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Abstract

Semantic Role Labeling (SRL) plays an
important role in different text mining
tasks. The development of SRL systems
for the biomedical area is frustrated by the
lack of large-scale domain specific corpora
that are annotated with semantic roles. In
our previous work, we proposed a method
for building FramenNet-like corpus for the
area using domain knowledge provided by
ontologies. In this paper, we present a
framework for supporting the method and
the system which we developed based on
the framework. In the system we have de-
veloped the algorithms for selecting ap-
propriate concepts to be translated into se-
mantic frames, for capturing the informa-
tion that describes frames from ontology
terms, and for collecting example sentence
using ontological knowledge.

1 Introduction

Semantic Role Labeling (SRL) is a process that,
for each predicate in a sentence, indicates what se-
mantic relations hold among the predicate and its
associated sentence constituents. The associated
constituents are identified and their semantic role
labels are assigned, as in: [7ransporter CBG] de-
livers [gniirycortisol] [pestinationto target cells].
SRL could play an important role in text min-
ing tasks such as information extraction, question
answering and text summarization. With the ad-
vent of large resources like FrameNet (Fillmore
et al., 2001) and PropBank (Palmer et al., 2005),
SRL has become a well-defined task with a sub-
stantial body of work and comparative evaluation.
Much of this work has focused on the arguments
of verbs, and has been trained and evaluated on
newswire text.

Recently, work has turned to bring SRL to the
biomedical area (Wattarujeekrit et al., 2004; Tsai
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et al., 2006; Dolbey et al., 2006; Bethard et al.,
2008). Biomedical text considerably differs from
the PropBank and FrameNet data, both in the style
of the written text and the predicates involved.
Predicates in the data are typically verbs, biomed-
ical text often prefers nominalizations, gerunds
and relational nouns (Cohen et al.,, 2008; Kil-
icoglu et al., 2010). Predicates like endocytosis
and translocate, though common in biomedical
text, are absent from both the FrameNet and Prop-
Bank data (Wattarujeekrit et al., 2004; Bethard et
al., 2008; Tan, 2010). Predicates like block, gen-
erate and transform, have been used in biomedical
documents with different semantic senses and re-
quire different number of semantic roles compared
to FrameNet (Tan, 2010) and PropBank data (Wat-
tarujeekrit et al., 2004).

The projects, such as PASBio (Wattarujeekrit
et al.,, 2004), BioProp (Tsai et al., 2006) and
BioFrameNet (Dolbey et al., 2006), have made ef-
forts on building resources for training SRL sys-
tems in the biomedical domain. PASBio annotated
the semantic roles for 31 predicates (distributed
29 verbs) in style of PropBank. It used a model
for a hypothetical signal transduction pathway of
an idealized cell, to motivate verb choices. Bio-
Prop, also a PropBank-like corpus, annotated the
semantic roles of 30 frequent biomedical verbs
found in the GENIA corpus. BioFrameNet built a
FrameNet-like corpus having 32 verbs and nouns
annotated with the semantic roles. It considers a
collection of GeneRIF (Gene References in Func-
tion) texts that are annotated by the protein trans-
port classes in the Hunter Lab knowledge base. Up
until recently, these corpora are relatively small.

One of obstacles to building FrameNet-like re-
sources is to manually construct large, coherent
and consistent frame sets for the domain. In (Tan
etal., 2012) we argue that we can build large-scale
FrameNet-like resources using domain knowledge
from ontologies. A large number of ontologies
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have been developed in biomedical area, such as
OBO ontologies (Smith et al., 2007). Many of
them represent the knowledge of domain-specific
events (any activities, processes and states). Al-
though most of the ontologies are controlled vo-
cabularies and do not explicitly describe the at-
tributes of events, this information is implicitly
contained in ontology terms. Together with the
knowledge explicitly represented in the data mod-
els of ontologies the information can guide us in
constructing large, coherent and consistent frame
sets and also ease the task of collecting example
sentences. In next section we describe the back-
ground knowledge and then present how the on-
tological knowledge can be used to build frame-
semantic descriptions. Section 3 describes a gen-
eral framework that supports this ontology-driven
construction of frame-semantic descriptions and
the current system we have developed based on
the framework. Related work is given in section
4. Then we conclude the paper with a conclusion
and the discussion of future work.

2 Ontology and Frame Semantics

Ontology is a formal representation of knowledge
of a domain of interest. An ontology includes
concepts that represent classes of entities within
a domain, and defines different types of relations
among concepts, as well as the rules for combin-
ing these concepts and relations. Most currently
widely used ontologies in the biomedical domain
are controlled vocabularies. The data models es-
sentially contain lists of concepts, and organize
them in an is-a and part-of hierarchy.

In practice, a concept contains one or more
terms that are chosen for naming the concept. A
preferred term is assigned as the name of the con-
cept, and others could become synonyms. Terms
are carefully chosen to clearly and precisely cap-
ture the intended meaning of the entities the con-
cept refer to. The terms are noun or noun phrases.
As showed in the results of the survey of nam-
ing conventions in OBO ontologies (Schober et
al., 2009), multi-word terms are constructed in a
consistent manner. They are created by re-using
strings that appear in the terms already defined in
this or in other ontologies. Although attributes of
the entities belonging to concepts are not explic-
itly described in the data model, they remain im-
plicit in the terms (Stevens et al., 2000). The con-
stituents of the terms might contain the informa-
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Table 1: Protein Transport Concepts

G0:0009306 protein secretion

G0:0017038 protein import

GO:0071693 protein transport within extracellular region
GO:0072322 protein transport across periplasmic space
GO0:0072323 chaperone-mediated protein transport
across periplasmic space

GO:0042000 translocation of peptides or proteins into
host

GO0:0051844 translocation of peptides or proteins into
symbiont

GO0:0051808 translocation of peptides or proteins into
other organism involved in symbiotic interaction

tion.

The Gene Ontology (GO) (The Gene Ontology
Consortium, 2000) is the most widely used
controlled vocabulary in the area. It provides
the terms for declaring molecular functions,
biological processes and cellular components
of gene and gene products. Table 1 lists the
names of 8 subclasses of G0:0015031 protein
transport in the is-a hierarchy. The head of a
phrase determines the semantic category of object
or situation which the phrase refer to. Therefore,
the head words of the terms, translocation,
import, secretion and transport, refer to a
“protein transport” category, since the concepts
represent different kinds of “protein trans-
port”. Other constituents of the terms express
the attributes or properties of the event. For
example, translocation of peptides or
proteins into other organism involved
in symbiotic interaction (G0O:0051808),
express the entity (peptides or proteins), the
destination (into other organism) and the con-
dition (involved in symbiotic interaction)
of a protein transport event. These information
are not represented in the model of the ontology.

Frame Semantics (Fillmore, 1985) is the study
of how the words evoke or activate frame knowl-
edge, and how the frames thus activated can be
used to understand the text that contains the words.
Frame semantics assumes that in order to under-
stand the meanings of the words in a language,
we must first have knowledge of the background
and motivation for their existence in the language
and for their use in discourse. The knowledge is
defined in the conceptual structures (frames). In
the FrameNet, the lexicographic application of the
theory, a semantic frame describes an event, a sit-
uation or an object, together with the frame ele-



ments (FE) that represent the aspects and compo-
nents of the frame. Lexical units (LU) that be-
long to the frame, are the words that evoke the
frame. Each frame is associated with example
sentences within which LUs and FEs are marked.
The FrameNet builds frames by collecting and
analysing the attestations of words with semantic
overlap from the British National Corpus (BNC).

We propose that the domain knowledge con-
tained in ontologies can instruct us in building a
FrameNet-like corpus, without having an existing
large scale domain corpus like BNC. The con-
struction starts with creating large coherent and
consistent frame sets and then collecting associ-
ated example sentences. The information implic-
itly contained in ontology terms together with the
knowledge represented in the models of ontologies
provide the background knowledge that is required
to building the frame-semantic descriptions. After
the frames are created, associated example sen-
tences can be collected using knowledge based
search engines for biomedical text, and then be an-
notated.

For example, a frame Protein Transport can be
characterized based on the concept Go:0015031
protein transport. In the frame, by studying
the terms of the subclasses and descendants of the
concept (such as those in table 1), the aspects and
components of the frame (such as entity, destina-
tion and condition), and the domain-specific words
evoking the frame (like translocation, import, se-
cretion and transport) are captured. Furthermore,
we can identify a inheritance relation between this
frame and the frame Transport built based on the
concept G0:0006810 transport, since there is
the is-a relation between Go:0006810 transport
and G0:0015031 protein transport in the GO.
Now a complete frame-semantic description for
Protein Transport, including FEs, LUs, and relations
to other frames, is obtained after all the related
concepts and relations are studied.

3 The System

In this section we present a framework that
supports this ontology-driven construction of
FrameNet-like corpus and describe the current
system we have developed based on the frame-
work.
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3.1 Framework

In Fig 1 we propose the framework for support-
ing the ontology-driven construction of domain
corpus with frame-semantics annotations. Before
starting the building process, a sub-ontology of
biomedical events is extracted from an ontology
or an ontology database in which relations be-
tween ontology terms are identified. Firstly, con-
cepts representing biomedical events, are gath-
ered. A concept represents a biomedical event
if it is a concept that is classified to a type of
event in top-domain ontology (like the semantic
type T038 Biologic Function in UMLS seman-
tic network (Bodenreider, 2004)), or is a subclass
or descendant of a concept that has been identi-
fied as a representation of biomedical event, or can
be defined as a concept describing event based on
its definition. After the concepts are identified, an
event sub-ontology, including the concepts and the
relations between them in original ontologies, is
extracted. A root is assigned to the sub-ontology
if the concepts are from more than one sub-trees
in original ontologies.

The concept selection tool suggests the appro-
priate concepts that will be translated into frames.
The algorithm may consider the characteristics
that indicate the generalness of a concept as the
selection criteria, such as the location of the con-
cept in the hierarchy and the number of subclasses
and descendants the concept has. Further, the con-
cept could be manually identified by domain ex-
perts. After a concept is selected, the frame de-



scribing the event represented by the concept, is
created. Relations between frames are decided ac-
cording to the relations between the corresponding
concepts. The name and definition of a frame is
edited by domain experts based on the definition
of the concept.

The frame description is accomplished by
studying the sub-tree under the concept. After col-
lecting the terms in the sub-tree, the parsing term
tool analyses the compositional structure of the
term, which elucidate the meaning of a term. The
tool may derive the compositional structure of a
term based a syntax parse of the term. LUs and
FEs then are suggested based on the compositional
structures. A final frame-semantic description is
decided with interactions to domain experts.

The associated example sentences of a frame
could be collected using semantic search engines
for biomedical text, like GoPubMed (Doms and
Schroeder, 2005). Such search engines annotate
documents with concepts of domain ontologies
by mapping phrases in text of documents to con-
cepts. Based on this underlying domain knowl-
edge search engines are able to maximize preci-
sion and recall of the documents that the user is
interested to collect specific information. There-
fore, example sentences can be collected from the
documents annotated by the concepts in the sub-
tree used to characterize the associated frame. In
the end annotating example sentences with LUs
and FEs of the associated frame is completed by
domain experts under the assistance of annotation
tools.

3.2 The System

We have developed a system based on the frame-
work for building FrameNet-like corpus using do-
main ontologies.

An Event Sub-Ontology

In the current system we experimented with the
GO biological process ontology (data-version:
2012-10-27). In UMLS semantic network the
root node of the ontology biological process
(G0:0008150) is classified into the semantic type
T038 Biologic Function . The ontology con-
tains 24,181 concepts and 65,988 terms. The
terms include the names of the concepts and
their exact synonyms. Other synonyms (broad,
narrow and related synonyms) are not included,
since only terms intending to precisely capture the
meaning of a concept are considered. For ex-
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ample, fat body metabolism, a broad synonym
of G0:0015032 storage protein import into
fat body, describes a much broader activity than
that belongs to the concept.

Method for Concept Selection

Different types of frames are used to describe dif-
ferent situations. Frames can range from highly
abstract to very specific. To assist the user in se-
lecting appropriate concepts to be translated into
frames, the system provides the structure informa-
tion of the ontology, and the definitions of the con-
cepts and their locations in the ontology.

The event ontology O can be represented as a
directed graph G. Graph elements are considered
to calculate the structure information of O and the
location of the concepts in G including,

- the root, the node having no outgoing is-a
arcs. The graph G has one root.

- a leaf node , a node having no ingoing is-a
arcs in the graph.

- stbling nodes, nodes connected to the same
node through is-a arcs.

- descendant nodes of a node n;, nodes in the
sub-tree rooted at n;.

- a path p;;, any sequence of directed edges
from the node n; to the node n;.

- a generation g;, the set of all sibling nodes
connected to the node n;.

- depth, the cardinality of a path
- breadth, the cardinality of a generation.

As the structure information of O we calculate
the number of nodes in G, the average and maxi-
mal shortest paths from the root to leaves, the av-
erage and maximal breadth of the generations hav-
ing different distances from the root. To show the
location of a concept in G, we calculate the short-
est path from the concept to the root, and the num-
ber of its descendants and siblings.

The user selects appropriate concepts based
on the above information, and may also using
their own domain knowledge. For example, a
frame could be constructed based on the concept
GO:0006810 transport. The structural informa-
tion as showed in table 2 suggests that the concept
is richly described in the ontology and it covers a
large set of related events. Further, the user (a do-
main expert) himself/herself could be aware that
transport events have been studied in the area over



#node depth of #sibling | avg. depth | max. depth avg. max. #leaf
shortest path of SPR of SPR breadth | breadth.
to root (SPR) from leaves | from leaves
biological_process | 24181 - - 6.5 14 3.7 413 12871
transport 1210 2 5 5.9 14 3.5 41 754
protein transport 182 3 41 5.7 9 4.2 40 132
Table 2: The structural information of GO biological process ontology (data-version: 2012-10-

27) and the sub-trees under the concept GO: 0006810 transport and GO:0015031 protein

transport.

the last 30 years. Most cellular processes are ac-
companied by transport events. For understanding
biomedical texts, transport events are among the
most important things to know about.

Method for Parsing Terms

After a concept is selected, the terms in the sub-
tree rooted at the concept are collected to be anal-
ysed for building frame description. In the current
system the analysis is separated into three steps.

Terms are noun phrases (NP). The first step is to
tokenize phrase string into an ordered sequence of
an atomic (non-decomposable) token. The phrase
string is split on white-space characters and non-
alphanumeric characters. White-space character
are discarded, but non-alphanumeric characters
are preserved and treated as special word tokens.
For example, “alpha-glucoside transport ”
(G0:0000017) is tokenized into {alpha, -, gluco-
side, transport}

The second step is to identify the head word of
NP. We assume that the head of a phrase is com-
posed of only one token. A naive Bayes classifier
classifies a token as the head of a phrase, if the
highest value for the posterior probability of being
the head word given the token is obtained among
all the tokens in the phrase. The posterior prob-
ability of being the head word w given token ¢ is
estimated using Bayes rule (Mitchell, 1997):

Pw)P(tw)
Plult) = =5
As P(t) is independent of w being the head, it can
be ignored. This gives: P(wl|t) = P(w)P(t|w).

A token is either the head word or not the head

work of a phrase, so P(w) is a constant. P(t|w)
is estimated by the feature probabilities of token ¢.
Assuming that the features x; are all conditionally
independent of one another, we have

n

P(tlw) = HP(fUz = aik|w)
i=1

P(z; = aj;|w) is estimated using the maximum
likelihood estimation method. Let n(x; = a;,t)
be the number of occurrences of token ¢ where at-
tribute z; is a; and ¢ is a head word, and n(w) be
the number of occurrences of the token ¢ where ¢
is a head word. Then P(x; = a;;|w) is estimated
by

n(x; = aj, w) + A

n(w) + A|V|

where ) is the earlier defined Laplace smoothing
parameter, and | V| is the number of distinct values

of the attribute x;.
Attributes of a token ¢ in a phrase p include,

P(z; = aj|w) =

e token string,

o the part-of-speech (POS) of ¢ in p, (the POS
of ¢ in p is assigned using MedPost POS Tag-
ger (Smith et al., 2004)),

o the POS of the tokens before and after ¢ in p,
o the length of p (the number of tokens in p),
e the position of ¢ in p.

We have evaluated the method on identifying
the heads of terms in GO biological process on-
tology. The length of terms in the ontology ranges
from 1 to 39. For each length, 10% of terms are
randomly selected as training data if it is applica-
ble. The result of 10-fold cross validation showed
that 93.9% of the heads are correctly identified on
average.

A term, a NP, has a noun as its head. The
system collects other forms (such as verb, objec-
tive, etc.) having the same meaning as the head
by looking up the SPECIALIST Lexicon (Boden-
reider, 2004), a general English lexicon including
many biomedical term. Words in different forms
are all suggested as predicates for frame.

The last step is to capture the information hid-
den in modifiers in phrases. Modifiers describe the
head word of a phrase and makes its meaning more
specific. They modify phrases by adding informa-

tion about “where”, “when”, or "how” something
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Table 3: Major Modifier Types in Ontology Terms

Pre-modifiers head | Post-modifiers

attributive adjective noun | prepositional phrase

ed-participial adjective ed-clause
ing-participial adjective ing-clause
noun to-clause

appositive noun phrase

is done. The information gives the suggestions
on what FEs to be defined for a frame. In a NP,
the head word is preceded by a determiner or one
or more pre-modifiers, and may also be followed
by one or more post-modifiers. The major struc-
tural types of pre-modifiers and post-modifiers are
given in table 3. We observed that determiners and
relative clauses rarely appear in ontology terms.

The number of FEs is limited in a frame. The
information about the major attributes of event ap-
pears frequently in the terms. For example, in the
sub-tree under G0:0006810 transport, 92.6%
terms contain the entity undergoing the “’transport”
event, and 19.3% terms describe the destination
(see Table 4). Therefore, although there maybe
a large number of terms in a sub-tree, a very small
number of the terms can be used to capture the
major attributes of the event.

To facilitate the user in identifying the FEs,
the system collects a smallest set of terms cover-
ing all the attributes of the event that have been
described in the sub-tree. The attributes of the
event reside in different modifier types appearing
in the terms. Further, prepositional phrase mod-
ifiers starting with different prepositions may de-
scribe different properties. The algorithm for col-
lecting the term set is given as follows,

T ={the set of terms in the sub-tree} ;
M={the set of modifier types m} ;
PL=0;
repeat
| =the longestt € T';
foreach m in ! do
if (m is a prepositional phrase and m
starts with a preposition p ¢ P)or m ¢ P
then
addlto L ;
foreach m,p in [ do
if m,p ¢ P then
add m,pto P;
end
break ;
end
remove [ from T ;
until T = @ or length(l) = 1,
return L
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Method for Collecting Example Sentences

The example sentences are retrieved from the
PubMed/MEDLINE database by using the GoP-
ubMed. The sentences to be annotated, are al-
ways the most relevant and from the latest publi-
cations. For a LU, we acquired sentences by using
the GO terms with the head from which the LU is
derived. The query starts from using the most gen-
eral GO terms. In cases when only specific GO
terms are available and the number of query re-
sults is too small, the query term is generalized by
removing modifiers from terms. For example, the
lexical units, release.n and release.v, are de-
rived and only derived from renin release into
blood stream (asynonym of G0:0002001 renin
secretion into blood stream). No query re-
sult returns for the GO term (AND operator is used
to combine the tokens in the term in the query).
The general term “protein release” is used as the
query term instead.

Annotation Tool

The current system contains a tool that sup-
ports manual annotation following the FrameNet’s
guidelines described in (Ruppenhofer et al., 2005).

File Format

The corpus is stored in XML files using the same
format as the FrameNet. The correspondences be-
tween frames and ontology concepts are stored in
a RDF file. Such relations could benefit integra-
tions of different lexical resources and/or knowl-
edge bases in the future. A correspondence is en-
coded as follows:

<correspondence id="1">
<concept rdf:about=
"http://www.geneontology.org/go#G0:0006810"/>
<frame rdf:about=
"http://hj.se/ontobiofn/frames#0000001" />
<comment />
</correspondence>

It provides the features: concept (the URI of
some concept of an ontology); frame (the URI of
the frame translated from the concept); comment
(the comment on this correspondence given by the
user); and an id assigned to this correspondence.

3.3 Evaluation of the System

We have successfully built a FrameNet-like cor-
pus using the method of ontology-driven construc-
tion (Tan et al., 2012). The construction is done
manually by 2 master students with biology back-
ground. The corpus covers transport events in the
domain. The GO is used as the source ontology for
domain knowledge. The corpus contains 2 frames.



TE TO DS | TC TL [ TP | TrT | TDR | TA | TPL
Protein Transport | 99.5% | 8.6% | 37.4% | 164% | 7.1% | 4.6% | 1.0% | 0.3% | 02% | 0%
(581 terms) 578) | 50) | (159) | 95 @D |2 |®© |@ |@ |
Transport 92.6% | 122% | 193% | 99% | 5.7% | 13% | 1.9% | 1.5% | 1.8% | 0.36%
(2235 terms) (2070) | (272) | @32) | @21) | (127) | (164) | (43) | 34) | 40) | 8)

Table 4: The percentage of the GO terms that indicate the FEs (the number of GO terms). FEs are Transport_Entity (TE),
Transport_Origin (TO), Transport_Destination (TDS), Transport_Condition (TC), Transport_Location (TL), Transport_Path
(TP), Transport_Transporter (TT),Transport_Direction (TDR), Transport_Attribute (TA), Transport_Place (TPL).

Table 5: Time for Building the Corpus

using system | manual
construct frames 2 days 2 weeks
gather and annotate
example sentences 2.5 weeks 3 weeks

The Transport frame follows the definition of the
GO concept, G0:0006810 transport (Tan et al.,
2012). It has a sub-frame Protein Transport, which
characterizes transport events of proteins (Tan et
al., 2011). It follows the definition of c0:0015031
protein transport. To accomplish the descrip-
tion of the two frames, 2235 terms and 581 terms,
respectively, were collected and analysed from the
GO. Based on the background knowledge implic-
itly described in the terms, 10 FEs are identified
for the frame Transport (inherited by the frame Pro-
tein Transport), and 129 LUs are collected. Max-
imally for each LU 10 annotated sentences are
gathered. Totally, 955 example sentences were re-
trieved from PubMed and annotated.

We evaluate the effectiveness and efficiency of
the system. 2 different master students are asked
to build a FrameNet-like corpus covering transport
and protein transport events using the method. The
GO is also provided as the source ontology. The
2 students have biology background and have the
knowledge of the FrameNet and ontology. Both
students correctly complete the task using the sys-
tem in the evaluation. They build the 2 frames
Transport and Protein Transport, and construct the
same frame descriptions using the domain knowl-
edge from the GO. They are also required to max-
imally collect and annotate 10 sentences for each
LU. The set of the example sentences are not ex-
actly the same set of sentences chosen in the pre-
vious corpus. Table 5 shows the time they use on
average and the time spent in the manual construc-
tion.
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4 Related Work

Interfacing ontologies and lexical resources has
been initiated in several work (Guarino, 1998;
Gangemi et al., 2003; Niles and Pease, 2003).
The work in (Gangemi et al., 2003; Niles and
Pease, 2003) has attempted to reorganize Word-
Net’s top-level synset taxonomy using ontology
concepts. More recently, the FrameNet project
links FrameNet’s semantic types to ontology con-
cepts, to constrain the filler types of frame el-
ements for specific domains (Scheffczyk et al.,
2006). It is the first step of their work aiming at
improving FrameNet capability for deductive rea-
soning with natural language. The authors suggest
that the alignment between lexicons and ontolo-
gies could restructure the lexicon on the basis of
ontological-driven principles, and enables ontolo-
gies to be used automatically by natural language
processing (NLP) applications.

5 Conclusion

In this paper we present our method for building
FrameNet-like corpus for biomedical area start-
ing with use of ontological domain knowledge.
Ontological knowledge can lead to well-defined
semantics exposed on the corpus, which can be
very valuable in NLP and text mining applications.
We have developed a framework of supporting the
method and implemented a system based on the
framework. In the current system we developed
the algorithms for selecting appropriate concepts
to be translated into semantic frames, for capturing
the information that describes aspects and compo-
nents of frames from ontology terms, and for col-
lecting example sentence using ontology concepts.

In the future we will continue to extend the cor-
pus using ontological knowledge. The event ontol-
ogy to be used as domain knowledge will include
terms from different ontologies. We will evaluate
our system when it deals with different ontologies
and their terms. Another direction of the future
work is to investigate how the ontological knowl-



edge bundled with the corpus are used by NLP and
text mining applications.
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