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Abstract

Most traditional distributional similarity
models fail to capture syntagmatic patterns
that group together multiple word features
within the same joint context. In this work
we introduce a novel generic distributional
similarity scheme under which the power
of probabilistic models can be leveraged
to effectively model joint contexts. Based
on this scheme, we implement a concrete
model which utilizes probabilistic n-gram
language models. Our evaluations sug-
gest that this model is particularly well-
suited for measuring similarity for verbs,
which are known to exhibit richer syntag-
matic patterns, while maintaining compa-
rable or better performance with respect
to competitive baselines for nouns. Fol-
lowing this, we propose our scheme as a
framework for future semantic similarity
models leveraging the substantial body of
work that exists in probabilistic language
modeling.

1 Introduction

The Distributional Hypothesis is commonly
phrased as “words which are similar in meaning
occur in similar contexts” (Rubenstein and Good-
enough, 1965). Distributional similarity models
following this hypothesis vary in two major as-
pects, namely the representation of the context and
the respective computational model. Probably the
most prominent class of distributional similarity
models represents context as a vector of word fea-
tures and computes similarity using feature vector
arithmetics (Lund and Burgess, 1996; Turney et
al., 2010). To construct the feature vectors, the
context of each target word token!, which is com-
monly a word window around it, is first broken

"We use word type to denote an entry in the vocabulary,
and word token for a particular occurrence of a word type.

dyuret@ku.edu.tr

into a set of individual independent words. Then
the weights of the entries in the word feature vec-
tor capture the degree of association between the
target word type and each of the individual word
features, independently of one another.

Despite its popularity, it was suggested that
the word feature vector approach misses valu-
able information, which is embedded in the co-
location and inter-relations of words (e.g. word
order) within the same context (Ruiz-Casado et al.,
2005). Following this motivation, Ruiz-Casado
et al. (2005) proposed an alternative composite-
feature model, later adopted in (Agirre et al.,
2009). This model adopts a richer context repre-
sentation by considering entire word window con-
texts as features, while keeping the same compu-
tational vector-based model. Although showing
interesting potential, this approach suffers from a
very high-dimensional feature space resulting in
data sparseness problems. Therefore, it requires
exceptionally large learning corpora to consider
large windows effectively.

A parallel line of work adopted richer context
representations as well, with a different compu-
tational model. These works utilized neural net-
works to learn low dimensional continuous vector
representations for word types, which were found
useful for measuring semantic similarity (Col-
lobert and Weston, 2008; Mikolov et al., 2013).
These vectors are trained by optimizing the pre-
diction of target words given their observed con-
texts (or variants of this objective). Most of these
models consider each observed context as a joint
set of context words within a word window.

In this work we follow the motivation in the pre-
vious works above to exploit richer joint-context
representations for modeling distributional simi-
larity. Under this approach the set of features in
the context of each target word token is consid-
ered to jointly reflect on the meaning of the target
word type. To further facilitate this type of mod-
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eling we propose a novel probabilistic computa-
tional scheme for distributional similarity, which
leverages the power of probabilistic models and
addresses the data sparseness challenge associated
with large joint-contexts. Our scheme is based on
the following probabilistic corollary to the distri-
butional hypothesis:

)

“words are similar in meaning if
they are likely to occur in the same contexts”

To realize this corollary, our distributional sim-
ilarity scheme assigns high similarity scores to
word pairs a and b, for which a is likely in the con-
texts that are observed for b and vice versa. The
scheme is generic in the sense that various under-
lying probabilistic models can be used to provide
the estimates for the likelihood of a target word
given a context. This allows concrete semantic
similarity models based on this scheme to lever-
age the capabilities of probabilistic models, such
as established language models, which typically
address the modeling of joint-contexts.

We hypothesize that an underlying model that
could capture syntagmatic patterns in large word
contexts, yet is flexible enough to deal with data
sparseness, is desired. It is generally accepted
that the semantics of verbs in particular are cor-
related with their syntagmatic properties (Levin,
1993; Hanks, 2013). This provides grounds to ex-
pect that such model has the potential to excel for
verbs. To capture syntagmatic patterns, we choose
in this work standard n-gram language models as
the basis for a concrete model implementing our
scheme. This choice is inspired by recent work on
learning syntactic categories (Yatbaz et al., 2012),
which successfully utilized such language mod-
els to represent word window contexts of target
words. However, we note that other richer types
of language models, such as class-based (Brown
et al., 1992) or hybrid (Tan et al., 2012), can be
seamlessly integrated into our scheme.

Our evaluations suggest that our model is in-
deed particularly advantageous for measuring se-
mantic similarity for verbs, while maintaining
comparable or better performance with respect to
competitive baselines for nouns.

2 Background

In this section we provide additional details re-
garding previous works that we later use as base-
lines in our evaluations.
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To implement the composite-feature approach,
Ruiz-Casado et al. (2005) used a Web search en-
gine to compare entire window contexts of target
word types. For example, a single feature that
could be retrieved this way for the target word like
is “Children ___ cookies and milk”. They showed
good results on detecting synonyms in the 80
multiple-choice questions TOEFL test. Agirre et
al. (2009) constructed composite-feature vectors
using an exceptionally large 1.6 Teraword learn-
ing corpus. They found that this approach out-
performs the traditional independent feature vec-
tor approach on a subset of the WordSim353 test-
set (Finkelstein et al., 2001), which is designed to
test the more restricted relation of semantic simi-
larity (to be distinguished from looser semantic re-
latedness). We are not aware of additional works
following this approach, of using entire word win-
dows as features.

Neural networks have been used to train lan-
guage models that are based on low dimensional
continuous vector representations for word types,
also called word embeddings (Bengio et al., 2003;
Mikolov et al., 2010). Although originally de-
signed to improve language models, later works
have shown that such word embeddings are useful
in various other NLP tasks, including measuring
semantic similarity with vector arithmetics (Col-
lobert and Weston, 2008; Mikolov et al., 2013).
Specifically, the recent work by Mikolov et al.
(2013) introduced the CBOW and Skip-gram mod-
els, achieving state-of-the-art results in detecting
semantic analogies. The CBOW model is trained
to predict a target word given the set of context
words in a word window around it, where this
context is considered jointly as a bag-of-words.
The Skip-gram model is trained to predict each of
the context words independently given the target
word.

3 Probabilistic Distributional Similarity

3.1 Motivation

In this section we briefly demonstrate the bene-
fits of considering joint-contexts of words. As an
illustrative example, we note that the target words
like and surround may share many individual word
features such as “school” and “campus” in the sen-
tences “Mary’s son likes the school campus” and
“The forest surrounds the school campus”. This
potentially implies that individual features may
not be sufficient to accurately reflect the difference



between such words. Alternatively, we could use
the following composite features to model the con-
text of these words, “Mary’s son ___ the school
campus” and “The forest ___ the school campus”.
This would discriminate better between like and
surround. However, in this case sentences such as
“Mary’s son likes the school campus” and “John’s
son loves the school campus” will not provide any
evidence to the similarity between like and love,
since “Mary’s son ___the school campus” is a dif-
ferent feature than “John’s son __ the school cam-
pus”.

In the remainder of this section we propose
a modeling scheme and then a concrete model,
which can predict that like and love are likely to
occur in each other’s joint-contexts, whereas like
and surround are not, and then assign similarity
scores accordingly.

3.2 The probabilistic similarity scheme

We now present a computational scheme that re-
alizes our proposed corollary (1) to the distribu-
tional hypothesis and facilitates robust probabilis-
tic modeling of joint contexts. First, we slightly
rephrase this corollary as follows: “words a and
b are similar in meaning if word b is likely in
the contexts of a and vice versa”. We denote the
probability of an occurrence of a target word b
given a joint-context ¢ by p(b|c). For example,
p(love|“Mary’s son __ the school campus”) is the
probability of the word love to be the filler of the
‘place-holder’ in the given joint-context “Mary’s
son __ the school campus”. Similarly, we denote
p(c|a) as the probability of a joint-context ¢ given
a word a, which fills its place-holder. We now
propose p*™(b|a) to reflect how likely b is in the
joint-contexts of a. We define this measure as:

szm b\a Zp C‘ )

where c goes over all possible joint-contexts in the
language.

To implement this measure we need to find
an efficient estimate for p*™(bla). The most
straight forward strategy is to compute sim-

ple corpus count ratio estimates for p(b|c) and
count(b,c)

2)

p(cla), denoted py(blc) = couni(re and
pu(cla) = %’m However, when consid-

ering large joint-contexts for ¢, this approach be-
comes similar to the composite-feature approach
since it is based on co-occurrence counts of tar-
get words with large joint-contexts. Therefore, we
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expect in this case to encounter the data sparse-
ness problems mentioned in Section 1, where se-
mantically similar word type pairs that share only
few or no identical joint-contexts yield very low
p*™(b|a) estimates.

To address the data sparseness challenge and
adopt more advanced context modeling, we aim to
use a more robust underlying probabilistic model
0 for our scheme and denote the probabilities es-
timated by this model by pg(b|c) and pg(c|a). We
note that contrary to the count ratio model, given a
robust model 6, such as a language model, py(b|c)
and py(c|a) can be positive even if the target words
b and a were not observed with the joint-context ¢
in the learning corpus.

While using pg(b|c) and py(c|a) to estimate the
value of p*™(b|a) addresses the sparseness chal-
lenge, it introduces a computational challenge.
This is because estimating p*™(b|a) would re-
quire computing the sum over all of the joint-
contexts in the learning corpus regardless of
whether they were actually observed with either
word type a or b. For that reason we choose a
middle ground approach, estimating p(b|c) with
6, while using a count ratio estimate for p(c|a),
as follows. We denote the collection of all joint-
contexts observed for the target word a in the
learning corpus by C,, where |Cy|= count(a, *).
For example, Cjike = {c1="Mary’s son ___ the
school campus”, co="John’s daughter _ to read
poetry”,...}. We note that this collection is a multi-
set, where the same joint-context can appear more
than once.

We now approximate p*™(b|a) from Equation
(2) as follows:

AS’L’I’VL b|a

ZP# cla)
> po(ble)

ceCqy

- pa(blc) =
3)
\C |

We note that this formulation still addresses
sparseness of data by using a robust model, such as
a language model, to estimate py(b|c). At the same
time it requires our model to sum only over the
joint-contexts in the collection C,, since contexts
not observed for a yield py(cla) = 0. Even so,
since the size of these context collections grows
linearly with the corpus size, considering all ob-
served contexts may still present a scalability chal-
lenge. Nevertheless, we expect our approximation
pEi™(bla) to converge with a reasonable sample



size from a’s joint-contexts. Therefore, in order
to bound computational complexity, we limit the
size of the context collections used to train our
model to a maximum of N by randomly sampling
N entries from larger collections. In all our ex-
periments we use N = 10,000. Higher values
of N yielded negligible performances differences.
Overall we see that our model estimates p;" (b|a)
as the average probability predicted for b in (a
large sample of) the contexts observed for a.

Finally, we define our similarity measure for tar-
get word types a and b:

simg(a, b) \/ps“" (bla) - pg™(alb)  (4)
As intended, this similarity measure promotes
word pairs in which both b is likely in the con-
texts of a¢ and vice versa. Next, we describe a
model which implements this scheme with an n-
gram language model as a concrete choice for 6.

3.3 Probabilistic similarity using language
models

In this work we focus on the word window context
representation, which is the most common. We
define a word window of order k around a target
word as a window with up to k words to each side
of the target word, not crossing sentence bound-
aries. The word window does not include the tar-
get word itself, but rather a ‘place-holder’ for it.

Since word windows are sequences of words,
probabilistic language models are a natural choice
of a model 6 for estimating py(b|c). Language
models assign likelihood estimates to sequences
of words using approximation strategies. In
this work we choose n-gram language models,
aiming to capture syntagmatic properties of the
word contexts, which are sensitive to word or-
der. To approximate the probability of long se-
quences of words, n-gram language models com-
pute the product of the estimated probability of
each word in the sequence conditioned on at most
the n — 1 words preceding it. Furthermore, they
use ‘discounting’ methods to improve the esti-
mates of conditional probabilities when learning
data is sparse. Specifically, in this work we use
the Kneser-Ney n-gram model (Kneser and Ney,
1995).

We compute py(b|c) as follows:

po(b, c)

5
Po(0) ®)

po(blc) =

where py(b, ¢) is the probability of the word se-
quence comprising the word window c, in which
the word b fills the place-holder. For instance, for
¢ =“l drive my ___ to work every” and b = car,
po(b, ) is the estimated language model probabil-
ity of “I drive my car to work every”. pg(c) is the
marginal probability of py(*,c) over all possible
words in the vocabulary. 2

4 Experimental Settings

Although sometimes used interchangeably, it is
common to distinguish between semantic simi-
larity and semantic relatedness (Budanitsky and
Hirst, 2001; Agirre et al., 2009). Semantic simi-
larity is used to describe ‘likeness’ relations, such
as the relations between synonyms, hypernym-
hyponyms, and co-hyponyms. Semantic relat-
edness refers to a broader range of relations in-
cluding also meronymy and various other asso-
ciative relations as in ‘pencil-paper’ or ‘penguin-
Antarctica’. In this work we focus on semantic
similarity and evaluate all compared methods on
several semantic similarity tasks.

Following previous works (Lin, 1998; Riedl and
Biemann, 2013) we use Wordnet to construct large
scale gold standards for semantic similarity evalu-
ations. We perform the evaluations separately for
nouns and verbs to test our hypothesis that our
model is particularly well-suited for verbs. To fur-
ther evaluate our results on verbs we use the verb
similarity test-set released by (Yang and Powers,
2006), which contains pairs of verbs associated
with semantic similarity scores based on human
judgements.

4.1 Compared methods

We compare our model with a traditional fea-
ture vector model, the composite-feature model
(Agirre et al., 2009), and the recent state-of-the-art
word embedding models, CBOW and Skip-gram
(Mikolov et al., 2013), all trained on the same
learning corpus and evaluated on equal grounds.
We denote the traditional feature vector baseline
by IFVW=F where IFV stands for “Independent-
Feature Vector” and k is the order of the con-
text word window considered. Similarly, we
>Computing pg(c) by summing over all possible place-
holder filler words, as we did in this work, is computation-
ally intensive. However, this can be done more efficiently
by implementing customized versions of (at least some) n-
gram language models with little computational overhead,

e.g. by counting the learning corpus occurrences of n-gram
templates, in which one of the elements matches any word.
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denote the composite-feature vector baseline by
CFVW~=F where CFV stands for “Composite-
Feature Vector”. This baseline constructs
traditional-like feature vectors, but considers en-
tire word windows around target word tokens as
single features. In both of these baselines we use
Cosine as the vector similarity measure, and posi-
tive pointwise mutual information (PPMI) for the
feature vector weights. PPMI is a well-known
variant of pointwise mutual information (Church
and Hanks, 1990), and the combination of Cosine
with PPMI was shown to perform particularly well
in (Bullinaria and Levy, 2007).

We denote Mikolov’s CBOW and Skip-gram
baseline models by CBOWW =% and SKTPW—*
respectively, where k denotes again the order of
the window used to train these models. We used
Mikolov’s word2vec utility® with standard param-
eters (600 dimensions, negative sampling 15) to
learn the word embeddings, and Cosine as the vec-
tor similarity measure between them.

As the underlying probabilistic language model
for our method we use the Berkeley implementa-
tion* (Pauls and Klein, 2011) of the Kneser-Ney
n-gram model with the default discount parame-
ters. We denote our model PDSW —*, where PDS
stands for “Probabilistic Distributional Similar-
ity”, and k is the order of the context word win-
dow. In order to avoid giving our model an un-
fair advantage of tuning the order of the language
model n as an additional parameter, we use a fixed
n = k + 1. This means that the conditional prob-
abilities that our n-gram model learns consider a
scope of up to half the size of the window, which
is the distance in words between the target word
and either end of the window. We note that this
is the smallest reasonable value for n, as smaller
values effectively mean that there will be context
words within the window that are more than n
words away from the target word, and therefore
will not be considered by our model.

As learning corpus we used the first CD of
the freely available Reuters RCV1 dataset (Rose
et al., 2002). This learning corpus contains ap-
proximately 100M words, which is comparable in
size to the British National Corpus (BNC) (As-
ton, 1997). We first applied part-of-speech tag-
ging and lemmatization to all words. Then we
represented each word w in the corpus as the pair

*http://code.google.com/p/word2vec
*nttp://code.google.com/p/berkeleylm/
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[pos(w), lemma(w)], where pos(w) is a coarse-
grained part-of-speech category and lemma(w) is
the lemmatized form of w. Finally, we converted
every pair [pos(w),lemma(w)] that occurs less
than 100 times in the learning corpus to the pair
[pos(w), 7], which represents all rare words of the
same part-of-speech tag. Ignoring rare words is a
common practice used in order to clean up the cor-
pus and reduce the vocabulary size (Gorman and
Curran, 2006; Collobert and Weston, 2008).

The above procedure resulted in a word vocabu-
lary of 27K words. From this vocabulary we con-
structed a target verb set with over 2.5K verbs by
selecting all verbs that exist in Wordnet (Fellbaum,
2010). We repeated this procedure to create a tar-
get noun set with over 9K nouns. We used our
learning corpus for all compared methods and had
them assign a semantic similarity score for every
pair of verbs and every pair of nouns in these tar-
get sets. These scores were later used in all of our
evaluations.

4.2 Wordnet evaluation

There is a shortage of large scale test-sets for se-
mantic similarity. Popular test-sets such as Word-
Sim353 and the TOEFL synonyms test contain
only 353 and 80 test items respectively, and there-
fore make it difficult to obtain statistically signif-
icant results. To automatically construct larger-
scale test-sets for semantic similarity, we sampled
large target word subsets from our corpus and used
Wordnet as a gold standard for their semantically
similar words, following related previous evalua-
tions (Lin, 1998; Riedl and Biemann, 2013). We
constructed two test-sets for our primary evalua-
tion, one for verb similarity and another for noun
similarity.

To perform the verb similarity evaluation, we
randomly sampled 1,000 verbs from the target
verb set, where the probability of each verb to be
sampled is set to be proportional to its frequency in
the learning corpus. Next, for each sampled verb
a we constructed a Wordnet-based gold standard
set of semantically similar words. In this set each
verb a’ is annotated as a ‘synonym’ of a if at least
one of the senses of a’ is a synonym of any of the
senses of a. In addition, each verb o’ is annotated
as a ‘semantic neighbor’ of a if at least one of the
senses of @’ is a synonym, co-hyponym, or a di-
rect hypernym/hyponym of any of the senses of a.
We note that by definition all verbs annotated as



synonyms of a are annotated as semantic neigh-
bors as well. Next, per each verb a and an evalu-
ated method, we generated a ranked list of all other
verbs, which was induced according to the similar-
ity scores of this method.

Finally, we evaluated the compared methods
on two tasks, ‘synonym detection’ and ‘seman-
tic neighbor detection’. In the synonym detection
task we evaluated the methods’ ability to retrieve
as much verbs annotated in our gold standard as
‘synonyms’, in the top-n entries of their ranked
lists. Similarly, we evaluated all methods on the
‘semantic neighbors’ task. The synonym detec-
tion task is designed to evaluate the ability of the
compared methods to identify a more restrictive
interpretation of semantic similarity, while the se-
mantic neighbor detection task does the same for
a somewhat broader interpretation.

We repeated the above procedure for sam-
pling 1,000 target nouns, constructing the noun
Wordnet-based gold standards and evaluating on
the two semantic similarity tasks.

4.3 VerbSim evaluation

The publicly available VerbSim test-set contains
130 verb pairs, each annotated with an average of
6 human judgements of semantic similarity (Yang
and Powers, 2006). We extracted a 107 pairs sub-
set of this dataset for which all verbs are in our
learning corpus. We followed works such as (Yang
and Powers, 2007; Agirre et al., 2009) and com-
pared the Spearman correlations between the verb-
pair similarity scores assigned by the compared
methods and the manually annotated scores in this
dataset.

5 Results

For each method and verb a in our 1,000 tested
verbs, we used the Wordnet gold standard to com-
pute the precision at top-1, top-5 and top-10 of the
ranked list generated by this method for a. We
then computed mean precision values averaged
over all verbs for each of the compared methods,
denoted as P@1, P@5 and P@10. The detailed
report of P@10 results is omitted for brevity, as
they behave very similarly to P@5. We varied the
context window order used by all methods to test
its effect on the results. We measured the same
metrics for nouns.

The results of our Wordnet-based 1,000 verbs
evaluation are presented in the upper part of Fig-
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ure 1. The results show significant improvement
of our method over all baselines, with a margin
between 2 to 3 points on the synonyms detection
task and 5 to 7 points on the semantic neighbors
detection task. Our best performing configura-
tions are PDS" =3 and PDS" 4, outperform-
ing all other baselines on both tasks and in all pre-
cision categories. This difference is statistically
significant at p < 0.001 using a paired t-test in all
cases except for the P@1 in the synonyms detec-
tion task. Within the baselines, the composite fea-
ture vector (CFV) performs somewhat better than
the independent feature vector (IFV) baseline, and
both methods perform best around window order
of two, with gradual decline for larger windows.
The word embedding baselines, CBOW and SKIP,
perform comparably to the feature vector base-
lines and to one another, with best performance
achieved around window order of four.

When gradually increasing the context window
order within the range of up to 4 words, our PDS
model shows improvement. This is in contrast to
the feature vector baselines, whose performance
declines for context window orders larger than 2.
This suggests that our approach is able to take ad-
vantage of larger contexts in comparison to stan-
dard feature vector models. The decline in perfor-
mance for the independent feature vector baseline
(IFV) may be related to the fact that independent
features farther away from the target word are gen-
erally more loosely related to it. This seems con-
sistent with previous works, where narrow win-
dows of the order of two words performed well
(Bullinaria and Levy, 2007; Agirre et al., 2009;
Bruni et al., 2012) and in particular so when eval-
uating semantic similarity rather than relatedness.
On the other hand, the decline in performance for
the composite feature vector baseline (CFV) may
be attributed to the data sparseness phenomenon
associated with larger windows. The performance
of the word embedding baselines (CBOW and
SKIP) starts declining very mildly only for win-
dow orders larger than 4. This might be attributed
to the fact that these models assign lower weights
to context words the farther away they are from the
center of the window.

The results of our Wordnet-based 1,000 nouns
evaluation are presented in the lower part of Fig-
ure 1. These results are partly consistent with the
results achieved for verbs, but with a couple of
notable differences. First, though our model still
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Figure 1: Mean precision scores as a function of window order, obtained against the Wordnet-based gold
standard, on both the verb and noun test-sets with both the synonyms and semantic neighbor detection
tasks. “P@n” stands for precision in the top-n words of the ranked lists. Note that the Y-axis scale varies

between graphs.

outperforms or performs comparably to all other
baselines, in this case the advantage of our model
over the feature vector baselines is much more
moderate and not statistically significant. Second,
the word embedding baselines generally perform
worst (with CBOW performing a little better than
SKIP), and our model outperforms them in both
P@5 and P@10 with a margin of around 2 points
for the synonyms detection task and 3-4 points for
the neighbor detection task, with statistical signif-
icance at p < 0.001.

Next, to reconfirm the particular applicability
of our model to verb similarity as apparent from
the Wordnet evaluation, we performed the Verb-
Sim evaluation and present the results in Table 1.

We compared the Spearman correlation obtained
for the top-performing window order of each of
the evaluated methods in the Wordnet verbs eval-
uation. We present two sets of results. The ‘all
scores‘ results follow the standard evaluation pro-
cedure, considering all similarity scores produced
by each method. In the ‘top-100 scores‘ results,
for each method we converted to zero the scores
that it assigned to word pairs, where neither of
the words is in the top-100 most similar words
of the other. Then we performed the evaluation
with these revised scores. This procedure focuses
on evaluating the quality of the methods’ top-
100 ranked word lists. The results show that our
method outperforms all baselines by a nice mar-
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Method All scores | top-100 scores
PDS W-4 0.616 0.625
CFV W-2 0.477 0.497
IFV W-2 0.467 0.546
SKIP W-4 0.469 0.512
CBOW W-5 0.528 0.469

Table 1: Spearman correlation values obtained for
the VerbSim evaluation. Each method was evalu-
ated with the optimal window order found in the
Wordnet verbs evaluation.

gin of more than 8 points with the score of 0.616
and 0.625 for the ‘all scores‘ and ‘top-100 scores*
evaluations respectively. Though not statistically
significant, due to the small test-set size, these re-
sults support the ones from the Wordnet evalu-
ation, suggesting that our model performs better
than the baselines on measuring verb similarity.

In summary, our results suggest that in lack of a
robust context modeling scheme it is hard for dis-
tributional similarity models to effectively lever-
age larger word window contexts for measuring
semantic similarity. It appears that this is some-
what less of a concern when it comes to noun sim-
ilarity, as the simple feature vector models reach
near-optimal performance with small word win-
dows of order 2, but it is an important factor for
verb similarity. In his recent book, Hanks (2013)
claims that contrary to nouns, computational mod-
els that are to capture the meanings of verbs must
consider their syntagmatic patterns in text. Our
particularly good results on verb similarity sug-
gest that our modeling approach is able to cap-
ture such information in larger context windows.
We further conjecture that the reason the word em-
bedding baselines did not do as well as our model
on verb similarity might be due to their particular
choice of joint-context formulation, which is not
sensitive to word order. However, these conjec-
tures should be further validated with additional
evaluations in future work.

6 Future Directions

In this paper we investigated the potential for im-
proving distributional similarity models by model-
ing jointly the occurrence of several features under
the same context. We evaluated several previous
works with different context modeling approaches
and suggest that the type of the underlying con-
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text modeling may have significant effect on the
performance of the semantic model. Further-
more, we introduced a generic probabilistic distri-
butional similarity approach, which can leverage
the power of established probabilistic language
models to effectively model joint-contexts for the
purpose of measuring semantic similarity. Our
concrete model utilizing n-gram language models
outperforms several competitive baselines on se-
mantic similarity tasks, and appears to be partic-
ularly well-suited for verbs. In the remainder of
this section we describe some potential future di-
rections that can be pursued.

First, the performance of our generic scheme
is largely inherited from the nature of its under-
lying language model. Therefore, we see much
potential in exploring the use of other types of
language models, such as class-based (Brown et
al., 1992), syntax-based (Pauls and Klein, 2012)
or hybrid (Tan et al., 2012). Furthermore, a sim-
ilar approach to ours could be attempted in word
embedding models. For instance, our syntagmatic
joint-context modeling approach could be investi-
gated by word embedding models to generate bet-
ter embeddings for verbs.

Another direction relates to the well known ten-
dency of many words, and particularly verbs, to
assume different meanings (or senses) under dif-
ferent contexts. To address this phenomenon con-
text sensitive similarity and inference models have
been proposed (Dinu and Lapata, 2010; Melamud
et al., 2013). Similarly to many semantic similar-
ity models, our current model aggregates informa-
tion from all observed contexts of a target word
type regardless of its different senses. However,
we believe that our approach is well suited to ad-
dress context sensitive similarity with proper en-
hancements, as it considers joint-contexts that can
more accurately disambiguate the meaning of tar-
get words. As an example, it is possible to con-
sider the likelihood of word b to occur in a subset
of the contexts observed for word a, which is bi-
ased towards a particular sense of a.

Finally, we note that our model is not a classic
vector space model and therefore common vec-
tor composition approaches (Mitchell and Lap-
ata, 2008) cannot be directly applied to it. In-
stead, other methods, such as similarity of com-
positions (Turney, 2012), should be investigated to
extend our approach for measuring similarity be-
tween phrases.
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