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Abstract

In this paper, we focus on two important
problems of social media text normaliza-
tion, namely: vowel and diacritic restora-
tion. For these two problems, we pro-
pose a hybrid model consisting both a dis-
criminative sequence classifier and a lan-
guage validator in order to select one of
the morphologically valid outputs of the
first stage. The proposed model is lan-
guage independent and has no need for
manual annotation of the training data. We
measured the performance both on syn-
thetic data specifically produced for these
two problems and on real social media
data. Our model (with 97.06% on syn-
thetic data) improves the state of the art
results for diacritization of Turkish by 3.65
percentage points on ambiguous cases and
for the vowel restoration by 45.77 percent-
age points over a rule based baseline with
62.66% accuracy. The results on real data
are 95.43% and 69.56% accordingly.

1 Introduction

In recent years, with the high usage of computers
and social networks like Facebook and Twitter, the
analysis of the social media language has become
a very popular and crucial form of business intelli-
gence. But unfortunately, this language is very dif-
ferent from the well edited written texts and much
more similar to the spoken language, so that, the
available NLP tools do not perform well on this
new platform.

As we all know, Twitter announced (at April
1st, 2013)1 that it is shifting to a two-tiered ser-
vice where the basic free service ‘Twttr” will only
allow to use consonants in the tweets. Although,

1https://blog.twitter.com/2013/
annncng-twttr

this is a very funny joke, people nowadays are al-
ready very used to use this style of writing without
vowels in order to fit their messages into 140 char-
acters Twitter or 160 characters SMS messages.
As a result, the vowelization problem (Twttr ⇒
Twitter) is no more limited with some specific lan-
guage families (e.g.semitic languages) (Gal, 2002;
Zitouni et al., 2006) but it became a problem of so-
cial media text normalization in general.

Diacritics are some marks (e.g. accents, dots,
curves) added to the characters and have a wide
usage in many languages. The absence of these
marks in Web2.0 language is very common and
posses a big problem in the automatic process-
ing of this data by NLP tools. Although, in the
literature, the term “diacritization” is used both
for vowel and diacritic restoration for semitic lan-
guages, in this paper, we use this term only for
the task of converting an ASCII text to its proper
form (with accents and special characters). A
Turkish example is the word “dondu” (it is frozen)
which may be the ascii form of both “dondu”(it is
frozen) or “döndü” (it returned) where the ambigu-
ity should be resolved according to the context. In
some studies, this task is also referred as “unicodi-
fication”(Scannell, 2011) or “deasciification”(Tür,
2000).

In this paper, we focus on these two important
problems of social text normalization, namely: di-
acritization and vowelization. These two problems
compose almost the quarter (26.5%) of the nor-
malization errors within a 25K Turkish Tweeter
Data Set. We propose a two stage hybrid model:
firstly a discriminative model as a sequence classi-
fication task by using CRFs (Conditional Random
Fields) and secondly a language validator over the
first stage’s results. Although in this paper, we pre-
sented our results on Turkish (which is a highly ag-
glutinative language with very long words full of
un-ascii characters), the proposed model is totally
language independent and has no need for manual
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annotation of the training data. For morpholog-
ically simpler languages, it would be enough to
use a lexicon lookup for the language validation
stage (whereas we used a morphological analyzer
for the case of Turkish). With our proposed model,
we obtained the highest results in the literature for
Turkish diacritization and vowelization.

The remaining of the paper is structured as fol-
lows: Section 2 discusses the related work, Sec-
tion 3 tries to show the complexity of diacritiza-
tion and the vowelization tasks by giving exam-
ples from an agglutinative language; Turkish. Sec-
tion 4 introduces our proposed model and Section
5 presents our experiments and results. The con-
clusion is given in Section 6.

2 Related Work

The vowelization problem is mostly studied for
semitic languages and many different methods are
applied to this problem. The problem is generally
referred as diacritization for these languages, since
diacritics are placed on consonants for the purpose
of vowel restoration. For example, the short vow-
els in Arabic are only pronounced by the use of
diacritics put on other consonants. Some of these
studies are as follows: Gal (2002) reports the re-
sults on Hebrew by using HMMs and Zitouni et
al. (2006) on Arabic by using maximum entropy
based models. Al-Shareef and Hain (Al-Shareef
and Hain, 2012) deals with the vowelization of
colloquial Arabic for automatic speech recogni-
tion task by using CRFs on speaker and contextual
information. Haertel et al. (2010) uses conditional
markov models for the vowel restoration problem
of Syriac. Nelken and Shieber (2005) uses a finite
state transducer approach for Arabic as well. To
the best of our knowledge, the vowelization work
on Turkish is the first study on a language which
do not possess the vowelization problem by its na-
ture. We believe that on that sense, our hybrid
model will be a good reference for future studies
in social media text normalization where the prob-
lem is disregarded in recent studies.

The diacritization task on the other hand is
not addressed as frequently as the vowelization
problem2. Some studies are as follows: Scan-
nell (2011) uses a Naive Bayes classifier for both
word-level and character-level modeling. Each
ambiguous character in the input is regarded as

2Here, we exclude all the works done for semitic lan-
guages. The reason is explained on the former paragraph.

an independent classification problem. They are
using lexicon lookup which is not feasible for ev-
ery possible word surface form in agglutinative or
highly inflected languages. They refer to a lan-
guage model in ambiguous cases. They tested
their system for 115 languages as well as for Turk-
ish (92.8% on a much easier data set than ours (re-
fer to Section 5.1) . Simard and Deslauriers (2001)
tries to recover the missing accents in French.
They are using a generative statistical model for
this purpose. De Pauw et al. (2007) also test their
MBL (memory based learning) model on differ-
ent languages. Although they do not test for Turk-
ish, the most attractive part of theirs results is that
the performances for highly inflectional languages
differ sharply from the others towards the negative
side. Nguyen and Ock (2010) deals with the dia-
critization of Vietnamese by using Adaboost and
C4.5.

The work done so far for the diacritization
of Turkish are from Tür (2000) (character-based
HMM model), Zemberek (2007), Yüret and de la
Maza (Yüret and de la Maza, 2006) (GPA: a kind
of decision list algorithms). We give the compar-
ison of the two later systems on our data set and
propose a discriminative equivalent of the HMM
approach used in Tür (2000) (see Section 5 for fur-
ther discussions). For the vowelization, the only
study that we could find is from Tür (2000) which
uses again the same character-level HMM model
into this problem (with an equivalent discrimina-
tive model given at Table 8 ±3ch model).

3 The complexity

This section tries to draw light upon the complex-
ity of diacritization and the vowelization tasks by
giving examples from an agglutinative language;
Turkish.

3.1 Turkish
Turkish is an agglutinative language which means
that words have theoretically an infinite number
of possible surface forms due to the iterative con-
catenation of inflectional and derivational suffixes.
As for other similar languages, this property of the
language makes impractical for Turkish words to
be validated by using a lexicon. And also, the in-
creasing length3 of the words creates a big search
space especially for the vowelization task.

3The average word length is calculated as 6.1 for Turkish
nouns and 7.6 for verbs in a 5 million word corpus(Akın and
Akın, 2007).
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Turkish alphabet has 7 non-ascii characters that
don’t exist in the Latin alphabet (ç, ğ, ı, İ, ö, ş,
ü) and the ascii counterparts of these letters (c, g,
i, I, o, s, u) are also valid letters in the alphabet
which causes an important disambiguation prob-
lem at both word and sentence level. The alphabet
contains 8 vowels (a(A), e(E), ı(I), i(İ), o(O), ö(Ö),
u(U), ü(Ü)) in total.

3.2 Diacritization

The following real example sentence taken from
social media “Ruyamda evde oldugunu gordum.”,
written by using only the ascii alphabet, has two
possible valid diacritized versions:

1. “Rüyamda evde olduğunu gördüm.”
(I had a dream that you were at home.)

2. “Rüyamda evde öldüğünü gördüm.”
(I had a dream that you died at home.)

As can be observed from this sentence some of
the asciified words (e.g. “oldugunu”) has more
than one possible valid counterparts which causes
the meaning change of the whole sentence.

The problem is the decision of the appropri-
ate forms for the critical letters (C, G, I, O, S,
U)4. Although the problem seems like a multi-
class classification problem, it is in essence a
binary-classification task for each critical letter
and can be viewed as a binary sequence classifi-
cation task for the whole word so that the orig-
inal word will be chosen from (2n) possibilities
where n is the number of occurrence of critical
letters (C, G, I, O, S, U) in the ascii version.
For example the word “OldUGUnU” has (25=32)
possible transformations whereas only 2 of them
(“olduğunu” and “öldüğünü”) are valid Turkish
words. Figure 1 gives a second example and shows
all the possible (22=4) diacritized versions of the
word “aCI” where again only two of them are
valid words (emphasized with a bold background
colour): “açı”(angle) and “acı”(pain).

3.3 Vowelization

Vowelization on the other hand causes much more
complexity when compared to diacritization. Each
position5 between consequent consonants, at the

4From this point on, we will show the ascii versions of
these letters as capital letters meaning that they may appear
in the diacritized version of the word either in their ascii form
or in their diacritized form. Ex: the capital C will become
either c or ç after the processing.

5For the sake of simplicity, we just assumed that only zero
or one vowel may appear between two consonants whereas
there exist some words with consecutive vowels (such as

Figure 1: Possible Diacritized Versions of “aCI”

beginning or ending of the word may take one
vowel or not resulting a selection from 9 class
labels (the 8 vowel letters + the null charac-
ter). For example, the vowelization of the word
“slm”(“hi” written without vowels, with n=4 po-
sitions s l m ) will produce 94 = 6561 possibili-
ties where 39 of them are valid Turkish words (e.g.
“salam”(salami), “sulama”(watering), “salım”(my
raft), “selam”(hi), “sılam”(my furlough) etc...).

Figure 2: Proposed Model

4 Proposed Model

Most of the previous work in the literature (Sec-
tion 2) uses either some (generative of discrimina-
tive) machine learning models or some nlp tools
(e.g. morphological analyzers, pos taggers, lin-
guistic rules) in order to solve the vowelization

“saat”(clock)) although very rarely
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problem. As it is shown in the previous section,
for languages with higher number of vowels and
word length due to their rich inflectional morphol-
ogy, the search space gets very high very rapidly.
Since the problem is mostly similar to generation,
in order to increase the likelihood of the generated
output word, most of the approaches include char-
acter level probabilities or relationships. In this
case, it is unfair to expect from a machine learn-
ing system to generate morphologically valid out-
puts (especially for highly inflectional languages)
while trying to maximize the overall character se-
quence probability.

We propose a two stage model (Figure 2) which
has basically two components.

1. a discriminative sequence classifier

2. a language validator

4.1 Discriminative Sequence Classifier
In the first stage, we use CRFs6 (Lafferty et al.,
2001) in order to produce the most probable out-
put words. This stage treats the diacritization and
vowelization as character level sequence labeling
tasks, but since it is a discriminative model, it is
also possible to provide neighboring words as fea-
tures into the system. During training, each in-
stance within a sequence has basically the follow-
ing main parts:

1. features related to the current and neighbor-
ing tokens (namely surface form or lemma)

2. features related to the current and neighbor-
ing characters8

3. class label

The test data is also prepared similarly except
the gold standard class labels.

Table 1 and Table 2 show instance samples for
the sample words (“OldUGUnU” and “ s l m ”)
given in Section 3. As can be observed from the
tables, we have 7 different class labels in diacritic
restoration and 9 different class labels in vowel
restoration (one can refer to Section 3 for the de-
tails). The sequences represent words in focus and
each instance line within a sequence stands for the
character position in focus. The sample for dia-
critization has 5 character features and 2 word fea-
tures where the current character feature limits the

6In this work, we used CRF++7 which is an open source
implementation of CRFs.

8The feature related to the current character is only avail-
able in diacritization model

number of the class labels to be assigned to that
position by 2. The sample for vowelization has 1
word feature and 6 character features.

Curr. Neig. Curr. Neig. Neig. Neig. Neig. Class
Letter Word(+1) Word Ch(-2) Ch(-1) Ch(+1) Ch(+2) Label
O GOrdUm OldUGUnU l d ö
U GOrdUm OldUGUnU l d G U ü
G GOrdUm OldUGUnU d U U n ğ
U GOrdUm OldUGUnU U G n U ü
U GOrdUm OldUGUnU U n ü

Table 1: Diacritization: Instance Representation
for the word ”oldugunu”
“OldUGUnU” 5 critical positions

Curr. Neig. Neig. Neig. Neig. Neig. Neig. Class
Word Ch(-3) Ch(-2) Ch(-1) Ch(+1) Ch(+2) Ch(+3) Label
slm s l m
slm s l m e
slm s l m a
slm s l m

Table 2: Vowelization: Instance Representation
for the word “slm”
“ s l m ” 4 possible vowel positions

CRFs are log-linear models and in order to
get advantage of the useful feature combinations,
one needs to provide these as new features to the
CRFs. In order to adopt a systematic way, we took
the features’ combinations for character features
and word features separately. For character fea-
tures we took the combinations up to 6-grams for
±3ch and for the neighboring word features up to
4 grams. The number of features affects directly
the maximum amount of training data that could
be used during the experiments. The total number
of feature templates after the addition of feature
combinations ranges between 7 for the simplest
case and 30 for our model with maximum num-
ber of features. Three sample feature templates are
given below for the sample sequence of Table 1.
The templates are given in [pos,col] format, where
pos stands for the relative position of the token in
focus and col stands for the feature column num-
ber in the input file. U06 is the template for us-
ing the sixth9 feature in Table 1 (Neigh. Ch(+1)).
U13 is a bigram feature combination of 2nd and
3th features (the current token and the next token).
U11 is a fourgram feature combination of 4th, 5th,
6th and 7th features of our feature set that refers
to the group of the previous two characters and the
next two characters.

9in CRF++ feature templates the features indexes start
from 0.
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U06 : %x[0, 5]

U13 : %x[0, 1]/%x[0, 2]

U11 : %x[0, 3]/%x[0, 4]/%x[0, 5]/%x[0, 6]

4.2 Language Validator
The n best sequences of the discriminative classi-
fier is then transferred to the language validator.
We use a two-level morphological analyzer (Şahin
et al., 2013) for the Turkish case since in this ag-
glutinative language it is impractical to validate a
word by making a lexicon lookup. But this sec-
ond part may be replaced by any language valida-
tor (for other languages) which will filter only the
valid outputs from the n best results of the discrim-
inative classifier. Figure 2 shows an example case
of the process for vowelization. The system takes
the consonant sequence “kd” and the 5 best output
of the first stage is produced as “kidi, kedi, kadı,
kado, kada”. The language validator then chooses
the most probable valid word “kedi” (cat) as its
output. One should notice that if none of the n
most probable results is a valid word, then the sys-
tem won’t produce any suggestion at all. We show
experimental results on the effect of the selection
of n in the next section.

5 Experimental Setup And Results

In this section, we first present our datasets and
evaluation strategy. We then continue with the di-
acritization experiments and finally we share the
results of our vowelization experiments.

5.1 Datasets and Evaluation Methodology
For both of the diacritization and vowelization
tasks, creating the labeled data is a straightforward
task since the reverse operations for these (con-
verting from formally written text to their Ascii
form or to a form without vowels) can be accom-
plished automatically for most of the languages
(except semitic languages where the vowels do not
appear in the formal form). To give an example
from Turkish, the word “olduğunu” may be auto-
matically converted to the form “OldUGUnU” for
diacritization and “ l d g n ” for vowelization ex-
periments. We used data from three different cor-
pora: METU Corpus (Say et al., 2002) and two
web corpora from Yıldız and Tantuğ (2012) and
Sak et al. (2011).

In order to judge different approaches fairly,
we aimed to create a decently though test set.

Since the vowelization task already comprises a
very high ambiguity, we focused to the ambigu-
ous diacritization samples. With this purpose, we
first took the Turkish dictionary and converted all
the lemmas within the dictionary into their Ascii
forms. We then created the possible diacritized
forms (Figure 1) and created a list of all ambigu-
ous lemmas (1221 lemmas in total) by finding all
the lemmas which could be produced as the out-
put of diacritization. For example “açı” and “acı”
are put into this list after this operation. Although
this ambiguous lemmas list may be extended by
also considering interfusing surface forms, for the
sake of simplicity we just considered to take the
ambiguous lemmas from the dictionary. We then
searched our three corpora (and the WEB where
not available in these) for the words with an am-
biguous lemma and created our test set so that for
each ambiguous lemma there is exactly one sen-
tence consisting of it. As a result, we collected a
test set of 1157 sentences (17923 tokens) consist-
ing of 1871 ambiguous words10 in total. The re-
maining sentences from the corpora are used dur-
ing training. Since the feature set size directly af-
fects the amount of usable training data, for differ-
ent experiment sets we used different size of train-
ing data each time trying to use the data from the
three corpora in equal amounts.

After evaluating with synthetically produced
training and test sets, we also tested our best per-
formed models on real data collected from social
media (25K tweets with at least one erroneous
token) and normalized manually (Eryiğit et al.,
2013). This data consists 58836 tokens that have
text normalization problems where 3.75% is due
to missing vowels and 22.8% is due to misuse of
Turkish characters. In order to separate these spe-
cific error sets, we first automatically aligned the
original and normalized tweets and then applied
some filters over the aligned data: e.g. Deasci-
ification errors are selected so that the character
length of the original word and its normalized
form should be the same and the differing letters
should only be the versions of the same Turkish
characters.

For the evaluation of diacritization, we provide
two accuracy scores: Accuracy over the entire
words (AccOverall Equation 1) and accuracy over
the ambiguous words alone (AccAmb Equation 2

10One should note that each sentence in the test set con-
tains at least one or more ambiguous surface forms. The test
data will be available to the researches via http://...
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over 1871 ambiguous words in the test set). Since
the vowelization problem is almost entirely am-
biguous, the two scores are almost the same for the
entire tests (# of words ≈ # of amb. words).
That is why, for the vowelization task we provide
only AccOverall.

AccOverall =
# of corr. diacritized words

# of words
(1)

AccAmb =
# of corr. diacritized amb. words

# of amb. words
(2)

In the work of Tür (2000), the accuracy score
is provided as the correctly determined characters
which we do not find useful for the given tasks:
AccAmb = # of corr. diacritized amb. chars

# of amb. chars . This
score gives credit to the systems although the pro-
duced output word is not a valid Turkish word. For
example, if a vowelization system produces an in-
valid output as “oldgn” for the input “ l d g n ”, it
will have a 1/5 (one correct character over 5 possi-
ble positions) score whereas in our evaluation this
output will be totally penalized.

5.2 Diacritization Experiments

For diacritization, we designed four sets of ex-
periments. The first set of experiments (Table 3)
presents the results of our baseline systems. We
provide four baseline systems. The first one is a
rule based diacritics restorer which creates all the
possible diacritics for a given input and outputs the
first morphologically valid one. As the proposed
model does, the rule based system also validates
its outputs by using the morphological analyzer
introduced in Section 4.2. One can see from the
table that the accuracy on the ambiguous words of
this system is nearly 70%. Our second baseline
uses a unigram language model in order to select
the most probable valid output of the morpholog-
ical analyzer. Our third baseline is a baseline for
our discriminative classifier (with only ±2 neigh-
boring characters) without the language validator
component. In this model, the top most output of
the CRF is accepted as the correct output word.
One can observe that this baseline although it per-
forms better than the rule based system, it is worse
than the second baseline with a language model
component. Our last baseline is the baseline for
the proposed system in this paper with a discrimi-

native classifier (using only ±2 neighboring char-
acters) and a language validator which chooses the
first valid output within the top 5 results of the
classifier. It outperforms all the previous base-
lines.

Acc Acc
System Overall Amb
Rule based 90.38 69.17
Rule based + Unigram LM 91.94 83.54
CRF ±2ch 87.93 77.24
CRF ±2ch + Lang.Valid. 94.88 88.51

Table 3: Diacritization Baseline Results

The second set of experiments given in Table 4
is for the feature selection of the proposed model.
We test with the neighboring characters up to ±3
and together with the surface form of the cur-
rent token sformcurr and/or the first n charac-
ters of the current token firstnchcurr as lemma
feature. For both of the first two sets of exper-
iments (Table 3 and Table 4) we used a train-
ing data of size 4591K (the max. possible size
for the most complex feature set in these experi-
ments; (last line of Table 4). It can be observed
from Table 4 that although ±3ch (2nd line) per-
forms better than ±2ch (1st line), when we use
these together with sformcurr we obtain better
results with ±2ch (3rd line). Since ±3ch (7 char-
acters in total) will be very close to the whole
number of characters within the surface form, the
new feature’s help is more modest in±3ch model.
In these experiments we try to optimize on the
overall accuracies. Our highest score in this ta-
ble is with the±2ch+sformcurr +first5chcurr

(last line) but since the difference between this and
±2ch + sformcurr is not statistically significant
(with McNemar’s test p<0.01) and the size of the
maximum possible training data could still be im-
proved for the latter model, we decided to continue
with ±2ch + sformcurr.

In the third set of diacritization experiments
(Table 5) we investigated the effect of using the
neighboring tokens as features. In this experi-
ment set, the training data size is decreased to a
much lower size, only 971K in order to be able
to train with ±2 neighboring tokens. Each line
of the table is the addition of the surface forms
for the precised positions to the model of the first
line ±2ch + sformcurr. We tested with all the
combinations in the ±2 window size. For exam-
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Acc Acc
Feature Combinations Overall Amb
±2ch 94.88 88.51
±3ch 95.76 91.05
±2ch + sformcurr 96.26 91.60
±3ch + sformcurr 96.20 91.71
±2ch + first3chcurr 95.29 90.17
±2ch + first4chcurr 95.60 89.06
±2ch + first5chcurr 95.95 90.72
±2ch + sformcurr + first3chcurr 96.23 91.82
±2ch + sformcurr + first4chcurr 96.26 91.82
±2ch + sformcurr + first5chcurr 96.28 91.60

Table 4: Diacritization Feature Selection I

Acc Acc
Features Overall Amb
±2ch + sformcurr 95.29 90.61
+sform0010 95.49 90.72
+sform0011 95.39 90.39
+sform0100 93.77 83.32
+sform0110 95.39 90.28
+sform0111 95.26 89.95
+sform1100 95.24 89.83
+sform1110 95.21 89.50
+sform1111 95.11 89.17

Table 5: Diacritization Feature Selection II

ple sform0010 means that the surface form of the
token at position +1 is added to the features. This
feature set outperformed all the other ones.

Acc Acc
System Overall Amb
Yüret (2006) 95.93 91.05
Zemberek (2007) 87.71 82.55
±2ch + sformcurr 96.15 92.04
±2ch + sformcurr + sform0010 97.06 94.70

Table 6: Diacritization Results Comparison with
Previous Work

Finally, in Table 6, we give the comparison re-
sults of our proposed model with the available
Turkish deasciifiers (the tools’ original name given
by the authors) (Yüret and de la Maza, 2006; Akın
and Akın, 2007). We both tested by ±2ch +
sformcurr and±2ch+sformcurr +sform0010.
Both of the models are tested with maximum pos-
sible size of training data: 10379K and 5764K suc-
cessively. Our proposed model for diacritization
outperformed all of the other methods with a suc-
cess rate of 97.06%. It outperformed the state of
the art by 1.13 percentage points in overall accu-
racy and by 3.65 percentage points in ambiguous

cases (both results statistically significant).

5.3 Vowelization Experiments
For the vowelization, we designed similar set of
experiments. In Table 7, we provide the results
for a rulebased baseline and our proposed model
with ±2ch. It is certainly a very time consuming
process to produce all the possible forms for the
vowelization task (see Section 3.3). Thus, for the
rule based baseline we stopped the generation pro-
cess once we find a valid output. The baseline of
the proposed model provides a 28.44 percentage
points improvements over the rule based system.
We did not try to compare our results with the
work of Tür (2000) (an HMM model on charac-
ter level) firstly because the developed model was
not available for testing, secondly because the pro-
vided evaluation (see Section 5.1) was useless for
our purposes and finally because our ±3 charac-
ter model provided in the second line of Table 8 is
a discriminative counterpart of his 6-gram genera-
tive model.

Acc
System Overall
Rule based 16.89
CRF ±2ch+Lang.Valid. 45.33

Table 7: Vowelization Baseline Results

Table 8 gives the feature selection tests’ results
similarly to the previous section. This time we ob-
tained the highest score with ±3ch + sformcurr

59.17%. In this set of experiments, we used
4445K of training data.

In order to investigate the impact of neighbor-
ing tokens, in the experiments given in Table 9,
we had to continue with ±2ch + sformcurr with

Acc
Feature Combinations Overall
±2ch 45.33
±3ch 57.20
±2ch + sformcurr 57.22
±3ch + sformcurr 59.17
±2ch + first3chcurr 40.44
±2ch + first4chcurr 40.48
±2ch + first5chcurr 44.22
±2ch + sformcurr + first3chcurr 45.89
±2ch + sformcurr + first4chcurr 45.89
±2ch + sformcurr + first5chcurr 49.58

Table 8: Vowelization Feature Selection I
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Acc
Features Overall
±2ch + sformcurr 54.07
+sform0010 50.89
+sform0011 49.60
+sform0100 31.84
+sform0110 49.41
+sform0111 47.78
+sform1100 48.98
+sform1110 47.88
+sform1111 47.21

Table 9: Vowelization Feature Selection II

971K of training data.11 We could not obtain any
improvement with the neighboring tokens. We re-
late these results to the fact that the neighboring
tokens are also in vowel-less form in the training
data so that this information do not help the dis-
ambiguation of the current token. Since we could
not add the word based features to this task by this
model, for future work we are planning to apply
a word based language model over the proposed
model’s possible output sequences.

In the final experiment set given in Table 10,
we trained our best performing model ±3ch +
sformcurr with the maximum possible training
data (6653K). We also tested with different N val-
ues of CRF output. Although there is a slight in-
crease on the overall accuracy by passing from
N=5 to N=10, the increase is much higher when
we evaluate with AcctopN . Equation 3 gives the
calculation of this score which basically calculates
the highest score that could be obtained after per-
fect reranking of the top N results. In this score the
system is credited if the correct vowelized answer
is within the top N results of the system. We see
from the table that there is still a margin for the
improvement in top 10 results (up to 85.09% for
the best model). This strengthens our believe for
the need of a word based language model over the
proposed model outputs. Our vowelization model
in its current state achieves an accuracy score of
62.66% with a 45.77 percentage points improve-
ments over the rule based baseline.

11If we select the larger model, it is going to be impossi-
ble to feed enough training data to the system. Since in this
set of experiments (Table 9) we only investigate the impact
of neighboring tokens, we had/preferred to select the smaller
character model.

AcctopN =
∑

1 if result exists within top N

# of words
(3)

Acc Acc
System Overall top N
±3ch + sformcurr

With Top 5 Poss. from CRF 62.05 80.21
±3ch + sformcurr

With Top 7 Poss. from CRF 62.36 82.53
±3ch + sformcurr

With Top 10 Poss. from CRF 62.66 85.09

Table 10: Vowelization Top N Results

Finally we test our best models on voweliza-
tion and diacritization errors from our Tweeter
data set and obtained 95.43% for diacritization and
69.56% for vowelization.

6 Conclusion And Future Work

In this paper, we proposed a hybrid model for the
diacritization and vowelization tasks which is an
emerging problem of social media text normaliza-
tion. Although the tasks are previously investi-
gated for different purposes especially for semitic
languages, to the best of our knowledge, this is
the first time that they are evaluated together for
the social media data on a language which do not
possess these problems in its formal form but only
in social media platform. We obtained the high-
est scores for the diacritization (97.06%) and vow-
elization (62.66%) of Turkish.

We have two future plans for the vowelization
part of the proposed model. The first one, as de-
tailed in previous section, is the application of a
word based language model over the valid CRF
outputs. The second one is the extension for par-
tial vowelization. Although in this work, we de-
signed the vowelization task as the overall genera-
tion of the entire vowels within a vowel-less word,
we observe from the social web data that people
also tend to write with partially missing vowels.
As an example, they are writing “sevyrm” instead
of the word “seviyorum” (I love). In this case, the
position between the consonants ‘s’ and ‘v’ is con-
strained to the letter ‘e’ and it is meaningless to
generate the other possibilities for the remaining 7
vowels. For this task, we are planning to focus on
constrained Viterbi algorithms during the decod-
ing stage.
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The tool’s web api and the produced data sets
will be available to the researchers from the fol-
lowing address http://tools.nlp.itu.edu.tr/(Eryiğit,
2014)
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