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Abstract

Bootstrapped pattern learning for entity
extraction usually starts with seed entities
and iteratively learns patterns and entities
from unlabeled text. Patterns are scored
by their ability to extract more positive en-
tities and less negative entities. A prob-
lem is that due to the lack of labeled data,
unlabeled entities are either assumed to be
negative or are ignored by the existing pat-
tern scoring measures. In this paper, we
improve pattern scoring by predicting the
labels of unlabeled entities. We use var-
ious unsupervised features based on con-
trasting domain-specific and general text,
and exploiting distributional similarity and
edit distances to learned entities. Our
system outperforms existing pattern scor-
ing algorithms for extracting drug-and-
treatment entities from four medical fo-
rums.

1 Introduction

This paper considers the problem of building ef-
fective entity extractors for custom entity types
from specialized domain corpora. We approach
the problem by learning rules bootstrapped us-
ing seed sets of entities. Though entity extrac-
tion using machine learning is common in aca-
demic research, rule-based systems dominate in
commercial use (Chiticariu et al., 2013), mainly
because rules are effective, interpretable, and are
easy to customize by non-experts to cope with er-
rors. They also have been shown to perform bet-
ter than state-of-the-art machine learning methods
on some specialized domains (Nallapati and Man-
ning, 2008; Gupta and Manning, 2014a). In ad-
dition, building supervised machine learning sys-
tems for a reasonably large domain-specific cor-
pus would require hand-labeling sufficient data to
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Seed dictionary for class ‘animals’: {dog}

Text:
| own a cat named Fluffy. | run with my pet
dog. | also nap with my pet cat. | own a car.

Pattern 1: my pet X
Extractions = positive : {dog}, unlabeled : {cat}

Pattern 2: own a X
Extractions = positive : {dog}, unlabeled : {car}

Figure 1: An example pattern learning system for
the class ‘animals’ from the text. Pattern 1 and 2
are candidate patterns. Text matched with the pat-
terns is shown in italics and the extracted entities
are shown in bold.

train a model, which can be costly and time con-
suming. Bootstrapped machine-learned rules can
make extraction easier and more efficient on such
a corpus.

In a bootstrapped rule-based entity learning
system, seed dictionaries and/or patterns provide
weak supervision to label data. The system itera-
tively learns new entities belonging to a specific
class from unlabeled text (Riloff, 1996; Collins
and Singer, 1999). Rules are typically defined
by creating patterns around the entities, such
as lexico-syntactic surface word patterns (Hearst,
1992) and dependency tree patterns (Yangarber
et al., 2000). Patterns are scored by their abil-
ity to extract more positive entities and less neg-
ative entities. Top ranked patterns are used to
extract candidate entities from text. High scor-
ing candidate entities are added to the dictionaries
and are used to generate more candidate patterns
around them. In a supervised setting, the efficacy
of patterns can be judged by their performance
on a fully labeled dataset (Califf and Mooney,
1999; Ciravegna, 2001). In a bootstrapped sys-
tem, where the data is not fully labeled, existing
systems score patterns by either ignoring the un-
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labeled entities or assuming them to be negative.
However, these scoring schemes cannot differenti-
ate between patterns that extract good versus bad
unlabeled entities. The problem is similar to the
closed world assumption in distantly supervised
information extraction systems, when all proposi-
tions missing from a knowledge base are consid-
ered false (Ritter et al., 2013; Xu et al., 2013).

Predicting labels of unlabeled entities can im-
prove scoring patterns. Consider the example
shown in Figure 1. Current pattern learning sys-
tems would score both patterns equally. However,
features like distributional similarity can predict
‘cat’ to be closer to {dog} than ‘car’, and a pat-
tern learning system can use that information to
rank ‘Pattern 1’ higher than ‘Pattern 2’.

In this paper, we work on bootstrapping en-
tity extraction using seed sets of entities and an
unlabeled text corpus. We improve the scoring
of patterns for an entity class by defining a pat-
tern’s score by the number of positive entities it
extracts and the ratio of number of positive entities
to expected number of negative entities it extracts.
Our main contribution is introducing the expected
number of negative entities in pattern scoring — we
predict probabilities of unlabeled entities belong-
ing to the negative class. We estimate an unla-
beled entity’s negative class probability by averag-
ing probabilities from various unsupervised class
predictors, such as distributional similarity, string
edit distances from learned entities, and TF-IDF
scores. Our system performs significantly better
than existing pattern scoring measures for extract-
ing drug-and-treatment entities from four medi-
cal forums on MedHelp', a user health discussion
website.

We release the code for the systems described in
this paper at http://nlp.stanford.edu/
software/patternslearning.shtml.
We also release a visualization tool, described
in Gupta and Manning (2014b), that visualizes
and compares output of multiple pattern-based
entity extraction systems. It can be downloaded at
http://nlp.stanford.edu/software/
patternviz.shtml.

2 Related Work

Rule based learning has been a topic of interest
for many years. Patwardhan (2010) gives a good
overview of the research in the field. Rule learn-
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ing systems differ in how they create rules, score
them, and score the entities they extract. Here, we
mainly discuss the rule scoring part of the previous
entity extraction research.

The pioneering work by Hearst (1992) used
hand written rules to automatically generate
more rules that were manually evaluated to
extract hypernym-hyponym pairs from text.
Other supervised systems like SRV (Freitag,
1998), SLIPPER (Cohen and Singer, 1999),
(LP)? (Ciravegna, 2001), and RAPIER (Califf
and Mooney, 1999) used a fully labeled corpus to
either create or score rules.

Riloff (1996) used a set of seed entities to
bootstrap learning of rules for entity extraction
from unlabeled text. She scored a rule by a
weighted conditional probability measure esti-
mated by counting the number of positive entities
among all the entities extracted by the rule. Thelen
and Riloff (2002) extended the above bootstrap-
ping algorithm for multi-class learning. Yangar-
ber et al. (2002) and Lin et al. (2003) used a com-
bination of accuracy and confidence of a pattern
for multiclass entity learning, where the accuracy
measure ignored unlabeled entities and the con-
fidence measure treated them as negative. Gupta
and Manning (2014a) used the ratio of scaled fre-
quencies of positive entities among all extracted
entities. None of the above measures predict labels
of unlabeled entities to score patterns. Our sys-
tem outperforms them in our experiments. Steven-
son and Greenwood (2005) used Wordnet to assess
patterns, which is not feasible for domains that
have low coverage in Wordnet, such as medical
data.

More recently, open information extraction
systems have garnered attention. They focus
on extracting entities and relations from the
web.  KnowltAll’s entity extraction from the
web (Downey et al., 2004; Etzioni et al., 2005)
used components such as list extractors, generic
and domain specific pattern learning, and subclass
learning. They learned domain-specific patterns
using a seed set and scored them by ignoring un-
labeled entities. One of our baselines is similar
to their domain-specific pattern learning compo-
nent. Carlson et al. (2010) learned multiple se-
mantic types using coupled semi-supervised train-
ing from web-scale data, which is not feasible for
all datasets and entity learning tasks. They as-
sessed patterns by their precision, assuming unla-



beled entities to be negative; one of our baselines
is similar to their pattern assessment method.

Other open information extraction systems like
ReVerb (Fader et al., 2011) and OLLIE (Mausam
et al., 2012) are mainly geared towards generic,
domain-independent relation extractors for web
data. We tested learning an entity extractor for a
given class using ReVerb. We labeled the binary
and unary ReVerb extractions using the class seed
entities and retrained its confidence function, with
poor results. Poon and Domingos (2010) found
a similar result for inducing a probabilistic ontol-
ogy: an open information extraction system ex-
tracted low accuracy relational triples on a small
corpus.

In this paper, we use features such as distribu-
tional similarity and edit distances from learned
entities to score patterns. Similar measures have
been used before but for learning entities, label-
ing semantic classes, or for reducing noise in seed
sets (Pantel and Ravichandran, 2004; MclIntosh
and Curran, 2009). Measures for improving en-
tity learning can be used alongside ours since we
focus on scoring candidate patterns.

3 Approach

We use lexico-syntactic surface word patterns to
extract entities from unlabeled text starting with
seed dictionaries of entities for multiple classes.
For ease of exposition, we present the approach
below for learning entities for one class C'. It can
easily be generalized to multiple classes. We re-
fer to entities belonging to C' as positive and en-
tities belonging to all other classes as negative.
The bootstrapping process involves the following
steps, iteratively performed until no more patterns
or entities can be learned.

1. Labeling data and creating patterns: The text
is labeled using the class dictionaries, start-
ing with the seed dictionaries in the first iter-
ation. A phrase matching a dictionary phrase
is labeled with the dictionary’s class. Patterns
are then created using the context around the
positively labeled entities to create candidate
patterns for C.

Scoring Patterns: Candidate patterns are
scored using a pattern scoring measure and
the top ones are added to the list of learned
patterns for C.
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3. Learning entities: Learned patterns for the
class are applied to the text to extract candi-
date entities. An entity scorer ranks the can-
didate entities and adds the top entities to C’s
dictionary.

The success of bootstrapped pattern learning
methods crucially depends on the effectiveness of
the pattern scorer and the entity scorer. Here we
focus on improving the pattern scoring measure
(Step 2 above).

3.1 Creating Patterns

Candidate patterns are created using contexts of
words or their lemmas in a window of two to four
words before and after a positively labeled token.
Context words that are labeled with one of the
classes are generalized with that class. The tar-
get term has a part-of-speech (POS) restriction,
which is the POS tag of the labeled token. We
create flexible patterns by ignoring the words {‘a’,
‘an’, ‘the’} and quotation marks when matching
patterns to the text. Some examples of the patterns
are shown in Table 4.

3.2 Scoring Patterns

Judging the efficacy of patterns without using a
fully labeled dataset can be challenging because of
two types of failures: 1. penalizing good patterns
that extract good (that is, positive) unlabeled enti-
ties, and 2. giving high scores to bad patterns that
extract bad (that is, negative) unlabeled entities.
Existing systems that assume unlabeled entities as
negative are too conservative in scoring patterns
and suffer from the first problem. Systems that
ignore unlabeled entities can suffer from both the
problems. In this paper, we propose to estimate
the labels of unlabeled entities to more accurately
score the patterns.

For a pattern r, sets P, N,, and U, denote the
positive, negative, and unlabeled entities extracted
by r, respectively. The pattern score, ps(r) is cal-
culated as

_ I3
N+ ey (1 score(e))

ps(r) log(|F+[)

where |.| denotes size of a set. The function
score(e) gives the probability of an entity e be-
longing to C. If e is a common word, score(e) is
0. Otherwise, score(e) is calculated as the aver-
age of five feature scores (explained below), each



of which give a score between 0 and 1. The fea-
ture scores are calculated using the seed dictio-
naries, learned entities for all labels, Google N-
grams?, and clustering of domain words using dis-
tributional similarity. The log|P,| term, inspired
from (Riloff, 1996), gives higher scores to patterns
that extract more positive entities. Candidate pat-
terns are ranked by ps(r) and the top patterns are
added to the list of learned patterns.

To calculate score(e), we use features that as-
sess unlabeled entities to be either closer to pos-
itive or negative entities in an unsupervised way.
We motivate our choice of the five features below
with the following insights. If the dataset consists
of informally written text, many unlabeled enti-
ties are spelling mistakes and morphological vari-
ations of labeled entities. We use two edit distance
based features to predict labels for these unlabeled
entities. Second, some unlabeled entities are sub-
strings of multi-word dictionary phrases but do not
necessarily belong to the dictionary’s class. For
example, for learning drug names, the positive dic-
tionary might contain ‘asthma meds’, but ‘asthma’
is negative and might occur in a negative dictio-
nary as ‘asthma disease’. To predict the labels of
entities that are a substring of dictionary phrases,
we use SemOdd, which was used in Gupta and
Manning (2014a) to learn entities. Third, for a
specialized domain, unlabeled entities that com-
monly occur in generic text are more likely to be
negative. We use Google Ngrams (called GN) to
get a fast, non-sparse estimate of the frequency of
entities over a broad range of domains. The above
features do not consider the context in which the
entities occur in text. We use the fifth feature, Dist-
Sim, to exploit contextual information of the la-
beled entities using distributional similarity. The
features are defined as:

Edit distance from positive entities (EDP): This
feature gives a score of 1 if e has low edit

distance to the positive entities. It is com-
edztDlzpslt(p,e) < 02)’
where 1(c) returns 1 if the condition c is true

and 0 otherwise, |p| is the length of p, and
editDist(p,e) is the Damerau-Levenshtein
string edit distance between p and e.

Edit distance from negative entities (EDN): It is
similar to EDP and gives a score of 1 if e has

puted as maz,ep,1(

http://storage.googleapis.com/books/
ngrams/books/datasetsv2.html. Accessed Jan-
uary 2008.
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high edit distance to the negative entities. It is

editDist(n,e)
canforstim,e) -
||

computed as 1 — maxpen, 1(
0.2).

Semantic odds ratio (SemOdd): First, we cal-
culate the ratio of frequency of the entity
term in the positive entities to its frequency in
the negative entities with Laplace smoothing.
The ratio is then normalized using a softmax
function. The feature values for the unlabeled
entities extracted by all the candidate patterns
are then normalized using the min-max func-
tion to scale the values between 0 and 1.3

Google Ngram (GN): We calculate the ratio of
scaled frequency of e in the dataset to the fre-
quency in Google Ngrams. The scaling factor
is to balance the two frequencies and is com-
puted as the ratio of total number of phrases
in the dataset to the total of phrases in Google
Ngrams. The feature values are normalized
in the same way as SemQOdd.

Distributional similarity score (DistSim): Words
that occur in similar contexts, such as
‘asthma’ and ‘depression’, are clustered us-
ing distributional similarity. Unlabeled en-
tities that get clustered with positive entities
are given higher score than the ones clustered
with negative entities. To score the clusters,
we learn a logistic regression classifier using
cluster ID as features, and use their weights
as scores for all the entities in those clusters.
The dataset for logistic regression is created
by considering all positively labeled words as
positive and sampling negative and unlabeled
words as negative. The scores for entities are
normalized in the same way as SemOdd and
GN.

Out of feature vocabulary entities for SemOdd,
GN, and DistSim are given a score of 0. We
use a simple way of combining the feature val-
ues: we give equal weights to all features and
average their scores. Features can be combined
using a weighted average by manually tuning the
weights on a development set; we leave it to the
future work. Another way of weighting the fea-
tures is to learn the weights using machine learn-
ing. We experimented with learning weights for

3We do min-max normalization on top of the softmax
normalization because the maximum and minimum value by
softmax might not be close to 1 and 0, respectively. And,
treating the out-of-feature-vocabulary entities same as the
worst scored entities by the feature, that is giving them a score
of 0, performed best on the development dataset.



the features by training a logistic regression clas-
sifier. We considered all positive words as positive
and randomly sampled negative and unlabeled en-
tities as negative to predict score(e), but it per-
formed worse compared to averaging the scores
on the development dataset. Preliminary investi-
gation suggests that since the classifier was trained
on a dataset heuristically labeled using the seed
dictionaries, it was too noisy for the classifier to
learn accurate weights. Presumably, the classifier
also suffered from the closed world assumption of
treating unlabeled examples as negative.

3.3 Learning Entities

We apply the learned patterns to the text and
extract candidate entities. We discard common
words, negative entities, and those containing non-
alphanumeric characters from the set. The rest are
scored by averaging the scores of DistSim, Sem-
Odd, EDO, and EDN features from Section 3.2
and the following features.

Pattern TF-IDF scoring (PTF): For an entity e, it
is calculated as m > rer PS(r), where
R is the set of learned patterns that extract e
and freq. is the frequency of e in the cor-
pus. Entities that are extracted by many high
weighted patterns get higher weight. To mit-
igate the effect of many commonly occurring
entities also getting extracted by several pat-
terns, we normalize the feature value with the
log of the entity’s frequency. The values are
normalized in the same way as DistSim and
SemOdd.

Domain N-gram TF-IDF (DN): This feature
gives higher scores to entities that are more
prevalent in the corpus compared to the gen-
eral domain. For example, to learn enti-
ties about a specific disease from a disease-
related corpus, the feature favors entities re-
lated to the disease over generic medical en-
tities. It is calculated in the same way as GN
except the frequency is computed in the n-
grams of the generic domain text.

Including GN in the phrase scoring features or
including DN in the pattern scoring features did
not perform well on the development set in our pi-
lot experiments.
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4 Experiments

4.1 Dataset

We evaluate our system on extracting drug-and-
treatment (DT) entities in sentences from four fo-
rums on the MedHelp user health discussion web-
site: 1. Acne, 2. Adult Type II Diabetes (called
Diabetes), 3. Ear Nose & Throat (called ENT),
and 4. Asthma. The forums have discussion
threads by users concerning health related prob-
lems and treatments. The number of sentences
in each forum are: 215,623 in ENT, 39,637 in
Asthma, 63,355 in Diabetes, and 65,595 in Acne.
We used Asthma as the development forum for
feature engineering and parameter tuning. Simi-
lar to Gupta and Manning (2014a), a DT entity is
defined as a pharmaceutical drug, or any treatment
or intervention mentioned that may help a symp-
tom or a condition. It includes surgeries, lifestyle
changes, alternative treatments, home remedies,
and components of daily care and management of
a disease, but does not include diagnostic tests and
devices. More information is in the supplemen-
tal material. A few example sentences from the
dataset are below.

I plan to start cinnamon and holy basil - known
to lower glucose in many people.

She gave me albuteral and symbicort (plus
some hayfever meds and asked me to use the
peak flow meter.

My sinus infections were treated electrically,
with high voltage million volt electricity, which
solved the problem, but the treatment is not
FDA approved and generally unavailable, except
under experimental treatment protocols.

In these sentences, ‘cinanmon’, ‘holy basil’, ‘al-
buteral’, ‘symbicort’, ‘meds’, ‘high voltage mil-
lion volt electricity’, and ‘treatment’ are DT enti-
ties.

We used entities from the following classes as
negative: symptoms and conditions (SC), medi-
cal specialists, body parts, and common tempo-
ral nouns to remove dates and dosage informa-
tion. We used the DT and SC seed dictionaries
from Gupta and Manning (2014a).* The lists of

*The DT seed dictionary (36,091 phrases) and SC seed
dictionary (97,211 phrases) were automatically constructed
from various sources on the Internet and expanded using
the OAC Consumer Health Vocabulary (http://www.
consumerhealthvocab. org), which maps medical jar-
gon to everyday phrases and their variants. Both dictionaries
are large because they contain many variants of entities. For
each system, the SC dictionary was further expanded by run-
ning the system with the SC class as positive (considering DT



body parts and temporal nouns were obtained from
Wordnet (Fellbaum, 1998). The common words
list was created using most common words on the
web and Twitter.’

For evaluation, the first author hand labeled the
learned entities pooled from all systems. A word
was evaluated by querying the word and the fo-
rum name on Google and manually inspecting the
results. More details on the labeling guidelines
are in the Supplement section. Inter annotator
agreement between the annotator and another re-
searcher was computed on 200 randomly sampled
learned entities from each of the Asthma and ENT
forum. The agreement for the entities from the
Asthma forum was 96% and from the ENT forum
was 92.46%. The Cohen’s kappa scores were 0.91
and 0.83, respectively. Most disagreements were
on food items like ‘yogurt’, which are hard to la-
bel. Note that we use the hand labeled entities only
as a test set for evaluation.

4.2 Baselines

As in Section 3, the sets P,., N,., and U, are defined
as the positive, negative, and unlabeled entities ex-
tracted by a pattern r, respectively. The set A, is
defined as union of all the three sets. We com-
pare our system with the following pattern scoring
algorithms. Candidate entities are scored in the
same way as described in Section 3.3. It is impor-
tant to note that previous works also differ in how
they create patterns, apply patterns, and score en-
tities. Since we focus on only the pattern scoring
aspect, we run experiments that differ in only that
component.

PNOdd: Defined as |P,|/|N,|, this measure ig-
nores unlabeled entities and is similar to the
domain specific pattern learning component
of Etzioni et al. (2005) since all patterns with
|P.| < 2 were discarded (more details in the
next section).

PUNOdd: Defined as |P,|/(|U,| + |N,|), this
measure treats unlabeled entities as negative
entities.

RlogF: Measure used by Riloff (1996) and
Thelen and Riloff (2002), and calculated
as R,log|P.|, where R, was defined as
|P-|/|Ar| (labeled RlogF-PUN). It assumed

and other classes as negative) and adding the top 50 words ex-

tracted by the top 300 patterns to the SC class dictionary. This

helps in adding corpus specific SC words to the dictionary.
>We used top 10,000 words from Google N-grams and top

5,000 words from Twitter (www.twitter.com), accessed
from May 19 to 25, 2012.
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unlabeled entities as negative entities. We
also compare with a variant that ignores the
unlabeled entities, that is by defining R, as
|Pr|/(| P + |N;|) (labeled RlogF-PN).

Yangarber(02: This measure from Yangarber et
al. (2002) calculated two scores, acc,
|P;|/INy| and con fr = (|P|/|A]) log | Pyl
Patterns with acc, less than a threshold were
discarded and the rest were ranked using
conf,. We empirically determined that a
threshold of 0.8 performed best on the devel-
opment forum.

Lin03: A measure proposed in Lin et al. (2003),
it was similar to Yangarber(02, except con f;
was defined as log | P, |(|P| — |N:|)/|Ax|.
In essence, it discards a pattern if it extracts
more negative entities than positive entities.

SqrtRatioAll: This pattern scoring method was
used in Gupta and Manning (2014a) and
definedas Yy cp VFreqr/ > ca, \/ ITeq),
where fregq; is the number of times entity
7 is extracted by 7. Sublinear scaling of
the term-frequency prevents high frequency
words from overshadowing the contribution
of low frequency words.

4.3 Experimental Setup

We used the same experimental setup for our sys-
tem and the baselines. When matching phrases
from a seed dictionary to text, a phrase is la-
beled with the dictionary’s class if the sequence of
phrase words or their lemmas match with the se-
quence of words of a dictionary phrase. Since our
corpora are from online discussion forums, they
have many spelling mistakes and morphological
variations of entities. To deal with the variations,
we do fuzzy matching of words — if two words are
one edit distance away and are more than 6 char-
acters long, then they are considered a match.

We used Stanford TokensRegex (Chang and
Manning, 2014) to create and apply surface word
patterns to text, and used the Stanford Part-of-
Speech (POS) tagger (Toutanova et al., 2003) to
find POS tags of tokens and lemmatize them.
When creating patterns, we discarded patterns
whose left or right context was 1 or 2 stop words to
avoid generating low precision patterns.® In each
iteration, we learned a maximum 20 patterns with
ps(r) > 6, and maximum 10 words with score >

Three or more stop words resulted in some good patterns
like ‘T am on X’. Our stop words list consists of punctuation
marks and around 200 very common English words.
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Figure 2: Precision vs. Recall curves of our system and the baselines for the four forums. Rlog-PN and

PNOdd are not shown to improve clarity.

0.2. The initial value of 8,. was 1.0, which was re-
duced to 0.8 x 6, whenever the system did not ex-
tract any more patterns and words. We discarded
patterns that extracted less than 2 positive entities.
We selected these parameters by their performance
on the development forum.

For calculating the DistSim feature used for
scoring patterns and entities, we clustered all of
MedHelp’s forum data into 1000 clusters using the
Brown clustering algorithm (Brown et al., 1992;
Liang, 2005).” For calculating the Domain Ngram
feature for scoring entities, we used n-grams from
all user forums in MedHelp as the domain n-
grams.

We evaluate systems by their precision and re-
call in each iteration. Precision is defined as the
fraction of correct entities among the entities ex-
tracted. We stopped learning entities for a sys-
tem if the precision dropped below 75% to extract
entities with reasonably high precision. Recall is
defined as the fraction of correct entities among
the total unique correct entities pooled from all
systems while maintaining the precision > 75%.
Note that true recall is very hard to compute since
our dataset is unlabeled. To compare the systems

"The data consisted of around 4 million tokens. Words
that occurred less than 50 times were discarded, which re-
sulted in 50353 unique words.
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overall, we calculate the area under the precision-
recall curves (AUC-PR).

System Asthma | ENT | Diabetes | Acne
OurSystem 68.36 | 60.71 67.62 68.01
PNOdd 51.62 | 50.31 05.91 58.45
PUNOdd 4242 | 3044 36.11 58.38
RlogF-PUN 56.13 | 54.11 48.70 57.04
RlogF-PN 53.46 | 52.84 16.59 62.35
SqrtRatioAll | 41.49 | 40.44 35.47 46.46
Yangarber02 | 53.76 | 48.46 41.45 59.85
Lin03 54.58 | 47.98 56.15 60.79

Table 1: Area under Precision-Recall curves of the
systems.

4.4 Results

Figure 2 plots the precision and recall of systems.?
Table 1 shows AUC-PR scores for all systems.
RlogF-PN and PNOdd have low value for Dia-
betes because they learned generic patterns in ini-
tial iteration, which led them to learn incorrect en-
tities. Overall our system performed significantly
better than existing systems. All systems extract
more entities for Acne and ENT because different
drugs and treatments are more prevalent in these
forums. Diabetes and Asthma have more inter-
ventions and lifestyle changes that are harder to

8We do not show plots of PNOdd and RlogF-PN to im-
prove clarity. They performed similarly to other baselines.



Feature Asthma | ENT | Diabetes | Acne
All Features 68.36 60.71 67.62 68.01
EDP 68.66 59.07 60.03 65.15
EDN 59.39 59.21 16.75 65.96
SemOdd 67.07 58.41 60.51 65.04
GN 57.52 59.53 48.76 68.61
DistSim 64.87 59.05 71.11 69.48

Table 2: Individual feature effectiveness: Area un-
der Precision-Recall curves when our system uses
individual features during pattern scoring. Other
features are still used for entity scoring.

Our System RlogF-PUN
low dose of X* mg of X

mg of X treat with X

X 10 mg take DT and X
she prescribe X be take X

X 500 mg she prescribe X
be take DT and X* | put on X

ent put I on X* stop take X

DT (like X:NN i be prescribe X
like DT and X have be take X
then prescribe X* | tell I to take X

Feature Asthma | ENT | Diabetes | Acne
All Features 68.36 60.71 67.62 68.01
minusEDP 66.29 60.45 69.84 69.46
minusEDN 67.19 60.39 69.89 67.57
minusGN 65.53 60.33 66.07 67.28
minusSemQOdd 66.66 60.76 70.79 68.25
minusDistSim 66.10 60.58 66.59 67.85

Table 3: Feature ablation study: Area under
Precision-Recall curves when individual features
are removed from our system during pattern scor-
ing. The feature is still used for entity scoring.

extract.

To compare the effectiveness of each feature in
our system, Table 2 shows the AUC-PR values
when each feature was individually used for pat-
tern scoring (other features were still used to learn
entities). EDP and DistSim were strong predictors
of labels of unlabeled entities because many good
unlabeled entities were spelling mistakes of DT
entities and occurred in similar context as them.
Table 3 shows the AUC-PR values when each fea-
ture was removed from the set of features used to
score patterns (the feature was still used for learn-
ing entities). Removing GN and DistSim reduced
the AUC-PR scores for all forums.

Table 4 shows some examples of patterns and
the entities they extracted along with their labels
when the pattern was learned. We learned the first
pattern because ‘pinacillin’ has low edit distance
from the positive entity ‘penicillin’. Similarly, we
scored the second pattern higher than the base-
line because ‘desoidne’ is a typo of the positive
entity ‘desonide’. Note that the seed dictionaries
are noisy — the entity ‘metro’, part of the positive
entity ‘metrogel’, was falsely considered a neg-
ative entity because it was in the common web
words list. Our system learned the third pattern
for two reasons: ‘inhaler’, ‘inhalers’, and ‘hfa’ oc-
curred frequently as sub-phrases in the DT dictio-
nary, and they were clustered with positive enti-
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Table 5: Top 10 (simplified) patterns learned by
our system and RlogF-PUN from the ENT forum.
An asterisk denotes that the pattern was never
learned by the other system. X is the target word.

ties by distributional similarity. Since RlogF-PUN
does not distinguish between unlabeled and nega-
tive entities, it is does not learn the pattern. Table 5
shows top 10 patterns learned for the ENT forum
by our system and RlogF-PUN, the best perform-
ing baseline for the forum. Our system preferred
to learn patterns with longer contexts, which are
usually higher precision, first.

5 Discussion and Conclusion

Our system extracted entities with higher preci-
sion and recall than other existing systems. How-
ever, learning entities from an informal text corpus
that is partially labeled from seed entities presents
some challenges. Our system made mistakes pri-
marily due to three reasons. One, it sometimes
extracted typos of negative entities that were not
easily predictable by the edit distance measures,
such as ‘knowwhere’. Second, patterns that ex-
tracted many good but some bad unlabeled en-
tities got high scores because of the good unla-
beled entities. However, the bad unlabeled enti-
ties extracted by the highly weighted patterns were
scored high by the PTF feature during the entity
scoring phase, leading to extraction of the bad en-
tities. Better features to predict negative entities
and robust text normalization would help mitigate
both the problems. Third, we used automatically
constructed seed dictionaries that were not dataset
specific, which led to incorrectly labeling of some
entities (for example, ‘metro’ as negative in Ta-
ble 4). Reducing noise in the dictionaries would
increase precision and recall.

In this paper, the features are weighted equally



Forum Pattern Positive entities Negative | Unlabeled | Our Baseline
System
ENT he give I X tibiotics, steroid, antibioti inacilli 68 NA
e give I more antibiotics, steroid, antibiotic pinacillin (RlogF-PUN
Acne topical DT (X prednisone, clindamycin, differin, | metro desoidne 149 231
. - (RlogF-PN)
benzoyl peroxide, tretinoin, metro-
gel
. . . . NA
Asthma | ibe puton X cortisone, prednisone, asmanex, ad- inhaler, 8
. . : . (RlogF-PUN
vair, augmentin, bypass, nebulizer, inhalers,
xolair, steroids, prilosec hfa

Table 4: Example patterns and the entities extracted by them, along with the rank at which the pattern
was added to the list of learned patterns. NA means that the system never learned the pattern. Baseline
refers to the best performing baseline system on the forum. The patterns have been simplified to show
just the sequence of lemmas. X refers to the target entity; all of them in these examples had noun POS
restriction. Terms that have already been identified as the positive class were generalized to their class

DT.

by taking the average of the feature scores. One
area of future work is to learn weights using
more sophisticated techniques; in pilot experi-
ments, learning a logistic regression classifier on
heuristically labeled data did not work well for ei-
ther pattern scoring or entity scoring.

One limitation of our system and evaluation is
that we learned single word entities, since calcu-
lating some features for multi-word phrases is not
straightforward. For example, word clusters using
distributional similarity were constructed for sin-
gle words. Our future work includes expanding
the features to evaluate multi-word phrases. An-
other avenue for future work is to use our pat-
tern scoring method for learning other kinds of
rules, such as dependency patterns, and in differ-
ent kinds of systems, such as hybrid entity learn-
ing systems (Etzioni et al., 2005; Carlson et al.,
2010). In addition, we did not explicitly address
the problem of semantic drift (Curran et al., 2007)
in this paper. In theory, learning better patterns
would help lessen the problem; we plan to investi-
gate this further.

In conclusion, we show that predicting the la-
bels of unlabeled entities in the pattern scorer of a
bootstrapped entity extraction system significantly
improves precision and recall of learned entities.
Our experiments demonstrate the importance of
having models that contrast domain-specific and
general domain text, and the usefulness of features
that allow spelling variations when dealing with
informal texts. Our pattern scorer outperforms ex-
isting pattern scoring methods for learning drug-
and-treatment entities from four medical web fo-
rums.
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