i.e., only based on the annotations of the two 

annotators), another set of annotations is offered 

based on including the additional answers pro-

posed by the 3 teams (CAMB, CUUI, UMC). The 

improvement gap between the original annotation 

and the revised annotation of our team (POST) is 

5.89%.  We obtain the highest improvement rate 

except for the 3 proposed teams (Figure 4), F0.5 

of 36.77; precision of 41.28; recall of 25.59 in the 

revised annotation. Our system achieves the 4th 

highest scores of 13 participating teams based on 

both the original and revised annotations. To ana-

lyze the scores of each of the error types and mod-

ules, we apply the method of n-gram vector (Nn), 

rule-based (Verb, Mec), and router-based (others) 

separately in both the original and the revised an-

notation of all error types. We achieve high preci-

sion by rules at the Mec which indicates punctua-

tion, capitalization, spelling, and typos errors. Ad-

ditionally, the Nn type has the highest improve-

ment gap between the original and revised anno-

tation (17% → 24.31 of F0.5).  In order for our 

team to improve the high precision in the rule-

based approach, we tested potential rules on the 

development data and kept a rule only if its preci-

sion on that data set was 30% or greater. When we 

trained router, the same strategy was conducted. 

If a frame could not achieve 30% precision, we 

assigned the candidate pair as “no correction” in 

the router. These constraints achieve precision of 

30 % in most error types.  

7 Discussion  

Although preposition errors are frequently com-

mitted in non-native text, we mostly skip the cor-

rection of preposition error. This is because as-

signing prepositions correctly is extremely diffi-

cult, because (1) the preposition used can vary 

(e.g., Canada: ‘on the weekend’ vs. Britain ‘at the 

weekend’); (2) in a given location, more than one 

preposition may be possible, and the choice af-

fects the meaning (e.g., ‘on the wall’, vs. ‘at the 

wall’). Verb errors can consist of many multi-

 
Figure 4. Improvement gap between the original annotation and revised annotation of each team 

 

0

2

4

6

8

10

 
Table 4. Performance on each error type 

 Original annotation  Revised annotation 

 Precision Recall F0.5  Precision Recall F0.5 

N-gram (Nn) 31.0 6.55 17.75  42.28 9.0 24.31 

Rule (Verb) 28.95 1.12 4.86  31.17 1.29 5.52 

Rule (Mec) 49.34 5.47 18.94  52.16 6.17 20.93 

Router (Others) 28.11 12.49 22.49  35.29 15.45 28.08 

All 34.51 21.73 30.88  41.28 25.59 36.77 
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word errors due to errors of usages of passive and 

active voice. (e.g. release→be released). Our cur-

rent system cannot correct these multi-words er-

rors, for three reasons. First, if the original exam-

ple consists of one word and the optimal replace-

ment consists of two words, n-gram scores cannot 

be applied easily to compare probabilities be-

tween them. Second, the n-gram approach also 

fails if the distance between subject and verb is 

more than 5. Third, multiply dependent errors are 

critical for verb error correction. For example, 

noun number, determiner, and subject verb agree-

ment are often dependent upon each other: e.g. 

“And once this happens, privacy does not exist 

any more and people's (life→lives) (is→are) un-

der great threaten.” The correction order will be 

important when all error type must be corrected 

simultaneously.  

Grammar error correction is a challenging 

problem. In CoNNL-2013, more than half of the 

related teams obtained F-score < 10.0. This low 

performance in the grammar error correction can 

be explained by several reasons, which indicate 

the present limitations of grammar correction sys-

tems. 

Among a total of 4206 pairs, we only use small 

amount of candidate pairs, 215 pairs are used for 

candidate pairs. The other 3991 pairs are dis-

carded in the router training step because these 

pairs cannot be corrected by the n-gram approach. 

Various classification methods and statistical ma-

chine translation based methods will be investi-

gated in the router-based approach to find the tai-

lored methods for the given word. A demonstra-

tion and progress of our grammar error correction 

system is available to the public3.  

8 Conclusion 

We have described the POSTECH grammatical 

error correction system. We use the Google N-

gram count corpus to detect spelling errors, punc-

tuation, and comma errors. A rule-based method 

is used to correct verb, punctuation, comma errors 

and preposition errors. The Google corpus is also 

used for an n-gram vector approach and a router-

based approaches. Currently we use the router to 

select the best frame. In the future, we will train a 

router to select the best method among classifica-

tion, n-gram approach, statistical machine transla-

                                                 
3 http://isoft.postech.ac.kr/grammar 

tion-based method and pattern matching ap-

proaches. A machine learning method will be used 

to train the router with various features.   
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Abstract

This paper describes the system of Shang-
hai Jiao Tong Unvierity team in the
CoNLL-2014 shared task. Error correc-
tion operations are encoded as a group of
predefined labels and therefore the task
is formulized as a multi-label classifica-
tion task. For training, labels are obtained
through a strict rule-based approach. For
decoding, errors are detected and correct-
ed according to the classification results.
A single maximum entropy model is used
for the classification implementation in-
corporated with an improved feature selec-
tion algorithm. Our system achieved pre-
cision of 29.83, recall of 5.16 and F 0.5
of 15.24 in the official evaluation.

1 Introduction

The task of CoNLL-2014 is grammatical error cor-
rection which consists of detecting and correcting
the grammatical errors in English essays written
by non-native speakers (Ng et al., 2014). The re-
search of grammatical error correction can poten-
tially help millions of people in the world who are
learning English as foreign language. Although
there have been many works on grammatical error
correction, the current approaches mainly focus on
very limited error types and the result is far from
satisfactory.

The CoNLL-2014 shared task, compared with
the previous Help Our Own (HOO) tasks (Dale et
al., 2012) considering only determiner and prepo-
sition errors and the CoNLL-2013 shared task fo-
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No.61170114, and Grant No.61272248), the National Ba-
sic Research Program of China (Grant No.2013CB329401),
the Science and Technology Commission of Shanghai Mu-
nicipality (Grant No.13511500200), and the European Union
Seventh Framework Program (Grant No.247619).

†Corresponding author

cusing on five major types of errors, requires to
correct all 28 types of errors (Ng et al., 2014).

One traditional strategy is designing a system
combined of a set of sub-models, where each sub-
model is specialized for a specific subtask, for ex-
ample, correcting one type of errors. This strat-
egy is computationally efficient and can adopt d-
ifferent favorable features for each subtask. Top
ranked systems in CoNLL-2013 (Rozovskaya et
al., 2013; Kao et al., 2013; Xing et al., 2013;
Yoshimoto et al., 2013; Xiang et al., 2013) are
based on this strategy. However, the division of
the model relies on prior-knowledges and the de-
signing of different features for each sub-model
requires a large amount of manual works. This
shortage is especially notable in CoNLL-2014
shared task, since the number of error types is
much larger and the composition of errors is more
complicated than before.

In contrast, we follow the work in (Jia et al.,
2013a; Zhao et al., 2009a), integrating everything
into one model. This integrated system holds a
merit that a one-way feature selection benefits the
whole system and no additional process is needed
to deal with the conflict or error propagation of ev-
ery sub-models. Here is a glance of this method: A
set of more detailed error types are generated auto-
matically from the original 28 types of errors. The
detailed error type can be regarded as the label of
a word, thus the task of grammatical error detec-
tion is transformed to a multi-label classification
task using maximum entropy model (Berger et al.,
1996; Zhao et al., 2013). A feature selection ap-
proach is introduced to get effective features from
large amounts of feature candidates. Once errors
are detected through word label classification, a
rule-based method is used to make corrections ac-
cording to their labels.

The rest of the paper is organized as follows.
Section 2 describes the system architecture. Sec-
tion 3 introduces the feature selection approach
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and the features we used. Experiments and result-
s are presented in section 5, followed by conclu-
sion.

2 System Architecture

In our approach, the grammatical error detection
is regarded as a multi-label classification task. At
first, each token in training corpus is assigned a la-
bel according to the golden annotation. The con-
struction of labels is rule based using an extend-
ed version of Levenshtein edit distance algorith-
m which will be discussed in the following sub-
section. Each label maps an edit operation to do
the correction, thus the generated labels are much
more detailed than the originial 28 error types.
Then, a maximum entropy (ME) model is adopted
as the classifier. With the labeled data, the process
of grammatical error correction is just applying the
edit operation mapped by each label, which is ba-
sically the reverse of the labeling phase.

2.1 Data Labeling
In CoNLL-2014 shared task, there are 28 error
types but they can not be used directly as class la-
bels, since these types are too general that they can
hardly be corrected by applying one rule-based
edit. For example, the correction of Vform (ver-
b form) error type includes all verb form inflec-
tions such as converting a verb to its infinitive for-
m, gerund form, past form and past participle and
so on. Previous works (Dahlmeier et al., 2012;
Rozovskaya et al., 2012; Kochmar et al., 2012)
manually decompose each error types to more de-
tailed subtypes. For example, in (Dahlmeier et al.,
2012), the determinater errors are decomposed in-
to:

• replacement determiner (RD): { a → the }
• missing determiner (MD): { ϵ → a }
• unwanted determiner (UD): { a → ϵ }
For a task with a few error types such as merely

determinative and preposition error in HOO 2012,
manually decomposition may be sufficient. How-
ever, for CoNLL-2014, all 28 error types are re-
quired to be corrected and some of these types
such as Rloc- (Local redundancy) and Um (Un-
clear meaning) are quite complex that the manu-
al decomposition is time consuming and requires
lots of grammatical knowledges. Therefore, an au-
tomatica decomposition method is proposed. It is

extended from the Levenshtein edit distance algo-
rithm and can divide error types into more detailed
subtypes that each subtype can be corrected by ap-
plying one simple rule. How to calculate the ex-
tended Levenshtein edit distance is described in
Algorithm 1.

Algorithm 1 Extended Levenshtein Edit Distance
INPUT: tokssrc, toksdst

OUTPUT: E, P
lsrc, ldst ← len(tokssrc), len(toksdst)
D[0 . . . lsrc][0 . . . ldst]← 0
B[0 . . . lsrc][0 . . . ldst]← (0, 0)
E[0 . . . lsrc][0 . . . ldst]← ϕ
for i← 1 . . . lsrc do

D[i][0]← i
B[i][0]← (i-1, 0)
E[i][0]← D

end for
for j ← 1 . . . ldst do

D[0][j]← j
B[0][j]← (0, j-1)
E[0][j]← A

end for
for i← 1 . . . lsrc; do

for j ← 1 . . . ldst do
if tokssrc[i-1] = toksdst[j-1] then

D[i][j]← D[i-1][j-1]
B[i][j]← (i-1, j-1)
E[i][j]← U

else
m = min(D[i-1][j-1], D[i-1][j], D[i][j-1])
if m = D[i-1][j-1] then

D[i][j]← D[i-1][j-1] + 1
B[i][j]← (i-1, j-1)
if lemma(tokssrc[i-1])

= lemma(toksdst[j-1]) then
E[i][j]← S

else
E[i][j]← I

end if
else if m = D[i-1][j] then

D[i][j]← D[i-1][j] + 1
B[i][j]← (i-1, j)
E[i][j]← D

else if m = D[i][j-1] then
D[i][j]← D[i][j-1] + 1
B[i][j]← (i, j-1)
E[i][j]← A

end if
end if

end for
end for
i, j ← lsrc, ldst

while i > 0 ∨ j > 0 do
insert E[i][j] into head of E
insert toksdst[j − 1] into head of P
(i, j)← B[i][j]

end while
return (E, P)

In this algorithm, tokssrc represents the tokens
that are annotated with one grammatical error and
toksdst represents the corrected tokens of tokssrc.
At first, three two dimensional matrixes D, B and
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E are initialized. For all i and j, D[i][j] holds
the Levenshtein distance between the first i tokens
of tokssrc and first j tokens of toksdst. B stores
the path of the Levenshtein distance and E stores
the edit operations in this path. The original Lev-
enshtein edit distance has 4 edit operations: un-
change (U ), addition (A), deletion (D) and substi-
tution (S). We extend the “substitution” edit into
two types of edits: inflection (I) and the original
substitution (S). If two different words have the
same lemma, the substitution operation is I, else is
S. lemma(x) returns the lemma of token x. This
algorithm returns the edit operations E and the pa-
rameters of these operations P. Here is a simple
sample illustrating this algorithm. For the golden
edit {a red apple is → red apples are}, tokssrc is
a red apple is, toksdst is red apples are, the output
edits E will be {D,U , I,S}, and the parameters P
will be {-, red, apples, are}.

Then with the output of this extended Leven-
shtein distance algorithm, labels can be generated
by transforming these edit operations into readable
symbols. For those tokens without errors, we di-
rectly assign a special label “⊙” to them. A tricky
part of the labeling process is the problem of the
edit “addition”, A. A new token can only be added
before or after an existing token. Thus for edit op-
eration with addition, we must find an existing to-
ken that the label can be assigned to, and this sort
of token is defined as pivot. A pivot can be a token
that is not changed in an edit operation, such as the
“apple” in edit {apple → an apple}, or some oth-
er types of edit such as the inflection of “look” to
“looking” in edit {look → have been looking at}.

The names of these labels are based on BNF
syntax which is defined in Figure 1. The non-
terminal ⟨word⟩ can be substituted by all words
in the vocabulary. The non-terminal ⟨inflection-
rules⟩ can be substituted by terminals of inflection
rules that are used for correcting the error types of
noun number, verb form, and subject-verb agree-
ment errors. All the inflection rules are listed in
Table 1.

With the output of extended Levenshtein edits
distance algorithm, Algorithm 2 gives the process
to generate labels whose names are based on the
syntax defined in Figure 1. It takes the output E, P
of Algorithm 1 as inputs and returns the generat-
ed set of labels L. Each label in L corresponds to
one token in tokssrc in order. For our previous ex-
ample of edit {a red apple is → red apples are},

⟨label⟩ ::= ⟨simple-label⟩ | ⟨compound-label⟩

⟨simple-label⟩ ::= ⟨pivot⟩ | ⟨add-before⟩ |
⟨add-after⟩

⟨compound-label⟩ ::= ⟨add-before⟩ ⟨pivot⟩
| ⟨pivot⟩ ⟨add-after⟩
| ⟨add-before⟩ ⟨pivot⟩ ⟨add-after⟩

⟨pivot⟩ ::= ⟨unchange⟩ | ⟨substitution⟩ |
⟨inflection⟩

| ⟨deletion⟩

⟨add-before⟩ ::= ⟨word⟩⊕
| ⟨word⟩⊕⟨add-before⟩

⟨add-after⟩ ::= ⊕⟨word⟩
| ⊕⟨word⟩⟨add-after⟩

⟨substitution⟩ ::= ⟨word⟩

⟨inflection⟩ ::= ⟨inflection-rules⟩

⟨unchange⟩ ::= ⊙

⟨deletion⟩ ::= ⊖

Figure 1: BNF syntax of label

Rules Description
LEMMA change word to its lemma
NPLURAL change noun to its plural form
VSINGULAR change verb to its singular form
GERUND change verb to its gerund form
PAST change verb to its past form
PART change verb to its past partici-

ple

Table 1: Inflection rules

the L returned by Algorithm 2 is {⊖, ⊙, NPLU-
RAL, ARE} corresponding to the tokens {a, red,
apple, is} in tokssrc. Some other examples of the
generated labels are presented in Table 2.

These labels are elaborately designed that each
of them can be interpreted easily as a series of ed-
it operations. Once the labels are determined by
classifier, the correction of the grammatical errors
is conducted by applying the edit operations inter-
preted from these labels.
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Algorithm 2 Labeling Algorithm
1: INPUT: E, P
2: OUTPUT: L
3: pivot← number of edits in E that are not A
4: L← ϕ
5: L← ′′

6: while i < length(E) do
7: if E[i] = A then
8: L← L+ label of edit E[i] with P[i]
9: i← i + 1

10: else
11: l← L+ label of edit E[i] with P[i]
12: pivot← pivot− 1
13: if pivot = 0 then
14: i← i + 1
15: while i < length of E do
16: l← l +⊕+ P[i]
17: i← i + 1
18: end while
19: end if
20: push l into L
21: L← ′′

22: end if
23: end while
24: L← upper case of L
25: return L

Tokens Edit Label
to {to reveal→revealing} ⊖
reveal GERUND
a {a woman→women} ⊖
woman NPLURAL
developing {developing world THE⊕
wold →the developing world} ⊙
a {a→ ϵ} ⊖
in {in→on} ON
apple {apple→an apple} AN⊕

Table 2: Examples of labeling

2.2 Label Classification

Using the approach described above, the training
corpus is converted to a sequence of words with
labels. Maximum entropy model is used as the
classifier. It allows a very rich set of features to be
used in a model and has shown good performance
in similiar tasks (Zhao et al., 2013). The features
we used are discussed in the next section.

3 Feature Selection and Generation

One key factor affecting the performance of maxi-
mum entropy classifier is the features it used. A
good feature that contains useful information to
guide classification will significantly improve the
performance of the classifier. One direct way to
involve more good features is involving more fea-
tures.

In our approach, large amounts of candidate
features are collected at first. We carefully exam-

ine the factors involved in a wide range of fea-
tures that have been or can be used to the word
label classification task. Many features that are
considered effective in various of previous work-
s (Dahlmeier et al., 2012; Rozovskaya et al.,
2012; Han et al., 2006; Rozovskaya et al., 2011;
Tetreault, Joel R and Chodorow, Martin, 2008)
are included. Besides, features that are used in
the similar spell checking tasks (Jia et al., 2013b;
Yang et al., 2012) and some novel features show-
ing effectiveness in other NLP tasks (Wang et al.,
2013; Zhang and Zhao, 2013; Xu and Zhao, 2012;
Ma and Zhao, 2012; Zhao, 2009; Zhao et al.,
2009b) are also included. However, using too
many features is time consuming. Besides, it in-
creases the probability of overfitting and may lead
to a poor solution of the maximum-likelihood pa-
rameter estimate in the ME training.

Algorithm 3 Greedy Feature Selection
1: INPUT: all feature candidates F
2: OUTPUT: selected features S
3: S = {f0, f1, . . . , fk}, a random subset of F
4: while do
5: C = RECRUITMORE(S)
6: if C = {} then
7: return S
8: end if
9: S′ = SHAKEOFF(S+C)

10: if scr(M(S)) ≥ scr(M(S′)) then
11: return S
12: end if
13: S = S′

14: end while
15: function RECRUITMORE(S)
16: C = {}, and p = scr(M(S))
17: for each f ∈ F − S do
18: if p < scr(M(S + {f})) then
19: C = C + {f}
20: end if
21: end for
22: end function
23: function SHAKEOFF(S)
24: while do
25: S′ = S0 = S
26: for each f ∈ S do
27: if scr(M(S′)) < scr(M(S′ − {f})) then
28: S′ = S′ − {f}
29: end if
30: end for
31: S = S′

32: if S′ = S0 then
33: return S′

34: end if
35: end while
36: end function

Therefore a feature selection algorithm is intro-
duced to filter out “bad” features at first and the re-
maining features will be used to generate new fea-
tures. The feature selection algorithm has shown
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effectiveness in (Zhao et al., 2013) and is present-
ed in Algorithm 3.

In this algorithm, M(S) represents the model
using feature set S and scr(M) represents the e-
valuation score of model M on a development da-
ta set. It repeats two main steps until no further
performance gain is achievable:

1. Include any features from the rest of F into
the current set of candidate features if the in-
clusion would lead to a performance gain.

2. Exclude any features from the current set of
candidate templates if the exclusion would
lead to no deterioration in performance.

By repeatedly adding the useful and removing
the useless features, the algorithm aims to return
a better and smaller set of features for next round.
Only 55 of the 109 candidate features remain af-
ter using this algorithm and they are presented in
Table 4. Table 3 gives an interpretation of the ab-
breviations used in Table 4. Each feature of a word
is set to that listed in feature column if the word
satisfies the condition listed in current word col-
umn, else the feature is set to “NULL”. For ex-
ample, if the current word satisfies the condition
in the first row of Table 4 which is the first word
in the left of a NC, feature 1 of this word is set to
all words in the NC, otherwise, feature 1 is set to
“NULL”.

4 Experiment

4.1 Data Sets

The CoNLL-2014 training data is a corpus of
learner English provided by (Dahlmeier et al.,
2013). This corpus consists of 1,397 articles, 12K
sentences and 116K tokens. The official blind test
data consists of 50 articles, 245 sentences and 30K
tokens. More detailed information about this data
is described in (Ng et al., 2014; Dahlmeier et al.,
2013).

In development phase, the entire training corpus
is splited by sentence. 80% sentences are picked
up randomly and used for training and the rest
20% are used as the developing corpus. For the fi-
nal submission, the entire corpus is used for train-
ing.

Abbreviation Description
NP Noun Phrase
NC Noun Compound and is ac-

tive if second to last word in
NP is tagged as noun

VP Verb Phrase
cw Current Word
pos part-of-speech of the current

word
X.li the ith word in the left of X
X.ri the ith word in the right of X
NP[0] the first word of NP
NP.head the head word of NP
NP.(DT or
IN or TO)

word in NP whose pos is DT
or IN or TO

VP.verb word in VP whose pos is ver-
b

VP.NP NP in VP
dp the dependency relation gen-

erated by standford depen-
dency parser

dp.dep the dependent in the depen-
dency relation

dp.head the head in the dependency
relation

dp.rel the type of the dependency
relation

Table 3: The interpretation of the abbrevations in
Table 4

4.2 Data Labeling

The labeling algorithm described in section 2.1 is
firstly applied to the training corpus. Total 7047
labels are generated and those whose count is larg-
er than 15 is presented in Table 5. Directly ap-
plying these 7047 labels for correction receives an
M2 score of precision=90.2%, recall=87.0% and
F 0.5=89.5%. However, the number of labels
is too large that the training process is time con-
suming and those labels appears only few times
will hurt the generalization of the trained model.
Therefore, labels with low frequency which ap-
pear less than 30 times are cut out and 109 labels
remain. The M2 score of the system using this re-
fined labels is precision=83.9%, recall=64.0% and
F 0.5=79.0%. Note that even applying all labels,
the F 0.5 is not 100%. It is because some annota-
tions in the training corpus are not consistency.
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current word feature
NC.l1 NC
NP.l1 NP
NP[0] NP.l1.pos
NC.l1 NC
NC.l1 NC.l1.pos
NC.l1 and pos=DT NC
NC.l1 and pos=VB NC
NP.l1 and pos=VB NP
pos=VB cw
pos=DT cw
the cw.r1

a cw.r1

an cw.r1

NP[0] cw
NP[0] NP.l1
NP[0] NP.l2
NP[0] NP.l3
NP[0] NP.l1.pos
NP[0] NP.l2.pos
NP[0] NP.l3.pos
NP.l1 NP.head
NP.l1 NP.head.pos
NP.head NP. head
NP.head NP. head.bag
NP.head NP. head.pos
NP.head NP. head.pos.bag
NP.head NP. (JJ or CC)
NP.(DT or IN or TO) NP
NP.(DT or IN or TO) NP.head
NP.(DT or IN or TO) NP.head.pos
dp.dep dp.head
dp.head dp.dep
dp.dep dp.head.pos
dp.head dp.dep.pos
dp.dep dp.rel
dp.head dp.rel
VP.verb VP.NP
VP.verb VP.NP.head
VP.NP.head VP.verb
VP.verb VP.NP.head.pos
VP.NP.head VP.verb.pos
cw cw.li, i ∈ {0, 1, 2, 3}
cw cw.ri, i ∈ {1, 2, 3}
cw cw.li.pos, i ∈ {0, 1, 2, 3}
cw cw.ri.pos, i ∈ {1, 2, 3}

Table 4: Remained features after the feature selec-
tion.

Count Label
1091911 ⊙
31507 ⊖
3637 NPLURAL
2822 THE⊕
2600 LEMMA
948 ,⊕

300˜900 A⊕ PAST THE IN TO . IS OF ARE FOR
GERUND ,

50˜100 AND ON AN⊕ A VSINGULAR WAS THEIR
20˜50 ELDERLY IT OF⊕ THEY WITH TO⊕

WERE THIS ; ITS .⊕ THAT ’S⊕ AND⊕
THAT⊕ HAVE⊕ CAN AS HAVE⊕PART
FROM BE WOULD BY

15˜20 HAVE HAS⊕WILL HAS AT AN THESE ⊕,
THEM IN⊕ INTO #⊕ ARE⊕ WHICH PEO-
PLE HAS⊕PART ECONOMIC IS⊕ BE⊕ SO
COULD TO⊕LEMMA MANY PART MAY
LESS IT⊕ FOR⊕ BEING⊕

15˜20 NOT ABOUT WILL⊕LEMMA SHOULD
HIS BECAUSE AGED SUCH ALSO
WHICH⊕ HAVE⊕PAST WILL⊕ WHO
WHEN MUCH

15˜20 ON⊕ ’ THROUGH BE⊕PAST MORE
IF HELP THE⊕ELDERLY ’S ONE AS⊕
THERE THEIR⊕ WITH⊕ HAVE⊕⊙
ECONOMY DEVELOPMENT CON-
CERNED PEOPLE⊕ PROBLEMS BUT
MEANS THEREFORE HOWEVER BE-
ING : UP PROBLEM ’⊕ THE⊕LEMMA
IN⊕ADDITION HOWEVER⊕,⊕ AMONG
;⊕ WHERE THUS ONLY HEALTH
HAS⊕PAST FUNDING EXTENT ALSO⊕
TECHNOLOGICAL ” OR HAD WOULD⊕
VERY .⊕THIS ITS⊕ IMPORTANT DEVEL-
OPED ⊕BEEN AGE ABOUT⊕WHO⊕ USE
THEY⊕ THAN NUMBER HOWEVER⊕,
GOVERNMENT FURTHERMORE DURING
BUT⊕ YOUNGER RIGHT POPULATION
PERSON⊕ FEWER ENVIRONMENTAL-
LY WOULD⊕LEMMA OTHER MAY⊕
LIMITED HE COULD⊕HAVE BEEN STIL-
L SPENDING SAFETY OVER ONE⊕’S
MAKE MADE LIFE HUMAN HAD⊕
FUNDS CARE ARGUED ALL ”⊕ WHEN⊕
TIME THOSE SOCIETY RESEARCH
PROVIDE OLD NEEDS INCREASING DE-
VELOPING BECOME BE⊕⊙ ADDITION

Table 5: Labels whose count is larger than 15.

current word feature
NC.l1 NC, cw, cw.l1, cw.l1.pos,

cw.r1, cw.r1.pos
NP[0] NP.head, NP.l1, NP.l2 ,

cw, cw.l1, cw.l1.pos,
NP.head NP[0], NP.l1, NP.l2 , cw,

cw.l1, cw.l1.pos,
dp.head cw, cw.l1, cw.l2 dp.dep,

dp.dep.pos, dp.rel

Table 6: Examples of the new generated features.
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4.3 Data Refinement

The training corpus is refined before used that sen-
tences which do not contain errors are filtered out.
Only 38% of the total sentences remain. With less
training corpus, it takes less time to train the ME
model. Table 7 presents the performance of sys-
tems using the unrefined training corpus and re-
fined corpus.

System Presicion Recall F 0.5
unrefined 26.99% 1.67% 6.71%
refined 11.17% 3.1% 7.34%

Table 7: Comparison of systems with differen-
t training corpus.

All sets of these systems are kept the same ex-
cept the training corpus they use. It can be seen
that the refinement also improves the performance
of the system.

4.4 Feature Selection

Figure 2 shows the results of systems with dif-
ferent feature sets. sys 10 is the system with

Figure 2: Performance of systems with different
features.

10 randomly chosen features which are used as
the initial set of features in Algorithm 3, sys 55
is the system with the refined 55 features. With
these refined features, various of new features are
generated by combining different features. This
combination is conducted empirically that features
which are considered having relations are com-
bined to generate new features. Using this method,
165 new features are generated and total 220 fea-
tures are used in sys 220. Table 6 gives a few
of examples showing the combined features. The
performance is evaluated by the precision, recal-

l and F 0.5 score of the M2 scorer according
to (Dahlmeier and Ng, 2012). It can be seen
that sys 220 with the most number of features
achieves the best performance.

4.5 Evaluation Result

The final system we use is sys 220 with refined
training data, the performance of our system on the
developing corpus and the blind official test data is
presented in Table 8. The score is calculated using
M2 scorer.

Data Set Precision Recall F 0.5
DEV 13.52% 6.41% 11.07%
OFFICIAL 29.83% 5.16% 15.24%

Table 8: Evaluation Results

5 Conclusion

In this paper, we describe the system of Shang-
hai Jiao Tong Univerity team in the CoNLL-2014
shared task. The grammatical error detection is re-
garded as a multi-label classification task and the
correction is conducted by applying a rule-based
approach based on these labels. A single max-
imum entropy classifier is introduced to do the
multi-label classification. Various features are in-
volved and a feature selection algorithm is used
to refine these features. Finally, large amounts of
feature templates that are generated by the combi-
nation of the refined features are used. This system
achieved precision of 29.83%, recall of 5.16% and
F 0.5 of 15.24% in the official evaluation.

References
Adam L Berger, Vincent J Della Pietra, and Stephen

A Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Computa-
tional linguistics, 22(1):39–71.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAA-
CL 2012), pages 568–572, Montreal, Canada.

Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng
Ng. 2012. NUS at the HOO 2012 Shared Task. In
Proceedings of the Seventh Workshop on Building E-
ducational Applications Using NLP, pages 216–224,
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Abstract 

This paper describes our ongoing work on 

grammatical error correction (GEC). Focusing 

on all possible error types in a real-life 

environment, we propose a factored statistical 

machine translation (SMT) model for this task. 

We consider error correction as a series of 

language translation problems guided by 

various linguistic information, as factors that 

influence translation results. Factors included 

in our study are morphological information, i.e. 

word stem, prefix, suffix, and Part-of-Speech 

(PoS) information. In addition, we also 

experimented with different combinations of 

translation models (TM), phrase-based and 

factor-based, trained on various datasets to 

boost the overall performance. Empirical 

results show that the proposed model yields an 

improvement of 32.54% over a baseline 

phrase-based SMT model. The system 

participated in the CoNLL 2014 shared task 

and achieved the 7
th

 and 5
th

 F0.5 scores
1
 on the 

official test set among the thirteen 

participating teams. 

 

1 Introduction 

The task of grammatical error detection and 

correction (GEC) is to make use of 

computational methods to fix the mistakes in a 

written text. It is useful in two aspects. For a 

non-native English learner it may help to 

improve the grammatical quality of the written 

text. For a native speaker the tool may help to 

remedy mistakes automatically. Automatic 

                                                           
1

 These two rankings are based on gold-standard edits 

without and with alternative answers, respectively. 

correction of grammatical errors is an active 

research topic, aiming at improving the writing 

process with the help of artificial intelligent 

techniques. Second language learning is a user 

group of particular interest. 

Recently, Helping Our Own (HOO) and 

CoNLL held a number of shared tasks on this 

topic (Dale et al., 2012, Ng et al., 2013, Ng et al., 

2014). Previous studies based on rules (Sidorov 

et al., 2013), data-driven methods (Berend et al., 

2013, Yi et al., 2013) and hybrid methods (Putra 

and Szabó, 2013, Xing et al., 2013) have shown 

substantial gains for some frequent error types 

over baseline methods. Most proposed methods 

share the commonality that a sub-model is built 

for a specific type of error, on top of which a 

strategy is applied to combine a number of these 

individual models. Also, detection and correction 

are often split into two steps. For example, Xing 

et al. (2013) presented the UM-Checker for five 

error types in the CoNLL 2013 shared task. The 

system implements a cascade of five individual 

detection-and-correction models for different 

types of error. Given an input sentence, errors are 

detected and corrected one-by-one by each sub-

model at the level of its corresponding error type.  

The specifics of an error type are fully 

considered in each sub-model, which is easier to 

realize for a single error type than for multiple 

types in a single model. In addition, dividing the 

error detection and correction into two steps 

alleviates the application of machine learning 

classifiers. However, an approach that considers 

error types individually may have negative 

effects: 

 This approach assumes independence 

between each error type. It ignores the 

interaction of neighboring errors. Results 

(Xing et al., 2013) have shown that 
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consecutive errors of multiple types tend to 

hinder solving these errors individually. 

 As the number of error types increases, the 

complexities of analyzing, designing, and 

implementing the model increase, in 

particular when combinatorial errors are 

taken into account. 

 Looking for an optimal model combination 

becomes complex. A simple pipeline 

approach would result in interference and the 

generation of new errors, and hence to 

propagating those errors to the subsequent 

processes. 

 Separating the detection and correction tasks 

may result in more errors. For instance, once 

a candidate is misidentified as an error, it 

would be further revised and turned into an 

error by the correction model. In this 

scenario the model risks losing precision. 

In the shared task of this year (Ng et la., 

2014), two novelties are introduced: 1) all types 

of errors present in an essay are to be detected 

and corrected (i.e., there is no restriction on the 

five error types of the 2013 shared task); 2) the 

official evaluation metric of this year adopts F0.5, 

weighting precision twice as much as recall. This 

requires us to explore an alternative universal 

joint model that can tackle various kinds of 

grammatical errors as well as join the detection 

and correction processes together. Regarding 

grammatical error correction as a process of 

translation has been shown to be effective (Ehsan 

and Faili, 2013, Mizumoto et al., 2011, 

Yoshimoto et al., 2013, Yuan and Felice, 2013). 

We treat the problematic sentences and golden 

sentences as pairs of source and target sentences. 

In SMT, a translation model is trained on a 

parallel corpus that consists of the source 

sentences (i.e. sentences that may contain 

grammatical errors) and the targeted translations 

(i.e. the grammatically well-formed sentences). 

The challenge is that we need a large amount of 

these parallel sentences for constructing such a 

data-driven SMT system. Some researches 

(Brockett et al., 2006, Yuan and Felice, 2013) 

explore generating artificial errors to resolve this 

sparsity problem. Other studies (Ehsan and Faili, 

2013, Yoshimoto et al., 2013, Yuan and Felice, 

2013) focus on using syntactic information (such 

as PoS or tree structure) to enhance the SMT 

models.  

In this paper, we propose a factored SMT 

model by taking into account not only the surface 

information contained in the sentence, but also 

morphological and syntactic clues (i.e., word 

stem, prefix, suffix and finer PoS information). 

To counter the sparsity problem we do not use 

artificial or manual approaches to enrich the 

training data. Instead we apply factored and 

transductive learning techniques to enhance the 

model on a small dataset. In addition, we also 

experimented with different combinations of 

translation models (TM), phrase- and factor-

based, that are trained on different datasets to 

boost the overall performance. Empirical results 

show that the proposed model yields an 

improvement of 32.54% over a baseline phrase-

based SMT model. 

The remainder of this paper is organized as 

follows: Section 2 describes our proposed 

methods. Section 3 reports on the design of our 

experiments. We discuss the result, including the 

official shared task results, in Section 4,. We 

summarize our conclusions in Section 5. 

2 Methodology 

In contrast with phrase-based translation models, 

factored models make use of additional linguistic 

clues to guide the system such that it generates 

translated sentences in which morphological and 

syntactic constraints are met (Koehn and Hoang, 

2007). The linguistic clues are taken as factors in 

a factored model; words are represented as 

vectors of factors rather than as a single token. 

This requires us to pre-process the training data 

to factorize all words. In this study, we explore 

the use of various types of morphological 

information and PoS as factors. For each possible 

factor we build an individual translation model. 

The effectiveness of all factors is analyzed by 

comparing the performance of the corresponding 

models on the grammatical error correction task. 

Furthermore, two approaches are proposed to 

combine those models. One adopts the model 

cascading method based on transductive learning. 

The second approach relies on learning and 

decoding multiple factors learning. The details of 

each approach are discussed in the following 

sub-sections. 

2.1 Data Preparation 

In order to construct a SMT model, we convert 

the training data into a parallel corpus where the 

problematic sentences that ought to be corrected 

are regarded as source sentences, while the 

reference sentences are treated as the 

corresponding target translations. We discovered 

that a number of sentences is absent at the target 

side due to incorrect annotations in the golden 
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data. We removed these unparalleled sentences 

from the data. Secondly, the initial 

capitalizations of sentences are converted to their 

most probable casing using the Moses truecaser
2
. 

URLs are quite common in the corpus, but they 

are not useful for learning and even may cause 

the model to apply unnecessary correction on it. 

Thus, we mark all of the ULRs with XML 

markups, signaling the SMT decoder not to 

analyze an URL and output it as is.  

2.2 Model Construction 

In this study we explore four different factors: 

prefix, suffix, stem, and PoS. This linguistic 

information not only helps to capture the local 

constraints of word morphologies and the 

interaction of adjacent words, but also helps to 

prevent data sparsity caused by inflected word 

variants and insufficient training data.  

Word stem: Instead of lemmas, we prefer  

word stemming as one of the factors, considering 

that stemming does not requires deep 

morphological analysis and is easier to obtain. 

Second, during the whole error detection and 

correction process, stemming information is used 

as auxiliary information in addition to the 

original word form. Third, for grammatical error 

correction using word lemmas or word stems in 

factored translation model shows no significant 

difference. This is because we are translating text 

of the same language, and the translation of this 

factor, stem or lemma, is straightforwardly 

captured by the model. Hence, we do not rely on 

the word lemma. In this work, we use the 

English Porter stemmer (Porter, 1980) for 

generating word stems.  

Prefix: The second type of morphological 

information we explored is the word prefix. 

Although a prefix does not present strong 

evidence to be useful to the grammatical error 

correction, we include it in our study in order to 

fully investigate all types of morphological 

information. We believe the prefix can be an 

important factor in the correction of initial 

capitalization, e.g. “In this era, engineering 

designs…” should be changed to “In this era, 

engineering designs…” In model construction, 

we take the first three letters of a word as its 

prefix. If the length of a word is less than three, 

we use the word as the prefix factor. 

Suffix: Suffix, one of the important factors, 

helps to capture the grammatical agreements 

between predicates and arguments within a 

                                                           
2
 After decoding, we will de-truecase all these words. 

sentence. Particularly the endings of plural nouns 

and inflected verb variants are useful for the 

detection of agreement violations that shown up 

in word morphologies. Similar to how we 

represent the prefix, we are interested in the last 

three characters of a word.  

 Examples 

Sentence 

this card contains biometric data to 

add security and reduce the risk of 

falsification 

Original 

POS 

DT NN BVZ JJ NNS TO VB NN 

CC VB DT NN IN NN 

Specific 

POS 

DT NN VBZ JJ NNS TO_to VB 

NN CC VB DT_the NN IN_of 

NN 

Table 1: Example of modified PoS. 

According to the description of factors, Figure 

1 illustrates the forms of various factors 

extracted from a given example sentence.  

Surface 

constantly combining ideas will 

result in better solutions being 

formulated 

Prefix con com ide wil res in bet sol bei for 

Suffix tly ing eas ill ult in ter ons ing ted 

Stem 
constantli combin idea will result in 

better solut be formul 

Specific 

POS 

RB VBG NNS MD VB IN JJR NNS 

VBG VBN 

Figure 1: The factorized sentence. 

PoS: Part-of-Speech tags denote the morpho-

syntactic category of a word. The use of PoS 

sequences enables us to some extent to recover 

missing determiners, articles, prepositions, as 

well as the modal verb in a sentence. Empirical 

studies (Yuan and Felice, 2013) have 

demonstrated that the use of this information can 

greatly improve the accuracy of the grammatical 

error correction. To obtain the PoS, we adopt the 

Penn Treebank tag set (Marcus et al., 1993), 

which contains 45 PoS tags. The Stanford parser 

(Klein and Manning, 2002) is used to extract the 

PoS information. Inspired by Yuan and Felice 

(2013), who used preposition-specific tags to fix 

the problem of being unable to distinguish 

between prepositions and obtained good 

performance, we create specific tags both for 

determiners (i.e., a, an, the) and prepositions. 

Table 1 provides an example of this modification, 

where prepositions, TO and IN, and determiner, 
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DT, are revised to TO_to, IN_of and DT_the, 

respectively. 

2.3 Model Combination 

In addition to the design of different factored 

translation models, two model combination 

strategies are designed to treat grammatical error 

correction problem as a series of translation 

processes, where an incorrect sentence is 

translated into the correct one. In both 

approaches we pipeline two translation models, 

    and    . In the first approach, we derive 

four combinations of different models that 

trained on different sources.  

 In case I,    
  and    

  are both factored 

models but trained on different factors, e.g. 

for     
 training on “surface + factori” and 

    
  on “surface + factorij”. Both models 

use the same training sentences, but different 

factors.  

 In case II,     
  is trained on sentences that 

paired with the output from the previous 

model,     
 , and the golden correct sentences. 

We want to create a second model that can 

also tackle the new errors introduced by the 

first model. 

 In case III, similar to case II, the second 

translation model,    
  is replaced by a 

phrase-based translation model.  

 In case IV, the quality of training data is 

considered vital to the construction of a good 

translation model. The present training dataset 

is not large enough. To complement this, the 

second model,     
 , is trained on an enlarged 

data set, by combining the training data of 

both models, i.e. the original parallel data 

(official incorrect and correct sentence pairs) 

and the supplementary parallel data 

(sentences output from the first model,     
 , 

and the correct sentences). Note that we do 

not de-duplicate sentences.  

In all cases, the testing process is carried out 

as follows. The test set is translated by the first 

translation model,     
 . The output from the first 

model is then fed into the second translation 

model,     
 . The output of the second model is 

used as the final corrections. 

The second combination approach is to make 

use of multiple factors for model construction. 

The question is whether multiple factors when 

used together may improve the correction results. 

In this setting we combine two factors together 

with the word surface form to build a multi-

factored translation model. All pairs of factors 

are used, e.g. stem and PoS. The decoding 

sequence is as follows: translate the input stems 

into target stems; translate the PoS; and generate 

the surface form given the factors of stem and 

PoS. 

3 Experiment Setup  

3.1 Dataset 

We pre-process the NUCLE corpus (Dahlmeier 

et al., 2013) as described in Section 2 for training 

different translation models. We use both the 

official golden sentences and additional 

WMT2014 English monolingual data
3
 to train an 

in-domain and a general-domain language model 

(LM), respectively. These language models are 

linearly interpolated in the decoding phase. We 

also randomly select a number of sentence pairs 

from the parallel corpus as a development set and 

a test set, disjoint from the training data. Table 2 

summarizes the statistics of all the datasets.  

Corpus Sentences Tokens 

Parallel 

Corpus 
55,503 

1,124,521 / 

1,114,040 

Additional 

Monolingual 
85,254,788 2,033,096,800 

Dev. Set 500 10,532 / 10,438 

Test Set 900 18,032 / 17,906 

Table 2: Statistics of used corpora. 

The experiments were carried out with 

MOSES 1.0
4
 (Philipp Koehn et al., 2007). The 

translation and the re-ordering model utilizes the 

“grow-diag-final” symmetrized word-to-word 

alignments created with GIZA++
5
 (Och and Ney, 

2003) and the training scripts of MOSES. A 5-

gram LM was trained using the SRILM toolkit
6
 

(Stolcke et al., 2002), exploiting the improved 

modified Kneser-Ney smoothing (Kneser and 

Ney, 1995), and quantizing both probabilities 

and back-off weights. For the log-linear model 

training, we take minimum-error-rate training 

(MERT) method as described in (Och, 2003). 

The result is evaluated by M
2
 Scorer (Dahlmeier 

and Ng, 2012) computing precision, recall and 

F0.5.  

                                                           
3
 http://www.statmt.org/wmt14/translation-task.html. 

4
 http://www.statmt.org/moses/. 

5
 http://code.google.com/p/giza-pp/. 

6
 http://www.speech.sri.com/projects/srilm/. 
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In total, one baseline system, five individual 

systems, and four combination systems are 

evaluated in this study. The baseline system 

(Baseline) is trained on the words-only corpus 

using a phrase-based translation model. For the 

individual systems we adopt the factored 

translation model that are trained respectively on 

1) surface and stem factors (Sys+stem), 2) surface 

and suffix factors (Sys+suf), 3) surface and prefix 

factors (Sys+pref), 4) surface and PoS factors 

(Sys+PoS), and 5) surface and modified-PoS 

factors (Sys+MPoS). The combination systems 

include: 1) the combination of “factored + 

phrase-based” and “factored + factored” for 

models cascading; and 2) the factors of surface, 

stem and modified-PoS (Sys+stem+MPoS) are 

combined for constructing a correction system 

based on a multi-factor model. 

4 Results and Discussions 

We report our results in terms of the precision, 

recall and F0.5 obtained by each of the individual 

models and combined models.  

4.1 Individual Model 

Table 3 shows the absolute measures for the 

baseline system, while the other individual 

models are listed with values relative to the 

baseline.  

Model Precision  Recall  F0.5 

Baseline 25.58 3.53 11.37 

Sys+stem -14.84 +13.00 +0.18 

Sys+suf -14.57 +14.77 +0.60 

Sys+pref -15.74 +12.20 -0.77 

Sys+PoS -11.63 +9.79 +2.45 

Sys+MPoS -10.25 +10.60 +3.70 

Table 3: Performance of various models. 

The baseline system has the highest precision 

score but the lowest recall. Nearly all individual 

models except Sys+pref show improvements in the 

correction result (F0.5) over the baseline. Overall, 

Sys+MPoS achieves the best result for the 

grammatical error correction task. It shows a 

significant improvement over the other models 

and outperforms the baseline model by 3.7 F0.5 

score. The Sys+stem and Sys+suf models obtain an 

improvement of 0.18 and 0.60 in F0.5 scores, 

respectively, compared to the baseline. Although 

the differences are not significant, it confirms our 

hypothesis that morphological clues do help to 

improve error correction. The F0.5 score of 

Sys+pref is the lowest among the models including 

the baseline, showing a drop of 0.77 in F0.5 score 

against the baseline. One possible reason is that 

few errors (in the training corpus) involve word 

prefixes. Thus, the prefix does not seem to be a 

suitable factor for tackling the GEC problem. 

Type 
Sys+stem 

(%) 

Sys+suf 

(%) 

Sys+MPoS 

(%) 

Error 

Num. 

Vt 17.07 12.20 12.20 41 

ArtOrDet 37.65 36.47 29.41 85 

Nn 33.33 19.61 23.53 51 

Prep 10.26 10.26 12.82 39 

Wci 9.10 10.61 6.10 66 

Rloc- 15.20 13.92 10.13 79 

Table 4: The capacity of different models in 

handling six frequent error types. 

We analyze the capacities of the models on 

different types of errors. Sys+PoS and Sys+MPoS are 

built by using the PoS and modified PoS. Both of 

them yield an improvement in F0.5 score. Overall, 

Sys+MPoS produces more accurate results than 

Sys+pref. Therefore, we specifically compare and 

evaluate the best three models, Sys+stem, Sys+suf 

and Sys+MPoS. Table 4 presents evaluation scores 

of these models for the six most frequent error 

types, which take up a large part of the training 

and test data. Among them, Sys+stem displays a 

powerful capacity to handle determiner and 

noun/number agreement errors, up to 37.65% 

and 33.33%. Sys+suf shows the ability to correct 

determiner errors at 36.47%; Sys+MPoS yields a 

similar performance to Sys+suf. All three 

individual models exhibit a relatively high 

capacity to handle determiner errors. The likely 

reason is that this mistake constitutes the largest 

portion in training data and test set, giving the 

learning models many examples to capture this 

problem well. In the case of preposition errors, 

Sys+MPoS demonstrates a better performance. This, 

once again, confirms the result (Yuan and Felice, 

2013) that the modified PoS factor is effective 

for every preposition word. For these six error 

types, the individual models show a weak 

capacity to handle the word collocation or idiom 

error category (Wci). Although Sys+MPoS 

achieves the highest F0.5 score in the overall 

evaluation, it only achieves 6.10% in handling 

this error type. The likely reason is that idioms 

are not frequent in the training data, and also that 

in most of the cases they contain out-of-

vocabulary words never seen in training data. 

4.2 Model Combination 

We intend to further boost the overall 

performance of the correction system by 
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combining the strengths of individual models 

through model combination, and compare against 

the baseline. The systems compared here cover 

three pipelined models and a multi-factored 

model, as described earlier in Section 3. The 

combined systems include: 1) CSyssuf+phrase: the 

combination of Sys+suf and the baseline phrase-

based translation model; 2) CSyssuf+suf: we 

combine two similar factored models with suffix 

factors, Sys+suf, which is trained on the same 

corpus; and 3) TSyssuf+phrase: similar to 

CSyssuf+phrase, but the training data for the second 

phrase-based model is augmented by adding the 

output sentences from the previous model (paired 

with the correct sentences). Our intention is to 

enlarge the size of the training data. The 

evaluation results are presented in Table 5. 

Model Precision Recall F0.5 

Baseline 25.58 3.53 11.37 

CSyssuf+phrase -14.70 +14.61 +0.45 

CSyssuf+suf -15.04 +14.13 +0.09 

TSyssuf+phrase -14.76 +14.61 +0.40 

Sys+stem+MPoS -15.87 +11.72 -0.90 

Table 5: Evaluation results of combined models. 

In Table 5 we observe that Sys+stem+MPoS hurts 

performance and shows a drop of 0.9% in F0.5 

score. Both the CSyssuf+phrase and CSyssuf+suf 

show minor improvements over the baseline 

system. Even when we enrich the training data 

for the second model in TSyssuf+phrase, it cannot 

help in boosting the overall performance of the 

system. One of the problems we observe is that, 

with this combination structure, new incorrect 

sentences are introduced by the model at each 

step. The errors are propagated and accumulated 

to the final result. Although CSyssuf+phrase and 

CSyssuf+suf produce a better F0.5 score over the 

baseline, they are not as good as the individual 

models, Sys+PoS and Sys+MPoS, which are trained 

on PoS and modified-PoS, respectively. 

4.3 The Official Result 

After fully evaluating the designed individual 

models as well as the integrated ones, we adopt 

Sys+MPoS as our designated system for this 

grammatical error correction task. The official 

test set consists of 50 essays, and 2,203 errors. 

Table 6 shows the final result obtained by our 

submitted system.  

Table 7 details the correction rate of the five 

most frequent error types obtained by our system. 

The result suggests that the proposed system has 

a better ability in handling the verb, article and 

determiner error than other error types. 

Criteria Result Alt. Result 

P 0.3127 0.4317 

R 0.1446 0.1972 

F0.5 0.2537 0.3488 

Table 6: The official correction results of our 

submitted system. 

Type Error Correct % 

Vt 203/201 21/22 10.34/10.94 

V0 57/54 9/9 15.79/16.67 

Vform 156/169 11/18 7.05/10.65 

ArtOrDet 569/656 84/131 14.76/19.97 

Nn 319/285 31/42 9.72/10.91 

Table 7: Detailed error information of evaluation 

system (with alternative result). 

5 Conclusion 

This paper describes our proposed grammatical 

error detection and correction system based on a 

factored statistical machine translation approach. 

We have investigated the effectiveness of models 

trained with different linguistic information 

sources, namely morphological clues and 

syntactic PoS information. In addition, we also 

explore some ways to combine different models 

in the system to tackle the correction problem. 

The constructed models are compared against the 

baseline model, a phrase-based translation model. 

Results show that PoS information is a very 

effective factor, and the model trained with this 

factor outperforms the others. One difficulty of 

this year’s shared task is that participants have to 

tackle all 28 types of errors, which is five times 

more than last year. From the results, it is 

obvious there are still many rooms for improving 

the current system. 
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Abstract

In this paper, we describe a system for cor-
recting grammatical errors in texts written
by non-native learners. In our approach, a
given sentence with syntactic features are
sent to a number of modules, each focuses
on a specific error type. A main program
integrates corrections from these modules
and outputs the corrected sentence. We
evaluated our system on the official test
data of the CoNLL-2014 shared task and
obtained 0.30 in F-measure.

1 Introduction

Millions of non-native learners are using English
as their second language (ESL) or foreign lan-
guage (EFL). These learners often make different
kinds of grammatical errors and are not aware of
it. With a grammatical error corrector applies rules
or statistical learning methods, learners can use the
system to improve the quality of writing, and be-
come more aware of the common errors. It may
also help learners improve their writing skills.

The CoNLL-2014 shared task is aimed at pro-
moting research on correcting grammatical errors.
Types of errors handled in the shared task are ex-
tended from the five types in the previous shared
task to include all common errors present in an es-
say.

In this paper, we focus on the following errors
made by ESL writers:

• Spelling and comma

• Article and determiner

• Preposition

• Preposition + verb (interactive)

• Noun number

• Word form

• Subject-verb-agreement

For each error type, we developed and tuned a
module based on the official development data. A
main program combines the correction hypotheses
from these modules and produces the final correc-
tion. If multiple modules propose different cor-
rections to the same word/phrase, the correction
proposed by the module with the highest precision
will be chosen.

2 Method

2.1 Spelling and Comma module
In this section, we correct comma errors and
spelling errors, including missing/extraneous hy-
phens. For simplicity, we adopt Aspell1 and
GingerIt2 to detect spelling errors and generate
possible replacements, considered as confusable
words, which might contain the word with cor-
rect spelling. Then, we replace the word being
checked with confusable words to generate sen-
tences. Language models trained on well-formed
texts are used to measure the probability of these

1http://aspell.net/
2https://pypi.python.org/pypi/gingerit

We use GingerIt only for correcting missing/extraneous
hyphens
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candidates. Candidate with the highest probability
is chosen as correction.

Omitted commas form a large proportion of
punctuation errors. We apply the CRF model pro-
posed by Israel, et. al. (2012) with some mod-
ification. We replace distance features with syn-
tactic features. More specifically, we do not use
features such as distances to the start of sentence
or last comma. And we add two features, one in-
dicates whether a word is at the end of a clause,
and the other indicates whether the current clause
starts with a prepositional phrase.

2.2 Subject-verb-agreement module
This module corrects subject-verb-agreement er-
rors in a given sentence. Consider the sentence
”The boy in blue pants are my brother”. The cor-
rect sentence should be ”The boy in blue pants is
my brother”. Since a verb could be far from it’s
subject, using ngram counts may fail to detect and
correct such an error.

We use a rule-based method in this module.
In the first stage, we identify the subject of each
clause by using information from the parser. Both
the dependency relation and syntactic structure are
used in this stage. Dependency relations such as
nsubj and rcmod indicate subjects of subject-
verb relation. If there is a verb that has not been
assigned a subject via dependency relations, head
of noun phrase in the same clause will be used in-
stead. And in the second stage, we check whether
subject and verbs agree, for each clause in the sen-
tence.

Here we explain our correction process in more
detail. For each clause, the singular and plural
forms of verbs in the clause must be consistent
with the subject of the clause unless the subject
is a quantifier. Consider the following sentences:

The number of cats is ten.
A number of cats are playing.

Since our judgment only depends on the subject
number, it’s hard to tell whether should we use
a plural verb or not in this case. The quantifiers
we do not handle are listed as follow: number, lot,
quantity, variety, type, amount, neither.

2.3 Number module and Forms module
We correct noun number error in two stages. In
the first stage, we generate a confusion set for each

word. While constructing confusion set for noun
number, both of the singular form and plural form
are included in the set. While constructing con-
fusion set for word forms, we use the word fam-
ilies in Academic Word List (AWL)3 and British
National Corpus (BNC4000) 4. Given a content
word, all the words in the same family except
antonyms are entered into the confusion set. How-
ever, comparative form and superlative form of an
adjective are eliminated from the confusion set,
since replacing an adjective with these forms is a
semantic rather than syntactic decision. The fol-
lowing examples illustrate what kinds of alterna-
tives are eliminated:

antonyms: misleading for the word lead
semantics: higher for the word high

Additionally, in the forms module, a correc-
tion is ignored, if it is actually correcting a verb
tense, subject-verb-agreement, or noun number er-
ror. We use part-of-speech (POS) tag to check this.
More specifically, any corrections that changes a
word with a VBZ tag to a word with a VBP or
VBD tag is ignored, and vice versa. And any cor-
rections that switches a noun between it’s singular
form and plural form is also ignored.

With the confusion sets, we proceed to the
second stage. In this stage, we use words in
the confusion set to attempt to replace potential
errors. Language models trained on well-formed
text are used to validate the replacement decisions.
Given a word w, If there is an alternative w’ that
fits in the context better, w is flagged as an error
and w’ is returned as a correction.
Here is our formula for correcting errors

P (O) =
Pngram(O) + Prnn(O)

2

P (R) =
Pngram(R) + Prnn(R)

2

Promotion =
P (R)− P (O)

|O|
While checking a content word w, we replace

w in the original sentence O with alternatives and
generate candidates C. We then generate the can-
didate R with the highest probability among all

3http://www.victoria.ac.nz/lals/
resources/academicwordlist/sublists

4http://simple.wiktionary.org/wiki/
Wiktionary:BNC_spoken_freq
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candidates. We use an interpolated probability5 of
ngram language model Pngram and recurrent neu-
ral network language model Prnn. Promotion in-
dicates the increase in probability per word after
we replace sentence O with the candidate R. We
use word number to normalize Promotion follow-
ing Dahlmeier, et al. (2012). Corrections are made
only if Promotion is higher than a empirically de-
termined threshold.6

2.4 Article and Determiner module

In this subsection, we describe how we correct er-
rors of omitting a determiner or adding a spuri-
ous determiner. The language models mentioned
in the last subsection are also used in this module.
We tune our thresholds for making corrections on
development data7, and found that deleting a de-
terminer should have a lower threshold while in-
serting one should have a higher one, so we set
different thresholds accordingly. 8

To cope with the situation where a deter-
miner/article is far ahead of the head of the noun
phrase, we apply another constraint while making
correction decision.

First, we calculate statistics on the head of noun
phrases. We extract the most frequent 100,000
terms in Web-1T 5-gram corpus. These terms are
used to search their definitions in Wikipedia (usu-
ally at the first paragraph). The characteristic of a
definition is that it has no prior context and most
of the noun phrases with a determiner are unique
or known to the general public. Heads of these
nouns phrases are likely to always appear with a
determiner.

Heads that tend to appear with a determiner
the help us to decide whether a determiner should
be added to a noun phrase. We add a determiner
using two constraints. We only insert a determiner
or an article, if the statistics indicate that head of
a noun phrase tends to have a determiner, or the
promotion of log probability is much higher than
the threshold. A similar constraint is also applied,
for deleting a determiner or an article.

5the probabilities present in the formula are log probabil-
ities

6the threshold for noun number module is 0.035 and 0.050
for word form module. These threshold were set empirically
after testing on development data

7test data of the CoNLL-2013 shared task
8the threshold for insertion is 0.035 and 0.040 for deletion

2.5 Preposition module
For preposition errors, we focus on handling two
types of errors: REPLACE and DELETE. A
preposition, which should be deleted from the
given sentence, is regarded as a DELETE error,
whereas for a preposition, which should be re-
placed with a more appropriate alternative, is re-
garded as a REPLACE error. In this work, we
correct the two types of errors based on the as-
sumption that the usage of preposition often de-
pends on the collocation relations with a verb or
noun. Therefore, we use the dependency relations
such as dobj and pobj, and prep to identify
the related words, and then we validate the usage
of prepositions, and correct the preposition errors.

A dependency-based model is proposed in this
paper to handle the preposition errors. The model
consists of two stages: detecting the possible
preposition errors and correcting the errors.

In the first stage, we use the Stanford depen-
dency parser (Klein and Manning, 2003) to extract
the dependency relations for each preposition. The
relation tuples, which contain the preposition, verb
or noun, and prepositional object. For example,
the tuple of verb-prep-object (listen, to, music),
or the tuple of noun-prep-object (point, of, view)
are extracted for validation. We identify a preposi-
tion containing as an error, if the tuple containing
the preposition does not occur in a reference list
built using a reference corpus. In order to resolve
the data sparseness and false alarm problems, we
need a sufficiently large list of validated tuples.
In this study, the reference tuple lists are gener-
ated from the Google Books Syntactic N-grams
(Goldberg and Orwant, 2013)9. For example, we
can find (come, to, end, 236864) and (lead, to, re-
sult, 57632) in the verb-preposition-object refer-
ence list. We have generated 21,773,752 different
dependency tuples for our purpose.

In the second stage, we attempt to correct all
potential preposition errors. At first, a list of can-
didate tuples is generated by substituting the orig-
inal preposition in the error tuple with alterna-
tive prepositions. For example, the generated can-
didate tuples for the error tuple (join, at, party)
will include (join, in, party), (join, on, party), etc.
On the other hand, the tuple, (join, party), which

9Data sets available from http://
commondatastorage.googleapis.com/books/
syntactic-ngrams/index.html
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deletes the preposition, is also taken into consid-
eration. All candidates are ranked according to
the frequency provided by the reference lists. The
preposition in the tuple with the highest frequency
is returned as the correction suggestion.

Figure 1: Sample annotated trigrams

Figure 2: Sample trigram group

Figure 3: Sample phrase translation for a trigram
group

2.6 Interactive errors module
This module uses a new method for correcting
serial grammatical errors in a given sentence in
learners writing. A statistical translation model is
generated to attempt to translate the input with se-
rial and interactive errors into a grammatical sen-
tence. The method involves automatically learn-
ing translation models based on Web-scale n-
gram. The model corrects trigrams containing se-

rial preposition-verb errors via translation. Eval-
uation on a set of sentences in a learner corpus
shows that the method corrects serial errors rea-
sonably well.

Consider an error sentence ”I have difficulty to
understand English.” The correct sentence for this
should be ”I have difficulty in understanding En-
glish.” It is hard to correct these two errors one by
one, since the errors are dependent on each other.
Intuitively, by identifying difficulty to understand
as containing serial errors and correct it to diffi-
culty in understanding, we can handle this kind of
problem more effectively.

First, we generate translation phrase table as
follows. We begin by selecting trigrams related to
serial errors and correction from Web 1T 5-gram.
Figure 1 shows some sample annotation trigrams.
Then, we group the selected trigrams by the first
and last word in the trigrams. See Figure 2 for a
sample VPV group of trigrams. Finally, we gener-
ate translation phrase table for each group. Figure
3 shows a sample translation phrase table.

At run time, we tag the input sentence with part
of speech information in order to find trigrams
that fit the type of serial errors. Then, we search
phrase table and generate translations for the
input phrases in a machine translation decoder to
produce a corrected sentence.

3 Experiment

Two types of trigram language models, ngram
model and recurrent neural network (RNN) model,
are used in correcting spelling, noun number, word
form, and determiner errors. We trained the ngram
language model on English Gigaword and BNC
corpus, using the SRILM tool (Stolcke, 2002).
We train the RNN model with RNNLM toolkit
(Mikolov et al., 2011). Complexity of training the
RNN language model is much higher, so we train
it on a smaller corpus, the British National Corpus
(BNC).

We used the Stanford Parser (Klein and Christo-
pher D. Manning, 2003) to obtain dependency re-
lations in the preposition module, and to obtain
POS tags for the word form module. The subject-
verb-agreement module also uses dependency re-
lations contained in test data. Dependency rela-
tions in Google Books Syntactic N-grams (Gold-
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berg and Orwant, 2013) were also used to develop
our dendepency-based model in the preposition
module.

To assess the effectiveness of the proposed
method, we used the official training, develop-
ment, and test data of the CoNLL-2014 shared
task. On the test data, our system obtained the pre-
cision, recall and F0.5 score of 0.351, 0.189, and
0.299. The following table shows the performance
breakdown by module.

Figure 4: The performance breakdown by module.
(Displayed in %)

In the spelling and hyphen module, candidates
from Aspell include words that only differ from
the original word in one character, s. Language
models are then used to choose the candidate with
highest probability as our correction. The module
therefore gives some corrections about noun num-
bers or subject-verb-agreement. As a result, some
corrections made by this module overlap with cor-
rections made by the noun numbers module and
the subject-verb-agreement module, which makes
the recall of correcting spelling and hyphen errors,
4.11%, overestimated.

4 Conclusion

In this work, we have built several modules for er-
ror detection and correction. For different types
of errors, we developed modules independently
using different features and thresholds. If mul-
tiple modules propose different corrections to a
word/phrase, the one proposed by the module with
higher precision will be chosen. Many avenues
for future work present themselves. We plan to
integrate modules in a more flexible way. When
faced with different corrections made by different
modules, the decision would better be based on
the confidence of each correction with a uniform
standard, but not on the confidence of modules.
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Abstract

In this paper we describe the PKU system
for the CoNLL-2014 grammar error cor-
rection shared task. We propose a unified
framework for correcting all types of er-
rors. We use unlabeled news texts instead
of large amount of human annotated texts
as training data. Based on these data, a
tri-gram language model is used to cor-
rect the replacement errors while two extra
classification models are trained to correct
errors related to determiners and preposi-
tions. Our system achieves 25.32% in f0.5

on the original test data and 29.10% on the
revised test data.

1 Introduction

The task of grammar error correction is diffi-
cult yet important. An automatic grammar error
correction system can help second language(L2)
learners improve the quality of their writing. Pre-
vious shared tasks for grammar error correction,
such as the HOO shared task of 2012 (HOO-2012)
and the CoNLL-2013 shared task(CoNLL-2013),
focus on limited types of errors. For example,
HOO-2012 only considers errors related to de-
terminers and prepositions. CoNLL-2013 further
considers errors that are related to noun number,
verb form and subject-object agreement. In the
CoNLL-2014 shared task, all systems should con-
sider all the 28 kinds of errors, including errors
such as spelling errors which cannot be corrected
using a single classifier.

Most of the top-ranked systems in the CoNLL-
2013 shared task(Ng et al., 2013) train individ-
ual classifiers or language models for each kind
of errors independently. Although later systems
such as Wu and Ng (2013); Rozovskaya and Roth
(2013) use Integer Linear Programming (ILP) to
decode a global optimized result, the input scores

for ILP still come from the individual classifica-
tion confidence of each kind of errors. It is hard
to adapt these methods directly into the CoNLL-
2014 shared task. It will be both time-consuming
and impossible to train individual classifiers for all
the 28 kinds of errors.

Besides the classifier and language model
based methods, some systems(Dahlmeier and Ng,
2012a; Yoshimoto et al., 2013; Yuan and Felice,
2013) also use the machine translation approach.
Because there are a limited amount of training
data, this kind of approaches often need to use
other corpora of L2 learners, such as the Cam-
bridge Learner Corpus. Because these corpora use
different annotation criteria, the correction sys-
tems should figure out ways to map the error types
from one corpus to another. Even with these ad-
ditions and transformations, there are still too few
training data available to train a good translation
model.

In contrast, we think the grammar error correc-
tion system should 1) correct most kinds of er-
rors in a unified framework and 2) use as much
unlabeled data as possible instead of using large
amount of human annotated data. To be specific,
our system do not need to train individual clas-
sifiers for each kind of errors, nor do we need
to use manually corrected texts. Following the
observation that a correction can either replace a
wrong word or delete/insert a word, our system
is divided into two parts. Firstly, we use a Lan-
guage Model(LM) to correct errors with respect to
the wrongly used words. The LM only uses the
statistics from a large corpus. All errors related to
wrongly used words can be examined in this uni-
fied model instead of designing individual systems
for each kind of errors. Secondly, we train extra
classifiers for determiner errors and preposition er-
rors. We further consider these two kinds of errors
because many of the deletion and insertion errors
belongs to determiner or preposition errors. The
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training data of the two classification models also
come from a large unlabeled news corpus there-
fore no human annotation is needed.

Although we try to use a unified framework to
get better performance in the grammar error cor-
rection task, there are still a small portion of errors
we do not consider. The insertion and deletion of
words are not considered if the word is neither a
determiner nor a preposition. Our system is also
incapable of replacing a word sequence into an-
other word sequence. We do not consider these
kinds of errors because we find some of them are
hard to generate correction candidates without fur-
ther understanding of the context, and are not easy
to be corrected even by human beings.

The paper is structured as follows. Section 1
gives the introduction. In section 2 we describe
the task. In section 3 we describe our algorithm.
Experiments are described in section 4. We also
give a detailed analysis of the results in section 4.
In section 5 related works are introduced, and the
paper is concluded in the last section.

2 Task Description

The CoNLL-2014 shared task focuses on correct-
ing all errors that are commonly made by L2 learn-
ers of English. The training data released by
the task organizers come from the NUCLE cor-
pus(Dahlmeier et al., 2013). This corpus contains
essays written by L2 learners of English. These
essays are then corrected by English teachers. De-
tails of the CoNLL-2014 shared task can be found
in Ng et al. (2014).

3 System Overview

3.1 Overview

It is time-consuming to train individual models for
each kind of errors. We believe a better way is to
correct errors in a unified framework. We assume
that each word in the sentence may be involved in
some kinds of errors. We generate a list of cor-
rection candidates for each word. Then a Lan-
guage Model (LM) is used to find the most proba-
ble word sequences based on the original sentence
and the correction candidates for each word. An
illustrative example is shown in figure 1.

Because the LM is designed for the replace-
ment errors rather than insertion and deletion er-
rors, we train two extra classifiers for determiners
and prepositions. The determiner model and the

preposition model can improve the performance in
our experiment.

3.2 Correction Candidate Generation
The correction candidate generation phase aims to
generate a list of correction candidates for each
word in the original sentence. We generate cor-
rection candidates based on the following rules:

1. Words with the same stem

2. Similar words based on edit distance

The first rule includes the words with the
same stem as candidates. These candidates
can be used later to correct the errors re-
lated to word form. For example, candidates
for the word ‘time’ in the original sentence
‘This is a timely rain indeed.’ may include
‘timed’,‘time’,‘timed’,‘times’,‘timings’,‘timely’,
‘timees’ and ‘timing’, which all have the stem
’time’. The correct candidate ‘timely’ is also
included in the candidate list and can be detected
through further processing.

The candidate generated by the second rule are
mainly used for spelling correction. For exam-
ple, a such candidate for ‘beleive’ may be ‘belive’
or ‘believe’. To generate meaningful candidates
while guarantee accuracy, we require that the can-
didate and the original word should have the same
initial character. By examining the training data
we experimentally find that very few L2 learn-
ers make spelling errors on the initial characters.
For example, they may spell “believe” as “belive”.
However, very few of them may spell “believe” as
“pelieve” or “delieve”.

In our system, we generate 10 candidates for
each word. To keep the decoding of the best word
sequence controllable, we do not generate candi-
dates for every word in the original sentence. We
only generate the edit distance based candidates
for the following words:

1. Words that never appear in the English giga-
word corpus1

2. Words that appear in the gigaword corpus but
with frequency below a threshold (we use 10
in the experiment)

Besides, we do not generate candidates for the
words whose POS tags are “NNP” or “NNPS”.

1http://catalog.ldc.upenn.edu/
LDC2003T05
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Figure 1: Correction of the original sentence “Thera is no spaces for Tom”. We use red nodes to represent
the original words in the sentence, and use blue nodes below each word to represent the candidate list of
each word. We use arrows to show the final corrected word sequence with the highest probability.

These words are proper nouns. The correction
of this kind of words should depend on more
contextual information. For the stemming tools
we use the snowball stemmer2. To generate
candidates based on edit distance, we use the
org.apache.lucene.search.spell.SpellChecker in
Lucene3. Note that unlike other context based
spell checkers such as the one in Microsoft Office,
the SpellChecker class in Lucene is actually not
a spell checker. For an input word w, it can only
suggest words that are similar to w given a pre-
defined dictionary. We build the dictionary using
all words collected from the English Gigaword
corpus.

3.3 Language Model for Candidate Selection
After given each word a list of candidates, we can
now find the word sequence which is most likely to
be the correct sentence. The model we use is the
language model. The probability P (s) of a sen-
tence s = w0w1...wn−1 is calculated as:

P (s) =
n−1∏
i=0

P (wi|w0, ..., wi−1) (1)

The transition probability P (wi|w0, ..., wi−1)
is calculated based on language model. In
our system we use a tri-gram language
model trained on the gigaword corpus.

2http://snowball.tartarus.org/
3https://lucene.apache.org/

Therefore, P (wi|w0, ..., wi−1) is reduced to
P (wi|wi−2, wi−1). We do not use a fixed smooth-
ing method. We just set the probability of an
unseen string to be a positive decimal which is
very close to zero.

The decoding of the word sequence that max-
imize p(s) can be tackled through dynamic
programming using Viterbi algorithm(Forney Jr,
1973). One useful trick is that to multiply
p(wi|wi−2, wi−1) with a coefficient (4 in our sys-
tem) if wi−2, wi−1 and wi are all words in the orig-
inal sentence. This is because most of the original
word sequences are correct. If the system needs to
make a correction, the corrected sequence should
have a much higher score than the original one.

We do not generate candidates for determin-
ers and prepositions. Firstly, they are all frequent
words that are excluded by the rules we men-
tioned in this section. Secondly, the determiner
and preposition errors are the main kinds of errors
made by L2 learners. Some of the errors are re-
lated to the wrong deletions or insertions. There-
fore we choose to take special care of determiners
and prepositions to correct all their replacement,
deletion and insertion errors instead of generating
candidates for them in this stage.

3.4 Determiner Correction

After using LM, the spelling errors as well as ordi-
nary word form errors such as noun numbers, verb
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forms are supposed to be corrected. As we men-
tioned in the introduction, we should now handle
the deletion and insertion errors. We choose to use
special models for determiner and prepositions be-
cause many of the deletion and insertion errors are
related to determiner errors or preposition errors.
Also, these two kinds of errors have been consid-
ered in HOO-2012 and CoNLL2013. Therefore
it’s easier to make meaningful comparison with
previous works. We use Maximum Entropy (ME)
classifiers to correct the determiner and preposi-
tion errors. In this section we consider the deter-
miner errors. The preposition errors will be con-
sidered in the next section. For both of the two
parts, we use the open source tool MaxEnt4 as the
implementation of ME.

We consider the determiner correction task as a
multi-class classification task. The input instances
for classification are the space between words. We
consider whether the space should keep empty, or
insert ‘a’ or ‘the’. Therefore, 3 labels are con-
sidered to indicate ‘a’, ‘the’ and ‘NULL’. We use
‘’NULL’ to denote that the correct space does not
need an article. We leave the clarification between
‘a’ and ‘an’ as a post-process by manually de-
signed rules. We do not consider other determiners
such as ‘this’ or ‘’these’ because further informa-
tion such as the coreference resolution results is
needed.

Instead of considering all spaces in a sen-
tence, some previous works(AEHAN et al., 2006;
Rozovskaya and Roth, 2010; Rozovskaya et al.,
2013) only consider spaces at the beginning of
noun phrases. Compared to these methods, our
system do not need a POS tagger or a phrase chun-
ker (which is sometimes not accurate enough) to
filter the positions. All the operations are done on
the word level. We list the features we use in ta-
ble 1. Note that for 3-grams and 4-grams we do
not use all combinations of characters because it
will generate more sparse features while the per-
formance is not improved.

Because there are limited amount of training
data, we choose to use the English Gigaword cor-
pus to generate training instances instead of us-
ing the training data of CoNLL-2014. Because the
texts in the Gigaword corpus are all news texts,
most of them are well written by native speakers
and are proofread by the editors. Therefore they

4http://homepages.inf.ed.ac.uk/
lzhang10/maxent_toolkit.html

1-gram w−3, w−2, w−1, w1, w2, w3

2-gram all combinations of wiwj where
i, j ∈ {−3,−2,−1, 1, 2, 3}

3-gram w−3w−2w−1,w−2w−1w1,
w−1w1w2, w1w2w3

4-gram w−3w−2w−1w1,
w−2w−1w1w2,w−1w1w2w3

Table 1: The features used in our system. For a
given blank(space), wi means the next ith word
and w−i means the previous ith word. For the
example of “I do not play balls .”, if the current
considered instance is the space between ‘play’
and ‘balls’, then w−2 means ‘not’ and w1 means
‘balls’.

can serve as implicit gold annotations. We gener-
ate the training instances from the sentences in the
Gigaword corpus with the following rules:

1. for each space between words, we treat it as
an instance with label ‘NULL’, which means
no article is needed. We use the 3 words be-
fore the space as w−3, w−2, w−1 and the 3
words after the space as w1, w2, w3 to gener-
ate features. We name this kind of instances
‘Space Instance’ to indicate we operate on
a space. This kind of training instances can
convey the information that in this context no
article is needed.

2. for each word that is an article, we assume it
as an instance, with the label ‘a’ or ‘the’ de-
pending on itself. We use the 3 words before
it as w−3, w−2, w−1 and the 3 words after
is as w1, w2, w3. In this case we do not use
the article itself as the context. We name this
kind of instances ‘article Instance’ to indicate
we operate on an article. This kind of train-
ing instances can convey the information that
in this context a particular article should be
added.

The testing instance are also generated follow-
ing the previously mentioned rules. The decoding
process is as follows. If an instance is a ‘space
instance’ and is predicted as ‘a’ or ‘the’, we then
add ‘a’ or ‘the’ in this space. If an instance is an
‘article instance’, the situation is a bit complex. If
it is predicted as another article, we replace it with
the predicted one. If it is predicted as ‘NULL’, we
should delete the article to make it a space.
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To guarantee a certain level of precision, we re-
quire the decoding should only be based on confi-
dent predictions. We use the probability calculated
by the classifier as the confidence score and re-
quire the probability of the considered predictions
should exceed a threshold.

3.5 Preposition Correction

The preposition model is similar to the article
model. We use the same set of features as in ta-
ble 1. The training and testing instance generation
is similar except now we consider prepositions in-
stead of articles. The decoding phase is also iden-
tical to the determiner model.

3.6 Post Processing

The post processing in our system is listed as fol-
lows:

1. Distinguish between “a” and “an”. We use
rule based method for this issue.

2. Splitting words. If a word is not in the dic-
tionary but one of its splitting results has a
high frequency, we will split the word into
two words. For example, “dailylife” is an
out of vocabulary word and the splitting re-
sult “daily life” is common in English. Then
we split “dailylife” into “daily life”.

3. We capitalize the first character of each sen-
tence.

4 Experiment and Analysis

We experiment on the CoNLL-2014 test data. We
evaluate our system based on the M2 scorer which
is provided by the organizers. Details of the M2
scorer can be found in Dahlmeier and Ng (2012b).
We tune the additional parameters like all the
thresholds on the CoNLL-2014 official training
data. We use all the text in the Gigaword corpus to
train the language model. We use 2.5 million sen-
tences in the Gigaword corpus to train the extra
two classifier.

Results of our system are shown in table 2. LM
refers to using language model alone. LM+det
refers to using a determiner classifier after using
a language model. LM+prep refers to using a
preposition classifier after using a language model.
LM+det+preposition refers to using a preposition
classifier after LM+det, which is the method used
in our final system.

Model P R F0.5
LM 29.89% 10.04% 21.42%

LM+det 32.23% 13.64% 25.33%
LM+prep 29.73% 10.04% 21.35%

LM+det+prep(all) 32.21% 13.65% 25.32%

Table 2: The experimental results of our system in
the CoNLL-2014 shared task. The threshold for
determiner model and preposition model is 0.99
and 0.99. Parameters are tuned on the CoNLL-
2014 training data.

Model P R F0.5
LM+det+prep(all) 36.64% 15.96% 29.10%

Table 3: The experimental results of our system
in the CoNLL-2014 shared task on the revised an-
notations. The threshold for determiner model and
preposition model is 0.99 and 0.99. Parameters are
tuned on the CoNLL-2014 training data.

From the results we can see that the main con-
tribution comes from the LM model and deter-
miner model. The preposition model can correct
part of the errors while introduce new errors. The
preposition model may harm the overall perfor-
mance. But considering the fact that the grammar
error correction systems are always used for rec-
ommending errors, we still keep the preposition
model in real applications and suggest the errors
predicted by the preposition model.

One limitation of our system is that we only
use a tri-gram based language model as well as up
to 4-gram features for limited instances. Previous
works(Rozovskaya et al., 2013; Kao et al., 2013)
have shown that other resources like the Google 5-
gram statistics can help improve performance. For
the determiner and preposition models, we exper-
iment on different size of training data, from near
zero to the upper bound of our server’s memory
limit (about 72GB). We find that under this lim-
itation, the performance is still improving when
adding more training instances. We believe the
performance can be further improved.

Scores based on the revised annotations is
shown in table 3.

For the convenience of future meaningful com-
parison, we report the result of our system on the
CoNLL-2013 data set in table 4. We tune the ad-
ditional parameters like all the thresholds on the
CoNLL-2013 official training data. Note that in
CoNLL-2013 the scorer considers F1 score in-
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Model P R F1
CoNLL13 1st 23.49% 46.45% 31.20 %
CoNLL13 2nd 26.35% 23.80% 25.01 %

LM 18.92% 14.55% 16.45%
LM+det 23.76% 36.15% 28.67%

LM+prep 18.89% 14.55% 16.44%
LM+det+prep 23.74% 36.15% 28.66%

Table 4: The experimental results of our system
on the CoNLL-2013 shared task data. The thresh-
old for determiner model and preposition model
is 0.75 and 0.99. Parameters are tuned on the
CoNLL-2013 training data. CoNLL13 1st is Ro-
zovskaya et al. (2013) and the 2nd is Kao et al.
(2013)

stead of F0.5. Therefore some of the thresholds are
different with the ones in the CoNLL-2014 sys-
tem. Because the CoNLL-2013 shared task only
considers 5 types of errors, it will be much easier
to design components specially for each kind of
errors. Therefore our system is a bit less accurate
than the best system. In this system, we restrict the
candidates to be either noun or verb, and omit the
spell checking model. We also omit some post-
processings like deciding whether a word should
be split into two words, because these kinds of er-
rors are not included.

5 Conclusion

In this paper we describe the PKU system for
the CoNLL-2014 grammar error correction shared
task. We propose a unified framework for correct-
ing all types of errors. A tri-gram language model
is used to correct the replacement errors while two
extra classification models are trained to correct
errors related to determiners and prepositions. Our
system achieves 25.32% in f0.5 on the original test
data and 29.10% on the revised test data.
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