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Abstract

Infants spontaneously discover the rele-
vant phonemes of their language without
any direct supervision. This acquisition
is puzzling because it seems to require
the availability of high levels of linguistic
structures (lexicon, semantics), that logi-
cally suppose the infants having a set of
phonemes already. We show how this cir-
cularity can be broken by testing, in real-
size language corpora, a scenario whereby
infants would learn approximate represen-
tations at all levels, and then refine them in
a mutually constraining way. We start with
corpora of spontaneous speech that have
been encoded in a varying number of de-
tailed context-dependent allophones. We
derive, in an unsupervised way, an approx-
imate lexicon and a rudimentary seman-
tic representation. Despite the fact that
all these representations are poor approxi-
mations of the ground truth, they help re-
organize the fine grained categories into
phoneme-like categories with a high de-
gree of accuracy.

One of the most fascinating facts about human
infants is the speed at which they acquire their
native language. During the first year alone, i.e.,
before they are able to speak, infants achieve im-
pressive landmarks regarding three key language
components. First, they tune in on the phone-
mic categories of their language (Werker and Tees,
1984). Second, they learn to segment the continu-
ous speech stream into discrete units (Jusczyk and
Aslin, 1995). Third, they start to recognize fre-
quent words (Ngon et al., 2013), as well as the
semantics of many of them (Bergelson and Swing-
ley, 2012).

Even though these landmarks have been doc-
umented in detail over the past 40 years of re-

search, little is still known about the mechanisms
that are operative in infant’s brain to achieve such
a result. Current work in early language acquisi-
tion has proposed two competing but incomplete
hypotheses that purports to account for this stun-
ning development path. The bottom-up hypothesis
holds that infants converge onto the linguistic units
of their language through a statistical analysis over
of their input. In contrast, the top-down hypothesis
emphasizes the role of higher levels of linguistic
structure in learning the lower level units.

1 A chicken-and-egg problem

1.1 Bottom-up is not enough

Several studies have documented the fact that in-
fants become attuned to the native sounds of their
language, starting at 6 months of age (see Ger-
vain & Mehler, 2010 for a review). Some re-
searchers have claimed that such an early attune-
ment is due to a statistical learning mechanism that
only takes into account the distributional prop-
erties of the sounds present in the native input
(Maye et al., 2002). Unsupervised clustering al-
gorithms running on simplified input have, indeed,
provided a proof of principle for bottom-up learn-
ing of phonemic categories from speech (see for
instance Vallabha et al., 2007).

It is clear, however, that distributional learning
cannot account for the entire developmental pat-
tern. In fact, phoneme tokens in real speech ex-
hibit high acoustic variability and result in phone-
mic categories with a high degree of overlap (Hil-
lenbrand et al., 1995). When purely bottom up
clustering algorithms are tested on realistic input,
they ended up in either a too large number of sub-
phonemic units (Varadarajan et al., 2008) or a too
small number of coarse grained categories (Feld-
man et al., 2013a).
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1.2 The top-down hypothesis

Inspection of the developmental data shows that
infants do not wait to have completed the acqui-
sition of their native phonemes to start to learn
words. In fact, lexical and phonological acquisi-
tion largely overlap. Infant can recognize highly
frequent word forms like their own names, by as
early as 4 months of age (Mandel et al., 1995).
Vice versa, the refinement of phonemic categories
does not stop at 12 months. The sensitivity to pho-
netic contrasts has been reported to continue at 3
years of age (Nittrouer, 1996) and beyond (Hazan
and Barrett, 2000), on par with the development of
the lexicon.

Some researchers have therefore suggested that
there might be a learning synergy which allows in-
fants to base some of their acquisition not only on
bottom up information, but also on statistics over
lexical items or even on the basis of word mean-
ing (Feldman et al., 2013a; Feldman et al., 2013b;
Yeung and Werker, 2009)

These experiments and computational models,
however, have focused on simplified input or/and
used already segmented words. It remains to be
shown whether the said top-down strategies scale
up when real size corpora and more realistic repre-
sentations are used. There are indeed indications
that, in the absence of a proper phonological repre-
sentation, lexical learning becomes very difficult.
For example, word segmentation algorithms that
work on the basis of phoneme-like units tend to
degrade quickly if phonemes are replaced by con-
textual allophones (Boruta et al., 2011) or with the
output of phone recognizers (Jansen et al., 2013;
Ludusan et al., 2014).

In brief, we are facing a chicken-and-egg prob-
lem: lexical and semantic information could help
to learn the phonemes, but phonemes are needed
to acquire lexical information.

1.3 Breaking the circularity: An incremental
discovery procedure

Here, we explore the idea that instead of learning
adult-like hierarchically organized representations
in a sequential fashion (phonemes, words, seman-
tics), infants learn approximate, provisional lin-
guistic representations in parallel. These approxi-
mate representations are subsequently used to im-
prove each other.

More precisely, we make four assumptions.
First, we assume that infants start by paying atten-

tion to fine grained variation in the acoustic input,
thus constructing perceptual phonetic categories
that are not phonemes, but segments encoding fine
grained phonetic details (Werker and Curtin, 2005;
Pierrehumbert, 2003). Second, we assume that
these units enable infants to segment proto-words
from continuous speech and store them in this de-
tailed format. Importantly, this proto-lexicon will
not be adult-like: it will contain badly segmented
word forms, and store several alternant forms for
the same word. Ngon et al. (2013) have shown
that 11 month old infants recognize frequent sound
sequences that do not necessarily map to adult
words. Third, we assume that infants can use this
imperfect lexicon to acquire some semantic repre-
sentation. As shown in Shukla et al. (2011), in-
fants can simultaneously segment words and asso-
ciate them with a visual referent. Fourth, we as-
sume that as their exposure to language develops,
infants reorganize these initial categories along the
relevant dimensions of their native language based
on cues from all these representations.

The aim of this work is to provide a proof of
principle for this general scenario, using real size
corpora in two typologically different languages,
and state-of-the-art learning algorithms.

The paper is organized as follows. We begin
by describing how we generated the input and
how we modeled different levels of representation.
Then, we explain how information from the higher
levels (word forms and semantics) can be used to
refine the learning of the lower level (phonetic cat-
egories). Next, we present the results of our sim-
ulations and discuss the potential implications for
the language learning process.

2 Modeling the representations

Here, we describe how we model different levels
of representation (phonetic categories, lexicon and
semantics) starting from raw speech in English
and Japanese.

2.1 Corpus

We use two speech corpora: the Buckeye Speech
corpus (Pitt et al., 2007), which contains 40 hours
of spontaneous conversations in American En-
glish, and the 40 hours core of the Corpus of Spon-
taneous Japanese (Maekawa et al., 2000), which
contains spontaneous conversations and public
speeches in different fields, ranging from engi-
neering to humanities. Following Boruta (2012),
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we use an inventory of 25 phonemes for transcrib-
ing Japanese, and for English, we use the set of 45
phonemes in the phonemic transcription of Pitt et
al. (2007).

2.2 Phonetic categories
Here, we describe how we model the percep-
tual phonetic categories infants learn in a first
step before converging on the functional cate-
gories (phonemes). We make the assumption that
these initial categories correspond to fine grained
allophones, i.e., different systematic realizations
of phonemes, depending on context. Allophonic
variation can range from categorical effects due to
phonological rules to gradient effects due to coar-
ticulation, i.e, the phenomenon whereby adjacent
sounds affect the physical realization of a given
phoneme. An example of a rather categorical allo-
phonic rule is given by /r/ devoicing in French:

/r/→
{

[X] / before a voiceless obstruent
[K] elsewhere

Figure 1: Allophonic variation of French /r/

The phoneme /r/ surfaces as voiced ([K]) be-
fore a voiced obstruent like in [kanaK Zon] (“ca-
nard jaune”, yellow duck) and as voiceless ([X])
before a voiceless obstruent as in [kanaX puXpK]
(“canard pourpre”, purple duck). The challenge
facing the leaner is, therefore, to distinguish pairs
of segments that are in an allophonic relationship
([K], [X]) from pairs that are two distinct phonemes
and can carry a meaning difference ([K],[l]).

Previous work has generated allophonic varia-
tion artificially (Martin et al., 2013). Here, we fol-
low Fourtassi et al. (2014b) in using a linguisti-
cally and statistically controlled method, starting
from audio recordings and using a standard Hid-
den Markov Models (HMM) phone recognizer to
generate them, as follows.

We convert the raw speech waveform into suc-
cessive 10ms frames containing a vector of Mel
Frequency Cepstrum Coefficients (MFCC). We
use 12 MFC coefficients (plus the energy) com-
puted over a 25ms window, to which we add the
first and second order derivatives, yielding 39 di-
mensions per frame.

The HMM training starts with one three-state
model per phoneme. Each state is modeled by
a mixture of 17 diagonal Gaussians. After train-

ing, each phoneme model is cloned into context-
dependent triphone models, for each context in
which the phoneme actually occurs (for example,
the phoneme /A/ occurs in the context [d–A–g] as
in the word /dAg/ (“dog”). The triphone models
cloned from the phonemes are then retrained, but,
this time, only on the relevant subset of the data,
corresponding to the given triphone context. Fi-
nally, these detailed models are clustered back into
inventories of various sizes (from 2 to 20 times
the size of the phonemic inventory) and retrained.
Clustering is done state by state using a phonetic
feature-based decision tree, and results in tying
together the HMM states of linguistically simi-
lar triphones so as to maximize the likelihood of
the data. The HMM were built using the HMM
Toolkit (HTK: Young et al., 2006).

2.3 The proto-lexicon
Finding word boundaries in the continuous se-
quence of phones is part of the problem infants
have to solve without direct supervision. We
model this segmentation using a state-of-the-art
unsupervised word segmentation model based on
the Adaptor Grammar framework (Johnson et al.,
2007). The input consists of a phonetic transcrip-
tion of the corpus, with boundaries between words
eliminated (we vary this transcription to corre-
spond to different inventories with different granu-
larity in the allophonic representation as explained
above). The model tries to reconstruct the bound-
aries based on a Pitman-Yor process (Pitman and
Yor, 1997), which uses a language-general sta-
tistical learning process to find a compact rep-
resentation of the input. The algorithm stores
high frequency chunks and re-uses them to parse
novel utterances. We use a grammar which learns
a hierarchy of three levels of chunking and use
the intermediate level to correspond to the lexi-
cal level. This grammar was shown by Fourtassi
et al. (2013) to avoid both over-segmentation and
under-segmentation.

2.4 The proto-semantics
It has been shown that infants can keep track of co-
occurrence statistics (see Lany and Saffran (2013)
for a review). This ability can be used to develop a
sense of semantic similarity as suggested by Har-
ris (1954). The intuition behind the distributional
hypothesis is that words that are similar in mean-
ing occur in similar contexts. In order to model
the acquisition of this semantic similarity from a
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transcribed and segmented corpus, we use one of
the simplest and most commonly used distribu-
tional semantic models, Latent Semantic Analysis
(LSA: Landauer & Dumais, 1997). The LSA al-
gorithm takes as input a matrix consisting of rows
representing word types and columns represent-
ing contexts in which tokens of the word type oc-
cur. A context is defined as a fixed number of
utterances. Singular value decomposition (a kind
of matrix factorization) is used to extract a more
compact representation. The cosine of the angle
between vectors in the resulting space is used to
measure the semantic similarity between words.
Two words have a high semantic similarity if they
have similar distributions, i.e., if they co-occur in
most contexts. The model parameters, namely the
dimension of the semantic space and the number
of utterances to be taken as defining the context
of a given word form, are set in an unsupervised
way to optimize the latent structure of the seman-
tic model (Fourtassi and Dupoux, 2013). Thus, we
use 20 utterances as a semantic window and set the
semantic space to 100 dimensions.

3 Method

Here we explore whether the approximate high
level representations, built bottom-up and with-
out supervision, still contain useful information
one can use to refine the phonetic categories into
phoneme-like units. To this end, we extract po-
tential cues from the lexical and the semantic in-
formation, and test their performance in discrim-
inating allophonic contrasts from non-allophonic
(phonemic) contrasts.

3.1 Top down cues

3.1.1 Lexical cue
The top down information from the lexicon is
based on the insight of Martin et al. (2013). It rests
on the idea that true lexical minimal pairs are not
very frequent in human languages, as compared to
minimal pairs due to mere phonological processes
(figure 1). The latter creates alternants of the same
lexical item since adjacent sounds condition the
realization of the first and final phoneme. There-
fore, finding a minimal pair of words differing in
the first or last segment (as in [kanaX] and [kanaK])
is good evidence that these two phones ([K], [X])
are allophones of one another. Conversely, if a
pair of phones is not forming any minimal pair,
it is classified as non-allophonic (phonemic).

However, this binary strategy clearly gives rise
to false alarms in the (albeit relatively rare) case
of true minimal pairs like [kanaX] (“duck”) and
[kanal] (“canal”), where ([X], [l]) will be mis-
takenly labeled as allophonic. In order to miti-
gate the problem of false alarms, we use Boruta’s
continuous version (Boruta, 2011) and we define
the lexical cue of a pair of phones Lex(x, y) as
the number of lexical minimal pairs that vary on
the first segment (xA, yA) or the last segment
(Ax, Ay). The higher this number, the more the
pair of phones is likely to be considered as allo-
phonic.

The lexical cue is consistent with experimen-
tal findings. For example Feldman et al. (2013b)
showed that 8 month-old infants pay attention
to word level information, and demonstrated that
they do not discriminate between sound contrasts
that occur in minimal pairs (as suggested by our
cue), and, conversely, discriminate contrasts that
occur in non-minimal pairs.

3.1.2 Semantic cue

The semantic cue is based on the intuition that
true minimal pairs ([kanaX] and [kanal]) are asso-
ciated with different events, whereas alternants of
the same word ([kanaX] and [kanal]) are expected
to co-occur with similar events.

We operationalize the semantic cue associated
with a pair of phones Sem(x, y) as the average
semantic similarity between all the lexical mini-
mal pairs generated by this pair of phones. The
higher the average semantic similarity, the more
the learner is prone to classify them as allophonic.
We take as a measure of the semantic similar-
ity, the cosine of the angle between word vec-
tors of the pairs that vary on the final segment
cos(Âx, Ay) or the first segment cos(x̂A, yA).

This strategy is similar in principle to the phe-
nomenon of acquired distinctiveness, according
to which, pairing two target stimuli with distinct
events enhances their perceptual differentiation,
and acquired equivalence, whereby pairing two
target stimuli with the same event, impairs their
subsequent differentiation (Lawrence, 1949). In
the same vein, Yeung and Werker (2009) tested 9
month-olds english learning infants in a task that
consists in discriminating two non-native phonetic
categories. They found that infants succeeded only
when the categories co-occurred with two distinct
visual cues.
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— Segmentation Lexicon
— English Japanese English Japanese
Allo./phon. F P R F P R F P R F P R
2 0.61 0.57 0.65 0.45 0.44 0.47 0.29 0.42 0.22 0.23 0.54 0.15
4 0.52 0.46 0.59 0.38 0.34 0.43 0.22 0.37 0.15 0.16 0.50 0.10
10 0.51 0.45 0.59 0.34 0.30 0.38 0.21 0.34 0.16 0.16 0.41 0.10
20 0.42 0.38 0.47 0.28 0.26 0.32 0.21 0.29 0.17 0.16 0.32 0.10

Table 1 : Scores of the segmentation and the resulting lexicon, as a function of the average number of
allophones per phoneme. P=Precison, R=Recall and F=F-score.

3.1.3 Combined cue
Finally, we consider the combination of both cues
in one single cue where the contextual information
(semantics) is used as a weighing scheme of the
lexical information, as follows:

Comb(x, y) =
∑

(Ax,Ay)∈L2

cos(Âx, Ay) +
∑

(xA,yA)∈L2

cos(x̂A, yA)

(1)
where {Ax ∈ L} is the set of words in the lex-

icon L that end in the phone x, and {(Ax, Ay) ∈
L2} is the set of phonological minimal pairs in
L× L that vary on the final segment.

The lexical cue is incremented by one, for ev-
ery minimal pair. The combined cue is, instead,
incremented by one, times the cosine of the angle
between the word vectors of this pair. When the
words have similar distributions, the angle goes to
zero and the cosine goes to 1, and when the words
have orthogonal distributions, the angle goes to
90◦ and the cosine goes to 0.

The semantic information here would basically
enable us to avoid false alarms generated by poten-
tial true minimal pairs like the above-mentioned
example of ( [kanaX] and [kanal]). Such a pair will
probably score high as far as the lexical cue is con-
cerned, but it will score low on the semantic level.
Thus, by taking the combination, the model will
be less prone to mistakenly classify ([X], [l]) as al-
lophones.

3.2 Task

For each corpus we list all possible pairs of al-
lophones. Some of these pairs are allophones of
the same phoneme (allophonic pair) and others are
allophones of different phonemes (non-allophonic
pairs). The task is a same-different classification,
whereby each of these pairs is given a score from
the cue that is being tested. A good cue gives
higher scores to allophonic pairs.

Only pairs of phones that generate at least one
lexical minimal pair are considered. Phonetic vari-
ation that does not cause lexical variation is “in-
visible” to top down strategies, and is, therefore,
more probably clustered through purely bottom up
strategies (Fourtassi et al., 2014b)

3.3 Evaluation
We use the same evaluation procedure as Martin et
al. (2013). This is carried out by computing the as-
sociated ROC curve (varying the z-score threshold
and computing the resulting proportions of misses
and false alarms). We then derive the Area Under
the Curve (AUC), which also corresponds to the
probability that given two pairs of phones, one al-
lophonic, one not, they are correctly classified on
the basis of the score. A value of 0.5 represents
chance and a value of 1 represents perfect perfor-
mance.

In order to lessen the potential influence of the
structure of the corpus (mainly the order of the ut-
terances) on the results, we use a statistical resam-
pling scheme. The corpus is divided into small
blocks of 20 utterances each (the semantic win-
dow). In each run, we draw randomly with re-
placement from this set of blocks a sample of
the same size as the original corpus. This sam-
ple is then used to retrain the acoustic models and
generate a phonetic inventory that we used to re-
transcribe the corpus and re-compute the cues. We
report scores averaged over 5 such runs.

4 Results and discussion

4.1 Segmentation
We first explore how phonetic variation influences
the quality of the segmentation and the resulting
lexicon. For the evaluation, we use the same mea-
sures as Brent (1999) and Goldwater et al. (2009),
namely Segmentation Precision (P), Recall (R)
and F-score (F). Segmentation precision is defined
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as the number of correct word tokens found, out of
all tokens posited. Recall is the number of correct
word tokens found, out of all tokens in the ideal
segmentation. The F-score is defined as the har-
monic mean of Precision and Recall:

F =
2 ∗ P ∗R

P + R

We define similar measures for word types (lex-
icon). Table 1 shows the scores as a function of
the number of allophones per phonemes. For both
corpora, the segmentation performance decreases
as we increase the number of allophones. As for
the lexicon, the recall scores show that only 15
to 22% of the ’words’ found by the algorithm in
the English corpus are real words; in Japanese,
this number is even lower (between 10 and 15%).
This pattern can be attributed in part to the fact
that increasing the number of allophones increases
the number of word forms, which occur therefore
with less frequency, making the statistical learn-
ing harder. Table 2 shows the average number of
word forms per word as a function of the average
number of allophones per phoneme, in the case of
ideal segmentation.

Allo./Phon. W. forms/Word
— English Japanese
2 1.56 1.20
4 2.03 1.64
10 2.69 2.11
20 3.47 2.83

Table 2 : Average number of word-forms per
word as a function of the average number of

allophones per phoneme.

Another effect seen in Table 1 is the lower
overall performance of Japanese compared to En-
glish. This difference was shown by Fourtassi et
al. (2013) to be linked to the intrinsic segmenta-
tion ambiguity of Japanese, caused by the fact that
Japanese words contain more syllables compared
to English.

4.2 Allophonic vs phonemic status of sound
contrasts

Here we test the performance of the cues described
above, in discriminating between allophonic con-
trasts from phonemic ones. We vary the number
of allophones per phoneme, on the one hand (Fig-
ure 2a), and the amount of data available to the

learner, on the other hand, in the case of two allo-
phones per phonemes (Figure 2b). In both situa-
tions, we compare the case wherein the lexical and
semantic cues are computed on the output of the
unsupervised segmentation (right), to the control
case where these cues are computed on the ideally
segmented speech (left).

We see that the overall accuracy of the cues is
quite high, even in the case of bad word segmen-
tation and very small amount of data.

The lexical cue is robust to extreme variation
and to the scarcity of data. Indeed, it does not seem
to vary monotonically neither with the number of
allophones, nor with the size of the corpus. The as-
sociated f-score generally remains above the value
of 0.7 (chance level is 0.5). The semantics, on
the other hand, gets better as the variability de-
creases and as the amount of data increases. This
is a natural consequence of the fact that the se-
mantic structure is more accurate with more data
and with word forms consistent enough to sustain
a reasonable co-occurrence statistics.

The comparison with the ideal segmentation,
shows, interestingly, that the semantics is more ro-
bust to segmentation errors than the lexical cue. In
fact, while the lexical strategy performs, overall,
better than the semantics under the ideal segmen-
tation, the patterns reverses as we move to a a more
realistic (unsupervised) segmentation.

These results suggest that both lexical and se-
mantic strategies can be crucial to learning the
phonemic status of phonetic categories since they
provide non-redundant information. This finding
is summarized by the combined cue which resists
to both variation and segmentation errors, overall,
better than each of the cues taken alone.

From a developmental point of view, this shows
that infants can, in principle, benefit from higher
level linguistic structures to refine their phonetic
categories, even if these structures are rudimen-
tary. Previous studies about top down strategies
have mainly emphasized the role of word forms;
the results of this work show that the semantics
can be at least as useful. Note that the notion
of semantics used here is weaker than the clas-
sic notion of referential semantics as in a word-
concept matching. The latter might, indeed, not
be fully operative at the early stages of the child
development, since it requires some advanced con-
ceptual abilities (like forming symbolic represen-
tations and understanding a speaker’s referential
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Figure 2: Same-different scores (AUC) for different cues as a function of the average number of allo-
phones per phoneme (a), and as a function of the size of the corpus, in the case of two allophones per
phonemes (b). The scores are shown for both ideal and unsupervised word segmentation in English and
Japanese. The points show the mean scores over 5 runs. The lines are smoothed interpolations (local
regressions) through the means. The grey band shows a 95% confidence interval.

intentions) (Waxman and Gelman, 2009). What
we call the “semantics” of a word in this study, is
the general context provided by the co-occurrence
with other words. Infants have been shown to have
a powerful mechanism for tracking co-occurrence
relationships both in the speech and the visual do-
main (Lany and Saffran, 2013) . Our experiments
demonstrate that a similar mechanism could be
enough to develop a sense of semantic similarity
that can successfully be used to refine phonetic
categories.

5 General discussion and future work

Phonemes are abstract categories that form the ba-
sis for words in the lexicon. There is a traditional
view that they should be defined by their ability to
contrast word meanings (Trubetzkoy, 1939). Their
full acquisition, therefore, requires lexical and se-
mantic top-down information. However, since the
quality of the semantic representations depends on
the quality of the phonemic representations that

are used to build the lexicon, we face a chicken-
and-egg problem. In this paper, we proposed a
way to break the circularity by building approxi-
mate representation at all the levels.

The infants’ initial attunement to language-
specific categories was represented in a way that
mirrors the linguistic and statistical properties of
the speech closely. We showed that this de-
tailed (proto-phonemic) inventory enabled word
segmentation from continuous transcribed speech,
but, as expected, resulted in a low quality lexicon.
The poorly segmented corpus was then used to de-
rive a semantic similarity matrix between pairs of
words, based on their co-occurrence statistics. The
results showed that information from the derived
lexicon and semantics, albeit very rudimentary,
help discriminate between allophonic and phone-
mic contrasts, with a high degree of accuracy.
Thus, this works strongly support the claim that
the lexicon and semantics play a role in the re-
finement of the phonemic inventory (Feldman et
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al., 2013a; Frank et al., 2014), and, interestingly,
that this role remains functional under more realis-
tic assumptions (unsupervised word segmentation,
and bottom-up inferred semantics). We also found
that lexical and semantic information were not re-
dundant and could be usefully combined, the for-
mer being more resistant to the scarcity of data
and variation, and the latter being more resistant
to segmentation errors.

That being said, this work relies on the assump-
tion that infants start with initial perceptual cate-
gories (allophones), but we did not show how such
categories could be constructed from raw speech.
More work is needed to explore the robustness of
the model when these units are learned in an unsu-
pervised fashion (Lee and Glass, 2012; Huijbregts
et al., 2011; Jansen and Church, 2011; Varadarajan
et al., 2008).

This work could be seen as a proof of princi-
ple for an iterative learning algorithm, whereby
phonemes emerge from the interaction of low level
perceptual categories, word forms, and the seman-
tics (see Werker and Curtin (2005) for a similar
theoretical proposition). The algorithm has yet to
be implemented, but it has to address at least two
major issues: First, the fact that some sound pairs
are not captured by top down cues because they
do not surface as minimal word forms. For in-
stance, in English, /h/ and /N/ occur in different
syllable positions and therefore, cannot appear in
any minimal pair. Second, even if we have enough
information about how phonetic categories are or-
ganized in the perceptual space, we still need to
know how many categories are relevant in a par-
ticular language (i.e., where to stop the categoriza-
tion process).

For the first problem, Fourtassi et al. (2014b)
showed that the gap could, in principle, be filled by
bottom-up information (like acoustic similarity).
As for the second problem, a possible direction
could be found in the notion of Self-Consistency.
In fact, (Fourtassi et al., 2014a) proposed that an
optimal level of clustering is also a level that glob-
ally optimizes the predictive power of the lexicon.
Too detailed allophones result in too many syn-
onyms. Too broad classes result in too many ho-
mophones. Somewhere in the middle, the optimal
number of phonemes optimizes how lexical items
predict each other. Future work will address these
issues in more detail in order to propose a com-
plete phoneme learning algorithm.
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