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Introduction

Welcome to Louhi 2014: The Fifth International Workshop on Health Text Mining and Information
Analysis, in Gothenburg, Sweden. The Louhi workshop series is an international, scientific, forum for
researchers and practitioners in the multidisciplinary area of health text mining and information analysis.
This research area has progressed and grown since the First Louhi workshop in Turku, 2008, addressing
challenging research issues in the health and biomedical domain, leading to more openly available
annotated corpora, tools, terminologies, etc. Moreover, work on other languages than the previously
dominating English is both increasing and maturing.

The importance of accurate and specific information extraction and classification from diverse health and
biomedical documents such as Electronic Health Records (EHRs), scientific literature and online health
forums is evident for several differing purposes, e.g. detecting drugs and medications, adverse events,
building timelines, understanding information needs. Ontologies and terminologies for such tasks are
also crucial. The papers presented in this workshop all address these issues from different perspectives,
and on different languages such as Basque, Spanish, French, Danish, Swedish, German and English. The
Fifth Louhi workshop will provide a platform for important and useful discussions in this vivid research
area, and hopefully lead to many more fruitful endeavours.

We received in total 21 submissions from 11 countries and three continents, and after a rigorous double-
blind peer-review process we could accept 17 of these submissions (nine long papers and eight short
papers) to be published in the 2014 Louhi proceedings. The acceptance rate for long papers was 60%,
while the overall acceptance rate for the workshop was 81%.

A short description of each paper follows in order of appearance.

Long papers:

Medical queries in a Swedish health portal are studied from the perspective of supporting information
needs by using semantic- and graph-based methods (Moradi et al.).

Collier et al. experiment with five strategies for mitigating the impact of near domain transference for
biomedical named entity recognition. Distributional dissimilarities of domains need to be adequately
compensated during learning, or else lower performance and higher annotation costs are expected.

Zhao and Tou Ng also address domain adaptation, but in the area of coreference resolution, using active
learning methods and target domain instance weighting.

Discourse parsing is addressed in the paper by Stepanov and Riccardi, where cross-domain evaluation
of a discourse relation parser trained on one domain generalises well across domains with feature-level
domain adaptation.

Perez-de-Viñaspre and Oronoz present initial work on semi-automatically translating SNOMED CT into
Basque, using the English version of SNOMED CT as source and then adapting the terms to Basque
utilizing various rules.

A method for building FrameNet-like corpora using ontologies is described in the paper by Tan. The
system includes algorithms for selecting and describing appropriate concepts to be translated into
semantic frames.

Quan and Ren describe work on gene-disease association extraction by combining information filtering,
grammar parsing and network analysis. With breast cancer as testing disease, they achieve 83.9%
accuracy for the testing genes and diseases and 74.2% accuracy for the testing genes.
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Segura-Bedmar et al. describe work on detecting drugs and adverse events from Spanish health
social media posts. A gold standard is created for evaluation, and a multilingual text analysis engine,
Textalytics, was applied for automatic detection, achieving 80%/56% precision, and 87%/85% recall for
drugs/adverse events.

The paper by Moen et al. presents several methods for information retrieval, focusing on care episode
retrieval based on textual similarity using distributional semantics and ICD-10 codes of diagnoses, to
retrieve the most similar care episodes among the records.

Short papers:

Engel Thomas et al. present work on text mining of Danish health records, with a focus on handling
spelling and ending variations, gaps and shuffling of terms, as well as negation identification and scope.
Spelling variation was found to be the most important functionality.

A new annotated corpus for identifying phenotype information for congestive heart failure is presented
by Alnazzawi et al. This corpus is unique in that it integrates information both from electronic health
records and literature articles.

Medication extraction, as defined in the 2009 i2b2 challenge, is addressed by using agile text mining
methods in the paper by Shivade et al. They report results of 92% precision and 71.5% recall.

Roller and Stevenson describe work using the Unified Medical Language System (UMLS) for distantly
supervised relation extraction.

Casillas et al. describe work on extracting cause-effect relations between drugs and diseases, applied on
Spanish health records.

Semantic relations are integrated in a vector space model to tackle the problem of context-unawareness
and applied on an electronic health record corpus (Périnet and Hamon).

Kreuzthaler and Schulz present work on disambiguating period characters in German clinical discharge
summaries. An accuracy of 93% is reported for abbreviation detection and sentence delimitation.

The Heideltime system is used for identifying time expressions in English and French in the paper by
Hamon and Grabar. Results of 0.94 (French) and 0.85 (English) F-measure are reported on their adapted
version of the system.

Dear reader, most welcome to study these proceedings, which we hope will raise interest, open new
perspectives and generate new exciting research questions in health text mining and information analysis.

Stockholm and San Diego, March 2014

Sumithra Velupillai, Martin Duneld, Maria Kvist and Hercules Dalianis
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Keynote: Supporting evidence-based medicine using text mining
Sophia Ananiadou

School of Computer Science, University of Manchester, UK
sophia.ananiadou@manchester.ac.uk

Evidence-based medicine uses systematic reviews to identify relevant studies to answer specific research
questions. An underlying principle of the approach is the importance of specifying a priori the research
question to drive the review process. Such reviews have a central role in health technology assessments,
development of clinical guidelines and public health guidance, and evidence-informed policy and
practice. However, public health questions are complex and often need to be described using abstract,
fuzzy terminology. Understanding the scope of evidence often emerges during a review and cannot be
defined a priori. Can text mining support a dynamic and multidimensional definition of relevance using
interactive, exploratory searching under uncertainty? Can text mining help reviewers to explore evidence
of interconnections between different factors, diseases and human behaviour?
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A Graph-Based Analysis of Medical Queries
of a Swedish Health Care Portal
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1Computer Science and Engineering, Chalmers University of Technology, Sweden
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Abstract

Today web portals play an increasingly
important role in health care allowing in-
formation seekers to learn about diseases
and treatments, and to administrate their
care. Therefore, it is important that the
portals are able to support this process
as well as possible. In this paper, we
study the search logs of a public Swedish
health portal to address the questions if
health information seeking differs from
other types of Internet search and if there
is a potential for utilizing network analy-
sis methods in combination with semantic
annotation to gain insights into search be-
haviors. Using a semantic-based method
and a graph-based analysis of word co-
occurrences in queries, we show there is
an overlap among the results indicating a
potential role of these types of methods to
gain insights and facilitate improved infor-
mation search. In addition we show that
samples, windows of a month, of search
logs may be sufficient to obtain similar re-
sults as using larger windows. We also
show that medical queries share the same
structural properties found for other types
of information searches, thereby indicat-
ing an ability to re-use existing analysis
methods for this type of search data.

1 Introduction

Query logs which are obtained from search en-
gines contain a wealth of information about the
language used in the logs and the behavior of
users. Searching for health and medical related
information is quite common, and therefore anal-
ysis of query logs of medical websites can give us
insight into the language being used and the infor-
mation needs of the users in the medical domain.

In this study, we analyze 36 months of query
logs from a Swedish health care portal, which pro-
vides health, disease, and medical information.
On one hand, we perform a semantic enhancement
on the queries to allow analysis of the language
and the vocabulary which has been used in the
queries. On the other hand, we perform a graph-
based analysis of the queries, where a word co-
occurrence graph is generated from the queries.
In a word co-occurrence graph each node corre-
sponds to a word and an edge exists between two
words if they have co-occurred in the same query.

Our study reveals that a word co-occurrence
graph generated from medical query logs has the
same structural and temporal properties, i.e., small
world properties and power law degree distribu-
tion, which has been observed for other types of
networks generated from query logs and differ-
ent types of real-world networks such as word
association graphs. Therefore, the existing algo-
rithms and data mining techniques can be applied
directly for analysis of word co-occurrence graphs
obtained from health search.

One of the widely studied structural properties
of real-world networks is the communities in these
networks. In this study, we apply a state-of-the-art
local community detection algorithm on the word
co-occurrence graph. A community detection al-
gorithm can uncover agraph communitywhich
is a group of words that have co-occurred mostly
with each other but not with the rest of the words in
the network. The community detection algorithm
used in this study is based on random walks on the
graph and can find overlapping communities.

The communities of words, identified from the
graph, are then compared with the communities
of words obtained from a semantic analysis of the
queries. In semantic enhancement, if a word or
term in a query exists in medical oriented seman-
tic resources, it is assigned a label. The words
and terms which have co-occurred with these la-
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bels are used to create asemantic community. We
have compared the obtained semantic communi-
ties with the graph communities using a well-
known similarity measure and observed that the
communities identified from these two different
approaches overlap. Moreover, we observed that
the graph communities can cover the vast major-
ity of the words in the queries while the semantic
communities do not cover many words. Therefore,
the graph-based analysis can be used to improve
and complement the semantic analysis.

Furthermore, we study the effect of the time
window lengths for analysis of log queries. Our
goal is to investigate whether short snapshots of
log queries also can be useful for this type of anal-
ysis, and how the increase in the size of the log
files over time can affect the results.

The reminder of this paper is organized as fol-
lows. In Section 2 we review the related work.
Section 3 presents the Swedish log corpus used for
this study. Section 4 describes the semantic en-
hancement on the query logs. In Section 5 we de-
scribe the graph analysis methods. Section 6 sum-
marizes our experimental results. Finally, Sec-
tion 7 concludes our work.

2 Related Work

In this paper, we study the co-occurrence of words
in medical queries and perform both a semantic
and graph analysis to identify and compare the
communities of related words. In this section, we
briefly present a number of related works which
deal with analysis of query logs.

Query logs have been previously studied for
identifying clusters of similar queries. In (Wen
et al., 2001) a method was described for cluster-
ing similar queries using different notions of query
distance, such as string matching of keywords.
In (Baeza-Yates et al., 2004) clicked Web page in-
formation (terms in URLs) was used in order to
create term-weight vector models for queries, and
cosine similarity was used to calculate the similar-
ity of two queries based on their vector represen-
tations.

Several previous works have also dealt with
graph analysis of query logs. In (Baeza-Yates,
2007) several graph-based relations were de-
scribed among queries based on different sources
of information, such as words in the text of the
query, clicked URL terms, clicks and session in-
formation. In (Herdagdelen et al., 2009) vec-

tor space models were compared, by embedding
them in graphs, and graph random walk mod-
els in order to determine similarity between con-
cepts, and showed that some random walk mod-
els can achieve results as good as or even better
than the vector models. In (Gaillard and Gaume,
2011), it was shown that drawing clusters of syn-
onyms in which pairs of nodes have a strong con-
fluence is a strong indication of aiding two syn-
onymy graphs accommodate each others’ conflict-
ing edges. Their work was a step for defining
a similarity measure between graphs that is not
based on edge-to-edge disagreement but rather on
structural agreement.

3 Material - a Swedish Log Corpus

The Stockholm Health Care Guide,http://
www.vardguiden.se/, is the official health
information web site of the County of Stockholm,
sponsored by the Stockholm County Council and
used mostly by people living in the Stockholm
area and provides information on diseases, health
and health care. In January 2013 the Stockholm
County Council reported that vardguiden.se had
two million visitors per month. As of Novem-
ber 2013, vardguiden.se and another similar por-
tal, 1177.se (which was a common web site for
Swedish regions and counties, and the official na-
tional telephone number for health information
and advice), are merged into one called 1177
Vårdguiden, sharing the same interface and search
engine. The corpus data used in this study con-
sists of the search queries for the period Octo-
ber 2010 to the end of September 2013. The
data is provided by vardguiden.se, through an
agreement with the company Euroling AB which
provides indexing and searching functionality to
vardguiden.se. We obtained 67 million queries in
total, where 27 million are unique before any kind
of normalization, and 2.2 million after case fold-
ing. Figure1 shows an example of a query log.

Information acquisition from query logs can be
useful for several purposes and potential types of
users, such as terminologists, infodemiologists,
epidemiologists, medical data and web analysts,
specialists in NLP technologies such as informa-
tion retrieval and text mining, as well as, public
officials in health and safety organizations. Anal-
ysis of web query logs can provide useful infor-
mation regarding when and how users seek infor-
mation for topics covered by the site (Bar-Ilan et
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Q   929C0C14C209C3399CAE7AEC6DB92251   1377986505    symptom brist folsyra hidden:meta:region:00     =    13    1    -N    -     sv      =

Q   2E6CD9E0071057E4BEDC0E52B0B0BDAC   1377986578    folsyra hidden:meta:region:00 =    36    1    -N    -     sv    =          

Q   527049C35E3810C45B22461C4CCB2C23    1377986649    kroppens anatomi hidden:meta:region:01    =    25    1    -N    -    sv    =        

Q   F86B6B133154FD247C1525BAF169B387    1377986685    stroke hidden:meta:region:00    =    320    1    -N    -     sv    =        

Q   17CCB738766C545BFE3899C71A22DE3B    1377986807    diabetes typ 2 vad beror på hidden:meta:region:12 =     61    1    -N    -    sv    =

Figure 1: Example queries. A query consist of (Q)uery, session ID, timestamp, search query, metadata,
number of links returned, the batch ID of the visited link, (N)o spelling suggestions, Swedish search.

al., 2009). Such information can be used both for
a general understanding of public health aware-
ness and the information seeking patterns of users,
and for optimizing search indexing, query comple-
tion and presentation of results for improved pub-
lic health information. For an overview of some
common applications and methods for log analy-
sis see (Oliner et al., 2011).

Deeper mining into queries can reveal more im-
portant information about search engine users and
their language use and also new information from
the search requests; cf. (Medelyan, 2004). The ba-
sis for Search Analytics is made of different kinds
of logs of search terms and presented and chosen
results by web site users (Mat-Hassan and Levene,
2005). At a syntactic level queries may contain
e.g., synonyms and hyponyms, and to be able to
study patterns of search behavior at a more ab-
stract level, we map the syntactic terms to seman-
tic concepts. To our knowledge this is the first of
its kind resource for Swedish and as such it can
be used as a test bed for experimental work in un-
derstanding the breadth and depth of usage pat-
terns, the properties of the resource and the chal-
lenges involved in working with such type of data.
The only study we are aware of using Swedish log
data, in the context of health-related information,
is described by (Hulth et al., 2009). In their study,
three million search logs from vardguiden.se (June
05 to June 07) were used for the purpose of in-
fluenza surveillance in Sweden, and seven symp-
toms, roughly corresponding to cough, sore throat,
shortness of breath, coryza (head cold), fever,
headache, myalgia (muscle pain) were studied.

4 Semantic Enhancement

Description of various corpus analytics that en-
ables us to gain insights into the language used
in the logs; e.g., terminology and general vocab-
ulary provide, to a certain degree, an indication
of the search strategies applied by the users of
the web site service from where the logs are ob-
tained. Findings can serve as background work

that, e.g., can be incorporated in search engines or
other web-based applications to personalize search
results, provide specific site recommendations and
suggest more precise search terms, e.g., by the
automatic identification of laymen/novices or do-
main experts. The logs have been automatically
annotated with two medically-oriented semantic
resources (Kokkinakis, 2011) and a named en-
tity recognizer (Kokkinakis, 2004). The seman-
tic resources are the Systematized Nomenclature
of Medicine - Clinical Terms (SNOMED CT) and
the National Repository for Medicinal Products
(NPL, http://www.lakemedelsverket.
se/)1. We perceive all these resources as highly
complementary for our task since the Swedish
SNOMED CT does not contain drug names and of
course none of the two contain information about
named entities.

4.1 SNOMED CT and NPL

SNOMED CT provides a common language that
enables consistency in capturing, storing, retriev-
ing, sharing and aggregating health data across
specialties and sites of care. SNOMED CT pro-
vides codes and concept definitions for most clin-
ical areas. SNOMED CT concepts are orga-
nized into 18 top-level hierarchies, such as Body
Structure and Clinical Finding, each subdivided
into several sub-hierarchies and contains around
280,000 terms. More detailed information about
SNOMED CT can be found at the International
Health Terminology Standards Development Or-
ganisation’s web site, IHTSDO, at:http://
www.ihtsdo.org/snomed-ct/.

The NPL is the official Swedish product reg-
istry for drugs and contains 11,250 entries. Ev-
ery product in the registry contains metadata about

1Named entities have not been used for this study. How-
ever, we intend to use them in future studies. Neverthe-
less, the named entity annotation includes the ontological
categories location, organization, person, time, and measure
entities. Such entities can capture a wide range of entities
searched by in such logs such as addresses to health care cen-
ters and various health care organizations.
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its substance(s), names, dosages, producers and
classifications, like prescription and Anatomical
Therapeutic Chemical codes (ATC). For instance,
for the question “missbruk st göranssjukhus”
(“abuse st g̈oran hospital”) from the query “Q\t
C7ED234574EE24\t 1326104437\t missbruk st
göranssjukhus meta:category:PageType;Article\t
= \t 0\t ...” (here “\t” signals a tab separation), we
add three new tab-delimited columns (named en-
tity label, SNOMED-CT, NPL or N/A if no match
can be made) to each query. In this case, the three
added columns for this particular query will get
the labels “FUNCT-ENT”, “finding–32709003–
missbruk” and “N/A” (no annotation), where the
first stands for a FUNCTional-ENTity, the second
for a finding category with concept-id “32709003”
and “missbruk” as the recommended term.

4.2 Semantic Communities

We use the semantic labels obtained from the se-
mantic enhancement to group words into commu-
nities. Communities can be used for getting in-
sight into the language and the related words be-
ing used for medical search. The words which are
matched with the same semantic label are clearly
relevant to each other as they belong to the same
semantic hierarchy. For each semantic label, we
create a set of all the words in the queries which
received this label. In other words, the words in
queries that co-occurred with the same label are
assumed to belong to the same community.

We have generated such communities only from
SNOMED CT and NPL labels and refer to them
assemantic communitiesin the rest of the paper.
As an example, the community{borrelia, serolo-
giska, blodprover, test, serologisk, testning} was
obtained from the queries which received the label
“qualifier value–27377004–serologisk”.

5 Graph Analysis

Query log data can be modeled using different
types of graphs (Baeza-Yates, 2007). In this study,
we have generated a word co-occurrence graph,
in which each node corresponds to a word and
two nodes are connected with an edge if they
have appeared in the same query. The generated
graph is undirected and unweighted and has no
multiedges. To generate the graph we have used
the words as they appeared in the logs, i.e., we
did not replace words with their synonyms, cor-
rect misspellings, or translate non-Swedish words
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Figure 2: The degree distribution of the co-
occurrence graph.

to Swedish. For example, “eye”, “öga”, “ögat”,
“ ögon”, and “̈ogonen” appear as five different
nodes in the graph but mean the same thing.

The graphG(V, E) generated from the queries
which contained two or more words has|V | =
265,785 nodes and|E| = 1,555,149 edges. The
words in one-word queries which did not co-occur
with any other words could not be considered for
the graph analysis. The generated graph consists
of 6,688 connected components. A connected
component is a group of nodes where a path exists
between any pair of them. The largest connected
component of the graph, also known as giant con-
nected component (GCC), contains around 95% of
the nodes in the graph.

It was shown in (Ferrer i Cancho and Solé,
2001), that a graph generated from the co-
occurrence of words in sentences in human lan-
guages, exhibit two structural properties that other
types of complex networks have, i.e, the graph is a
small worldnetwork and it has apower-law degree
distribution (Barab́asi and Albert, 1999). Later
studies on different types of word graphs have also
been shown to follow the above properties. In this
paper, we also show that a word co-occurrence
graph generated from medical queries exhibits the
same structural properties.

In small world networks, there is a short path
connecting any pair of nodes in the GCC of
the network. This property can be examined
by calculating theeffective diameterof the net-
work (Leskovec et al., 2007). Small word net-
works also are highly clustered and therefore have
a highclustering coefficientvalue. The effective
diameter of our co-occurrence graph is 4.88, and
it has an average clustering coefficient of 0.34.
These values confirm that our word co-occurrence
graph is a small world network.
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Table 1: Structural properties of the word co-occurrence graph over time.

Time window |V | |E| |VGCC | clustering coeff. effective diameter
1 month 16,045 52,403 14,877 0.29 5.47
3 months 30,681 168,045 29,220 0.30 5.42
6 months 48,229 298,331 46,435 0.31 5.38
12 months 69,380 414,643 67,245 0.32 4.97
36 months 265,785 1,555,149 251,597 0.34 4.88

The degree distribution of the co-occurrence
graph is shown in Figure 2. It can be seen that
the degree distribution follows a power law distri-
bution. This observation is similar to the observa-
tions presented by (Baeza-Yates and Tiberi, 2007)
that almost all the measures of a graph generated
from query log files follow power laws. There-
fore, the user behavior in medical search does
not seem different from general search behavior.
In addition to networks of word relations, power
law degree distributions have also been observed
in social, information, and interaction networks
where there are many nodes with low degrees and
a few nodes with very high degrees (Clauset et al.,
2009). The word with the highest degree in our
graph is “barn” (child/children) which has 17,086
edges. Some other high-degree nodes are “sjuk-
dom” (disease), “behandling” (treatment), “ont”
(pain), “gravid” (pregnant), and “feber” (fever).

We have also looked into how the struc-
tural properties of the word co-occurrence graph
change over time as the graph increases in size
with an increasing number of queries. Table 1
summarizes the results. It can be seen that similar
to many other networks, the diameter of the graph
shrinks when more nodes become connected and
its average clustering coefficient does not change
much as the graph becomes larger.

Overall, the structural properties of the word co-
occurrence graph are similar to many other real-
world networks. Although it was shown in (Yang
et al., 2011) that the queries and information needs
of medical practitioners in accessing electronic
health records are different from users of general
search engines, our analysis reveals that there are
similarities between information seeking of gen-
eral users on health data and on general data.
Therefore, the algorithms introduced for analy-
sis of such networks can be directly deployed for
analysis of word co-occurrence graphs.

5.1 Graph Community Detection

One of the widely studied structural properties of
real-world networks is their community structure.

A community, also known as a cluster, is defined
as a group of nodes in a graph which have dense
connections to each other, but have few connec-
tions to the rest of the nodes in the network. There
have been numerous studies on the community
structure of social and information networks and a
variety of algorithms have been proposed for iden-
tifying the communities in these networks. A thor-
ough overview of different types of community
detection algorithms can be found in (Fortunato,
2010; Xie et al., 2013).

Community detection algorithms can be divided
into global and local algorithms. The global al-
gorithms require a global knowledge of the entire
structure of the network to be able to find its com-
munities. Therefore, these types of algorithms do
not scale well for log analysis since query logs
are usually very large and are continuously grow-
ing. The local algorithms, on the other hand,
only require a partial knowledge of the network
and therefore can identify network communities
in parallel. However, the identified communities
might not cover all the nodes in a network.

Moreover, community detection algorithms can
be divided into overlapping and non-overlapping
algorithms. Traditional partitioning and clustering
algorithms typically divide the nodes in a network
into disjoint communities. But in many real net-
works, a node can actually belong to more than
one community. For example, in a social net-
work, a user can belong to a community of fam-
ily members, a community of friends, and a com-
munity of colleagues. In a co-occurrence graph,
a symptom can co-occur with different types of
diseases. Therefore, a community detection algo-
rithm which can identify overlapping communities
is more suitable for analysis of the graphs gener-
ated from search queries.

For the analysis of log queries, we have used a
local overlapping community detection algorithm.
This algorithm is a random walk-based algorithm
which uses an approximation of a personalized
PageRank (Andersen and Lang, 2006; Andersen
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et al., 2006) and is shown to perform well in de-
tecting real communities in social and interaction
networks (Yang and Leskovec, 2012). The algo-
rithm starts from a seed node and expands the seed
into a community until a scoring function is op-
timized. One of the widely used functions for
community detection isconductance. The con-
ductance of a communityC in a graphG(V, E)
is defined asφ(C) = m(C)

min(vol(C),vol(V \C)) , where
m(C) is the number of inter-cluster edges and
vol(C) =

∑
v∈C deg(v) is the volume of a com-

munity and corresponds to the sum of the degree
of all the nodes in the community. The lower the
conductance of a community, the better quality the
community has. The complexity of this algorithm
is independent of the size of the network and only
depends on the size of the target communities.

6 Experimental Results

In this section we present our experimental results
and discuss the possible applications for graph-
based analysis of medical data.

6.1 Semantic and Graph Analysis

From the semantic enhancement, we have gener-
ated 16,427 unique semantic communities which
cover less than 11% of the nodes in the network.
This means that, the majority of the queries in
the network did not contain words that match the
medical concepts provided by of SNOMED CT
and NPL. This observation suggests that a seman-
tic enhancement of queries on its own is not ade-
quate for understanding the relations between all
the words used in medical search.

For the graph analysis, we have used the lo-
cal overlapping community detection algorithm
of (Yang and Leskovec, 2012) to identify the com-
munities from the co-occurrence graph generated
from the complete query logs. The algorithm iden-
tified 107,765 unique communities in the GCC of
the graph with average conductance 0.74. This
shows that the communities are not well separated
from each other and that there are many edges be-
tween distinct communities. Moreover, the identi-
fied communities cover 93% of the nodes in the
network which means that the graph analysis is
more suitable for the study of the relations be-
tween the words than the semantic analysis.

The semantic communities and the graph com-
munities are both dependent on the co-occurrence
of words in queries, but identify communities dif-

ferently. The semantic method places the nodes
which belong to the same semantic hierarchy to-
gether with the words that co-occurred with them
in the same community. However, the graph-based
method places the words based on the structure of
the generated network in the communities.

We have compared and calculated the similarity
between the graph communities and the semantic
communities using thejaccard indexwhich is de-
fined asJI(C, S) = |C∩S|

|C∪S| . The jaccard index
shows the normalized size of the overlap between
a graph communityC and a semantic community
S. Similarity functions, including Jaccard, have
been used before for measuring the distance of two
different queries. In this study we use similarity to
assess the similarity of communities of words ob-
tained from the two distinct methods.

We have compared each semantic community
with all the graph communities and show the sim-
ilarity distribution in Figure 3. It can be seen that
the majority of the communities partially over-
lap. As an example, from the word “tandsjuk-
dom” (dental disease) as the seed, we identi-
fied the graph community{tandsjukdom, licken,
munh̊aleproblem, rubev, emalj, tändernaamelin,
hypopla, permanentatänder, lixhen, hypoplazy,
hipoplasy, hypoplazi, bortn̈ott, hipoplazy}. From
the semantic enhancement, “tandsjukdom” and
“tandsjukdomar” both have received semantic la-
bel “disorder–234947003–tandsjukdom”. From
the queries which received this label we have
generated the semantic community{tandsjukdom,
emalj, olika, vanligaste, tandsjukdomar, licken,
plack, ovanliga}. The similarity of these commu-
nities is low, i.e., 0.16, however, they both contain
the words which are clearly relevant to teeth and
dental diseases.

As another example, “osteoklast” and “osteok-
laster” both receive the semantic label “cell–
27770000–osteoklast”. From the graph analysis,
we have found{osteoklaster, osteoblster, osteo-
cyter, osteoblaster} as a community with “osteok-
laster” as the seed. We have also obtained the
semantic community{osteoblaster, osteoklast, os-
teoporos, osteocyter, benskörhet, osteoklaster, os-
teoblster}. In this example, the graph community
is a subset of the semantic community, and their
similarity is 0.57. The above examples suggest
that a graph-based analysis of medical queries can
be used to complement the semantic analysis.
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Figure 3: The distributions of jaccard similarity of semantic-based and graph-based communities.

6.2 Frequent Co-Occurrence Analysis

In the query logs, we observed that there are many
misspellings, meaningless words, etc. In order to
clear the dataset, it is common in different studies
of log files, to filter out queries which appeared
less frequently. By removing such queries, we can
dramatically reduce the number of such words.

In this study, we have generated another graph
from the words which co-occurred frequently in
different queries. We have only considered words
that co-occurred five times or more, and the graph
contains 32,449 nodes and 217,320 edges, with
average clustering coefficient of 0.29 and effective
diameter of 5.66.

In the GCC of this graph we found 22,890 graph
communities with average conductance of 0.65
and coverage of 95%. Moreover, we have also
used the words which co-occurred at least five
times to generate the semantic communities. The
similarity of these communities with graph com-
munities using jaccard similarity was 0.16 in av-
erage which is slightly lower than when no filter-
ing was used. Overall, our observations suggest
that filtering can be used to reduce the noise in the
datasets and allow us to perform a faster analysis
on a smaller graph.

6.3 Time Window Analysis

Another property which we have empirically stud-
ied in this paper is the effect of time window
length during which the queries are analyzed. We
have observed that, in average, more than 31%

of the nodes and 12% of the edges have re-
appeared in each month compared to their pre-
vious month. This suggests that the search con-
tent changes over time perhaps depending on the
changes in the monthly or seasonal information re-
quirements of the users. It also means that over
time the size of the word co-occurrence graph in-
creases (see Table 1), and since in each month new
co-occurrences shape, the graph becomes more
and more connected. Therefore, when the time
window is long, the analysis requires more time
and the identified communities do not have good
conductance. When the time window is short, the
small size of the graph speeds up the analysis but
might affect the analysis result. In this section we
investigate the effect of time window length on our
analysis.

We started by setting the time window length to
one month. From the queries which were observed
during each month, we generated a co-occurrence
graph and identified the graph communities and
the semantic communities. As presented in Sec-
tion 5, the structural properties of a graph gen-
erated from one month are quite similar to that
of the complete graph. We have also observed
that the average conductance of the communities
identified by the community detection algorithm is
around 0.5 which is lower than when the complete
graph was used. This means that the communities
in the graphs generated from one month of queries
have better quality since they have fewer connec-
tions to the rest of the graph.
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We observed that the similarities between
graph communities and semantic communities are
higher when a one-month window is used (in av-
erage 0.26). By increasing the length of the time
window from one to three, six, twelve, and thirty-
six months, we observed a reduction in the simi-
larities (in average 0.23, 0.22, 0.21, and 0.19, re-
spectively). The similarity distributions are shown
in Figure 3. It seems that with more queries
over time, more words get connected and it be-
comes more difficult to identify good communi-
ties. Therefore, using short time windows can im-
prove the quality of the analysis. Moreover, anal-
ysis of different time windows can also shed light
on how the word relations and user requirements
are affected by the months or seasons of the year.

6.4 Discussion

Our empirical analysis of a large-scale query log
of medical related search presented in this paper
can be used to improve our knowledge of the ter-
minology and general vocabulary, as well as the
search strategies of the users. In addition to pro-
viding a background for language analysis, a po-
tential application for community detection could
be to provide better spelling suggestions to users.
We have observed that there are communities with
very low conductance which contain a number of
words which seem to correspond to guessing at-
tempts to find a correct spelling, e.g.,{shoulder,
froozen, frosen, cholder, sholder, fingers, frozen,
scholder, shulder, schoulder, shoulders}. The low
conductance of the community means that the
community is very isolated and has very few edges
outside it and therefore it can easily be cut from the
graph. Therefore, the community detection can be
used for identifying such cases.

Another potential application of our graph anal-
ysis method is to provide recommendations and
suggest more precise search terms based on the
words that appear in the same community as the
keywords entered by the users. For example, since
the communities can overlap, each word can be-
long to more than one graph community or se-
mantic community. We observed that in average,
in the complete graph (generated from 36 months
of logs), each word belongs to 3.8 unique graph
communities and 3.6 semantic communities. It
means that a word which can be related to mul-
tiple groups of words or have different meanings,
can belong to several communities. This knowl-

edge can potentially be used to provide sugges-
tions to the users and help them to select the in-
tended meaning and therefore reducing the ambi-
guity in the searched queries.

Overall, in this paper, we have presented
a promising approach for analysis of medical
queries using co-occurrence graphs. As a future
work, the following improvements could be of in-
terest for complementing our empirical study:

• Representing different variations of the
words with only a single node in the graph,
e.g., “̈oga” for “ögat”, and “̈ogon”.

• Filtering out the non-medical related words
such as person and location entities from
the queries based on the semantic enhance-
ment with name entities from NER. Overall,
more than 136,000 queries contained a per-
son name entity, and around 127,000 con-
tained a place entity.

• Filtering out high frequency words/terms
which do not have medical significance, e.g.,
“olika” (different).

7 Conclusions

Our analysis of a large-scale medical query log
corpus is the first step towards understanding the
language and the word relations in health/medical
related queries. We have performed a semantic
enhancement of queries based on medically re-
lated semantic resources to find the communities
of words which have co-occurred with a semantic
label. We have also performed a graph-based anal-
ysis of the word co-occurrences and have shown
that since a word co-occurrence graph has similar
structural properties to many types of real-world
networks, existing algorithms for network analysis
can be deployed for our study. We then have used
a random walk-based community detection algo-
rithm in order to identify communities of words
in our graph. Our empirical results show that the
communities identified from the semantic analysis
and the graph analysis overlap, however the graph-
based analysis can identify many more commu-
nities and achieves much higher coverage of the
words in the queries. Therefore, the graph-based
analysis can be used in order to improve and com-
plement the semantic analysis. Our experiments
also show that short time window lengths for anal-
ysis of query logs, such as a month, would suffice
for graph-based analysis of medical queries.
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Abstract

Current research in fully supervised
biomedical named entity recognition
(bioNER) is often conducted in a setting
of low sample sizes. Whilst experi-
mental results show strong performance
in-domain it has been recognised that
quality suffers when models are applied to
heterogeneous text collections. However
the causal factors have until now been
uncertain. In this paper we describe a con-
trolled experiment into near domain bias
for two Medline corpora on hereditary
diseases. Five strategies are employed
for mitigating the impact of near domain
transference including simple transfer-
ence, pooling, stacking, class re-labeling
and feature augmentation. We measure
their effect on f-score performance against
an in domain baseline. Stacking and
feature augmentation mitigate f-score loss
but do not necessarily result in superior
performance except for selected classes.
Simple pooling of data across domains
failed to exploit size effects for most
classes. We conclude that we can expect
lower performance and higher annotation
costs if we do not adequately compensate
for the distributional dissimilarities of
domains during learning.

1 Introduction

Model and feature selection are important exper-
imental tasks in supervised machine learning for
suggesting approaches that will generalise well on
real world data. Research in biomedical named en-
tity recognition (bioNER) often displays two fea-
tures: (1) small samples of labeled data, and (2)
an implicit assumption that the future data will be

∗collier@ebi.ac.uk

drawn from a similar distribution to the labeled
data and hence that minimising expected predic-
tion error on held out data will minimise actual fu-
ture loss. Since expert labeling is time consuming
and expensive, labeled data sets tend to be rela-
tively small, e.g. (Kim et al., 2003; Tanabe et al.,
2005; Pyysalo et al., 2007), in the region of a few
hundred or thousand Medline abstracts. Despite
the danger of intrinsic idiosyncracies such corpora
are often used to demonstrate putative prediction
error across the heterogeneous collection of 22
million Medline abstracts. Once this assumption
is made explicit it is of interest to both researchers
and users that the implications and limitations of
such experimental settings are explored.

Cross domain studies have indicated an ad-
vantage for mechanisms that compensate for do-
main bias. For fully supervised learning, which
is the scenario we explore here, recent methods
include: feature augmentation (Daumé III, 2007;
Arnold et al., 2008; McClosky et al., 2010), in-
stance weighting (Jiang and Zhai, 2007; Foster
et al., 2010), schema harmonisation (Wang et al.,
2010) and semi-supervised/lightly supervised ap-
proaches (Sagae and Tsujii, 2007; Liu et al., 2011;
Pan et al., 2013). More generally there is a wide
body of work in transfer learning (also known as
domain adaptation) that tries to handle discrep-
ancies between training and testing distributions
(Pan and Yang, 2010).

As an illustration of near domain bias consider
the list of high frequency named entities in Ta-
ble 1 drawn from two sub-domains in the research
literature of hereditary diseases. A domain ex-
pert in hereditary diseases would have no diffi-
culty in dividing them into two non-overlapping
sets corresponding to the two near domains with
one term t5 patients shared by both: {t1,t6,t8,t9}
and {t2,t3,t4,t7,t10}.

Previous studies have shown what happens
when you radically change the domain and/or the
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t1 rheumatoid t6 human leukocyte
arthritis antigen

t2 lupus t7 coronary heart
erythematosus disease

t3 leopard syndrome t8 type 1 diabetes
t4 Omapatrilat t9 T1D
t5 patients t10 hypertension

Table 1: High frequency entities in the hereditory
disease literature for auto-immune and cardio-
vascular diseases.

annotation schema, e.g. from newswire to Med-
line or Web pages. But what happens when the
annotation schema, the annotator and the primary
domain stay the same? Although the notion of
domain is difficult to formalise in the context of
research literature, this study explores the con-
dition where the variable factor is a shift to a
near domain of literature as defined by biocura-
tors and illustrated in the previous example. Our
contribution to biomedical named entity recogni-
tion (bioNER) is in five areas:

1. We compare four data combination strate-
gies for mitigating the impact of near domain
transference and measure their effect on f-
score performance against an in domain base-
line.

2. We provide additional evidence for the effec-
tiveness of (Daumé III, 2007)’s frustratingly
simple strategy which provides both general
and domain-specific features; in effect a joint
learning model.

3. Expectedly, but not trivially, we show that
a general loss of f-score occurs on bioNER
when transfering to near domains. This loss
is not uniform across all classes. We provide
class-by-class drill down analysis to the un-
derlying causal factors which make some en-
tities more robust to near domain transference
in biomedicine than others.

4. Our results challenge the notion that pool-
ing small corpora, even when guideline dif-
ferences are reconciled, leads to improved
f-score performance (Wang et al., 2010;
Wagholikar et al., 2013).

5. In addition to the usual biomedical entity
types we introduce the class of phenotypes

which are valued as indicators of genetic mal-
function and characteristic of diseases. The
phenotype class incorporates a complex de-
pendency between classes, notably anatomi-
cal entities and genes.

This paper is organised as follows: Section 2
describes related work in cross domain transfer
for biomedical NER, Section 3 discusses our ap-
proach including the two data sets used in our ex-
periments, CRF model, feature choices and evalu-
ation framework. In Section 4 we outline our ex-
perimental design. Finally in Section 5 we com-
pare the performance of six data selection strate-
gies that try to maximise f-score performance on
domain entity classes in the target corpus.

2 Related work

It is surprising that there exists, to the best of our
knowledge, no controlled study that has shed light
on the issue of near domain transfer for bioNER
in a straightforward manner. The closest approach
to our investigation in the biomedical domain is
(Wang et al., 2009). Wang et al. explore potential
sources of incompatibility across major bioNER
corpora with different annotation schema (GENIA
- 2000 Medline abstracts, GENETAG - approx-
imately 20,000 Medline sentences and AIMed -
225 Medline abstracts). They focus exclusively
on protein name recognition and observe a drop in
performance of 12% f-score when combining data
from different corpora. Various reasons are put
forwards such as differences in entity boundary
conventions, the scope of the entity class defini-
tions, distributional properties of the entity classes
and the degree of overlap between corpora.

A follow up study by the authors (Wang et
al., 2010) looked at increasing compatibility be-
tween the GENIA and GENETAG corpora by re-
organising the annotation schema to unify pro-
tein, DNA and RNA NER under a new label GGP
(Gene and Gene Product). However the best per-
formance from the coarse grained annotations still
do not improve on the intra-corpus data.

In earlier work, (Tsai et al., 2006) looked at
schema differences between the JNLPBA corpus
of 2000 Medline abstracts (Kim et al., 2004) and
the BioCreative corpus of 15,000 Medline sen-
tences (Yeh et al., 2005) and tried to harmonise
matching criteria. They demonstrated that relax-
ing the boundary matching criteria was helpful in
maximising the cross-domain performance.
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In the clinical domain (Wagholikar et al.,
2013), explore the effect of harmonising annota-
tion guidelines on the 2010 i2b2 challenge with
Mayo Clinic Rochester (MCR) electronic patient
records. They concluded that the effectiveness of
pooling - i.e. merging of corpora by ensuring a
common format and harmonised semantics - is de-
pendent on several factors including compatibility
between the annotation schema and differences in
size. Again they noticed that simple pooling re-
sulted in a loss of f-score, 12% for MCR and 4%
for i2b2. They concluded that the asymmetry was
likely due to size effects of the corpora, i.e. MCR
being smaller suffered a greater loss due to the
classifier being biased towards i2b2.

Due to the formulation of these studies and their
limited scope it has previously been difficult to un-
derstand the precise causual factors affecting per-
formance. Our study sheds light on the expected
level of loss under different combination strategies
and more importantly highlights the non-uniform
nature of that loss.

3 Approach

We assume two small labeled data sets DS =
ds

1..d
s
n and DT = dt

1..d
t
m. ds

i = ⟨xi ⊂ X, yi ⊂
Y ⟩ is drawn from an unknown distribution P s

and represents the source document examples.
Similarly,dt

i = ⟨xi ⊂ X, yi ⊂ Y ⟩ is also drawn
from an unknown distribution P t and represents
the target document examples. We assume that
DS has N examples and DT has M examples
where N ≈ M . xi represents a covariate or fea-
ture vector and yi is a target or label that can take
multiple discrete values. We have a learning al-
gorithm that learns a function h : X → Y with
minimal loss on the portion of DT used for test-
ing. Any combination of DS and DT which are
not used in testing can be used to learn h. Our task
is to explore various strategies for data selection
and re-factoring labels/features in order to max-
imise held out performance.

3.1 Data

In this paper we aim to empirically test domain
transferrence for bioNER under the condition that
the test and training data are relatively small and
drawn from near domains, i.e. from studies on
different types of heritable diseases. To do this
we selected Medline abstracts from PubMed that
were cited by biocuration experts in the canon-

ical database on heritable diseases, the Online
Mendelian Inheritance of Man (OMIM) (Hamosh
et al., 2005). We selected auto-immune diseases
and cardio-vascular diseases for our two corpora
which we denote as C1 and C2 respectively. By
comparing performance of a single model, a single
annotator and a single annotation scheme with a
range of sampling techniques we hope to quantify
the effects of domain transferrence in isolation.

The target classes for the entities are as follows:

ANA Anatomical structures in the body. e.g.
liver, heart.

CHE A chemical or drug. e.g. pristane, his-
tamine, S-nitrosoglutathione.

DIS Diseases. e.g. end stage renal disease, mitral
valve prolapse.

GGP Genes and gene products. e.g. KLKB1
gene, highly penetrant recessive major gene.

PHE Phenotype entities describing observable
and measurable characteristic of an organism.
e.g. cardiovascular abnormalities, abundant
ragged-red fibers, elevated IgE levels.

ORG A living organism. e.g.first-degree rela-
tives, mice.

The two corpora were annotated by a single
experienced annotator who had participated in
the GENIA entity and event corpus annotation.
We developed detailed guidelines for single span
none-nested entities before conducting a training
and feedback session. Feedback was conducted
over two weeks by email and direct meetings with
the annotator and then annotation took approxi-
mately two months. The characteristics of the two
corpora are shown in Table 2. Because annotation
was carried out by only one person we do not pro-
vide inter-annotator scores.

Importantly, we note four points at this stage:
(1) We incorporate a new named entity type, phe-
notype, which is aligned with investigations into
heritable diseases. Semantically it is interesting
because phenotypes annotated in the auto-immune
literature pertain more often to sub-cellular pro-
cesses and those in the cardiovascular domain per-
tain more often to cells, tissues and organs; (2)
It can be seen that two NE classes fall well be-
low 500 instances - what we might arbitarily con-
sider the necessary level of support for high lev-
els of performance. These are ANA and CHE;
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C1 C2 a b

Abstracts 110 80 - -
Tokens 27,421 26,578 - -
Av. length 32.57 29.93 - -
ANA 194 195 0.33 0.26

(138) (133)
CHE 44 147 0.08 0.07

(33) (75)
DIS 892 955 0.39 0.27

(282) (442)
GGP 1663 754 0.41 0.45

(928) (511)
ORG 799 770 0.56 0.67

(429) (323)
PHE 507 1430 0.52 0.33

(423) (1113)

Table 2: Characteristics of the C1 auto-immune
and C2 cardiovascular corpora: number of ab-
stracts, number of tokens, average sentence length,
frequency of each entity type. Figures in parenthe-
ses represent counts after removing duplication. a:
probability that a word in an entity class X in C1
is also a word in entity class X in C2. b: probabil-
ity that a word in an entity class X in C2 is also a
word in entity class X in C1

(3) We calculated from Table 2 the average num-
ber of mentions for each entity form by class and
noted that this is relatively stable across corpora,
except for DIS which has less variation in C2 than
C1 and CHE which has more variation in C2 than
C1. When combining evidence from both cor-
pora the approximate order of type/token ratio are
PHE < ANA < CHE,GGP < ORG < DIS
indicating that on average PHE entities have the
greatest variation. Average entity lengths in to-
kens (not shown) indicate that PHE are signifi-
cantly longer than other entity mentions; and (4)
We calculated the probability that a word token in
an entity class from one corpus would appear in
an instance of the same entity class in the other
corpus, reported as columns a and b. Although the
probability of an exact match in instances between
entities in the two corpora is generally quite low
(below 20% - data not shown) there appears to be
significant vocabulary overlap in most classes ex-
cept for chemicals.

3.2 Conditional Random Fields

As in (Finkel and Manning, 2009) we apply our
approach to a linear chain conditional random field
(CRF) model (Lafferty et al., 2001; McCallum
and Wei, 2003; Settles, 2004; Doan et al., 2012)
using the Mallet toolkit1 with default parameters.
CRFs have been shown consistently to be among
the highest performing bioNER learners. The data
selection strategies employed here though are neu-
tral and could have been applied to any other fully
supervised learner model.

3.3 Features

We made use of a wide range of features, both
conventional features such as word or part of
speech, as well as gazetteers derived from ex-
ternal classification schemes that have been hand
crafted by experts. These are shown in Ta-
ble 3. Previous studies such as (Ratinov and
Roth, 2009) have noted that domain gazetteer
features play a critical role in aiding classifi-
cation. In order to show realistic model be-
haviour consistent with state-of-the-art techniques
we have included gazetteers derived from: the Hu-
man Phenotype Ontology (HPO: 15,800 terms),
the Mammalian Phenotype Ontology (MP: 23,700
terms), the Phenotypic Attribute and Trait On-
tology (PATO: 2,200 synonyms), the Brenda
Tissue Ontology (BTO: 9,600 synonyms), the
Foundation Model of Anatomy (FMA: 120,000
terms), National Library of Medicine gene list
(NLM: 9 million terms), UMLS disease terms
(UMLS: 275,000 terms), Jochem chemical terms
(JOCHEM: 320,000 terms).

The feature set is quite large and therefore there
is a danger that the learner will be hindered. For
feature selection, we conducted baseline test runs
under the same experimental conditions as those
reported here using a grid search on features F1
to F11 and found that f-score performance was
uniformly lower when removing any feature (data
not shown but available as supplementary material
from the first author).

In order to characterise the contribution each
feature is making in label prediction we wanted to
provide a measure of similarity between the fea-
ture and the class label probability distributions.
Here we use the Gain Ratio (GR) to estimate intra-
corpus class prediction performance by each fea-
ture. GR was used as a splitting function in C4.5

1http://mallet.cs.umass.edu/
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(Quinlan, 1993) and is defined as

GR(C, F ) = IG(C,F )/H(F ) (1)

where C represents a class label and F repre-
sents a feature type. IG is information gain and
defined as,

IG(C, F ) = H(C)−H(C|X) (2)

H is entropy and defined for feature types as,

H(F ) = −
n∑

i=1

p(fi)log2(p(fi)) (3)

for n feature types fi ∈ F . Further informa-
tion can be found in (Quinlan, 1993). GR is used
in C4.5 in preference to IG because of its ability
to normalise for the biases in IG. Generally this
results in GR having greater predictive accuracy
than IR since it takes into account the number of
feature values. Note that GR is undefined when
the denominator is zero.

Several points emerge from looking at GR and
IG values in Table 3:

• C1 (auto-immune) and C2 (cardio-vascular)
have about the same information gain con-
tribution from most features but C1 seems
to benefit more from GENIA named entity
tagging, Human Phenotype Ontology (HPO),
Foundation Model of Anatomy (FMA) and
Gene Ontology (GO) terms whereas C2 ben-
efits more from the UMLS diseases and
ChEBI terms.

• GO, containing terms about genetic pro-
cesses, has a higher GR in C1 than C2. This
supports what we already expected - that
auto-immune diseases contain a higher pro-
portion of information about genetic process
phenotypes than cardiovascular.

• The GENIA POS tags seem to provide a
slightly higher GR in C2 than in C1.

• Despite its large size, UMLS has a smaller
GR on both corpora compared to some other
resources like HPO or GO or MA. This is de-
spite its high IG value.

3.4 Evaluation

Traditional re-sampling using k-fold cross valida-
tion (k-CV) divides the n labelled documents into

k disjoint subsets of approximately equal size des-
ignated as Di for i = 1, .., k. The NER learner
is trained successively on k − 1 folds from D and
tested on a held out fold over k iterations. In or-
der to preserve independence between contexts in
training and held out data we assume here that the
unit of division is the document, i.e. a single Med-
line abstract. Estimated prediction error is calcu-
lated based on the learner’s labels on the k held
out folds. Whilst k-CV is known to be nearly un-
biased it is a highly variable estimator. Several
studies have looked at k-CV for small sample sets.
For example, (Braga-Neto and Dougherty, 2004)
found on classifier experiments for small microar-
ray samples (20 <= n <= 120) that whilst k-
CV showed low bias they suffered from excessive
variance compared to bootstrap or resubstitution
estimators.

One cause of variance has been identified as
within-block and between-block training errors
arising from the disproportionate effects of a sin-
gle abstract appearing in the training set of many
folds. In order to reduce this effect Monte Carlo
cross validation was used (also called CV with rep-
etition). 100 iterations were used to randomly re-
order the documents in the corpora before 10-fold
CV sampling was run (cv10r100). Sampling of
documents is done without replacement so that the
independence between training and testing sets are
maintained. Stratification was not applied. Mi-
cro averaged f-scores for labeling accuracy were
calculated based on the 1000 test folds for each
model. Evaluation was done in both directions
(training and testing) for each corpus C1 and C2
to show any asymmetrical effects. To minimse the
time taken for each experiment a cluster computer
was used with 48 nodes.

The matching criteria we employ is the exact
match - i.e. the span of the system labeling and
the held out data labels should be exactly the same.
Although this is not a necessary criteria for some
applications such as database curation we used it
here as it is widely applied in shared evaluations
and shows the clearest effects of modeling choice.

We evaluate using the named entity precision,
recall and F-score calculated using the CoNLL
2003 Perl script. This was calculated as,

f − score =
(2× precision× recall)

(precision + recall)
(4)

where,
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Feature IG(C1, Fi) GR(C1, Fi) IG(C2, Fi) GR(C2, Fi)
F1 Word 1.17 0.13 1.20 0.13
F2 Lemma 1.15 0.13 1.18 0.13
F3 POS tag 0.36 0.09 1.18 0.13
F4 Chunk tag 0.22 0.12 0.26 0.10
F5 GENIA NEa 0.20 0.35 0.14 0.27
F6 Orthography 0.15 0.08 0.16 0.08
F7 Domain prefix 0.11 0.11 0.11 0.10
F8 Domain suffix 0.08 0.11 0.08 0.11
F9 Word length 0.13 0.05 0.16 0.06
F10 Parenthesis 0.04 0.20 0.04 0.23
F11 Abbreviation 0.08 0.22 0.06 0.24
F12 HPOb 0.07 0.41 0.09 0.33
F13 MPc 0.03 0.33 0.06 0.33
F14 PATOd 0.01 0.03 0.02 0.04
F15 BTOe 0.03 0.32 0.03 0.29
F16 FMAf 0.05 0.28 0.05 0.23
F17 MAg 0.02 0.31 0.02 0.29
F18 PROh 0.02 0.12 0.03 0.15
F19 ChEBIi 0.01 0.15 0.03 0.20
F20 JOCHEMj 0.01 0.15 0.01 0.14
F21 NCBIk 0.01 0.14 0.01 0.14
F22 UMLSl disease 0.01 0.14 0.03 0.24
F23 NCBI gene 0.02 0.18 0.02 0.19
F24 GOm 0.13 0.38 0.05 0.28
F25 UMLSn 0.48 0.12 0.52 0.11
F26 45CLUSTERSo 0.50 0.10 0.47 0.10

Table 3: Features used in the experiments. aThe GENIA named entity tagger (Kim et al., 2003),
b(Robinson et al., 2008), c(Smith et al., 2004), d(Gkoutos et al., 2005), e(Gremse et al., 2011), f (Rosse
and Mejino, 2003), g(Hayamizu et al., 2005), h(Natale et al., 2011) , i(Degtyarenko et al., 2008), j(Hettne
et al., 2009),k(Federhen, 2012),l(Lindberg et al., 1993),m(Gene Ontology Consortium, 2000),n133 cat-
egories from the UMLS,o45 cluster classes derived by Richard Socher and Christoph Manning PubMed
available at http://nlp.stanford.edu/software/bionlp2011-distsim-clusters-v1.tar.gz

precision = TP/(TP + FP ) (5)

and,

recall = TP/(TP + FN) (6)

A true positive (TP) is a gold standard NE
tagged by the system as an NE. A true negative
(TN) is a gold standard none-NE tagged by the
system as a none-NE. A false positive (FP) is a
gold standard none-NE tagged by the system as
an NE. Evaluation is based on correctly marked
whole entities rather than tokens.

4 Experimental design

In this section we present the experimental condi-
tions we used, starting with a description of the
models which we designate M1 to M6 and de-
scribe below. All methods made use of 100 iter-
ations of Monte Carlo 10-fold cross validation.

M1: IN DOMAIN We trained and tested on only
the data for the source domain. This methods
forms our baseline and represents the stan-
dard experimental setting.

M2: OUT DOMAIN We trained on the source
domain and tested on the target domain. This
method shows expected loss on near domain
transferrence and represents the standard op-
erational setting for users.
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M3: MIX-IN We trained on 100% of the source
domain and unified this with 90% of the
folded in target domain data, leaving 10%
for testing. This method reflects the pooling
technique typically employed in corpus con-
struction for bioNER.

M4: STACK We trained a CRF model on 100%
of the source domain and stacked it with
another CRF trained on 90% of the folded
in target domain data. Stacking employs a
meta-classifier and is a popular method for
constructing high performance ensembles of
classifiers (Ekbal and Saha, 2013). In this
case we collected the output labels from the
source domain-trained CRF on target sen-
tences and added them as features for the tar-
get domain trained CRF.

M5: BINARY CLASS We re-labeled the com-
plex class PHE as PHE-C1 in C1 and PHE-
C2 in C2 and repeated M3. Afterwards we
recombined PHE-C1 and PHE-C2 into PHE.

M6: FRUSTRATINGLY SIMPLE We fol-
lowed the feature augmentation approach of
(Daumé III, 2007). This method effectively
provides a joint learning model on C1 and
C2 by splitting each feature into three parts:
one for sharing cross domain values and one
for each domain specific value. We evaluated
using the same regime as M3.

5 Experimental results and discussion

In Table 4 we show f-score performance from near
biomedical domains with our six strategies. This
section now tries to draw together an interpretation
for the performance trends that we see and to drill
down to some of the causal factors.

Held out tests performed in-domain (M1) on
both corpora C1 and C2 indicate a relatively high
level of performance, conservatively in line with
state-of-the-art estimates. The broad trend in per-
formance is for entity classes with more instances
to out perform others with lower numbers. The
class which most obviously breaks this trend is
the complex entity type of PHE. To understand
this consider that PHE is defined as an observable
property on an organism and as such tends to be
formed from a quality such as malformed that de-
scribes a structural entity such as valve. To see
closer what is happening we looked at the confu-
sion matrices for M1 on both corpora. For both

C1 and C2 we observed that a substantial pro-
portion of words inside PHE sequences were con-
fused with GGP, DIS or ANA entities. Similarly
a high proportion of words inside ANA sequences
were confused with PHE entities. This indicates
that dependencies within complex biomedical en-
tities like PHE might better be modeled explicitly
using tree-structures in a manner similar to events
rather than using n-gram relations.

In the M2 out of domain experiments we see
a generally severe loss of f-score performance
across most classes. Training on C2 and testing
on C1 results in a 19.1% loss (F1 69.9 to 50.8)
and training on C1 and testing on C2 results in
a 11.9% loss overall (F1 58.5 to 46.6). The re-
sults agree with Wang et al.’s experience on het-
erogeneous Medline corpora and extend the upper
limit on all-class loss due to domain transferrence
to 19%. The only NE class where we see a sym-
metric benefit from pooling entities in M3 is for
ORG (F1 68.4 to 72.2, F1 73.2 to 77.4). Intrigu-
ingly the data from Tables 2 and 4 hint at a correla-
tion between the success of M3 pooling for ORG
and broad cross-domain compatibility on the vo-
cabulary (over 50% of ORG vocabulary is shared
across corpora). However this is not supported
in the low sharing case for CHE where we see
increased performance from pooling (F1 31.3 to
38.7) when the target is C2 but decreased perfor-
mance when the target is C1 (F1 29.5 to 20.0).

When we look at the pooling method (M3) and
compare to the in-domain method (M1) no obvi-
ous size effect occurs for the number of entities
in each class. To see this we can examine entity
classes with an imbalanced number of instances
in C1 and C2 such as CHE, GGP and PHE. Con-
sider the following three cases: (1) Adding 147
instances of CHE from C2 to 44 instances from
C1 is associated with CHE performance dropping
from M1:29.5 to M3:20.0 when tested on C1; (2)
Similarly adding 1430 instances of PHE from C2
to 507 instances from C1 is associated with PHE
performance dropping from 46.0 in M1 to 39.7 in
M3 when tested on C1; (3) But adding 1663 in-
stances of GGP from C1 to 754 from C2 is asso-
ciated with GGP rising from 57.2 in M1 to 61.1 in
M3. If simply pooling more entities was impor-
tant to improved f-score we would expect to see a
clearer pattern of improvement but we do not.

The overall pooling loss for all classes on M3
is within 3% in both directions and within the
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Model Target ANA CHE DIS GGP PHE ORG ALL
M1 C1 57.1 29.5 80.4 74.0 46.0 68.4 69.9
M2 C1 34.3 26.9 57.7 55.6 26.9 64.0 50.8
M3 C1 50.8 20.0 77.9 71.7 39.7 72.2 67.3
M4 C1 56.3 17.4 79.0 74.1 44.1 70.8 69.8
M5 C1 56.7 29.6 77.3 72.7 41.5 72.8 68.3
M6 C1 57.1 27.7 79.0 73.4 44.9 69.9 69.5
M1 C2 37.2 31.3 72.9 57.2 46.5 73.2 58.5
M2 C2 21.2 20.2 57.0 52.3 24.4 68.5 46.6
M3 C2 36.8 38.7 72.3 61.1 44.0 77.4 59.7
M4 C2 34.8 34.4 72.5 57.5 45.9 74.7 58.5
M5 C2 34.1 41.6 73.6 58.9 43.2 78.5 59.6
M6 C2 39.9 35.0 73.3 56.4 46.6 75.0 59.1

Table 4: Named entity recognition f-scores using Methods 1 to 6. All methods were tested using 100
iterations of Monte Carlo 10-fold cross validation. Figures in bold show best in class scores. Figures in
italics show scores above the M1 baseline.

bounds observed by (Wang et al., 2009) and
(Wagholikar et al., 2013) for their pooling of het-
erogeneous Medline corpora. Except for the ORG
class which we higlighted above, we might cau-
tiously quantify the loss of pooled entity mentions
as being in the range up to 9.5% for CHE but more
typically below 4%. The majority of the differ-
ences they observed - which are not present in our
data - are most likely due to concept definition dif-
ferences and annotation conventions.

In contrast to our expectations the M4 experi-
ments showed very mild benefits for stacking and
these were mixed across entity types. M4 tests
on C2 showed no general improvement but some
improvement in CHE and ORG. M4 tests on C1
resulted again in no overall improvement except
for some gain for ORG, supporting our hypothesis
that there is greater compatibility in ORG across
domains.

The M5 approach of splitting the PHE labels for
the two corpora resulted in a noticable improve-
ment over M3 on the C1 test but unfortunately this
was not sustained when testing on C2.

It is striking that in the M6 experiments the fea-
ture augmentation method only just meets the in-
domain f-score on C1 and mildly exceeds it on C2.
One explanation is that the corpora are so small
that a richer feature set has only marginal effects
on performance. Table 3 certainly indicates that
many of the features have low predictive capac-
ity (gain ratio values below 0.1) in an intra-corpus
setting but this is not the case for others such as
GENIA NE tags or HPO gazzetteer terms.

Overall when we average the f-scores across
models for C1 and C2 we see that there is a
marginal benefit to the M1, M4 and M6 strategies
over M3 and M5 with M2 suffering the greatest
loss in performance.

6 Conclusion

In this paper we have provided evidence that trans-
ference even to closely related domains in biomed-
ical NER incurs a severe loss in f-score. We
have demonstrated empirically that strategies that
make use of multi-domain corpora such as stack-
ing learners and feature augmentation mitigate the
accuracy loss but do not necessarily result in supe-
rior performance except for selected classes such
as organisms where there appears to be broad
terminology consensus. Simple pooling of data
across domains failed to exploit size effects espe-
cially for the complex class of phenotypes. The
list of strategies employed has not been exhaus-
tive and it is possible that others such as feature
hierarchies (Arnold et al., 2008) might yield better
results.

BioNER is complicated by various factors such
as descriptive names, polysemous terms, conjuc-
tions, nested constructions and a high quantity of
abbreviations. We have shown that performance is
also held back by not considering document level
properties related to domain such as topicality. We
can expect lower performance and higher annota-
tion costs if we do not adequately allow for the dis-
tributional dissimilarities of domains during learn-
ing, even in closely related topical settings.
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sow, M. Guedj, and M. Ashburner. 2008. ChEBI:
a database and ontology for chemical entities of bi-
ological interest. Nucleic acids research, 36(suppl
1):D344–D350.

S. Doan, N. Collier, H. Xu, P. Duy, and T. Phuong.
2012. Recognition of medication information from
discharge summaries using ensembles of classifiers.
BMC Medical Informatics and Decision Making,
12(1):36.

A. Ekbal and S. Saha. 2013. Stacked ensemble cou-
pled with feature selection for biomedical entity ex-
traction. Knowledge-Based Systems.

S. Federhen. 2012. The NCBI taxonomy database.
Nucleic acids research, 40(D1):D136–D143.

J. Finkel and C. Manning. 2009. Hierarchical bayesian
domain adaptation. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 602–610.

G. Foster, C. Goutte, and R. Kuhn. 2010. Discrim-
inative instance weighting for domain adaptation in
statistical machine translation. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2010), pages 451–
459.

Gene Ontology Consortium. 2000. Gene ontology:
tool for the unification of biology. Nature Genetics,
25:19–29.

G. Gkoutos, E. Green, A. Mallon, J. Hancock, and
D. Davidson. 2005. Using ontologies to describe
mouse phenotypes. Genome Biology, 6:R8.

M. Gremse, A. Chang, I. Schomburg, A. Grote,
M. Scheer, C. Ebeling, and D. Schomburg. 2011.
The BRENDA tissue ontology (BTO): the first
all-integrating ontology of all organisms for en-
zyme sources. Nucleic Acids Research, 39(suppl
1):D507–D513.

A. Hamosh, A. F. Scott, J. S. Amberger, and C. A. Boc-
chini. 2005. Online mendelian inheritance of man
(OMIM), a knowledgebase of human genes and ge-
netic disorders. Nucleic Acids Research, 33(suppl
1):D514–D517.

T. Hayamizu, M. Mangan, J. Corradi, J. Kadin,
M. Ringwald, et al. 2005. The adult mouse anatom-
ical dictionary: a tool for annotating and integrating
data. Genome Biol, 6(3):R29.

K. Hettne, R. Stierum, M. Schuemie, P. Hendriksen,
B. Schijvenaars, E. van Mulligen, J. Kleinjans, and
J. Kors. 2009. A dictionary to identify small
molecules and drugs in free text. Bioinformatics,
25(22):2983–2991.

J. Jiang and C. Zhai. 2007. Instance weighting for
domain adaptation in NLP. In Annual meeting of
the Association for Computational Linguistics (ACL
2007), volume 2007, page 22.

J. D. Kim, T. Ohta, Y. Tateishi, and J. Tsujii. 2003.
GENIA corpus - a semantically annotated corpus for
bio-textmining. Bioinformatics, 19(Suppl.1):180–
182.

J. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Col-
lier. 2004. Introduction to the bio-entity recog-
nition task at JNLPBA. In N. Collier, P. Ruch,
and A. Nazarenko, editors, Proceedings of the In-
ternational Joint Workshop on Natural Language
Processing in Biomedicine and its Applications
(JNLPBA), Geneva, Switzerland, pages 70–75, Au-
gust 28–29. held in conjunction with COL-
ING’2004.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: probabilistic models for seg-
menting and labeling sequence data. In Proceed-
ings of the Eighteenth International Conference on
Machine Learning, Massachusetts, USA, pages 282–
289, June 28th – July 1st.

Donald A.B. Lindberg, L. Humphreys, Betsy, and
T. McCray, Alexa. 1993. The unified medical lan-
guage system. Methods of Information in Medicine,
32:281–291.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Annual meeting of the Association for Computa-
tional Linguistics (ACL 2011), pages 359–367.

19



A. McCallum and L. Wei. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proc. Seventh Conference on Natural language
learning at HLT-NAACL 2003 - Volume 4, CONLL
’03, pages 188–191.

D. McClosky, E. Charniak, and M. Johnson. 2010. Au-
tomatic domain adaptation for parsing. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 28–36.
Association for Computational Linguistics.

D. Natale, C. Arighi, W. Barker, J. Blake, C. Bult,
M. Caudy, H. Drabkin, P. DEustachio, A. Evsikov,
H. Huang, et al. 2011. The protein ontology: a
structured representation of protein forms and com-
plexes. Nucleic acids research, 39(suppl 1):D539–
D545.

S. Pan and Q. Yang. 2010. A survey on transfer learn-
ing. Knowledge and Data Engineering, IEEE Trans-
actions on, 22(10):1345–1359.

S. Pan, Z. Toh, and J. Su. 2013. Transfer joint em-
bedding for cross-domain named entity recognition.
ACM Transactions on Information Systems (TOIS),
31(2):7.

S. Pyysalo, F. Ginter, J. Heimonen, J. Björne,
J. Boberg, J. Järvinen, and T. Salakoski. 2007.
Bioinfer: a corpus for information extraction in the
biomedical domain. BMC bioinformatics, 8(1):50.

J. Quinlan. 1993. C4. 5: programs for machine learn-
ing, volume 1. Morgan kaufmann.

L. Ratinov and D. Roth. 2009. Design challenges and
misconceptions in named entity recognition. In Pro-
ceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning (CoNLL), pages
147–155.

P. N. Robinson, S. Kohler, S. Bauer, D. Seelow,
D. Horn, and S. Mundlos. 2008. The human pheno-
type ontology: a tool for annotating and analyzing
human hereditary disease. The American Journal of
Human Genetics, 83(5):610–615.

C. Rosse and J. L. V. Mejino. 2003. A reference on-
tology for bioinformatics: the Foundational Model
of Anatomy. Journal of Biomedical Informatics,
36(6):478–500, December. PMID: 14759820.

K. Sagae and J. Tsujii. 2007. Dependency parsing
and domain adaptation with lr models and parser en-
sembles. In Conference on Empirical Methods in
Natural Language Processing Conference on Com-
putational Natural Language Learning (EMNLP-
CoNLL), volume 2007, pages 1044–1050.

B. Settles. 2004. Biomedical named entity recognition
using conditional random fields. In Proceedings of

the International Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Applica-
tions (JNLPBA) at COLING’2004, Geneva, Switzer-
land, pages 104–107, August 28–29.

C. L. Smith, C. W. Goldsmith, and J. T. Eppig. 2004.
The mammalian phenotype ontology as a tool for an-
notating, analyzing and comparing phenotypic infor-
mation. Genome Biology, 6:R7.

L. Tanabe, N. Xie, L. H. Thom, W. Matten, and W. J.
Wilbur. 2005. GENETAG: a tagged corpus for
gene/protein named entity recognition. BMC Bioin-
formatics, 6(Suppl 1):S3.

R. Tsai, S. Wu, W. Chou, Y. Lin, D. He, J. Hsiang,
T. Sung, and W. Hsu. 2006. Various criteria in the
evaluation of biomedical named entity recognition.
BMC bioinformatics, 7(1):92.

K. Wagholikar, M. Torii, S. Jonnalagadda, H. Liu, et al.
2013. Pooling annotated corpora for clinical con-
cept extraction. J. Biomedical Semantics, 4:3.

Y. Wang, J. Kim, R. Sætre, S. Pyysalo, and J. Tsujii.
2009. Investigating heterogeneous protein annota-
tions toward cross-corpora utilization. BMC bioin-
formatics, 10(1):403.

Y. Wang, J. Kim, R. Sætre, S Pyysalo, T. Ohta, and
J. Tsujii. 2010. Improving the inter-corpora com-
patibility for protein annotations. Journal of bioin-
formatics and computational biology, 8(05):901–
916.

A. Yeh, A. Morgan, M. Colosimo, and L. Hirschman.
2005. Biocreative task 1a: gene mention finding
evaluation. BMC bioinformatics, 6(Suppl 1):S2.

20



Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi) @ EACL 2014, pages 21–29,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Domain Adaptation with Active Learning for Coreference Resolution

Shanheng Zhao
Elance

441 Logue Ave
Mountain View, CA 94043, USA

szhao@elance.com

Hwee Tou Ng
Department of Computer Science
National University of Singapore

13 Computing Drive, Singapore 117417
nght@comp.nus.edu.sg

Abstract

In the literature, most prior work on
coreference resolution centered on the
newswire domain. Although a coreference
resolution system trained on the newswire
domain performs well on newswire texts,
there is a huge performance drop when it is
applied to the biomedical domain. In this
paper, we present an approach integrat-
ing domain adaptation with active learning
to adapt coreference resolution from the
newswire domain to the biomedical do-
main. We explore the effect of domain
adaptation, active learning, and target do-
main instance weighting for coreference
resolution. Experimental results show
that domain adaptation with active learn-
ing and target domain instance weighting
achieves performance on MEDLINE ab-
stracts similar to a system trained on coref-
erence annotation of only target domain
training instances, but with a greatly re-
duced number of target domain training
instances that we need to annotate.

1 Introduction

Coreference resolution is the task of determin-
ing whether two or more noun phrases (NPs) in
a text refer to the same entity. Successful coref-
erence resolution benefits many natural language
processing (NLP) tasks, such as information ex-
traction and question answering. In the literature,
most prior work on coreference resolution recasts
the problem as a two-class classification problem.
Machine learning-based classifiers are applied to
determine whether a candidate anaphor and a po-
tential antecedent are coreferential (Soon et al.,
2001; Ng and Cardie, 2002; Stoyanov et al., 2009;
Zhao and Ng, 2010).

In recent years, with the advances in biologi-
cal and life science research, there is a rapidly in-

creasing number of biomedical texts, including re-
search papers, patent documents, etc. This results
in an increasing demand for applying natural lan-
guage processing and information retrieval tech-
niques to efficiently exploit information contained
in these large amounts of texts. However, corefer-
ence resolution, one of the core tasks in NLP, has
only a relatively small body of prior research in
the biomedical domain (Kim et al., 2011a; Kim et
al., 2011b).

A large body of prior research on coreference
resolution focuses on texts in the newswire do-
main. Standardized data sets, such as MUC
(DARPA Message Understanding Conference,
(MUC-6, 1995; MUC-7, 1998)) and ACE (NIST
Automatic Content Extraction Entity Detection
and Tracking task, (NIST, 2002)) data sets are
widely used in the study of coreference resolution.

Traditionally, in order to apply supervised ma-
chine learning approaches to an NLP task in a spe-
cific domain, one needs to collect a text corpus
in the domain and annotate it to serve as training
data. Compared to other NLP tasks, e.g., part-of-
speech (POS) tagging or named entity (NE) tag-
ging, the annotation for coreference resolution is
much more challenging and time-consuming. The
reason is that in tasks like POS tagging, an annota-
tor only needs to focus on each markable (a word,
in the case of POS tagging) and a small window
of its neighboring words. In contrast, to annotate
a coreferential relation, an annotator needs to first
recognize whether a certain text span is a mark-
able, and then scan through the text preceding the
markable (a potential anaphor) to look for the an-
tecedent. It also requires the annotator to under-
stand the text in order to annotate coreferential re-
lations, which aresemantic in nature. If a mark-
able is non-anaphoric, the annotator has to scan to
the beginning of the text to realize that. Cohen
et al. (2010) reported that it took an average of 20
hours to annotate coreferential relations in a single
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document with an average length of 6,155 words,
while an annotator could annotate 3,000 words per
hour in POS tag annotation (Marcus et al., 1993).

The simplest approach to avoid the time-
consuming data annotation in a new domain is
to train a coreference resolution system on a
resource-rich domain and apply it to a different
target domain without any additional data anno-
tation. Although coreference resolution systems
work well on test texts in the same domain as
the training texts, there is a huge performance
drop when they are tested on a different domain.
This motivates the usage of domain adaptation
techniques for coreference resolution: adapting a
coreference resolution system from one source do-
main in which we have a large collection of an-
notated data, to a second target domain in which
we need good performance. It is almost inevitable
that we annotatesome data in the target domain to
achieve good coreference resolution performance.
The question is how to minimize the amount of an-
notation needed. In the literature, active learning
has been exploited to reduce the amount of anno-
tation needed (Lewis and Gale, 1994). In contrast
to annotating the entire data set, active learning se-
lects only a subset of the data to annotate in an iter-
ative process. How to apply active learning and in-
tegrate it with domain adaptation remains an open
problem for coreference resolution.

In this paper, we explore domain adaptation
for coreference resolution from the resource-rich
newswire domain to the biomedical domain. Our
approach comprises domain adaptation, active
learning, and target domain instance weighting
to leverage the existing annotated corpora from
the newswire domain, so as to reduce the cost
of developing a coreference resolution system in
the biomedical domain. Our approach achieves
comparable coreference resolution performance
on MEDLINE abstracts, but with a large reduction
in the number of training instances that we need to
annotate. To the best of our knowledge, our work
is the first to combine domain adaptation and ac-
tive learning for coreference resolution.

The rest of this paper is organized as follows.
We first review the related work in Section 2. Then
we describe the coreference resolution system in
Section 3, and the domain adaptation and active
learning techniques in Section 4. Experimental re-
sults are presented in Section 5. Finally, we ana-
lyze the results in Section 6 and conclude in Sec-

tion 7.

2 Related Work

Not only is there a relatively small body of prior
research on coreference resolution in the biomed-
ical domain, there are also fewer annotated cor-
pora in this domain. Castaño et al. (2002) were
among the first to annotate coreferential relations
in the biomedical domain. Their annotation only
concerned the pronominal and nominal anaphoric
expressions in 46 biomedical abstracts. Gasperin
and Briscoe (2007) annotated coreferential rela-
tions on 5 full articles in the biomedical domain,
but only on noun phrases referring to bio-entities.
Yang et al. (2004) annotated full NP coreferential
relations on biomedical abstracts of the GENIA
corpus. The ongoing project of the CRAFT cor-
pus is expected to annotate all coreferential rela-
tions on full text of biomedical articles (Cohen et
al., 2010).

Unlike the work of (Castãno et al., 2002),
(Gasperin and Briscoe, 2008), and (Gasperin,
2009) that resolved coreferential relations on cer-
tain restricted entities in the biomedical domain,
we resolve all NP coreferential relations. Al-
though the GENIA corpus contains 1,999 biomed-
ical abstracts, Yang et al. (2004) tested only on 200
abstracts under 5-fold cross validation. In contrast,
we randomly selected 399 abstracts in the 1,999
MEDLINE abstracts of the GENIA-MEDCo cor-
pus as the test set, and as such our evaluation was
carried out on a larger scale.

Domain adaptation has been studied and suc-
cessfully applied to many natural language pro-
cessing tasks (Jiang and Zhai, 2007; Daume III,
2007; Dahlmeier and Ng, 2010; Yang et al., 2012).
On the other hand, active learning has also been
applied to NLP tasks to reduce the need of data an-
notation in the literature (Tang et al., 2002; Laws
et al., 2012; Miller et al., 2012). Unlike the afore-
mentioned work that applied only one of domain
adaptation or active learning to NLP tasks, we
combine both. There is relatively less research
on combining domain adaptation and active learn-
ing together for NLP tasks (Chan and Ng, 2007;
Zhong et al., 2008; Rai et al., 2010). Chan and
Ng (2007) and Zhong et al. (2008) usedcount
merging and augment, respectively, as their do-
main adaptation techniques whereas we apply and
compare multiple state-of-the-art domain adapta-
tion techniques. Rai et al. (2010) exploited a
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streaming active learning setting whereas ours is
pool-based.

Dahlmeier and Ng (2010) evaluated the perfor-
mance of three previously proposed domain adap-
tation algorithms for semantic role labeling. They
evaluated the performance of domain adaptation
with different sizes of target domain training data.
In each of their experiments with a certain target
domain training data size, the target domain train-
ing data were added all at once. In contrast, we add
the target domain training instances selectively in
an iterative process. Different from (Dahlmeier
and Ng, 2010), we weight the target domain in-
stances to further boost the performance of do-
main adaptation. Our work is the first system-
atic study of domain adaptation with active learn-
ing for coreference resolution. Although Gasperin
(2009) tried to apply active learning for anaphora
resolution, her results were negative: using ac-
tive learning was not better than randomly select-
ing instances in her work. Miwa et al. (2012)
incorporated a rule-based coreference resolution
system for automatic biomedical event extraction,
and showed that by adding training data from other
domains as supplementary training data and us-
ing domain adaptation, one can achieve a higher
F-measure in event extraction.

3 Coreference Resolution

The gold standard annotation and the output by a
coreference resolution system are called the key
and the response, respectively. In both the key and
the response, a coreference chain is formed by a
set of coreferential markables. Amarkable is a
noun phrase which satisfies the markable defini-
tion in an individual corpus. Here is an example:

When the same MTHC lines are ex-
posed to TNF-alpha in combination with
IFN-gamma,the cells instead become
DC.

In the above sentence,the same MTHC lines
and the cells are referring to the same entity and
hence are coreferential. It is possible that more
than two markables are coreferential in a text. The
task of coreference resolution is to determine these
relations in a given text.

To evaluate the performance of coreference res-
olution, we follow the MUC evaluation metric in-
troduced by (Vilain et al., 1995). LetSi be an
equivalence class generated by the key (i.e.,Si

is a coreference chain), andp(Si) be a partition
of Si relative to the response. Recall is the num-
ber of correctly identified links over the number of

links in the key: Recall =
∑

(|Si|−|p(Si)|)∑
(|Si|−1)

. Pre-

cision, on the other hand, is defined in the oppo-
site way by switching the role of key and response.
F-measure is a trade-off between recall and preci-
sion:F = 2·Recall·Precision

Recall+Precision .

4 Domain Adaptation with Active
Learning

4.1 Domain Adaptation

Domain adaptation is applicable when one has
a large amount of annotated training data in the
source domain and a small amount or none of
the annotated training data in the target domain.
We evaluate the AUGMENT technique introduced
by (Daume III, 2007), as well as the INSTANCE

WEIGHTING (IW) and the INSTANCE PRUNING

(IP) techniques introduced by (Jiang and Zhai,
2007).

4.1.1 AUGMENT

Daume III (2007) introduced a simple domain
adaptation technique by feature space augmenta-
tion. It maps the feature space of each instance
into a feature space of higher dimension. Suppose
x is the feature vector of an instance. DefineΦs

and Φt to be the mappings of an instance from
the original feature space to an augmented feature
space in the source and the target domain, respec-
tively:

Φs(x) = 〈x, x,0〉 (1)

Φt(x) = 〈x,0, x〉 (2)

where0 = 〈0, 0, . . . , 0〉 is a zero vector of length
|x|. The mapping can be treated as taking each
feature in the original feature space and making
three versions of it: a general version, a source-
specific version, and a target-specific version. The
augmented source domain data will contain only
the general and the source-specific versions, while
the augmented target domain data will contain
only the general and the target-specific versions.

4.1.2 INSTANCE WEIGHTING and INSTANCE

PRUNING

Let x andy be the feature vector and the corre-
sponding true label of an instance, respectively.
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Jiang and Zhai (2007) pointed out that when ap-
plying a classifier trained on a source domain to
a target domain, the joint probabilityPt(x, y) in
the target domain may be different from the joint
probability Ps(x, y) in the source domain. They
proposed a general framework to usePs(x, y) to
estimatePt(x, y). The joint probabilityP (x, y)
can be factored intoP (x, y) = P (y|x)P (x). The
adaptation of the first component is labeling adap-
tation, while the adaptation of the second compo-
nent is instance adaptation. We explore only label-
ing adaptation.

To calibrate the conditional probabilityP (y|x)
from the source domain to the target domain, ide-
ally each source domain training instance(xi, yi)
should be given a weightPt(ys

i |xs
i )

Ps(ys
i |xs

i )
. Although

Ps(ys
i |xs

i ) can be estimated from the source do-
main training data, the estimation ofPt(ys

i |xs
i )

is much harder. Jiang and Zhai(2007) proposed
two methods to estimatePt(ys

i |xs
i ): INSTANCE

WEIGHTING and INSTANCE PRUNING. Both
methods first train a classifier with a small amount
of target domain training data. Then, INSTANCE

WEIGHTING directly estimatesPt(ys
i |xs

i ) using
the trained classifier. INSTANCEPRUNING, on the
other hand, removes the topN source domain in-
stances that are predicted wrongly, ranked by the
prediction confidence.

4.1.3 Target Domain Instance Weighting

Both INSTANCE WEIGHTING and INSTANCE

PRUNING set the weights of the source domain
instances. In domain adaptation, there are typi-
cally many more source domain training instances
than target domain training instances. Target do-
main instance weighting can effectively reduce the
imbalance. Unlike INSTANCE WEIGHTING and
INSTANCE PRUNING in which each source do-
main instance is weighted individually, we give
all target domain instances the same weight. This
target domain instance weighting scheme is not
only complementary to INSTANCE WEIGHTING

and INSTANCE PRUNING, but is also applicable
to AUGMENT.

4.2 Active Learning

Active learning iteratively selects the most infor-
mative instances to label, adds them to the train-
ing data pool, and trains a new classifier with the
enlarged data pool. We follow (Lewis and Gale,
1994) and use the uncertainty sampling strategy in
our active learning setting.

Ds ← the set of source domain training instances
Dt ← the set of target domain training instances
Da ← ∅
Γ← coreference resolution system trained onDs

T ← number of iterations
for i from 1 to T do

for eachdi ∈ Dt do
d̂i ← prediction ofdi usingΓ

pi ← prediction confidence of̂di

end for
D′

a ← topN instances with the lowestpi

Da ← Da + D′
a

Dt ← Dt −D′
a

provide correct labels to the unlabeled instances inD′
a

Γ ← coreference resolution system trained onDs and
Da using the chosen domain adaptation technique

end for

Figure 1: An algorithm for domain adaptation
with active learning

4.3 Domain Adaptation with Active Learning

Combining domain adaptation and active learning
together, the algorithm we use is shown in Figure
1.

In our domain adaptation setting, there is a pa-
rameterλt for target domain instance weighting.
Because the number of target domain instances is
different in each iteration, the weight should be ad-
justed in each iteration. We give all target domain
training instances an equal weight ofλt = Ns/Nt,
whereNs andNt are the numbers of instances in
the source domain and the target domain in the
current iteration, respectively. We setN = 10 to
add 10 instances in each iteration to speed up the
active learning process.

To provide the correct labels, the labeling pro-
cess shows the text on the screen, highlights the
two NPs, and asks the annotator to decide if they
are coreferential. In our experiments, this is simu-
lated by providing the gold standard coreferential
information on this NP pair to the active learning
process.

5 Experiments

5.1 The Corpora

We explore domain adaptation from the newswire
domain to the biomedical domain. The newswire
and biomedical domain data that we use are the
ACE Phase-2 corpora and the GENIA-MEDCo
corpus, respectively. The ACE corpora con-
tain 422 and 92 training and test texts, re-
spectively (NIST, 2002). The texts come from
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three newswire sources: BNEWS, NPAPER, and
NWIRE. The GENIA-MEDCo corpus contains
1,999 MEDLINE abstracts1. We randomly split
the GENIA corpus into a training set and a test
set, containing 1,600 and 399 texts, respectively.

5.2 The Coreference Resolution System

In this study, we use Reconcile, a state-of-the-
art coreference resolution system implemented by
(Stoyanov et al., 2009). The input to the corefer-
ence resolution system is raw text, and we apply a
sequence of preprocessing components to process
it. Following Reconcile, the individual prepro-
cessing steps include: 1) sentence segmentation
(using the OpenNLP toolkit2); 2) tokenization (us-
ing the OpenNLP toolkit); 3) POS tagging (using
the OpenNLP toolkit); 4) syntactic parsing (using
the Berkeley Parser3); and 5) named entity recog-
nition (using the Stanford NER4). Markables are
extracted as defined in each individual corpus. All
possible markable pairs in the training and test set
are extracted to form training and test instances,
respectively. The learning algorithm we use is
maximum entropy modeling, implemented in the
DALR package5 (Jiang and Zhai, 2007). The
coreference resolution system employs a compre-
hensive set of 62 features to represent each train-
ing and test instance, including lexical, proximity,
grammatical, and semantic features (Stoyanov et
al., 2009). We do not introduce additional features
motivated from the biomedical domain, but use the
same feature set for both the source and target do-
mains.

5.3 Preprocessing

For the ACE corpora, all preprocessing compo-
nents use the original models (provided by the
OpenNLP toolkit, the Berkeley Parser, and the
Stanford NER). For the GENIA corpus, since it is
from a very different domain, the original models
do not perform well. However, the GENIA cor-
pus contains multiple layers of annotations. We
use these annotations to re-train each of the pre-
processing components (except tokenization) us-
ing the 1,600 training texts of the GENIA cor-

1http://nlp.i2r.a-star.edu.sg/medco.html
2http://opennlp.sourceforge.net/
3http://code.google.com/p/berkeleyparser/
4http://nlp.stanford.edu/ner/
5http://www.mysmu.edu/faculty/jingjiang/software/

DALR.html

NPAPER NPAPER GENIA GENIA
TRAIN TEST TRAIN TEST

Number of Docs
76 17 1,600 399

Number of Words
Total 68,463 17,350 391,380 95,405
Avg. 900.8 1,020.6 244.6 239.1

Number of Markables
Total 21,492 5,153 99,408 24,397
Avg. 282.8 303.1 62.1 61.1

Number of Instances
Total 3,365,680 871,314 3,335,640 798,844
Avg. 44,285.3 51,253.8 2,084.8 2,002.1

Table 1: Statistics of the NPAPER and GENIA
data sets

pus6. We do not use any texts from the test set
when training these models. Also, we do not use
any NLP toolkits from the biomedical domain, but
only use general toolkits trained with biomedical
training data. These re-trained preprocessing com-
ponents are then applied to process the entire GE-
NIA corpus, including both the training and test
sets.

Instead of using the entire ACE corpora, we
choose the NPAPER portion of the ACE corpora
as the source domain in the experiments, because
it is the best performing one among the three por-
tions. Under these preprocessing settings, the
recall percentages of markable extraction on the
training and test set of the NPAPER corpus are
94.5% and 95.5% respectively, while the recall
percentages of markable extraction on the training
and test set of the GENIA corpus are 87.6% and
86.6% respectively. The statistics of the NPAPER
and the GENIA corpora are listed in Table 1.

5.4 Baseline Results

Under our experimental settings, a coreference
resolution system that is trained on the NPA-
PER training set and tested on the NPAPER test
set achieves recall, precision, and F-measure of
59.0%, 70.6%, and 64.3%, respectively. This
is comparable to the state-of-the-art performance
(Stoyanov et al., 2009). Table 2 compares the per-
formance of testing on the GENIA test set, but
training with the GENIA training set or the NPA-
PER training set. Training with in-domain data
achieves an F-measure that is 9.1% higher than
training with out-of-domain data. Training with

6It turned out that the re-trained tokenization model gave
poorer performance and produced many errors on punctua-
tion symbols. Thus, we stuck to using the original tokeniza-
tion model.
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Training Set Recall Precision F-measure
GENIA Training Set 37.7 71.9 49.5

NPAPER Training Set 30.3 60.7 40.4

Table 2: MUC F-measures on the GENIA test set

in-domain data is better than training with out-of-
domain data for both recall and precision. This
confirms the impact of domain difference between
the newswire and the biomedical domain.

5.5 Domain Adaptation with Active Learning

In the experiments on domain adaptation with ac-
tive learning for coreference resolution, we as-
sume that the source domain training data are an-
notated. The target domain training data arenot
annotated but are used as a data pool for instance
selection. The algorithm selects the instances in
the data pool to annotate and add them to the train-
ing data to update the classifier. The target domain
test set is strictly separated from this data pool, i.e.,
none of the target domain test data are used in the
instance selection process of active learning.

From Table 1, one can see that both training sets
in the NPAPER and the GENIA corpora contain
large numbers of training instances. Instead of us-
ing the entire training sets in the experiments, we
use a smaller subset due to several reasons. First,
to train a coreference resolution classifier, we do
not need so much training data (Soon et al., 2001).
Second, a large number of training instances will
slow the active learning process. Third, a smaller
source domain training corpus suggests a more
modest annotation effort even on the source do-
main. Lastly, a smaller target domain training cor-
pus means that fewer words need to be read by
human annotators to label the data.

We randomly choose 10 NPAPER texts as the
source domain training set. A coreference resolu-
tion system that is trained on these 10 texts and
tested on the entire NPAPER test set achieves re-
call, precision, and F-measure of 60.3%, 70.6%,
and 65.0%, respectively. This is comparable to
(actually slightly better than) a system trained on
the entire NPAPER training set. As for the GE-
NIA training set, we randomly choose 40 texts as
the target domain training data. To avoid selec-
tion bias, we perform 5 random trials, i.e., choos-
ing 5 sets, each containing 40 randomly selected
GENIA training texts. In the rest of this paper, all
performances of using40 GENIA training texts are
the average scores over 5 runs, each of which uses

a different set of 40 texts.

In the previous section, we have presented the
domain adaptation techniques, the active learning
algorithm, as well as the target domain instance
weighting scheme. In the rest of this section, we
present the experimental results to show how do-
main adaptation, active learning, and target do-
main instance weighting help coreference resolu-
tion in a new domain. We useAugment, IW, and
IP to denote the three domain adaptation tech-
niques: AUGMENT, INSTANCE WEIGHTING, and
INSTANCE PRUNING, respectively. For a further
comparison, we explore another baseline method,
which is simply a concatenation of the source and
target domain data together, calledCombine in the
rest of this paper. In all the experiments with ac-
tive learning, we run 100 iterations, which result
in the selection of 1,000 target domain instances.

The first experiment is to measure the effective-
ness of target domain instance weighting. We fix
on the use of uncertainty-based active learning,
and compare weighting and without weighting of
target domain instances (denoted asWeighted and
Unweighted). The learning curves are shown in
Figure 2. ForCombine, Augment, andIP, it can be
seen thatWeighted is a clear winner. As forIW, at
the beginning of active learning,Unweighted out-
performsWeighted, though it is unstable. At the
end of 100 iterations,Weighted outperformsUn-
weighted.

Since Weighted outperformsUnweighted, we
fix on the use ofWeighted and explore the effec-
tiveness of active learning. For comparison, we try
another iterative process that randomly selects 10
instances in each iteration. We found that selection
of instances using active learning achieved better
performance than random selection in all cases.
This is because random selection may select in-
stances that the classifier has very high confidence
in, which will not help in improving the classifier.

In the third experiment, we fix on the use of
Weighted andUncertainty since they perform the
best, and evaluate the effect of different domain
adaptation techniques. The learning curves are
shown in Figure 3. It can be seen thatAugment
is the best performing system. For a closer look,
we tabulate the results in Table 3, with the statisti-
cal significance levels indicated. Statistical signif-
icance tests were conducted following (Chinchor,
2011).
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Figure 2: Learning curves of comparing target domain instances weighted vs. unweighted. All systems
use uncertainty-based active learning.

Iteration 0 10 20 30 40 60 80 100
Combine+Unweighted 39.8 40.7 40.9 41.1 41.4 40.4 41.6 42.1
Combine+Weighted 39.8 40.9 44.0** 44.8** 45.2** 48.0** 47.7** 47.6**
Augment+Weighted 39.8 44.1** †† 46.0** †† 47.0** †† 47.8** †† 49.1** †† 49.1** †† 49.0** ††

IW+Weighted 39.8 24.3 33.1 36.8 38.1 45.0** 48.2**†† 48.3**††
IP+Weighted 39.8 34.4 40.7 43.4** 46.2**†† 48.0** 48.5**†† 48.5**††

Table 3: MUC F-measures of different active learning settings on the GENIA test set. All systems use
Uncertainty. Statistical significance is compared againstCombine+Unweighted, where * and ** stand
for p < 0.05 andp < 0.01, respectively, and compared againstCombine+Weighted, where†and††stand
for p < 0.05 andp < 0.01, respectively.

6 Analysis

Using only the source domain training data,
a coreference resolution system achieves an F-
measure of 39.8% on the GENIA test set (the col-
umn of “Iteration 0” in Table 3). From Figure 3
and Table 3, we can see that in the first few iter-
ations of active learning, domain adaptation does
not perform as well as using only the source do-
main training data. This is because when there
are very limited target domain data, the estima-
tion of the target domain is unreliable. Dahlmeier
and Ng (2010) reported similar findings though
they did not use active learning. With more iter-
ations, i.e., more target domain training data, do-
main adaptation is clearly superior. Among the
three domain adaptation techniques,Augment is

better thanIW andIP. It not only achieves a higher
F-measure, but also a faster speed to adapt to a
new domain in active learning. Also, similar to
(Dahlmeier and Ng, 2010), we find thatIP is gen-
erally better thanIW. All systems (exceptIW)
with Weighted performs much better thanCom-
bine+Unweighted. This shows the effectiveness
of target domain instance weighting. The aver-
age recall, precision, and F-measure of our best
model, Augment+Weighted, after 100 iterations
are 37.3%, 71.5%, and 49.0%, respectively. Com-
pared to training with only the NPAPER training
data, not only the F-measure, but also both the re-
call and precision are greatly improved (cf Table
2).

Among all the target domain instances that were
selected inAugment+Weighted, the average dis-
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Figure 3: Learning curves of different domain
adaptation methods. All systems useWeighted and
Uncertainty.

tance of the two markables in an instance (mea-
sured in sentence) is 3.4 (averaged over the 5
runs), which means an annotator needs to read 4
sentences on average to annotate an instance.

We also investigate the difference of corefer-
ence resolution between the newswire domain and
the biomedical domain, and the instances that
were selected in active learning which represent
this difference. One of the reasons that corefer-
ence resolution differs in the two domains is that
scientific writing in biomedical texts frequently
compares entities. For example,

In Cushing’s syndrome, the CR of GR
was normal in spite of the fact that the
CR of plasma cortisol was disturbed.

The twoCRs refer to different entities and hence
are not coreferential. However, a system trained
on NPAPER predicts them as coreferential. In
the newswire domain, comparisons are less likely,
especially for named entities. For example, in
the newswire domain,London in most cases is
coreferential to otherLondons. However, in the
biomedical domain,DNAs as inDNA of human
beings and DNA of monkeys are different enti-
ties. A coreference resolution system trained on
the newswire domain is unable to capture the dif-
ference between these two named entities, hence
predicting them as coreferential. This also jus-
tifies the need for domain adaptation for corefer-
ence resolution. For the above sentence, after ap-
plying our method, the adapted coreference res-
olution system is able to predict the twoCRs as
non-coreferential.

Next, we show the effectiveness of our sys-
tem using domain adaptation with active learning
compared to a system trained with full corefer-
ence annotations. Averaged over 5 runs, a system

trained on a single GENIA training text achieves
an F-measure of 25.9%, which is significantly
lower than that achieved by our method. With
more GENIA training texts added, the F-measure
increases. After 80 texts are used, the system
trained on full annotations finally achieves an F-
measure of 49.2%, which is 0.2% higher thanAug-
ment+Weighted after 100 iterations. However, af-
ter 100 iterations, only 1,000 target domain in-
stances are annotated under our framework. Con-
sidering that one single text in the GENIA corpus
contains an average of over 2,000 instances (cf Ta-
ble 1), effectively we annotate only half of a text.
Compared to the 80 training texts needed, this is a
huge reduction. In order to achieve similar perfor-
mance, we only need to annotate 1/160 or 0.63%
of the complete set of training instances under our
framework of domain adaptation with active learn-
ing.

Lastly, although in this paper we reported exper-
imental results with the MUC evaluation metric,
we also evaluated our approach with other evalu-
ation metrics for coreference resolution, e.g., the
B-CUBED metric, and obtained similar findings.

7 Conclusion

In this paper, we presented an approach using
domain adaptation with active learning to adapt
coreference resolution from the newswire domain
to the biomedical domain. We explored the ef-
fect of domain adaptation, active learning, and
target domain instance weighting for coreference
resolution. Experimental results showed that do-
main adaptation with active learning and the tar-
get instance weighting scheme achieved a simi-
lar performance on MEDLINE abstracts but with
a greatly reduced number of annotated training
instances, compared to a system trained on full
coreference annotations.
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Abstract

Discourse relation parsing is an impor-
tant task with the goal of understanding
text beyond the sentence boundaries. With
the availability of annotated corpora (Penn
Discourse Treebank) statistical discourse
parsers were developed. In the litera-
ture it was shown that the discourse pars-
ing subtasks of discourse connective de-
tection and relation sense classification do
not generalize well across domains. The
biomedical domain is of particular interest
due to the availability of Biomedical Dis-
course Relation Bank (BioDRB). In this
paper we present cross-domain evaluation
of PDTB trained discourse relation parser
and evaluate feature-level domain adapta-
tion techniques on the argument span ex-
traction subtask. We demonstrate that the
subtask generalizes well across domains.

1 Introduction

Discourse analysis is one of the most challeng-
ing tasks in Natural Language Processing that has
applications in many language technology areas
such as opinion mining, summarization, informa-
tion extraction, etc. (see (Webber et al., 2011)
and (Taboada and Mann, 2006) for detailed re-
view). The release of the large discourse rela-
tion annotated corpora, such as Penn Discourse
Treebank (PDTB) (Prasad et al., 2008), marked
the development of statistical discourse parsers
(Lin et al., 2012; Ghosh et al., 2011; Xu et al.,
2012; Stepanov and Riccardi, 2013). Recently,
PDTB-style discourse annotation was applied to
biomedical domain and Biomedical Discourse Re-
lation Bank (BioDRB) (Prasad et al., 2011) was
released. This milestone marks the beginning of
the research on cross-domain evaluation and do-
main adaptation of PDTB-style discourse parsers.

In this paper we address the question of how
well PDTB-trained discourse parser (news-wire
domain) can extract argument spans of explicit dis-
course relations in BioDRB (biomedical domain).

The use cases of discourse parsing in biomed-
ical domain are discussed in detail in (Prasad et
al., 2011). Here, on the other hand, we provide
very general connection between the two. The
goal of Biomedical Text Mining (BioNLP) is to
retrieve and organize biomedical knowledge from
scientific publications; and detecting discourse re-
lations such as contrast and causality is an impor-
tant step towards this goal (Prasad et al., 2011). To
illustrate this point consider a quote from (Brunner
and Wirth, 2006), given below.

The addition of an anti-Oct2 antibody
did not interfere with complex formation
(Figure 3, lane 6), since HeLa cells do
not express Oct2. (Cause:Reason)

In the example, the discourse connective since sig-
nals a causal relation between the clauses it con-
nects. That is, the reason why ‘the addition of an
anti-Oct2 antibody did not interfere with complex
formation’ is ‘HeLa cells’ not expressing Oct2’.

PDTB adopts non-hierarchical binary view on
discourse relations: Argument 1 (Arg1) (in italics
in the example) and Argument 2 (Arg2), which is
syntactically attached to a discourse connective (in
bold). Thus, a discourse relation is a triplet of a
connective and its two arguments. In the literature
(Lin et al., 2012; Stepanov and Riccardi, 2013)
PDTB-style discourse parsing is partitioned into
discourse relation detection, argument position
classification, argument span extraction, and rela-
tion sense classification. For the explicit discourse
relations (i.e. signaled by a connective), discourse
relation detection is cast as classification of con-
nectives as discourse and non-discourse. Argu-
ment position classification, on the other hand, in-
volves detection of the location of Arg1 with re-
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Figure 1: Discourse Parser Architecture. (CRF
Argument Span Extraction models are in bold.)

spect to Arg2, that is to detect whether a relation is
inter- or intra- sentential. Argument span extrac-
tion is the extraction (labeling) of text segments
that belong to each of the arguments. Finally, re-
lation sense classification is the annotation of re-
lations with the senses from the sense hierarchy
(PDTB or BioDRB).

To the best of our knowledge, the only subtasks
that were addressed cross-domain are the detec-
tion of explicit discourse connectives (Ramesh and
Yu, 2010; Ramesh et al., 2012; Faiz and Mercer,
2013) and relation sense classification (Prasad et
al., 2011). While the discourse parser of Faiz and
Mercer (2013)1 provides models for both domains
and does identification of argument head words in
the style of Wellner and Pustejovsky (2007); there
is no decision made on arguments spans. More-
over, there is no cross-domain evaluation available
for each of the models. In this paper we address
the task of cross-domain argument span extraction
of explicit discourse relations. Additionally, we
provide evaluation for cross-domain argument po-
sition classification as far as the data allows, since
BioDRB lacks manual sentence segmentation.

The paper is structured as follows. In Section 2
we present the comparative analysis of PDTB and
BioDRB corpora and the relevant works on cross-
domain discourse parsing. In Section 3 we de-
scribe the PDTB discourse parser used for cross-
domain experiments. In Section 4 we present the
evaluation methodology and the experimental re-
sults. Section 5 provides concluding remarks.

2 PDTB vs. BioDRB Corpora Analysis
and Related Cross-Domain Works

The two corpora used in our experiments are Penn
Discourse Treebank (PDTB) (Prasad et al., 2008)

1Made available on https://code.google.com/
p/discourse-parser/

and Biomedical Discourse Relation Bank (Bio-
DRB) (Prasad et al., 2011). Both corpora follow
the same discourse relation annotation style over
different domain corpora: PDTB is annotated on
top of Wall Street Journal (WSJ) corpus (financial
news-wire domain); and it is aligned with Penn
Treebank (PTB) syntactic tree annotation; Bio-
DRB, on the other hand, is a corpus annotated over
24 open access full-text articles from the GENIA
corpus (Kim et al., 2003) (biomedical domain),
and, unlike PDTB, there is no reference tokeniza-
tion or syntactic parse trees.

The detailed comparison of the corpora is out
of the scope of this paper, and it is available in
(Prasad et al., 2011). Similarly, the review of
PDTB-style discourse parsing literature is not in
its scope. Here, on the other hand, we focus on the
corpus differences relevant for discourse parsing
tasks and cross-domain application of discourse
parsing subtasks.

Discourse relations in both corpora are binary:
Arg1 and Arg2, where Arg2 is an argument syn-
tactically attached to a discourse connective. With
respect to Arg2, Arg1 can appear in the same sen-
tence (SS case), one or several of the preceding
(PS case) or following (FS case) sentences. A
discourse connective is a member of a well de-
fined list of connectives and a relation expressed
via such connective is an Explicit relation. There
are other types of discourse and non-discourse re-
lations annotated in the corpora; however, they are
out of the scope of this paper. Discourse relations
are annotated using a hierarchy of senses: even
though the organization of senses and the number
of levels are different between corpora, the most
general top level senses are mapped to the PDTB
top level senses: Comparison, Contingency, Ex-
pansion, and Temporal (Prasad et al., 2011).

The difference between the two corpora with re-
spect to discourse connectives is that in case of
PDTB the annotated connectives belong to one of
the three syntactic classes: subordinating conjunc-
tions (e.g. because), coordinating conjunctions
(e.g. but), and discourse adverbials (e.g. how-
ever), while BioDRB is also annotated for a forth
syntactic class – subordinators (e.g. by).

There are 100 unique connective types in PDTB
(after connectives like 1 year after are stemmed
to after) in 18,459 explicit discourse relations.
Whereas in BioDRB there are 123 unique con-
nective types in 2,636 relations. According to
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the discourse connective analysis in (Ramesh et
al., 2012), the subordinators comprise 33% of all
connective types in BioDRB. Additionally, 11%
of connective types in common syntactic classes
that occur in BioDRB do not occur in PDTB; e.g.
In summary, as a consequence. Thus, only 56%
of connective types of BioDRB are common to
both corpora. While in-domain discourse connec-
tive detection has good performance (Ramesh and
Yu, 2010), this difference makes the cross-domain
identification of discourse connectives a hard task,
which is exemplified by experiments in (Ramesh
and Yu, 2010) (F1 = 0.55).

With respect to relation sense classification, the
connective surface provides already high baselines
(Prasad et al., 2011). However, cross-domain
sense classification experiments indicate that there
are significant differences in the semantic usage of
connectives between two domains, since the per-
formance of the classifier trained on PDTB does
not generalize well to BioDRB (F1 = 0.57).

To sum up, the corpora differences with respect
to discourse connective usage affect the cross-
domain generalization of connective detection and
sense classification tasks negatively. The exper-
iments in this paper are intended to evaluate the
generalization of argument span extraction, as-
suming that the connective is already identified.
In the following section, we present the PDTB-
trained discourse parser optimized for in-domain
performance.

3 PDTB-Style Discourse Parser

The discourse parser (see Figure 1) is a combi-
nation of argument position classification model
for classifying discourse connectives as inter- or
intra-sentential, and specific Conditional Random
Fields argument extraction models for each of the
arguments in these configurations. In the follow-
ing subsections we provide descriptions for each
of the components.

3.1 Argument Position Classification

Discourse connectives have a very strong prefer-
ence on the location of the Arg1 with respect to
their syntactic category (Subordinating Conjunc-
tion, Coordinating Conjunction, and Discourse
Adverbial) and position in the sentence (sentence
initial or sentence medial); thus, classification of
discourse connectives into inter-sentential or intra-
sentential is an easy task yielding high supervised

machine learning performance (Stepanov and Ric-
cardi, 2013; Lin et al., 2012). With respect to the
decision made in this step a specific argument span
extraction model is applied.

For Argument Position Classification the un-
igram BoosTexter (Schapire and Singer, 2000)
model with 100 iterations is trained on PDTB sec-
tions 02-22 and tested on sections 23-24. Sim-
ilar to the previously published results, it has a
high performace: F1 = 98.12. The features
are connective surface string, POS-tags, and IOB-
chains. The results obtained with automatic sen-
tence splitting, tokenization, and syntactic parsing
using Stanford Parser (Klein and Manning, 2003)
are also high F1 = 97.81.

Since, unlike PTB for PDTB, for BioDRB there
is no manual sentence splitting, tokenization, and
syntactic tree annotation; the precise cross-domain
evaluation of Argument Span Extraction step is not
possible. However, in Section 4 we estimate the
performance using automatic sentence splitting.

3.2 Argument Span Extraction

Argument span extraction is cast as token-level se-
quence labeling using Conditional Random Fields
(CRF) (Lafferty et al., 2001). Previously, it was
observed that in PDTB for inter-sentential dis-
course relations Arg1 precedes Arg2 in most of the
cases. Thus, the CRF models are trained for the
configurations where both of the arguments are in
the same sentence (SS), and for Arg1 in one of the
previous sentences (PS); the following sentence
Arg1 case (FS) is ignored due to too few training
instances being available (in PDTB 8 / 18,459).
Consequently, there are 4 CRF models SS Arg1
and Arg2, and PS Arg1 and Arg2.

Same sentence case models are applied in a cas-
cade, such that output of Arg2 model is used as a
feature for Arg1 span extraction. For the case of
Arg1 in the previous sentences; based on the ob-
servation that in PDTB Arg2 span is fully located
in the sentence containing the connective in 98.5%
of instances; and Arg1 span is fully located in the
sentence immediately preceding Arg2 in 71.7% of
instances; the sentences in these positions are se-
lected and CRF models are trained to label the
spans.

The features used for training the models are
presented in Table 1. The feature sets are opti-
mized for each of the arguments in (Ghosh et al.,
2011) (see the Table columns Arg1 and Arg2). Be-
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sides the features commonly used in NLP tasks
such that token, lemma, inflectional affixes, and
part-of-speech tag, the rest of the features are:

• IOB-Chain (IOB) is the path string of the syn-
tactic tree nodes from the root node to the to-
ken, prefixed with the information whether a
token is at the beginning (B-) or inside (I-)
the constituent. The chunklink tool (Buch-
holz, 2000) is used to extract this feature from
syntactic trees.

• PDTB Level 1 Connective sense (CONN) is
the most general sense of a connective in
PDTB sense hierarchy. It’s general purpose is
to label the discourse connective tokens, i.e.
the value of the feature is ‘NULL’ for all to-
kens except the discourse connective.

• Boolean Main Verb (BMV) is a boolean fea-
ture that indicates whether a token is a main
verb of a sentence or not (Yamada and Mat-
sumoto, 2003).

• Arg2 Label (ARG2) is an output of Arg2 span
extraction model, that is used as a feature for
Arg1 span extraction. Arg2 span is easier to
identify (Ghosh et al., 2011; Stepanov and
Riccardi, 2013) since it is syntactically at-
tached to the discourse connective. Thus, this
feature serves to constrain the Arg1 search
space for intra-sentential argument span ex-
traction. The value of the feature is either
ARG2 suffixed for whether a token is Inside
(I), Begin (B), or End (E) of the span, or ‘O’
if it does not belong to the Arg2 span.

These features are expanded during training
with n-grams (feature of CRF++2): tokens with
2-grams in the window of ±1 tokens, and the rest
of the features with 2 & 3-grams in the window of
±2 tokens.

The in-domain performance of argument span
extraction models is provided in the following
section, after the description of the evaluation
methodology.

4 Experiments and Results

In this Section we first describe the evaluation
methodology and then the experiments on cross-
domain evaluation of argument position classifi-
cation and argument span extraction models.

2https://code.google.com/p/crfpp/

Feature ABBR Arg2 Arg1
Token TOK Y Y
POS-Tag POS
Lemma LEM Y Y
Inflection INFL Y Y
IOB-Chain IOB Y Y
Connective Sense CONN Y Y
Boolean Main Verb BMV Y
Arg2 Label ARG2 Y

Table 1: Feature sets for Arg2 and Arg1 argument
span extraction.

The experimental settings for PDTB are the fol-
lowing: Sections 02-22 are used for training and
Sections 23-24 for testing. For BioDRB, on the
other hand, 12 fold cross-validation is used (2 doc-
uments in each fold, since in BioDRB there are 24
documents).

4.1 Evaluation Methodology

The performance of Argument Span Extraction is
evaluated in terms of precision (p), recall (r), and
F-measure (F1) using the equations 1 – 3. An
argument span is considered to be correct, if it
exactly matches the reference string. Following
(Ghosh et al., 2011) and (Lin et al., 2012), argu-
ment initial and final punctuation marks are re-
moved .

p =
Exact Match

Exact Match + No Match
(1)

r =
Exact Match

References in Gold
(2)

F1 =
2 ∗ p ∗ r

p + r
(3)

In the equations, Exact Match is the count of cor-
rectly tagged argument spans; No Match is the
count of argument spans that do not match the ref-
erence string exactly, i.e. even a single token dif-
ference is counted as an error; and References in
Gold is the total number of arguments in the refer-
ence.

Since argument span extraction is applied after
argument position classification, the classification
error is propagated. Thus, for the evaluation of
argument span extraction, misclassified instances
are reflected in the counts of Exact Matches and
No Matches. For example, misclassified same sen-
tence relation results in that both its arguments are
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Arg2 Arg1
P R F1 P R F1

Gold
SS 90.36 87.49 88.90 70.27 66.67 68.42
PS 79.01 77.10 78.04 46.23 36.61 40.86
ALL 85.93 83.45 84.67 61.94 54.98 58.25

Auto
SS 86.83 85.14 85.98 64.26 63.01 63.63
PS 75.00 73.67 74.33 37.66 37.00 37.33
ALL 82.24 80.69 81.46 53.93 52.92 53.42

Table 2: In-domain performance of the PDTB-
trained argument span extraction models on the
test set with ‘Gold’ and ’Automatic’ sentence
splitting, tokenization, and syntactic features. The
results are reported together with the error prop-
agation from argument position classification for
Same Sentence (SS), Previous Sentence (PS) mod-
els and joined results (ALL) as precision (P), recall
(R) and F-measure (F1).

considered as not recalled for the SS, and for the
PS they are considered as No Match.

However, we do not propagate error in cross-
domain evaluation on BioDRB, since there is no
reference information. Additionally, while Arg1
span extraction models are trained on Gold Arg2
features, for testing they are always automatic.

4.2 Cross-Domain Argument Position
Classification

As it was mentioned above, there is no manual
sentence splitting for BioDRB; thus, there is no
references for whether a discourse relation has its
Arg1 in the same or different sentences. In order
to evaluate cross-domain argument position clas-
sification we evaluate classifier decisions against
automatic sentence splitting using Stanford Parser
(Klein and Manning, 2003) on whole of BioDRB.

The BoosTexter model described in Section 3.1
has a high in-domain performance of 97.81. On
BioDRB its performance is 95.26, which is still
high. Thus, we can conclude that argument posi-
tion classification generalizes well cross-domain,
and that it is little affected by the presence of ‘sub-
ordinators’ that were not annotated in PDTB.

4.3 In-Domain Argument Span Extraction:
PDTB

The in-domain performance of the argument span
extraction models trained on PDTB sections 02-22

and tested on sections 23-24 is given on Table 2.
The results are for 2 settings: ‘Gold’ and ‘Auto’.
In the ‘Gold’ settings the sentence splitting, tok-
enization and syntactic features are extracted from
PTB, and in the ‘Auto’ they are extracted from au-
tomatic parse trees obtained using Stanford Parser
(Klein and Manning, 2003).

The general trend in the literature, is that the ar-
gument span extraction for Arg1 has lower perfor-
mance than for Arg2, which is expected since Arg2
position is signaled by a discourse connective. Ad-
ditionally, Previous Sentence Arg1 model perfor-
mance is much lower than that of the other models
due to the fact that it only considers immediately
previous sentence; which, as was mentioned ear-
lier, covers only 71.7% of the inter-sentential re-
lations. In the next subsections, these models are
evaluated on biomedical domain.

4.4 In-Domain Argument Span Extraction:
BioDRB

In order to evaluate PDTB-BioDRB cross-domain
performance we first evaluate the in-domain Bio-
DRB argument span extraction. Since there is no
gold sentence splitting, tokenization and syntactic
parse trees, the models are trained using the fea-
tures extracted from automatic parse trees. We use
exactly the same feature sets as for PDTB models,
which are optimized for PDTB. An important as-
pect is that in BioDRB the connective senses are
different: there are 16 top level senses that are
mapped to 4 top level PDTB senses. For the in-
domain BioDRB models, the 16 senses were kept
as is.

Since we do not have gold argument position
information, we do not train in-domain argument
classification model. Thus, the reported results are
without error propagation. Later, this will allow us
to assess cross-domain argument span extraction
performance better.

The results reported in Table 3 are average
precision, recall and f-measure of 12-fold cross-
validation. With respect to automatic sentence
splitting, there are 717 inter-sentential and 1,919
intra-sentential relations (27% to 73%). Thus,
BioDRB is less affected by PS Arg1 performance
than PDTB models, where the ratio is 619 to
976 (39% to 61%). Additionally, BioDRB PS
Arg1 performance is generally higher than that
of PDTB. Overall, in-domain BioDRB argument
extraction model performance is in-line with the
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Arg2 Arg1
P R F1 P R F1

SS 80.94 79.88 80.41 66.51 61.82 64.07
PS 82.99 82.99 82.99 57.50 55.62 56.53
ALL 81.45 80.67 81.06 63.87 60.00 61.87

Table 3: In-domain performance of the BioDRB-
trained argument span extraction models. Both
training and testing are on automatic sentence
splitting, tokenization, and syntactic features. The
results are reported for Same Sentence (SS) and
Previous Sentence (PS) models, and the joined re-
sults for each of the arguments (ALL) as average
precision (P), recall (R), and F-measure (F1) of
12-fold cross-validation.

PDTB models, with the exception that previous
sentence Arg2 has higher performance than the
same sentence one.

4.5 Cross-Domain Argument Span
Extraction: PDTB - BioDRB

Similar to in-domain BioDRB argument span ex-
traction, we perform 12 fold cross-validation for
PDTB-BioDRB cross-domain argument span ex-
traction. The cross-domain performance of the
models described in Section 4.3 is given in the
Table 4 under the ‘Gold’. To make the cross-
domain evaluation settings closer to the BioDRB
in-domain evaluation, we additionally train PDTB
models on the automatic features, i.e. features ex-
tracted from PDTB with automatic sentence split-
ting, tokenization and syntactic parsing. Similar
to the in-domain BioDRB evaluation, results are
reported without error propagation from argument
position classification step.

The first observation from cross-domain eval-
uation is that argument span extraction general-
izes to biomedical domain much better that the
discourse parsing subtasks of discourse connective
detection and relation sense classification. Unlike
those subtasks, the difference between in-domain
BioDRB argument span extraction models and the
models trained on PDTB is much less: e.g. for
discourse connective detection the in-domain and
cross-domain difference for BioDRB is 14 points
(f-measures 69 and 55 in (Ramesh and Yu, 2010)),
and for argument span extraction 2 and 4 points
for Arg2 and Arg1 respectively (see Tables 3 & 4).

The difference between the models trained on
automatic and gold parse trees is also not high, and
gold feature trained models perform better with

Arg2 Arg1
P R F1 P R F1

Gold
SS 80.37 76.58 78.42 60.82 56.40 58.52
PS 80.73 80.50 80.62 57.74 52.95 55.19
ALL 80.53 77.71 79.09 59.76 55.29 57.43

Auto
SS 77.60 75.05 76.30 60.76 55.21 57.83
PS 81.39 81.23 81.31 57.71 51.72 54.47
ALL 78.72 76.80 77.74 59.60 54.12 56.71

Table 4: Cross-domain performance of the PDTB-
trained argument span extraction models on Bio-
DRB. For the ‘Gold’ setting the models from in-
domain PDTB section are used. For ‘Auto’, the
models are trained on automatic sentence splitting,
tokenization, and syntactic features. The results
are reported for Same Sentence (SS) and Previ-
ous Sentence (PS) models, and the joined results
for each of the arguments (ALL) as average preci-
sion (P), recall (R), and F-measure (F1) of 12-fold
cross-validation.

the exception of PS Arg2. Since training on auto-
matic parse trees does not improve cross-domain
performance, the rest of the experiments is using
gold features for training.

4.6 Feature-Level Domain Adaptation

The two major differences between PDTB and
BioDRB are vocabulary and connective senses.
The out-of-vocabulary rate of PDTB on the whole
BioDRB is 22.7% and of BioDRB on PDTB is
33.1%, which are very high. Thus, PDTB lexi-
cal features might not be very effective, and the
models generalize well due to syntactic features.
To test this hypothesis we train additional PDTB
models on only syntactic features: POS-tags and
IOB-chain and ‘connective labels’ – ‘CONN’ suf-
fixed for the Beginning (B), Inside (I) or End (E)
of the connective span, simulating discourse con-
nective detection output. Moreover, we reduce the
feature set to unigrams only (recall that features
were enriched by 2 and 3 grams), such that the
models become very general.

Even though BioDRB connective senses can be
mapped to PDTB, in (Prasad et al., 2011) it was
observed that relation sense classification does not
generalize well. To reduce the dependency of ar-
gument span extraction models on relation sense
classification, the connective sense feature in the
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Arg2 Arg1
P R F1 P R F1

Baseline
SS 80.37 76.58 78.42 60.82 56.40 58.52
PS 80.73 80.50 80.62 57.74 52.95 55.19
ALL 80.53 77.71 79.09 59.76 55.29 57.43

Syntactic
SS 82.00 75.03 78.33 61.07 51.80 56.01
PS 75.56 74.47 75.01 56.64 46.66 51.11
ALL 80.31 74.98 77.54 59.69 50.42 54.63

No Relation Sense
SS 81.35 74.00 77.47 62.46 56.11 59.10
PS 80.35 80.13 80.24 57.58 52.25 54.74
ALL 81.16 75.67 78.30 60.86 54.87 57.69

Table 5: Cross-domain performance of the PDTB-
trained argument span extraction models on Bio-
DRB. For the ‘Syntactic’ setting the models are
trained on only syntactic features (POS-tag + IOB-
chain) and ‘connective labels’. For ‘No Relation
Sense’, the models are trained by replacing con-
nective sense with ‘connective labels’. The ‘Base-
line’ is repeated from Table 4. The results are re-
ported for Same Sentence (SS) and Previous Sen-
tence (PS) models, and the joined results for each
of the arguments (ALL) as average precision (P),
recall (R), and F-measure (F1) of 12-fold cross-
validation.

‘Baseline’ models (i.e. the models from Section
4.3) is also replaced by ‘connective labels’. We
train these models using gold features only, and,
similar to previous experiments, do 12-fold cross-
validation.

The performance of the adapted models is given
in Table 5. The ‘Syntactic’ section gives the re-
sults of the models trained on syntactic features
and the ‘No Relation Sense’ section gives the re-
sults for the models with ‘connective labels’ in-
stead of connective senses, and the ‘Baseline’
repeats the performance of the PDTB-optimized
models.

The PDTB-optimized baseline, outperforms the
adapted models on Arg2; however, ‘No Relation
Sense’ Arg1 yields the best performance, and,
though insignificantly, outperforms the baseline.
Thus, the effect of replacing connective senses
with ‘connective labels’ is negative for all cases
except SS Arg1. Overall, the difference in perfor-
mance between the ‘Baseline’ and ‘No Relation
Sense’ models is an acceptable price to pay for the

Arg2 Arg1
P R F1 P R F1

SS 81.72 76.14 78.82 61.53 56.36 58.82
PS 80.31 79.84 80.07 58.55 52.82 55.44
ALL 81.27 77.10 79.12 60.56 55.30 57.80

Table 6: Cross-domain performance of the PDTB-
trained argument span extraction model on uni-
gram and bigrams of token, POS-tag, IOB-chain
and ‘connective label’. The results are reported for
Same Sentence (SS) and Previous Sentence (PS)
models, and the joined results for each of the argu-
ments (ALL) as average precision (P), recall (R),
and F-measure (F1) of 12-fold cross-validation.

independence from relation sense classification.
The most general models – unigrams of Part-of-

Speech tags and IOB-chains together with ‘con-
nective labels’ in the window of ±2 tokens –
all have the performance lower than the baseline,
which is expected given its feature set. However,
for the easiest case of intra-sentential Arg2 it out-
performs the model trained by replacing the con-
nective sense in the baseline (i.e. ‘No Relation
Sense’). Degraded performance of Arg1 models
indicates that lexical features are helpful.

Introducing the tokens back into the ‘Syntactic’
model, and increasing the features to include also
2-grams, boosts the performance of the models to
outperform the ‘No Relation Sense’ models in all
but Previous Sentence Arg2 category. However,
the models now yield performance comparable to
the PDTB optimized baseline (insignificantly bet-
ter), while being unaffected by poor cross-domain
generalization of relation sense classification (see
Table 6).

The cross-domain argument extraction exper-
iments indicate that models trained on PDTB-
optimized feature set already have good general-
ization. However, they are dependent on relation
sense classification task, which does not gener-
alize well. By replacing connective senses with
‘connective labels’ we obtain models independent
of this task while maintaining comparable perfor-
mance. The in-domain trained BioDRB models,
however, perform better, as expected.

5 Conclusion

In this paper we presented cross-domain discourse
parser evaluation on subtasks of argument posi-
tion classification and argument span extraction.
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The observed cross-domain performances are in-
dicative of good model generalization. However,
since these models are applied later in the pipeline,
they are affected by the cross-domain performance
of the other tasks. Specifically, discourse connec-
tive detection, which was shown not to generalize
well in the literature. Additionally, we have pre-
sented feature-level domain adaptation techniques
to reduce the dependence of the cross-domain ar-
gument span extraction on other discourse parsing
subtasks.

The syntactic parser (Stanford) that provides
sentence splitting and tokenization is trained on
Penn Treebank, i.e. it is in-domain for PDTB
and out-of-domain for BioDRB; and it is known
that domain-optimized tokenization improves per-
formance on various NLP tasks. Thus, the fu-
ture direction of this work is to evaluate argument
span extraction using tools optimized for biomed-
ical domain.
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Abstract

This paper presents the first attempt to
semi-automatically translate SNOMED
CT (Systematized Nomenclature of
Medicine – Clinical Terms) terminology
content to Basque, a less resourced lan-
guage. Thus, it would be possible to build
a new clinical healthcare terminology for
Basque. We have designed the translation
algorithm and the first two phases of the
algorithm that feed the SNOMED CT’s
Terminology content, have been imple-
mented (it is composed of four phases).
The goal of the translation is twofold: the
enforcement of the use of Basque in the
bio-sanitary area and the access to a rich
multilingual resource in our language.

1 Introduction

SNOMED Clinical Terms (SNOMED CT)
(IHTSDO, 2014) is considered the most com-
prehensive, multilingual clinical healthcare
terminology in the world. The use of a standard
clinical terminology improves the quality and
health care by enabling consistent representation
of meaning in an electronic health record1.

Osakidetza, the Basque Sanitary System ought
to provide its service in the two co-official lan-
guages of the Basque Autonomous Community,
in Spanish and in Basque. However, and being
Basque a minority language in front of the power-
ful Spanish language, the use of Basque in the doc-
umentation services (for example in the Electronic
Medical Records (EMR)) of Osakidetza, is almost
zero. One of our goals in this work is to offer a
medical terminology in Basque to the bio-medical
personnel to try to enforce the use of Basque in
the bio-sanitary area and in this way protect the

1http://www.ihtsdo.org/snomed-ct/whysnomedct/
snomedfeatures/

linguistic rights of patients and doctors. Another
objective in this work is to be able to access multi-
lingual medical resources in Basque language. To
try to reach the mentioned objectives, we want to
semi-automatically translate the terminology con-
tent of SNOMED CT focusing in some of its main
hierarchies.

To achieve our translation goal, we have defined
an algorithm that is based on Natural Language
Processing (NLP) techniques and that is composed
of four phases. In this paper we show the systems
and results obtained when developing the first two
phases of the algorithm that, in this case, trans-
lates English terms into Basque. The first phase
of the algorithm is based on the use of multilin-
gual lexical resources, while the second one uses
a finite-state approach to obtain Basque equivalent
terms using medical affixes and also transcription
rules.

In this paper we will leave aside explanations
about i) the translation application, ii) the knowl-
edge management and iii) the knowledge repre-
sentation, and we will focus on term generation.
The application framework that manages the terms
has been already developed and it is in use. The
knowledge representation schema has been de-
signed and implemented and it is also being used
(Perez-de-Viñaspre and Oronoz, 2013).

In the rest of the paper after motivating the work
and connecting it to other SNOMED CT transla-
tions (sections 2 and 3), the algorithm and the ma-
terial that are needed to implement the first two
phases of the translation-algorithm are described
(section 4). After that, results are shown and dis-
cussed (sections 5 and 6). Finally, some conclu-
sions and future work are listed in the last section
(section 7).

2 Background and significance

“Basque is the ancestral language of the Basque
people, who inhabit the Basque Country, a region

38



spanning an area in northeastern Spain and south-
western France. It is spoken by 27% of Basques in
all territories (714,136 out of 2,648,998). Of these,
663,035 live in the Spanish part of the Basque
country (Basque Country and Navarre) and the re-
maining 51,100 live in the French part (Pyrénées-
Atlantiques)2”. Basque is a minority language in
its standardization process and persists between
two powerful languages, Spanish and French. Al-
though today Basque holds co-official language
status in the Basque Autonomous Community,
during centuries Basque was not an official lan-
guage; it was out of educational systems, out of
media, and out of industrial environments. Due to
this features, the use of the Basque Language in
the bio-sanitary system is low. One of the reasons
for translating SNOMED CT is to try to increase
the use of the Basque language in this area.

SNOMED CT is a multilingual resource as its
concepts are linked to terms in different languages
by means of a concept identifier. Thus, terms in
our language will be linked to terms in all the lan-
guages in which SNOMED CT is released. Be-
sides, as SNOMED CT is part of the Metathe-
saurus of UMLS (Unified Medical Language Sys-
tem (Bodenreider, 2004)), Basque speakers will
have the possibility of accessing other lexical med-
ical resources (RxNorm, MeSH) containing the
concepts of SNOMED CT.

SNOMED CT has been already translated to
other languages using different techniques. These
translations were done either manually (this is the
case of the Danish language (Petersen, 2011)),
combining automatic translation with manual
work (in Chinese, for example (Zhu et al., 2012)),
or using exclusively an automatic translation help-
ing system (that is the case of French (Abdoune et
al., 2011)). In the design of the translation task,
we have followed the guidelines for the transla-
tion of SNOMED CT (Høy, 2010) published by
the IHTSDO as it is recommended.

3 SNOMED CT

SNOMED CT provides the core terminology for
electronic health records and contains more than
296,000 active concepts with their descriptions or-
ganized into hierarchies. (Humphreys et al., 1997)
shows that SNOMED CT has an acceptable cov-
erage of the terminology needed to record patient

2http://en.wikipedia.org/wiki/Basque language (January
23, 2014)

conditions. Concepts are defined by means of de-
scription logic axioms and are used also to group
terms with the same meaning. Those descriptions
are more generally considered as terms.

There are three types of descriptions in
SNOMED CT: Fully Specified Names (FSN), Pre-
ferred Terms (PT) and Synonyms. Fully Speci-
fied Names are the descriptions used to identify
the concepts and they usually have a semantic tag
in parenthesis that indicates its semantic type and,
consequently, its hierarchy. Regarding what we
sometimes refer to as “terms” we can distinguish
between PTs and Synonyms.

There are 19 hierarchies to organize the con-
tent of SNOMED CT (plus 1 hierarchy for meta-
data). The concepts of SNOMED CT are grouped
into hierarchies as Clinical finding/disorder, Or-
ganism, and so on. For translation purposes it is
important to deeply analyze these hierarchies as
some of them need to translate all the terms while
others as Organism only admit the translation of
the synonyms (the preferred term should be the
taxonomic one). The guidelines for the transla-
tion of the hierarchies are given in (Høy, 2010).
We want to remark that only the terms classified
as PTs and synonyms in SNOMED CT have been
taken into consideration for the translation pur-
poses, as the structure (relationships, for example)
is the ontological core of SNOMED CT.

Considering the lexical resources available in
the bio-sanitary domain for Basque and the
SNOMED CT language versions released, two
source languages can be used for our translation
task: English and Spanish. Basque is classified as
a language isolate, and in consequence it is not re-
lated to English or Spanish and its linguistic char-
acteristics are far away from both of them. For that
reason, no English nor Spanish offers any advan-
tage as translation source. Thus, we deeply ana-
lyzed both of them to choose the best option. Our
starting point was the Release Format 2 (RF2),
Snapshot distributions and the versions dated the
31-07-2012 for English and the 30-10-2012 for
Spanish. It must be taken into consideration that
the Spanish version of SNOMED CT is a manual
translation of the English version.

To choose the source version of SNOMED CT
that will be translated, we analyzed aspects as i)
general numbers of FSNs, PTs and Synonyms, ii)
length of the terms in each language and, ii) the
lack of elements in each version. These data help
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us to come to a decision:

1. The number of active concepts in both lan-
guages is the same (296,433) as the Spanish
version uses the English concept file. Nev-
ertheless, the number of terms in Spanish is
significantly smaller. In Spanish 15,715 con-
cepts lack of PTs and Synonyms.

2. Regarding the length of the PTs and syn-
onyms, we counted the terms containing one
token, two tokens, three tokens, four tokens
and those with more than four tokens. In the
English version the 6.76% of the terms has
one token, the 23.28% two and the 20.70%
three tokens. That is, quite simple terms com-
pose the half of the synonyms in the lexicon.
In the Spanish version, nevertheless, only the
33.79% of the synonyms has three tokens or
less, and there are 66.21% synonyms with
four tokens or more.

Considering these data, we can conclude that i)
the English version is more complete and consis-
tent than the Spanish one, and that ii) the terms
in the English version are shorter in length and, in
consequence, simpler to translate than the ones in
the Spanish version. Thus, we decided to use the
English version of SNOMED CT as the translation
source as starting point.

We fix the priority between hierarchies for the
translation taking into account the number of
terms in each hierarchy. The most populated hi-
erarchies are Clinical finding/disorder (139,643
concepts) and Procedure (75,078 concepts). The
next most populated hierarchies are Organism
(35,870 concepts) and Body Structure (26,960).
The translation guidelines indicate that the PTs
of the organisms should not be translated. For
this reason and being conscious of our limita-
tion to translate this huge terminology, we decided
to prioritize the translation of the Clinical find-
ing/disorder, the Procedure and the Body Struc-
ture hierarchies.

4 Translation Algorithm

We have defined a general algorithm that tries to
achieve the translation with an incremental ap-
proach. Although the design is general and the al-
gorithm could be used for any language pair, some
linguistic resources for the source and objective
languages are necessary. In our implementation,

the algorithm takes a term in English as input and
obtains one or more equivalent terms in Basque.

The mapping of SNOMED CT with ICD-10
works at concept level. Thus, before executing the
implementation of the algorithm the mapping be-
tween them should be done (see section 5).

The algorithm is composed of four main phases.
The first two phases are already developed and re-
sults regarding quantities are given in section 5.
The last two phases will be undertaken in the very
near future.

We want to remark that all the processes fin-
ish in the step numbered as 4 in the algorithm
(see Figure 1). The Basque equivalents with their
original English terms, and relative information
(for instance, the SNOMED CT concept identi-
fier) are stored in an XML document that follows
the TermBase eXchange (TBX) (Melby, 2012) in-
ternational standard (ISO 30042) as exposed in
(Perez-de-Viñaspre and Oronoz, 2013). All the
lexical resources are stored in another simpler
TBX document called ItzulDB (see number 1 in
Figure 1). This document is initialized with all
the lexical resources available, such as specialized
dictionaries and it is enriched with the new trans-
lation pairs generated that overcome a confidence
threshold with the intention of using them to trans-
late new terms. In this way we achieve feedback.

Let us describe the main phases:

1. Lexical knowledge. In this phase of the al-
gorithm (see numbers 1-2-4 in Figure 1),
some specialized dictionaries and the En-
glish, Spanish and Basque versions of the In-
ternational Statistical Classification of Dis-
eases and Related Health in its 10th ver-
sion (ICD-10) are used. ItzulDB is initial-
ized with all the translation pairs (English-
Basque) extracted from different dictionaries
of the bio-medical domain and the pairs ex-
tracted from the ICD-10. For example the in-
put term “abortus” will be stored with all its
Basque equivalents “abortu”, “abortatze”
and “hilaurtze”. This XML database is en-
riched with the new elements that are gener-
ated when the algorithm is applied (number 4
in Figure 1). Figure 2 shows an example of
some translations obtained using ItzulDB.

2. Morphosemantics. When a simple term (term
with a unique token) is not found in ItzulDB
(number 3 in Figure 1) it is analyzed at word-
level, and some generation-rules are used to
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Figure 1: Schema of the Algorithm.

Input term: Deoxyribonuclic acid
Steps in Figure 1 number: 1,2,4
Translation: Azido desoxirribonukleiko,

ADN, DNA

Figure 2: Terms obtained from ItzulDB.

create the translation. We apply medical suf-
fix and prefix equivalences and morphotactic
rules, as well as some transcription rules, for
this purpose. This is the case in Figure 3.

Input term: Photodermatitis
Steps in Figure 1 number: 3,5,7,6,4
Applied rules:

Identified parts: photo+dermat+itis
Translated parts: foto+dermat+itis

Translation: Fotodermatitis

Figure 3: Terms obtained using generation-rules.

3. Shallow Syntax. In the case that the input
term does not appear in ItzulDB and it can
not be generated by word-level rules (number
8 in the algorithm), chunk-level generation
rules are used. Our hypothesis is that some
chunks of the term will appear in ItzulDB
with their translation. The application should
generate the entire term using the translated
components (see example in Figure 4).

Input term: Deoxyribonucleic acid sample
Steps in Figure 1 number: 8, 9, 10, 6, 4
Chunks in ItzulDB:

1st chunk: Deoxyribonucleic acid
Basque: azido desoxirribonukleiko,

ADN, DNA
2nd chunk: sample
Basque: lagin

Translation: Azido desoxirribonukleikoaren
lagin, ADN lagin, DNA lagin

Figure 4: Terms obtained using chunk-level gen-
eration rules.

4. Machine Translation. In the last phase, our
aim is to use a rule-based automatic trans-
lation system called Matxin (Mayor et al.,
2011) that we want to adapt to the medical
domain. Figure 5 shows an attempt of trans-
lation with the non adapted translator. For ex-
ample, Matxin translates “colon” as the punc-
tuation mark (“bi puntu” or “:”) because it
lacks the anatomical meaning.

Input term: Partial excision of oesophagus
and interposition of colon
Steps in Figure 1 number: 12, 4
Translation: Esofagoaren zati baten exci-
siona eta interpositiona bi puntua

Figure 5: Terms obtained using Matxin.

The IHTSDO organization releases a semi-
automatic mapping between SNOMED CT and
the ICD-10. By identifying the sense of a con-
cept in SNOMED CT, the best semantic space in
the ICD-10 for this concept is searched obtaining
linked codes. In this way we can obtain the corre-
sponding Basque term for some of the SNOMED
CT concepts through ICD-10. Considering that
the structures of SNOMED CT and the ICD-10
are quite different, and that the mapping some-
times has “mapping conditions”, the use of this
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resource has been complex, but fruitful for very
specialised terms. Although as we said this map-
ping is the unique source for obtaining very spe-
cialised terms, it should be used carefully as the
objectives of SNOMED CT and ICD-10 are dif-
ferent. ICD-10 has classification purposes while
SNOMED CT has representation purposes.

A brief description of the first two phases of the
algorithm is done in the next subsections (subsec-
tions 4.1 and 4.2):

4.1 Phase 1: Lexical Resources
The multilingual specialized dictionaries with En-
glish and Basque equivalences that have been used
to enrich ItzulDB in the first phase of the algorithm
are:

• ZT Dictionary3: This is a dictionary about
science and technology that contains areas
as medicine, biochemistry, biology. . . It con-
tains 13,764 English-Basque equivalences.

• Nursing Dictionary4: It has 5,393 entries in
the English-Basque chapter.

• Glossary of Anatomy: It contains anatomi-
cal terminology (2,578 useful entries) used
by University experts in their lectures.

• ICD-105: This classification of diseases was
translated into Basque in 1996. It is also
available in English and in Spanish. The
mapping between the different language edi-
tions conforming a little dictionary, allowed
us to obtain 7,061 equivalences between En-
glish and Basque.

• EuskalTerm6: This terminology bank con-
tains 75,860 entries from wich 26,597 term
equivalences are labeled as from the biomed-
ical domain.

• Elhuyar Dictionary7: This English-Basque
dictionary, is a general dictionary that con-
tains 39,164 equivalences from English to
Basque.

All these quite different dictionaries have been
preprocessed in order to initialize ItzulDB. Elhu-
yar Dictionary is a general dictionary that has

3http://zthiztegia.elhuyar.org
4http://www.ehu.es/euskalosasuna/Erizaintza2.pdf
5http://www.ehu.es/PAT/Glosarios/GNS10.txt
6http://www.euskadi.net/euskalterm
7http://hiztegiak.elhuyar.org/en

both not domains pairs but also contains some spe-
cialized terminology. This general dictionary will
help i) in the translation of not domain terms and
ii) also in the translation of the chunks in Phase
3, and thus, on the generation of new terms in
Basque.

4.2 Phase 2: Finite State Transducers and
Biomedical Affixes

A first approach to this work is presented in
(Perez-de-Viñaspre et al., 2013). In that work, fi-
nite state transducers described in Foma (Hulden,
2009) are used to automatically identify the affixes
in English Medical terms and by means of affix
translation pairs, to generate the equivalent terms
in Basque. We observed that the behavior of the
roots in this type of words is similar to prefixes, so,
we will not make distinction between them and we
will name them prefixes. A list of 826 prefixes and
143 suffixes with medical meanings was manually
translated. An evaluation of the system was per-
formed in a Gold Standard of 885 English-Basque
pairs. The Gold Standard was composed of the
simple terms that were previously translated in the
first phase of the algorithm. A precision of 93%
and a recall of 41% were obtained.

In that occasion, only SNOMED CT terms for
which all the prefixes and suffixes were identified
were translated. For example, terms with the pref-
fix “phat” were not translated as this affix does
not appear in the prefixes and suffixes list. For
instance, the “hypophosphatemia” term was not
translated even though the “hypo”, “phos” and
“emia” affixes were identified.

We have improved this work by increasing the
number of affixes and implementing transcription
rules from English/Latin/Greek to Basque.

Figure 6 will help us to get a wider view of
the work exposed. The input term “symphys-
iolysis” is split into the possible affix combi-
nation in the first step (“sym+physio+lysis” or
“sym+physi+o+lysis”). Then, those affixes are
translated by means of its equivalents in Basque
(“sim+fisio+lisi” or “sim+fisi+o+lisi”). And fi-
nally, by means of morphotactic rules, the well-
formed Basque term is composed (in both cases
“sinfisiolisi” is generated).

5 Results

Considering the huge size of the descriptions in
SNOMED CT and to make the translation pro-
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Table 1: Results of the translation.
Disorder Finding Body Structure Procedure

#Synonyms #Matches #Synonyms #Matches #Synonyms #Matches #Synonyms #Matches
ICD-10 mapping 11,227 - 1,878 - 0 - 0 -
In dictionaries 4,804 3,488 1,836 915 5,896 2,992 778 473
ZT Dictionary 1,104 883 367 311 1,812 1,212 293 253
Nursing Dictionary 437 350 340 245 978 725 199 157
Glossary of Anatomy 3 3 10 8 1,982 1,431 2 2
ICD-10 2,434 2,308 216 195 410 370 5 4
EuskalTerm 906 596 442 306 2,346 1,423 202 155
Elhuyar 299 135 956 300 1,090 367 270 91
Morphosemantics 2,620 2,184 705 578 970 779 1,551 1,362
Total 17,627 5,672 4,419 1,493 6,866 3,771 2,329 1,835

Input term: symphysiolysis
Identified affixes: sym+physio+lysis,
sym+physi+o+lysis
Translation of the affixes: sim+fisio+lisi,
sim+fisi+o+lisi
Morphotactics output term: sinfisiolisi

Figure 6: Term translated by means of affix equiv-
alences.

cess easy to handle, we have divided it into hier-
archies. The Clinical finding/disorder hierarchy is
specially populated so we have split it consider-
ing its semantic tags: disorders and findings. In
addition, the terms from the Procedure and Body
Structure hierarchies have been evaluated too.

Before showing the results, we want to remark
some aspects of the evaluation:

• Phase 1: the evaluation has been performed
in terms of quantity, not of quality of the
equivalent terms obtained. As the used re-
sources are dictionaries manually generated
by lexicographers and domain experts, the
quality of the Basque terms is assumed. In
any case, and due to the fact that Basque is in
its standardization process, the orthographic
correctness of the descriptions (see section 6)
will be manually checked in the near future.

• Phase 2: the quality of the generated terms
could be measured extrapolating the results
in the evaluation of the baseline system de-
scribed in subsection 4.2. That is, 93% pre-
cision and 41% recall. The quantity results
are shown considering the improvements de-
scribed in the same subsection.

Table 1 shows the results for the mentioned hi-
erarchies and semantic tags when the translation is

performed using both methods: dictionary match-
ing and morphosemantics. Remind that in a pre-
vious phase a concept level mapping is completed
between SNOMED CT and ICD-10. The first row
in Table 1 labeled as “ICD-10 mapping” shows
that it is relevant only for the Clinical disorders
and findings hierarchy, being the disorder seman-
tic tag the most benefited one with 11,228 equiv-
alences. The remainder of the results is given at
term level.

We made a distinction between the number of
obtained Basque terms (1st column, labeled as
“#Synonyms”) and the number of English terms
translated (2nd column, labeled as “#Matches”).
Let us see the difference between those two
columns looking at the numbers in Table 1. For ex-
ample, in the disorder semantic tag there are 3,488
matches (3,488 original English terms translated),
but the number of obtained Basque terms is 4,804
(adding the number of equivalents of all the dic-
tionaries). The reason is that the same input term
may have synonyms or even the same equivalent
term given by different dictionaries. For example,
for the term “allopathy”, the same term “alopatia”
is obtained in the ZT and Nursing dictionaries (this
equivalence will be counted in both ZT and Nurs-
ing dictionaries rows).

Table 2 shows the number of tokens in the origi-
nal English terms. This table refers not to the con-
cepts, but to the terms in the source SNOMED CT
in English. The first row shows the number of En-
glish terms to which we obtained a Basque equiv-
alent or synonym, the second one the total of En-
glish terms and finally, the last row the percentage
of translated terms.

Table 3 gives the overall numbers of the trans-
lated concepts, in order to take a wide view of the
process done.

Let us see the highlights of the results for each
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Table 2: Results of the translation regarding the number of tokens of the original term.
1 token 2 tokens 3 tokens 4 tokens > 4 tokens Total

Translated Terms 3,315 1,114 538 279 426 5,672
Disorder Terms in total 4,066 22,023 24,036 20,005 37,316 107,446

Percentage 81.53% 5.06% 2.24% 1.40% 1.14% 5.27%
Translated Terms 1,222 158 39 20 54 1,493

Finding Terms in total 1,830 8,837 10,980 9,814 19,106 50,567
Percentage 66.78% 1.79% 0.36% 0.20% 0.28% 2.95%
Translated Terms 1,942 1,416 334 66 13 3,771

Body Structure Terms in total 2,692 11,519 12,575 10,903 21,631 59,320
Percentage 72.14% 12.29% 2.66% 0.61% 0.06% 6.36%
Translated Terms 1,741 80 11 2 1 1,835

Procedure Terms in total 1,982 9,966 15,848 16,578 37,695 82,069
Percentage 87.84% 0.80% 0.07% 0.01% 0.003% 2.24%

Table 3: Overall results.
Disorder Finding Body Structure Procedure

Translated Concepts 14,125 2,777 3,231 1,502
Concepts in total 65,386 33,204 31,105 82,069
Percentage 21.60% 8.36% 10.39% 1.83%

hierarchy or semantic tag:

• 21.60% of the disorders has been translated
(see Table 3). This can be considered a very
good result. The ICD-10 mapping produces
the majority of the translations as it could be
expected in this hierarchy (11,227 synonyms
obtained). In Table 2 the strength of the mor-
phosemantics phase is evident as the 81.53%
of the simple terms is translated.

• The finding semantic tag is the most bal-
anced, as no one of the algorithm phase’s
contribution outlines. The translation of the
8.36% of the concepts is achieved.

• Regarding the results of the Body Structure
hierarchy, Table 1 shows that the Glossary of
Anatomy only contributes in this area. The
10.39% of the concepts get a Basque equiva-
lent.

• In the translation of the Procedure hierarchy
the dictionaries do not help much as shown
in Table 1. In contrast, the mophosemantics
contribution allows to translate the 87.84% of
the simple terms (see Table 2).

6 Discussion

Some general dictionaries as the ZT dictionary
usually contribute in the translation of most of the
terms, while more specialized dictionaries only
provide translations in the terms related to their

domain. For example, both dictionaries, the ZT
dictionary and the Nursing dictionary, obtained the
Basque terms “mikrozefalia” for “microcephaly”
and “metatartso” for “metatarsus”. The ICD-10
mapping contributed mainly in the translation of
the disorders, and the Glossary of Anatomy in the
translation of terms from the Body Structure hi-
erarchy. Sometimes more than an equivalent in
Basque is obtained in the translation. For exam-
ple, for the term “leprosy” we got the equivalents
“legen beltz”, “legen” and “legenar”. Some prob-
lems were detected in the Basque terms regarding
the standard orthography (the ICD-10 was trans-
lated in 1996 and the spelling rules have changed
since then) and the form of the word (some obtain
the word in finite forms, i.e. “abdomena” for “ab-
domen” and other in non finite form, “abdomen”).

To which the terms generated by finite-state
transducers concern, we detected many new af-
fixes from the SNOMED CT terms that do not ap-
pear in our lexicon. Even most of those affixes
will be correctly transcripted by our transducers,
experts insist on enriching the lexicon with new
pairs.

7 Conclusions

We have designed a translation algorithm for the
multilingual terminology content of SNOMED CT
and we have implemented the first two phases. On
the one hand, lexical resources feed our database,
and on the other hand, Basque equivalents are gen-
erated using transducers and medical and biologi-

44



cal affixes.
Dictionaries provide Basque equivalents of any

term length (i.e. unique and multitoken terms)
while transducers get as input unique token terms.

In both translation methods results for the most
populated hierarchies are shown even though they
are applied for all the hierarchies in SNOMED CT.
When using lexical resources, results are promis-
ing and the contribution of the ICD-10 mapping
is remarkable. We obtained the equivalents in
Basque of 21.60% of the disorders.

In any case, as we said before, our objective in
the future is that specialist in medical terminol-
ogy can check the quality of the obtained terms
and correct them with the help of a domain cor-
pus in Basque. A platform is being developed for
this purpose. After the evaluation, and only if it
reaches high quality results, our aim is to contact
SNOMED CT providers to offer them the result of
our work, that at the moment only pertains to the
research area.

Regarding the developed systems evaluation,
the system used in the first phase extracts English-
Basque pairs from dictionaries, so being quite a
simple system, does not need of a deep evalua-
tion. A first evaluation of the system that generates
terms using medical affixes has been presented.
At present, we are evaluating the improvements of
this second system with promising results.

In a near future, we want to implement the re-
mainder of the phases in the algorithm: the use of
syntax rules for term generation, and the adapta-
tion of the machine translation tool. The promis-
ing results in this first approximation encourage us
in the way to semi-automatically generate a ver-
sion in Basque of SNOMED CT.
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Abstract
Semantic Role Labeling (SRL) plays an
important role in different text mining
tasks. The development of SRL systems
for the biomedical area is frustrated by the
lack of large-scale domain specific corpora
that are annotated with semantic roles. In
our previous work, we proposed a method
for building FramenNet-like corpus for the
area using domain knowledge provided by
ontologies. In this paper, we present a
framework for supporting the method and
the system which we developed based on
the framework. In the system we have de-
veloped the algorithms for selecting ap-
propriate concepts to be translated into se-
mantic frames, for capturing the informa-
tion that describes frames from ontology
terms, and for collecting example sentence
using ontological knowledge.

1 Introduction

Semantic Role Labeling (SRL) is a process that,
for each predicate in a sentence, indicates what se-
mantic relations hold among the predicate and its
associated sentence constituents. The associated
constituents are identified and their semantic role
labels are assigned, as in: [TransporterCBG] de-
livers [Entitycortisol] [Destinationto target cells].
SRL could play an important role in text min-
ing tasks such as information extraction, question
answering and text summarization. With the ad-
vent of large resources like FrameNet (Fillmore
et al., 2001) and PropBank (Palmer et al., 2005),
SRL has become a well-defined task with a sub-
stantial body of work and comparative evaluation.
Much of this work has focused on the arguments
of verbs, and has been trained and evaluated on
newswire text.

Recently, work has turned to bring SRL to the
biomedical area (Wattarujeekrit et al., 2004; Tsai

et al., 2006; Dolbey et al., 2006; Bethard et al.,
2008). Biomedical text considerably differs from
the PropBank and FrameNet data, both in the style
of the written text and the predicates involved.
Predicates in the data are typically verbs, biomed-
ical text often prefers nominalizations, gerunds
and relational nouns (Cohen et al., 2008; Kil-
icoglu et al., 2010). Predicates like endocytosis
and translocate, though common in biomedical
text, are absent from both the FrameNet and Prop-
Bank data (Wattarujeekrit et al., 2004; Bethard et
al., 2008; Tan, 2010). Predicates like block, gen-
erate and transform, have been used in biomedical
documents with different semantic senses and re-
quire different number of semantic roles compared
to FrameNet (Tan, 2010) and PropBank data (Wat-
tarujeekrit et al., 2004).

The projects, such as PASBio (Wattarujeekrit
et al., 2004), BioProp (Tsai et al., 2006) and
BioFrameNet (Dolbey et al., 2006), have made ef-
forts on building resources for training SRL sys-
tems in the biomedical domain. PASBio annotated
the semantic roles for 31 predicates (distributed
29 verbs) in style of PropBank. It used a model
for a hypothetical signal transduction pathway of
an idealized cell, to motivate verb choices. Bio-
Prop, also a PropBank-like corpus, annotated the
semantic roles of 30 frequent biomedical verbs
found in the GENIA corpus. BioFrameNet built a
FrameNet-like corpus having 32 verbs and nouns
annotated with the semantic roles. It considers a
collection of GeneRIF (Gene References in Func-
tion) texts that are annotated by the protein trans-
port classes in the Hunter Lab knowledge base. Up
until recently, these corpora are relatively small.

One of obstacles to building FrameNet-like re-
sources is to manually construct large, coherent
and consistent frame sets for the domain. In (Tan
et al., 2012) we argue that we can build large-scale
FrameNet-like resources using domain knowledge
from ontologies. A large number of ontologies

46



have been developed in biomedical area, such as
OBO ontologies (Smith et al., 2007). Many of
them represent the knowledge of domain-specific
events (any activities, processes and states). Al-
though most of the ontologies are controlled vo-
cabularies and do not explicitly describe the at-
tributes of events, this information is implicitly
contained in ontology terms. Together with the
knowledge explicitly represented in the data mod-
els of ontologies the information can guide us in
constructing large, coherent and consistent frame
sets and also ease the task of collecting example
sentences. In next section we describe the back-
ground knowledge and then present how the on-
tological knowledge can be used to build frame-
semantic descriptions. Section 3 describes a gen-
eral framework that supports this ontology-driven
construction of frame-semantic descriptions and
the current system we have developed based on
the framework. Related work is given in section
4. Then we conclude the paper with a conclusion
and the discussion of future work.

2 Ontology and Frame Semantics

Ontology is a formal representation of knowledge
of a domain of interest. An ontology includes
concepts that represent classes of entities within
a domain, and defines different types of relations
among concepts, as well as the rules for combin-
ing these concepts and relations. Most currently
widely used ontologies in the biomedical domain
are controlled vocabularies. The data models es-
sentially contain lists of concepts, and organize
them in an is-a and part-of hierarchy.

In practice, a concept contains one or more
terms that are chosen for naming the concept. A
preferred term is assigned as the name of the con-
cept, and others could become synonyms. Terms
are carefully chosen to clearly and precisely cap-
ture the intended meaning of the entities the con-
cept refer to. The terms are noun or noun phrases.
As showed in the results of the survey of nam-
ing conventions in OBO ontologies (Schober et
al., 2009), multi-word terms are constructed in a
consistent manner. They are created by re-using
strings that appear in the terms already defined in
this or in other ontologies. Although attributes of
the entities belonging to concepts are not explic-
itly described in the data model, they remain im-
plicit in the terms (Stevens et al., 2000). The con-
stituents of the terms might contain the informa-

Table 1: Protein Transport Concepts
GO:0009306 protein secretion
GO:0017038 protein import
GO:0071693 protein transport within extracellular region
GO:0072322 protein transport across periplasmic space
GO:0072323 chaperone-mediated protein transport
across periplasmic space
GO:0042000 translocation of peptides or proteins into
host
GO:0051844 translocation of peptides or proteins into
symbiont
GO:0051808 translocation of peptides or proteins into
other organism involved in symbiotic interaction

tion.
The Gene Ontology (GO) (The Gene Ontology

Consortium, 2000) is the most widely used
controlled vocabulary in the area. It provides
the terms for declaring molecular functions,
biological processes and cellular components
of gene and gene products. Table 1 lists the
names of 8 subclasses of GO:0015031 protein

transport in the is-a hierarchy. The head of a
phrase determines the semantic category of object
or situation which the phrase refer to. Therefore,
the head words of the terms, translocation,
import, secretion and transport, refer to a
”protein transport” category, since the concepts
represent different kinds of ”protein trans-
port”. Other constituents of the terms express
the attributes or properties of the event. For
example, translocation of peptides or

proteins into other organism involved

in symbiotic interaction (GO:0051808),
express the entity (peptides or proteins), the
destination (into other organism) and the con-
dition (involved in symbiotic interaction)
of a protein transport event. These information
are not represented in the model of the ontology.

Frame Semantics (Fillmore, 1985) is the study
of how the words evoke or activate frame knowl-
edge, and how the frames thus activated can be
used to understand the text that contains the words.
Frame semantics assumes that in order to under-
stand the meanings of the words in a language,
we must first have knowledge of the background
and motivation for their existence in the language
and for their use in discourse. The knowledge is
defined in the conceptual structures (frames). In
the FrameNet, the lexicographic application of the
theory, a semantic frame describes an event, a sit-
uation or an object, together with the frame ele-
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ments (FE) that represent the aspects and compo-
nents of the frame. Lexical units (LU) that be-
long to the frame, are the words that evoke the
frame. Each frame is associated with example
sentences within which LUs and FEs are marked.
The FrameNet builds frames by collecting and
analysing the attestations of words with semantic
overlap from the British National Corpus (BNC).

We propose that the domain knowledge con-
tained in ontologies can instruct us in building a
FrameNet-like corpus, without having an existing
large scale domain corpus like BNC. The con-
struction starts with creating large coherent and
consistent frame sets and then collecting associ-
ated example sentences. The information implic-
itly contained in ontology terms together with the
knowledge represented in the models of ontologies
provide the background knowledge that is required
to building the frame-semantic descriptions. After
the frames are created, associated example sen-
tences can be collected using knowledge based
search engines for biomedical text, and then be an-
notated.

For example, a frame Protein Transport can be
characterized based on the concept GO:0015031

protein transport. In the frame, by studying
the terms of the subclasses and descendants of the
concept (such as those in table 1), the aspects and
components of the frame (such as entity, destina-
tion and condition), and the domain-specific words
evoking the frame (like translocation, import, se-
cretion and transport) are captured. Furthermore,
we can identify a inheritance relation between this
frame and the frame Transport built based on the
concept GO:0006810 transport, since there is
the is-a relation between GO:0006810 transport

and GO:0015031 protein transport in the GO.
Now a complete frame-semantic description for
Protein Transport, including FEs, LUs, and relations
to other frames, is obtained after all the related
concepts and relations are studied.

3 The System

In this section we present a framework that
supports this ontology-driven construction of
FrameNet-like corpus and describe the current
system we have developed based on the frame-
work.

Figure 1: A Framework of Ontology-driven Build-
ing Corpus

3.1 Framework

In Fig 1 we propose the framework for support-
ing the ontology-driven construction of domain
corpus with frame-semantics annotations. Before
starting the building process, a sub-ontology of
biomedical events is extracted from an ontology
or an ontology database in which relations be-
tween ontology terms are identified. Firstly, con-
cepts representing biomedical events, are gath-
ered. A concept represents a biomedical event
if it is a concept that is classified to a type of
event in top-domain ontology (like the semantic
type T038 Biologic Function in UMLS seman-
tic network (Bodenreider, 2004)), or is a subclass
or descendant of a concept that has been identi-
fied as a representation of biomedical event, or can
be defined as a concept describing event based on
its definition. After the concepts are identified, an
event sub-ontology, including the concepts and the
relations between them in original ontologies, is
extracted. A root is assigned to the sub-ontology
if the concepts are from more than one sub-trees
in original ontologies.

The concept selection tool suggests the appro-
priate concepts that will be translated into frames.
The algorithm may consider the characteristics
that indicate the generalness of a concept as the
selection criteria, such as the location of the con-
cept in the hierarchy and the number of subclasses
and descendants the concept has. Further, the con-
cept could be manually identified by domain ex-
perts. After a concept is selected, the frame de-
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scribing the event represented by the concept, is
created. Relations between frames are decided ac-
cording to the relations between the corresponding
concepts. The name and definition of a frame is
edited by domain experts based on the definition
of the concept.

The frame description is accomplished by
studying the sub-tree under the concept. After col-
lecting the terms in the sub-tree, the parsing term
tool analyses the compositional structure of the
term, which elucidate the meaning of a term. The
tool may derive the compositional structure of a
term based a syntax parse of the term. LUs and
FEs then are suggested based on the compositional
structures. A final frame-semantic description is
decided with interactions to domain experts.

The associated example sentences of a frame
could be collected using semantic search engines
for biomedical text, like GoPubMed (Doms and
Schroeder, 2005). Such search engines annotate
documents with concepts of domain ontologies
by mapping phrases in text of documents to con-
cepts. Based on this underlying domain knowl-
edge search engines are able to maximize preci-
sion and recall of the documents that the user is
interested to collect specific information. There-
fore, example sentences can be collected from the
documents annotated by the concepts in the sub-
tree used to characterize the associated frame. In
the end annotating example sentences with LUs
and FEs of the associated frame is completed by
domain experts under the assistance of annotation
tools.

3.2 The System

We have developed a system based on the frame-
work for building FrameNet-like corpus using do-
main ontologies.

An Event Sub-Ontology

In the current system we experimented with the
GO biological process ontology (data-version:
2012-10-27). In UMLS semantic network the
root node of the ontology biological process

(GO:0008150) is classified into the semantic type
T038 Biologic Function . The ontology con-
tains 24,181 concepts and 65,988 terms. The
terms include the names of the concepts and
their exact synonyms. Other synonyms (broad,
narrow and related synonyms) are not included,
since only terms intending to precisely capture the
meaning of a concept are considered. For ex-

ample, fat body metabolism, a broad synonym
of GO:0015032 storage protein import into

fat body, describes a much broader activity than
that belongs to the concept.

Method for Concept Selection

Different types of frames are used to describe dif-
ferent situations. Frames can range from highly
abstract to very specific. To assist the user in se-
lecting appropriate concepts to be translated into
frames, the system provides the structure informa-
tion of the ontology, and the definitions of the con-
cepts and their locations in the ontology.

The event ontology O can be represented as a
directed graph G. Graph elements are considered
to calculate the structure information of O and the
location of the concepts in G including,

- the root, the node having no outgoing is-a
arcs. The graph G has one root.

- a leaf node , a node having no ingoing is-a
arcs in the graph.

- sibling nodes, nodes connected to the same
node through is-a arcs.

- descendant nodes of a node ni, nodes in the
sub-tree rooted at ni.

- a path pij , any sequence of directed edges
from the node ni to the node nj .

- a generation gi, the set of all sibling nodes
connected to the node ni.

- depth, the cardinality of a path
- breadth, the cardinality of a generation.

As the structure information of O we calculate
the number of nodes in G, the average and maxi-
mal shortest paths from the root to leaves, the av-
erage and maximal breadth of the generations hav-
ing different distances from the root. To show the
location of a concept in G, we calculate the short-
est path from the concept to the root, and the num-
ber of its descendants and siblings.

The user selects appropriate concepts based
on the above information, and may also using
their own domain knowledge. For example, a
frame could be constructed based on the concept
GO:0006810 transport. The structural informa-
tion as showed in table 2 suggests that the concept
is richly described in the ontology and it covers a
large set of related events. Further, the user (a do-
main expert) himself/herself could be aware that
transport events have been studied in the area over
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#node depth of #sibling avg. depth max. depth avg. max. #leaf
shortest path of SPR of SPR breadth breadth.
to root (SPR) from leaves from leaves

biological process 24181 - - 6.5 14 3.7 413 12871
transport 1210 2 5 5.9 14 3.5 41 754
protein transport 182 3 41 5.7 9 4.2 40 132

Table 2: The structural information of GO biological process ontology (data-version: 2012-10-
27) and the sub-trees under the concept GO:0006810 transport and GO:0015031 protein
transport.

the last 30 years. Most cellular processes are ac-
companied by transport events. For understanding
biomedical texts, transport events are among the
most important things to know about.

Method for Parsing Terms

After a concept is selected, the terms in the sub-
tree rooted at the concept are collected to be anal-
ysed for building frame description. In the current
system the analysis is separated into three steps.

Terms are noun phrases (NP). The first step is to
tokenize phrase string into an ordered sequence of
an atomic (non-decomposable) token. The phrase
string is split on white-space characters and non-
alphanumeric characters. White-space character
are discarded, but non-alphanumeric characters
are preserved and treated as special word tokens.
For example, ”alpha-glucoside transport ”
(GO:0000017) is tokenized into {alpha, -, gluco-
side, transport}

The second step is to identify the head word of
NP. We assume that the head of a phrase is com-
posed of only one token. A naive Bayes classifier
classifies a token as the head of a phrase, if the
highest value for the posterior probability of being
the head word given the token is obtained among
all the tokens in the phrase. The posterior prob-
ability of being the head word w given token t is
estimated using Bayes rule (Mitchell, 1997):

P (w|t) =
P (w)P (t|w)

P (t)

As P (t) is independent of w being the head, it can
be ignored. This gives: P (w|t) = P (w)P (t|w).

A token is either the head word or not the head
work of a phrase, so P (w) is a constant. P (t|w)
is estimated by the feature probabilities of token t.
Assuming that the features xi are all conditionally
independent of one another, we have

P (t|w) =
n∏

i=1

P (xi = aik|w)

P (xi = aik|w) is estimated using the maximum
likelihood estimation method. Let n(xi = aik, t)
be the number of occurrences of token t where at-
tribute xi is aik and t is a head word, and n(w) be
the number of occurrences of the token t where t
is a head word. Then P (xi = aik|w) is estimated
by

P (xi = aik|w) =
n(xi = aik, w) + λ

n(w) + λ|V |
where λ is the earlier defined Laplace smoothing
parameter, and |V | is the number of distinct values
of the attribute xi.

Attributes of a token t in a phrase p include,

• token string,
• the part-of-speech (POS) of t in p, (the POS

of t in p is assigned using MedPost POS Tag-
ger (Smith et al., 2004)),
• the POS of the tokens before and after t in p,
• the length of p (the number of tokens in p),
• the position of t in p.

We have evaluated the method on identifying
the heads of terms in GO biological process on-
tology. The length of terms in the ontology ranges
from 1 to 39. For each length, 10% of terms are
randomly selected as training data if it is applica-
ble. The result of 10-fold cross validation showed
that 93.9% of the heads are correctly identified on
average.

A term, a NP, has a noun as its head. The
system collects other forms (such as verb, objec-
tive, etc.) having the same meaning as the head
by looking up the SPECIALIST Lexicon (Boden-
reider, 2004), a general English lexicon including
many biomedical term. Words in different forms
are all suggested as predicates for frame.

The last step is to capture the information hid-
den in modifiers in phrases. Modifiers describe the
head word of a phrase and makes its meaning more
specific. They modify phrases by adding informa-
tion about ”where”, ”when”, or ”how” something
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Table 3: Major Modifier Types in Ontology Terms
Pre-modifiers head Post-modifiers
attributive adjective noun prepositional phrase
ed-participial adjective ed-clause
ing-participial adjective ing-clause
noun to-clause

appositive noun phrase

is done. The information gives the suggestions
on what FEs to be defined for a frame. In a NP,
the head word is preceded by a determiner or one
or more pre-modifiers, and may also be followed
by one or more post-modifiers. The major struc-
tural types of pre-modifiers and post-modifiers are
given in table 3. We observed that determiners and
relative clauses rarely appear in ontology terms.

The number of FEs is limited in a frame. The
information about the major attributes of event ap-
pears frequently in the terms. For example, in the
sub-tree under GO:0006810 transport, 92.6%
terms contain the entity undergoing the ”transport”
event, and 19.3% terms describe the destination
(see Table 4). Therefore, although there maybe
a large number of terms in a sub-tree, a very small
number of the terms can be used to capture the
major attributes of the event.

To facilitate the user in identifying the FEs,
the system collects a smallest set of terms cover-
ing all the attributes of the event that have been
described in the sub-tree. The attributes of the
event reside in different modifier types appearing
in the terms. Further, prepositional phrase mod-
ifiers starting with different prepositions may de-
scribe different properties. The algorithm for col-
lecting the term set is given as follows,

T ={the set of terms in the sub-tree} ;
M={the set of modifier types m} ;
P, L = ∅ ;
repeat

l = the longest t ∈ T ;
foreach m in l do

if ( m is a prepositional phrase and m
starts with a preposition p /∈ P ) or m /∈ P
then

add l to L ;
foreach m,p in l do

if m, p /∈ P then
add m, p to P ;

end
break ;

end
remove l from T ;

until T = ∅ or length(l) = 1;
return L

Method for Collecting Example Sentences

The example sentences are retrieved from the
PubMed/MEDLINE database by using the GoP-
ubMed. The sentences to be annotated, are al-
ways the most relevant and from the latest publi-
cations. For a LU, we acquired sentences by using
the GO terms with the head from which the LU is
derived. The query starts from using the most gen-
eral GO terms. In cases when only specific GO
terms are available and the number of query re-
sults is too small, the query term is generalized by
removing modifiers from terms. For example, the
lexical units, release.n and release.v, are de-
rived and only derived from renin release into

blood stream (a synonym of GO:0002001 renin

secretion into blood stream). No query re-
sult returns for the GO term (AND operator is used
to combine the tokens in the term in the query).
The general term ”protein release” is used as the
query term instead.

Annotation Tool

The current system contains a tool that sup-
ports manual annotation following the FrameNet’s
guidelines described in (Ruppenhofer et al., 2005).

File Format

The corpus is stored in XML files using the same
format as the FrameNet. The correspondences be-
tween frames and ontology concepts are stored in
a RDF file. Such relations could benefit integra-
tions of different lexical resources and/or knowl-
edge bases in the future. A correspondence is en-
coded as follows:
<correspondence id="1">
<concept rdf:about=
"http://www.geneontology.org/go#GO:0006810"/>
<frame rdf:about=
"http://hj.se/ontobiofn/frames#0000001"/>
<comment/>
</correspondence>

It provides the features: concept (the URI of
some concept of an ontology); frame (the URI of
the frame translated from the concept); comment
(the comment on this correspondence given by the
user); and an id assigned to this correspondence.

3.3 Evaluation of the System
We have successfully built a FrameNet-like cor-
pus using the method of ontology-driven construc-
tion (Tan et al., 2012). The construction is done
manually by 2 master students with biology back-
ground. The corpus covers transport events in the
domain. The GO is used as the source ontology for
domain knowledge. The corpus contains 2 frames.
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TE TO TDS TC TL TP TT TDR TA TPL
Protein Transport 99.5% 8.6% 37.4% 16.4% 7.1% 4.6% 1.0% 0.3% 0.2% 0%
(581 terms) (578) (50) (159) (95) (41) (27) (6) (2) (1) (0)
Transport 92.6% 12.2% 19.3% 9.9% 5.7% 7.3% 1.9% 1.5% 1.8% 0.36%
(2235 terms) (2070) (272) (432) (221) (127) (164) (43) (34) (40) (8)

Table 4: The percentage of the GO terms that indicate the FEs (the number of GO terms). FEs are Transport Entity (TE),

Transport Origin (TO), Transport Destination (TDS), Transport Condition (TC), Transport Location (TL), Transport Path

(TP), Transport Transporter (TT),Transport Direction (TDR), Transport Attribute (TA), Transport Place (TPL).

Table 5: Time for Building the Corpus
using system manual

construct frames 2 days 2 weeks
gather and annotate
example sentences 2.5 weeks 3 weeks

The Transport frame follows the definition of the
GO concept, GO:0006810 transport (Tan et al.,
2012). It has a sub-frame Protein Transport, which
characterizes transport events of proteins (Tan et
al., 2011). It follows the definition of GO:0015031
protein transport. To accomplish the descrip-
tion of the two frames, 2235 terms and 581 terms,
respectively, were collected and analysed from the
GO. Based on the background knowledge implic-
itly described in the terms, 10 FEs are identified
for the frame Transport (inherited by the frame Pro-
tein Transport), and 129 LUs are collected. Max-
imally for each LU 10 annotated sentences are
gathered. Totally, 955 example sentences were re-
trieved from PubMed and annotated.

We evaluate the effectiveness and efficiency of
the system. 2 different master students are asked
to build a FrameNet-like corpus covering transport
and protein transport events using the method. The
GO is also provided as the source ontology. The
2 students have biology background and have the
knowledge of the FrameNet and ontology. Both
students correctly complete the task using the sys-
tem in the evaluation. They build the 2 frames
Transport and Protein Transport, and construct the
same frame descriptions using the domain knowl-
edge from the GO. They are also required to max-
imally collect and annotate 10 sentences for each
LU. The set of the example sentences are not ex-
actly the same set of sentences chosen in the pre-
vious corpus. Table 5 shows the time they use on
average and the time spent in the manual construc-
tion.

4 Related Work

Interfacing ontologies and lexical resources has
been initiated in several work (Guarino, 1998;
Gangemi et al., 2003; Niles and Pease, 2003).
The work in (Gangemi et al., 2003; Niles and
Pease, 2003) has attempted to reorganize Word-
Net’s top-level synset taxonomy using ontology
concepts. More recently, the FrameNet project
links FrameNet’s semantic types to ontology con-
cepts, to constrain the filler types of frame el-
ements for specific domains (Scheffczyk et al.,
2006). It is the first step of their work aiming at
improving FrameNet capability for deductive rea-
soning with natural language. The authors suggest
that the alignment between lexicons and ontolo-
gies could restructure the lexicon on the basis of
ontological-driven principles, and enables ontolo-
gies to be used automatically by natural language
processing (NLP) applications.

5 Conclusion

In this paper we present our method for building
FrameNet-like corpus for biomedical area start-
ing with use of ontological domain knowledge.
Ontological knowledge can lead to well-defined
semantics exposed on the corpus, which can be
very valuable in NLP and text mining applications.
We have developed a framework of supporting the
method and implemented a system based on the
framework. In the current system we developed
the algorithms for selecting appropriate concepts
to be translated into semantic frames, for capturing
the information that describes aspects and compo-
nents of frames from ontology terms, and for col-
lecting example sentence using ontology concepts.

In the future we will continue to extend the cor-
pus using ontological knowledge. The event ontol-
ogy to be used as domain knowledge will include
terms from different ontologies. We will evaluate
our system when it deals with different ontologies
and their terms. Another direction of the future
work is to investigate how the ontological knowl-
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edge bundled with the corpus are used by NLP and
text mining applications.
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Abstract 

Biomedical relations play an important role in 
biological processes. In this work, we combine 
information filtering, grammar parsing and 
network analysis for gene-disease association 
extraction. The proposed method first extracts 
sentences potentially containing information about 
gene-diseases interactions based on maximum 
entropy classifier with topic features. And then 
Probabilistic Context–Free Grammars is applied 
for gene-disease association extraction. The 
network of genes and the disease is constituted by 
the extracted interactions, network centrality 
metrics are used for calculating the importance of 
each gene. We used breast cancer as testing disease 
for system evaluation. The 31 top ranked genes and 
diseases by the weighted degree, betweenness, and 
closeness centralities have been checked relevance 
with breast cancer through NCBI database. The 
evaluation showed 83.9% accuracy for the testing 
genes and diseases, 74.2% accuracy for the testing 
genes. 

1 Introduction 

Since the start of Human Genome Project in 
1990, over 40 kinds of organism genome have 
been sequenced. Biological databases expand 
rapidly with the exponential growth of biological 
data. For instance, until now, over 260,000 
named organisms have their nucleotide 
sequences in the GenBank (Benson et al. 2008) 
which integrates data from the major DNA and 
protein sequence. However, data is not 
information. Compared with situations before 
2003, the key problem today has turned to 
methods of knowledge extraction. Understanding 
the role of genetics in diseases is one of the 
major goals of the post-genome era. The 
expanding rate of knowledge in gene–disease 

associations can hardly match up with the growth 
of biological data. It takes time before new 
discoveries are included in the databases such as 
Online Mendelian Inheritance in Man (OMIM), 
and most of the information represented in these 
databases is manually collected from literature. 
    To address this challenge, we proposed an 
automatic gene-disease association extraction 
approach based on text mining and network 
analysis. We combine information filtering, 
grammar parsing and network analysis. We 
started by calculating main topics of each 
sentences in the corpus based on supervised 
Latent Dirichlet Allocation (sLDA) model (Blei 
and McAuliffe 2007). The most probable topics 
derived from sLDA model for each sentence are 
used as features for training maximum entropy 
(MaxEnt) (Manning and Schutze, 1999) 
classifier, which extracts sentences potentially 
containing information about gene-diseases 
interactions. After that, Probabilistic Context–
Free Grammars (PCFGs) (Klein and Christopher 
2003) is applied for sentence grammar parsing. 
Based on the syntactic tree of each sentence, we 
extract paths between specific entities such as 
diseases or genes. The network of all candidate 
genes and the disease is constituted by the 
interactions extracted from the sentences in the 
corpus. Our main hypothesis in network analysis 
is that the most important and the most central 
genes in an interaction network are most likely to 
be related to the disease. Last, network centrality 
metrics are used for calculating the importance 
of each gene.  
The rest of this paper is organized as follows. 

Section 2 surveys related work. In Section 3, we 
introduce the proposed approach of extracting 
interactions from literature. Section 4 presents 
gene-disease interaction network analysis. And 
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then Section 5 presents and discusses the 
experimental results. Lastly we conclude this 
paper and discuss future work in Section 6. 

2 Related Work  

Much effort is currently spent on extracting 
gene–disease associations (Özgür et al. 2008; 
Chun et al. 2006). Biomedical relation extraction 
techniques basically include two branches: 
interaction database based methods and text 
mining methods. Interaction database based 
methods rely on the availability of interaction 
databases, such as OMIM, MINT (Zanzoni et al. 
2002), IntAct (Kerrien et al. 2012), BIND (Bader 
et al. 2003), which predict interactions between 
entities using sequence, structural, or 
evolutionary information (Krallinger, Leitner, 
and Valencia 2010). Although these databases 
host a large collection of manually extracted 
interactions from the literature, manually curated 
databases require considerable effort and time 
with the rapid increasing of biomedical literature.  
 Since most biological facts are available in 
the free text of biomedical articles, the wealth of 
interaction information provided in biomedical 
articles motivated the implementation of text 
mining approaches to automatically extract 
biomedical relations. Text mining approaches to 
gene–disease association extraction have shown 
an evolution from simple systems that rely solely 
on co-occurrence statistics (Adamic et al. 2002; 
Al-Mubaid and Singh 2005) to complex systems 
utilizing natural language processing techniques 
and machine learning algorithms (Freudenberg 
and Propping 2002; Glenisson et al. 2004; Özgür 
et al. 2008). Well-known tools for discovering 
gene–disease associations include DAVID 
(Huang et al. 2009), GSEA (Subramanian et al. 
2005), GOToolBox (Martin et al. 2004), rcNet 
(Huang et al. 2011) and many others. However, 
in many cases, since the existing annotations of 
disease-causative genes is far from complete 
(McKusick 2007), and a gene set might only 
contain a short list of poorly annotated genes, 
existing approaches often fail to reveal the 
associations between gene sets and disease 
phenotypes (Huang et al. 2011). 
    Network-based approaches (Wuchty, Oltvai, 
and Barabási, 2003; Schwikowski et al. 2000; 
Chen et al. 2006) is performed by assessing how 
much genes interact together and are close to 
known disease genes in protein networks. 
Relation extraction among genes is the 
fundamental step for gene-interaction network 

creation. Recently, syntactic analysis has been 
considered for relation extraction, and different 
parsing grammars have been applied. Temkin 
and Gilder (2003) used a full parser with a 
lexical analyzer and a context free grammar 
(CFG) to extract protein-protein interactions. In 
Yakushiji et al. (2005)’s work, they proposed a 
protein-protein interaction extraction system 
based on head-driven phrase structure grammar 
(HPSG). Although the pattern generation is 
complicated, the performance is not satisfactory. 
In addition, dependency grammar is used 
frequently in this domain. Erkan et al. (2007) 
proposed a semi-supervised classification for 
extracting protein interaction sentences using 
dependency parsing. Katrin et al. (2007) defined 
some rules based on dependency parse tree for 
relation extraction. The problem of those systems 
using dependency parse is that they cannot treat 
non-local dependencies, and thus rules acquired 
from the constructions are partial (Yakushiji et al. 
2005). Differently, in this work, we apply 
sentence filtering based on topics and phrase 
structure parsing for relation extraction. The 
extracted sentences potentially contain 
information about gene-diseases interactions. 
Phrase structure grammars are based on the 
constituency relation, as opposed to the 
dependency relation associated with dependency 
grammars. Phrase structure parsing is full 
parsing, which takes into account the full 
sentence structure. 
 In addition, many researches (Aerts et al. 
2005; Chen et al. 2009; Ma et al. 2007; Hutz et al. 
2008; Morrison et al. 2005; Özgür et al. 2008) 
used an initial list of seed genes to build a 
disease-specific gene-interaction network, and 
thus they are biased in favor of the seed genes, 
consequently the results also depend on the 
pickup seed genes.  

3 Extracting interactions from 

literature  

3.1 The Corpus 

We used 44,064 articles from PubMed Central 
(PMC) Open Access which is a free full-text 
archive of biomedical and life sciences journal 
literature. All articles were extracted by querying 
the keyword of “breast cancer”. We applied a 
segmentation tool Splitta for segmenting articles 
into sentences which includes proper 
tokenization and models for high accuracy 
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sentence boundary detection with reported error 
rates near 0.25% coded by Gillick (2009). 
A gene name dictionary was built from 

OMIM database. The disease name dictionary 
was built based on Genetic Association Database 
(GAD) which is an archive of human genetic 
association studies of complex diseases and 
disorders. 

3.2 Key sentences extraction 

We applied MaxEnt classifier with topic features 
for key sentences extraction. The extracted 
sentences potentially contain information about 
genes and breast cancer interactions. 
A Latent Dirichlet Allocation (LDA) model 

was used to infer topics of sentences. Three most 
probable topics of each sentence were put into 
trained MaxEnt classifier as features for 
extracting sentences that potentially contain 
interaction relationship between genes and 
diseases. 

3.2.1 Key words annotation 
We assume that each sentence indicating 
interactions should contain at least one gene and 
target disease name. Key words are the words 
increasing possibility of sentence containing 
interaction relationships, such as genes and 
diseases. As mentioned above, we built the gene 
name dictionary with data from OMIM database 
and disease name dictionary from Genetic 
Association Database (GAD). All gene names 
and disease names were considered as key words. 

3.2.2 Topic model based on Gibbs Sampling  
Latent Dirichlet Allocation (LDA) was applied 
based on Gibbs Sampling method in our system. 
Compared with algorithm obtaining approximate 
maximum-likelihood estimates for topics-words 
distribution and the hyperparameters of the prior 
on documents-topics distribution given by Blei, 
Ng and Jordan (2002), Gibbs Sampling method 
doesn’t need to explicitly represent the model 
parameters which effect on the final results 
(Griffiths, 2002). 
For a word w  in a specific article, the 

possibility it belongs to topic j  can be given by : 

( | , ) ( | , , ) ( | )− − − −= ∝ = =i i i i i i i iP z j z w P w z j z w P z j z  (1) 

where 
iz  represents current topic, 

iz−  

represents all topics except for i , w represents 
all words in the article, 

iw  represents current 

word and 
iw−
 represents all words except for 

iw . 

Formula (1) could be represented as follow 
after derivation: 
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where )(
,
•

− jin  represents count of words belong 

to topic j  except for current word. )(
,
iw

jin−  

represents count of word 
iw  belong to topic j  in 

the article except for current one. )( idn  represents 

total of words in article 
id , while 

)(
,
id

in •−
 represents 

count of words in document 
id  not including the 

current one. α  and β  are hyperparameters that 

determine extent of smooth of this empirical 
distribution, and how heavily this distribution 
can be chosen to give the desired resolution in 
the resulting distribution. W  stands for count of 
words while T  stands for count of topics. 

3.2.3 Training of topic model 
We randomly selected sentences from 8000 
documents in our corpus as training set and set 
number of topics 

K
as 10. Topic that contains most 

words in gene name dictionary and disease name 
dictionary was treated as a key topic. Then we 
manually assigned each word in gene name 
dictionary or disease name dictionary to key 
topic, and each word doesn’t belong to the two 
dictionaries was assigned to the most probable 
topic of itself. 

3.2.4 Prediction of key sentences 
The sentences containing interactions among 
genes or diseases were marked as ‘Key’ and 
others were marked as ‘None’. A MaxEnt 
classifier 1  was trained based on the topic 
distribution.  

3.3 Extracting interactions from key 

sentences  

In order to extract interactions from sentences, 
we used phrase structure parsing which generates 
parse tree of a sentence that can be analyzed for 
relationships among words. Stanford parser tool2 
(de Marneffe et al. 2006) is employed for 
sentence parsing. Figure 1 shows an example of 
phrase structure parse tree. 
We extracted interactions by depth-first 

search in the parse tree. Each path between 
keyword nodes (e.g. gene or disease) and the root 
node were collected. A list of interaction verbs 

                                                           

1 http://morphix-nlp.berlios.de/manual/node36.html 
2 http://nlp.stanford.edu/software/stanford-
dependencies.shtml 
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were compiled from VerbNet3, which consists of 
1048 verbs. We captured interactions from the 
paths which contain an interaction verb. 

 

Figure 1. Part of the phrase structure parse tree of 
the sentence “AA, an inhibitor of p300, can suppress 
AR and its target genes, which can induce cells cycle 
arrest and apoptosis of Lncap cells through AR 
signaling.” 

For instance, two genes ‘AA’ and ‘AR’ could 
be extracted from sentence “AA, an inhibitor of 
p300, can suppress AR and its target genes, 
which can induce cells cycle arrest and apoptosis 
of Lncap cells through AR signaling”. The path 
from ‘AA’ to ‘AR’ in the syntactic tree is 
“NP(AA) ->NP ->NP ->S ->VP(can) -
>VP(suppress) ->NP ->NP ->NP(AR)”, where 
‘suppress (VP)’ is an interaction verb. Therefore, 
we consider there is a ‘suppression’ interaction 
between ‘AA’ and ‘AR’. 

4 Interaction network analysis 

The extracted interactions can be represented by 
an adjacency matrix, where 

1, =jiA
 if there is an 

edge between node i  and j , and 
0, =jiA

 if there 

is no edge between node i  and j . We establish 

disease-specific interaction network through 
searching for nodes within 3 distance unit from 
the target disease node. To gain the most related 
gene of the target disease, Centrality approach is 
used for calculating correlation of each gene 
based on its weight in this specific disease 
network. 

4.1 Degree centrality 

Degree centrality represents central tendency of 
each node in the network, the more direct 
connects it has, the more power it has in the 
network and so the more important it is. The 
degree centrality )(vCD

 of node v  is calculated 

as follows.  

                                                           

3 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html 
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4.2 Betweenness centrality 

Betweenness centrality reflects the ability of a 

node taking control of other nodes’ 

communication and the capability of controlling 

resources in the network. The more nodes that 

shortest paths pass through, the more 

communications of other nodes depend on it, and 

the more betweenness centrality the node has. 

The betweenness centrality )(vCB
 of node v  is 

calculated as follows: 
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where 

stσ  is the total number of shortest paths 

from node s  to t  and )(vstσ  is the number of 

paths that pass through v . 

4.3 Closeness centrality 

Closeness centrality reflects the ability a node 
has of not being controlled by other nodes. The 
closeness centrality of a node measures how 
close it is to other nodes in the whole network. 
The smaller the total distance from a node to 
other nodes in the network, the less dependency 
the node has on nodes in the network, and thus 
the higher its centrality is. The closeness 
centrality )(vC c

 of node v  is calculated as 

follows. 

∑
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where ),( tvdG
 represents distance from node v  

to node t . 

4.4 Weighted centrality 

Formula (6) is applied to assigne weights for 
each measure of centrality equally:  
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where 
DC  represents the largest degree 

centrality of all nodes in the network, 
BC  

represents the largest betweenness centrality of 
the whole network and 

CC  represents the largest 

closeness centrality among all nodes. 

5 Results and Discussion 

As a common disease with high incidence, breast 
cancer gains much attention among researchers 
and has a rather large literature accumulation. 
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We used breast cancer as testing disease for 
system evaluation.  
The corpus contains 3,209,385 sentences 

from 44,064 articles. All articles were extracted 
from PMC with keyword of “breast cancer” 
(search date: March 1 2013). The gene name 
dictionary consists of 19,195 gene names 
searched from OMIM database while the disease 
dictionary consists of 5644 disease names from 
Genetic Association database (GAD).  

5.1 Evaluation on key sentence extraction 

MaxEnt classifier is applied with topic features 
for key sentences extraction. We randomly 
selected sentences from 8000 documents in our 
corpus as training set. We set number of topics 
K  as 10. The results of topics-words distribution 
predicted by Gibbs Sampling based topic model 
and topic correction are shown in Table 1.  

Topic0 Topic1 Topic2 Topic3 Topic4 

molecul
ar 

use increase cancer cluster 
receptor analysis rate organis

m 
compari
son body table exhibit gene melanog
aster clone differen

ce 
consider MLL identical 

organis
m 

significa
nt 

evolutio
n 

HBB place 
mutator set degree DLC1 share 
band map due GRXCR

1 
rDNA 

expressi
on 

group position XRCC1 parental 
replicate score distance GST01 pattern 

Topic5 Topic6 Topic7 Topic8 Topic9 

indicate observe control chromos
ome 

growth 
test Demons

trate 
express carry medium 

line dominan
t 

suppress
or 

male assay 
determi
ne 

fact elegans female conditio
n experim

ent 
reductio
n 

germlin
e 

cross colony 
represen
t 

weak deficien
cy 

homozy
gous 

culture 
measure strong distinct segregat

ion 
syntheti
c derive enhance

r 
close recover survival 

conversi
on 

still segment hybrid cell 

Table 1: The results of topics-words distribution 
predicted by Gibbs Sampling based topic model and 

topic correction. 

There are totally 1037,637 key sentences were 
extracted, and the extraction precision is 66.4%. 

5.2 Interaction network analysis  

5.2.1 Degree centrality 
The breast cancer related gene-interaction 
network consists of 4636 distinct gene nodes and 
19,972 interactions extracted among them. 
Figure 2 illustrates degree centrality of the 
interaction network of breast cancer. Different 
color and size indicate different degree centrality 
of each node. The node in red with the largest 
degree centrality 1069 in the figure represents 

breast cancer. This indicates that 1069 genes 
have direct interactions with breast cancer 
referred in all sentences. 

Figure 2. Degree centrality of the gene-breast cancer 
interaction network. 

Figure 3 shows the relationship between each 
degree centrality and its count of nodes. 

 

Figure 3. The relationship between each degree 
centrality and its count of nodes. 

As shown in Figure 3, the node with 
maximum degree centrality 1069 is target disease 
while most of other nodes distribute from degree 
centrality of 1 to 10 which are considered as least 
related genes. Table 2 lists part of ranks of all 
1069 genes in the order of degree centrality. 

Gene Degree Centrality 

TNF 359 
EGFR 342 
CRC 301 
IL-6 245 
EGF 200 
BRCA1 195 
HR 193 
GAPDH 190 
AR 188 
ATM 148 
TP53 138 
BRCA2 94 

Table 2: Part of ranks of all 1069 genes in the order of 
degree centrality. 
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From Table 2, we can find that BRCA1 and 
BRCA2 are known familial breast cancer genes 
which have gained authority validation. 
Although their mutations are not common in 
sporadic breast cancer patients, they accounts for 
approximately 80% to 90% among all hereditary 
breast cancer. 
TP53 is a kind of mutant gene with high 

penetrance which has also been verified 
association with breast cancer in genetics. 
Moreover, ATM and AR are low frequency 
genes belong to specific loci, about 5% to 10% 
of breast cancer relate to at least one or more 
changes in the susceptibility genes mentioned 
above. 
The result of CRC in contrast is more like 

some kind of institution's name: Cooperative 
Research Centre for Discovery of Genes for 
Common Human Diseases or the abbreviation of 
another disease: Colorectal Cancer (CRC). There 
haven’t been any evidence reveals direct 
correlation between CRC gene and breast cancer, 
we can only consider this as a misrecognition. 
In addition to genes described above, other 

genes in the list have also been verified in 
authoritative sites or papers. These results 
preliminarily verified the accuracy of our system. 

5.2.2 Betweenness centrality 

Figure 4 illustrates betweenness centrality of the 
interaction network of breast cancer. Color and 
size of each point reflect betweenness of the 
node, which indicate the ability to control other 
nodes in the network. Nodes in green have the 
minimum betweenness centrality while the color 
of jade-green shows larger betweenness 
centrality. Yellow nodes indicate betweenness 
centrality larger than jade-green and orange 
represents the largest.  

Figure 4. Betweenness centrality of the gene-breast 
cancer interaction network 

Figure 5 shows relationship between each 
betweenness centrality and its count of neighbors. 

 

Figure 5. Relationship between each betweenness 
centrality and its count of neighbors. 

As shown in Figure 5, the more adjacent nodes, 
the larger betweenness centrality. The node with 
most neighbors of 1068 has maximum 
betweenness centrality of 0.35 while most nodes 
in the network have the count of neighbors from 
0 to 200 with their betweenness centrality 
between 0 and 0.04. Table 3 lists part of ranks of 
all 1069 genes in the order of betweenness 
centrality. 

Gene Betweenness Centrality 

TNF 0.05981684 
EGFR 0.05912439 
CRC 0.04896846 
AR 0.02892632 

GAPDH 0.02877095 
AD 0.02863766 
IL-6 0.02545676 
HR 0.02381936 

BRCA1 0.02202402 
TP53 0.01603455 
ATM 0.01566084 
BRCA2 0.00507333 

Table 3: Part of ranks of all 1069 genes in the order of 
betweenness centrality. 

As can be seen from Table 3, the rank of 
betweenness centrality is approximately matched 
with the rank of degree centrality. TNF, EGFR 
and CRC are still the highest ranked genes while 
IL-6, AR, HR , GAPDH and ATM simply 
exchanged their order. AR, androgen receptor, 
has a quick raise in the rank list. It plays a vital 
role in the development and maintenance of male 
reproductive function and the cause of prostate 
cancer, but the effect and function on breast 
cancer of AR have not been clear until 2010 
(most of the literature published before 2010). 
This result shows that the genes excavated by our 
system not only include genes in the known 
interaction network, but also reflect research 
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tendency at present or in a certain period of time. 
This also indicates the effectiveness of 
understanding scientific research tendency of our 
system. 
As the definition of betweenness centrality, it 

reflects the ability to affect other nodes in the 
network. If a gene interacts with another gene 
through an intermediate gene such as suppression 
or promotion, then the role played by this 
intermediate gene is decisive in this association. 
The more intermediate roles played in 
associations, the greater the influence of the gene 
in the network. Similarly, among all genes in the 
neighborhood of a specific gene, the greater the 
betweenness centrality of a gene, the more 
influence it has on that specific gene.  

5.2.3 Closeness centrality 
Figure 6 illustrates closeness centrality of the 
interaction network of breast cancer. 

 

Figure 6. Closeness centrality of the gene-breast 
cancer interaction network. 

As can be seen from Figure 6, red node at the 
center of the network represents breast cancer 
and neighboring orange nodes stand for direct 
related genes while peripheral nodes in green 
represents least related genes. Figure 7 shows 
relationship between each closeness centrality 
and its count of neighbors. 

 

Figure 7. Relationship between each closeness 
centrality and its count of neighbors. 

Figure 7 shows the tendency of closeness 
centrality in the network while number of 
neighbors increases. There is an approximate 
positive correlation between the count of 
neighbors and the closeness centrality of nodes 
but not so obvious compared with betweenness 
centrality or degree centrality. For instance, the 
closeness centrality ranges from 0.14 to 0.34 for 
nodes with only one neighbor. This tendency 
represents that closeness centrality reflect 
geographical centricity of each node more 
efficiently compared with degree centrality and 
betweenness centrality with less dependence on 
count of neighbors. For example, if a node has 
only one edge to the center of the network, this 
node is bound to own large closeness centrality 
even though this edge is the only edge it has. 
Meanwhile, another node has much more than 
one edge but far away from the center of the 
network, the closeness centrality of it can never 
be larger than the former one. Table 4 lists part 
of ranks of all 1069 genes in the order of 
closeness centrality. 

Gene Closeness Centrality 

TNF 0.43612418 
EGFR 0.43550963 
CRC 0.4247366 
PTEN 0.41920608 
IL-6 0.41814738 
AR 0.41092005 
EGF 0.40954064 
BRCA1 0.40914306 
STAT3 0.4088544 
MMP-9 0.40386793 
HR 0.40330579 
MMP-2 0.40031085 

Table 4: Part of ranks of all 1069 genes in the order of 
closeness centrality. 

Table 4 shows that list ordered by closeness 
centrality is generally similar to list ordered by 
degree centrality and betweenness centrality. 
TNF, EGFR and CRC are still highest ranking 
genes. However, genes like STAT3, MMP-9 and 
MMP-2 appear firstly in the list where STAT3 
ranks 18 in degree centrality and 14 in 
betweenness centrality. The details of STAT3 
has been clearly described in Hsieh FC et al. 
STAT3 full-called signal transducer and 
activator of transcription 3, which is often 
detected in breast cancer tissues and its cell lines. 
STAT3 has already been defined as an oncogene 
since its activated form in nude mice can produce 
malignant transformation of cultured cells and 
ultimately form tumors. MMP-9 and MMP-2 are 
gelatinase, proteolytic enzymes involved in 
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process of tumor invasion which is considered as 
a potential tumor marker in breast cancer.  
All these three genes can be identified as 

direct related genes with breast cancer. These 
associations which are not obvious in degree 
centrality and betweenness centrality indicating 
the effectiveness of closeness centrality in 
finding related gene to a specific disease. 

5.3 Result Evaluation  

We enumerate 31 top genes ranked with 
weighted centrality considered as related to 
breast cancer due to our system. Table 5 lists the 
gene or disease symbol, ID, and full name from 
OMIM database. 

Gene 

Symbol 

Gene 

ID 

Gene Full Name 

TNF *191160 TUMOR NECROSIS FACTOR 
EGFR *131550 EPIDERMAL GROWTH FACTOR 

RECEPTOR 
CRC  COLORECTAL CANCER 
PTEN +601728 PHOSPHATASE AND TENSIN 

HOMOLOG 
IL-6 *147620 INTERLEUKIN 6 
AR *313700 ANDROGEN RECEPTOR 

BRCA1 *113705 BREAST CANCER 1 GENE 
EGF *131530 EPIDERMAL GROWTH FACTOR 

GAPDH *138400 GLYCERALDEHYDE-3-
PHOSPHATE DEHYDROGENASE 

HR *602302 HAIRLESS, MOUSE, HOMOLOG 
OF 

AML #601626 LEUKEMIA, ACUTE MYELOID 
CD4 *186940 CD4 ANTIGEN 
STAT3 *102582 SIGNAL TRANSDUCER AND 

ACTIVATOR OF 
TRANSCRIPTION 3;  

AD #104300 ALZHEIMER DISEASE 
MMP-9 *120361 MATRIX METALLOPROTEINASE 

9 
MS #126200 MULTIPLE SCLEROSIS, 

SUSCEPTIBILITY TO 
RD #111620 RADIN BLOOD GROUP ANTIGEN 
MYC *190080  V-MYC AVIAN 

MYELOCYTOMATOSIS VIRAL 
ONCOGENE HOMOLOG 

S6 *185520 SURFACE ANTIGEN 6 
TP53 *191170 TUMOR PROTEIN p53 
ATM *607585 ATAXIA-TELANGIECTASIA 

MUTATED GENE 
IL-8 *146930 INTERLEUKIN 8 
AP1  activator protein-1 
MMP-2 *120360 MATRIX METALLOPROTEINASE 

2 
GC +139200 GROUP-SPECIFIC COMPONENT 
FBS #227810 FANCONI-BICKEL SYNDROME 
ES #612219 EWING SARCOMA 
RA #180300 RHEUMATOID ARTHRITIS 

CXCR4 *162643 CHEMOKINE, CXC MOTIF, 
RECEPTOR 4 

IL-10 *124092 INTERLEUKIN 10 
BRCA2 *600185 BRCA2 GENE 

Table 5: The gene or disease symbol, ID, and full 
name from OMIM database. 

The Genes and diseases in Table 5 inferred by 
degree, betweenness, closeness centralities and 
the relevance are listed in Table 6. 

Gene Degree Betweenness Closeness Relevance 
TNF 359 0.05985761 0.43401678 Yes 
EGFR 342 0.05904224 0.4332496 Yes 
CRC 301 0.04875035 0.4225186 No 
PTEN 229 0.03029572 0.41695765 Yes 
IL-6 245 0.02541463 0.41613797 Yes 
AR 188 0.02883127 0.40890333 Yes 

BRCA1 195 0.02190664 0.40704484 Yes 
EGF 200 0.01992148 0.40747222 Yes 

GAPDH 190 0.02868382 0.39946818 Yes 
HR 193 0.02371613 0.40136172 Yes 
AML 177 0.02417702 0.39779619 Disease 
CD4 179 0.01865428 0.40467501 Yes 
STAT3 182 0.01563346 0.40683148 Yes 
AD 159 0.02853342 0.39769428 Yes 

MMP-9 160 0.01347212 0.40188126 Yes 
MS 148 0.01806096 0.39967388 Disease 
RD 166 0.0113587 0.3970162 No 
MYC 141 0.02132884 0.39052411 Yes 
S6 136 0.01504618 0.39912581 Yes 
TP53 138 0.01607533 0.39607076 Yes 
ATM 148 0.01556309 0.39170662 Yes 
IL-8 146 0.00944026 0.40108518 Yes 
AP1 141 0.01531257 0.39286317 Yes 
MMP-2 138 0.01241541 0.39837468 Yes 
GC 131 0.01515181 0.39055686 No 
FBS 126 0.0117904 0.39749061 No 
ES 128 0.01325333 0.39283003 No 
RA 133 0.01256221 0.3894464 Disease 

CXCR4 138 0.01019905 0.39039316 Yes 
IL-10 128 0.00680617 0.39045862 Yes 
BRCA2 94 0.00504479 0.38194046 Yes 

Table 6: Genes inferred by degree, betweenness, and 
closeness centralities and the relevance. 

As results listed in Table 6, all 31 top ranked 
genes and diseases have been checked relevance 
with breast cancer through NCBI database. 
Terms marked as ‘No’ are none-relevant to 
breast cancer and words marked as ‘disease’ are 
related diseases to breast cancer. The accuracy 
rate is 83.9% for these top 31 genes and diseases 
and 74.2% for these top 31 genes. 

6 Conclusion 

Understanding the role of genetics in diseases is 
one of the major goals of the post-genome era. 
We have proposed an automatic gene-disease 
association extraction approach based on text 
mining and network analysis.  
Gene-breast cancer interaction network 

analysis demonstrated that degree, betweenness, 
and closeness centralities can estimate disease 
related genes effectively. And closeness 
centrality is able to find disease related genes 
which are not obvious ranked by degree 
centrality and betweenness centrality. In addition, 
this result showed that the genes excavated by 
our system not only include genes in the known 
interaction network, but also reflect research 
tendency at present or in a certain period of time. 
This also indicates the effectiveness of 
understanding scientific research tendency of our 
system. 
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Abstract 
Electronic patient records are a potentially rich 
data source for knowledge extraction in bio-
medical research. Here we present a method 
based on the ICD10 system for text-mining of 
Danish health records. We have evaluated how 
adding functionalities to a baseline text-mining 
tool affected the overall performance. 
The purpose of the tool was to create enriched 
phenotypic profiles for each patient in a corpus 
consisting of records from 5,543 patients at a 
Danish psychiatric hospital, by assigning each 
patient additional ICD10 codes based on free-
text parts of these records. The tool was 
benchmarked by manually curating a test set 
consisting of all records from 50 patients. The 
tool evaluated was designed to handle spelling 
and ending variations, shuffling of tokens with-
in a term, and introduction of gaps in terms. In 
particular we investigated the importance of 
negation identification and negation scope. 
The most important functionality of the tool 
was handling of spelling variation, which great-
ly increased the number of phenotypes that 
could be identified in the records, without no-
ticeably decreasing the precision. Further, our 
results show that different negations have dif-
ferent optimal scopes, some spanning only a 
few words, while others span up to whole sen-
tences. 

 
1. Introduction 

Electronic patient records (EPRs) file patient 
treatment data over time and contain structured 
data, such as medication information and labora-
tory test results, as well as unstructured data 
contained in free text. Previously unstructured 
data has been used for a range of purposes such 
as diagnosis detection (e.g. Meyste, 2006; Suzu-
ki, 2008; Liao, 2010), decision support (Trem-
blay, 2009), and temporal investigation of ad-

verse drug reactions (Eriksson, to appear 2014). 
Structured EPR data will primarily contain di-
agnoses relevant to the current hospitalization, 
whereas free text will contain additional infor-
mation about adverse drug reactions and the 
general health status of the patient. By utilizing 
unstructured EPR data, it is possible to obtain a 
much richer phenotypic profile of each patient, 
which can be applied to the investigation of dis-
ease-disease correlations, patient stratification, 
and underlying molecular level disease etiology 
(Jensen, 2012). 

Several tools for text mining of free text in 
English medical records have been developed 
previously. We present a non-English contribu-
tion to the field. We have developed a simple 
parser based on the ICD10 classification system 
for a Scandinavian language; Danish, which 
performs well and is relatively fast to imple-
ment. The parser handles a number of variations 
such as spelling and ending when matching be-
tween the corpus and the dictionary. We have 
evaluated the importance of taking these varia-
tions into account in a Danish context. 

An additional focus of this work was to evalu-
ate how negations should be handled in a Danish 
context. It has previously been shown that it is 
important to consider negations when medical 
text mining and several methods such as Neg-
Scope (Agarwal, 2010), NegFinder (Mutalik, 
2001) and NegEx (Chapman, 2001) have been 
developed. These methods have shown good 
performance, but they have all been specifically 
developed for application to English text, and 
can thus not be directly transferred to our pur-
pose. Instead we have here implemented a sim-
ple method for handling negations, and subse-
quently evaluated the scope of negations.  

64



 
 

2. Materials and methods 
The text-mining tool presented here uses a dic-

tionary based on the Danish version of the 
ICD10 system to search for mentioning of dis-
ease terminology terms in the corpus consisting 
of EPRs. Five add-on functionalities for the text-
mining tool were evaluated. These were; han-
dling of A) spelling, B) ending variations, C) 
allowing a gap in terms when matching, D) al-
lowing shuffling of tokens in term when match-
ing, and E) handling of negations.  

The EPRs used here were 5,543 records from 
the Sct. Hans Psychiatric Hospital (Roque, 
2011). The free text in these records consists of 
many different note types, written by a range of 
different types of medical and non-medical per-
sonnel including doctors, psychiatrists, nurses 
and social workers. 

A test set of all records from a randomly se-
lected set of 50 patients (roughly 1% of cohort) 
was manually curated. 5,765 disease related 
terms (hits) were found in the test set. On aver-
age each patient was associated with a total of 
115.3 hits, which covered an average of 16.96 
different ICD10 codes. Each hit was traced back 
to its origin in the corpus, and based on the con-
text (sentence or entire note) it was evaluated 
whether the hit was correctly associated with the 
patient in the text. 

 
2.1 Generation of spelling and ending variants 

The ICD10 terms in the dictionary are supple-
mented with synonyms comprised of spelling 
and ending variants to allow a degree of fuzzy 
mapping between the corpus and the dictionary. 
Spelling (A) and ending (B) variants are gener-
ated by comparing all unique tokens of the cor-
pus that exceed three letters with all unique to-
kens of the dictionary. Spelling variants (A) are 
generated by allowing a Damarau Levehnstein1 
edit distance of one between corpus and diction-
ary tokens. Ending variations (B) are generated 
by testing if a token becomes identical to a dic-
tionary term if they are both stemmed for typical 
Danish endings. 

 
2.2 Text-mining 

A potential hit is a token or a set of tokens in a 
sentence, which match a full term in the diction-
ary. When matching one gap, comprised of an 

                                                        
1  The Daramau Levehnstein edit distance is the 

number of edits needed to turn one token into another 
token. An edit can be a substitution, deletion or inser-
tion of a letter, or the reversal of a pair of letters. 

interposed word, is allowed (C) in the token 
string that is not found in the dictionary term. 
When matching a string of tokens to a dictionary 
term, shuffling of words is allowed (D), such 
that the order of the words is not important. 

If a potential hit is found, the preceding part of 
the sentence is checked for negations (E). If a 
negation is found the potential hit is discarded. 
The end result is a list of hits with their match-
ing ICD10 codes. 

The negations evaluated here are both true ne-
gations like “ingen” and “ikke” (“none” and 
“no”), and alternative subjects such as family 
members. These alternative subjects are includ-
ed as a form of negations, as a clinical term 
mentioned in the same sentence as an alternative 
subject, will often refer to that subject rather 
than the patient covered by the record.  

 
2.3 Evaluation of features 

All different combinations of functionalities A-
D were tested and compared to the baseline text-
mining tool with no add-on functionalities. The 
total number of hits and unique hits that a run of 
the tool results in were evaluated. Total hits in-
clude all hits, whereas unique hits consider 
simply how many unique 3-digit ICD10 terms 
are represented. 

As described above each hit generated from the 
test set was evaluated to determine if it was cor-
rectly associated with the patient or not. Two 
different types of precisions were calculated: I) 
incidence precision, which is the number of cor-
rect hits divided by the total number of hits; II) 
association precision, where a hit is counted as 
correct as long as the corresponding ICD10 code 
is correctly associated with the patient at least 
once. Here it is assumed that as long as an 
ICD10 code is correctly associated with the pa-
tient once, it does not matter if the same ICD10 
code is also incorrectly associated with the pa-
tient elsewhere. 

 
2.4 Evaluation of negations and their scope 

A random sample of 500 potential hits that 
were disqualified by the negation step was man-
ually curated, and it was evaluated whether it 
was correct to negate the potential hits or not. 
The total number of negated hits, incidence pre-
cision and the distance, in terms of number of 
tokens, between the negation and the term it 
negates, i.e. the scope of the negations were cal-
culated for all the negations. The same measures 
were calculated for each individual negation 
word occurring in the test set (data not shown). 
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In order to investigate the influence of the dis-
tance between the hit and the negation further, 
the incidence precision for each distance was 
also calculated. 
 
3. Results 

The incidence precision of the tool with all fea-
tures enabled was 0.867 and the association pre-
cision was slightly higher at 0.888. Enabling or 
disabling of fuzzy mapping features does not 
seem to affect the precision of the method. In 
contrast to this, both the total number of hits and 
the number of unique hits increase as more fea-
tures are enabled. This is especially true for ena-
bling feature A (spelling) and B (ending). Re-
sults for all runs can be seen in Figure 1 and 
Table 1 

Figure 2 shows the results from evaluation of  

the negations for all 500 negated sentences. 
The correlation between the precision of a nega-
tion and its distance from the hits can be seen in 
Figure 2. As can be seen not all distances are 
represented in the test set. It seems that inci-
dence precision is at least partly inversely relat-
ed to the distance between the candidate hit and 
the negation. 

Two negations are by far the most used in the 
records. These are ‘ikke’ and ‘ingen’, which are 
both true negations. Whereas ‘ingen’ has a very 
high incidence precision at 0.946 ‘ikke’ has a 
precision of only 0.573. These two negations 
also have very different negation scopes as can 
be seen on the plot in Figure 2 illustrating that 
different negation words can have very different 
scopes. 

 

 
  

Features	
  	
   Incidence	
  
precision	
  

Association	
  	
  
precision	
  

Baseline	
   0.872	
   0.889	
  
D	
   0.872	
   0.889	
  
C	
   0.872	
   0.89	
  
CD	
   0.872	
   0.89	
  
B	
   0.874	
   0.891	
  
BD	
   0.874	
   0.891	
  
BC	
   0.874	
   0.892	
  
BCD	
   0.874	
   0.893	
  
A	
   0.867	
   0.889	
  
AD	
   0.867	
   0.886	
  
AC	
   0.868	
   0.891	
  
ACD	
   0.867	
   0.888	
  
AB	
   0.867	
   0.889	
  
ABD	
   0.867	
   0.887	
  
ABC	
   0.868	
   0.891	
  
ABCD	
   0.867	
   0.888	
  

Table 1: Precision for all runs. 

Figure 2: Evaluation of negation scopes for all negations (left) and ‘ingen’ and ‘ikke’ (right). 
 

Figure 1: Number of hits generated for each run. 
A: spelling, B: ending, C: gap, D: shuffling. 
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4. Discussion 

 
4.1 Fuzzy mapping features 

Quantitatively the precision of the tool present-
ed here is on par with other similar tools such as 
MedLEE; 0.89 (Friedman 2004) and the tool 
presented in Meystre 2006; 0.76, despite that a 
relatively simple approach presented here. 

Allowing ending variants (B) gives a signifi-
cant increase in total hits, but only a minor in-
crease in unique hits. This was investigated fur-
ther, and it was revealed that the term ‘ryger’ 
(“smoking” or “smoker”) was responsible for 
this peculiarity, as the term ‘ryge’ matches 
‘ryger’ when spelling variation is allowed. More 
than 4/5 of the total hits generated when ena-
bling ending variation were due to this one syn-
onym generated. The same problem is apparent 
when allowing spelling variants (A) as this also 
allows ‘ryger’ as a synonym.  

It is debatable whether it is even worth includ-
ing gap variations (D), since only very few hits 
are generated. However, there seems to be a 
synergistic effect between allowing gaps and 
shuffling and one must keep in mind that gap 
and shuffling variations only come into effect 
when a hit has more than one token, and only 
around 12% of all hits identified, have more 
than one token. Therefore gap and shuffling var-
iations would make a bigger difference in a cor-
pus where hits with more words are more fre-
quent. 

 
4.2 Negation evaluation 

The data indicates that higher distance leads to 
lower precision. In order to improve the use of 
negations we tested two hard precision cutoffs 
(4 and 10) to limit the scope of negations. Using 
these hard cutoffs increased the precision of the 
negations from 0.722 to 0.921 and 0.820, re-
spectively. This is comparable to the precisions 

reported for other tools such as NegEx; 0.845 
(Chapman 2001) and NegFinder; 0.977/0.918 
(Mutalik 2001), though one must keep in mind 
that these are tested on different corpora. Setting 
negation cutoffs also resulted in an increase in 
number of hits identified, but did lead to slightly 
lower precisions for the hits generated compared 
to no cutoff (see Table 3).	
  

 
4.3 Limitations 

The tool presented here was developed for 
EPRs from a psychiatric hospital, which does 
not guarantee its direct applicability to EPRs 
from other indication areas, as these psychiatric 

EPRs contain a high proportion of notes entered 
by nurses and other personnel that are not medi-
cal doctors. One possible issue related to this is 
that the EPRs used here do not show widespread 
use of abbreviations and acronyms for disease 
terms, thus a method for handling abbreviations 
was not implemented. However, this might be 
necessary for EPRs from other clinical domains. 

Additionally the tool is limited to handle the 10 
real and 24 subject negations present in the 
manually constructed negation list and negations 
are only allowed to negate terms in the succeed-
ing part of the sentence, which will not be true 
for all negation usages. 

In the approach described here it is assumed 
that a disease term found in a patients journal, is 
related to the given patient unless negated. This 
assumption is accepted here to preserve the sim-
plicity of the approach, but is actually handled 
to so some extent by including subject nega-
tions. 

 
5. Conclusion 

We have shown here that it is possible to make 
a text-mining tool for a non-English language 
that has good performance in a quick and simple 
way. The full tool described here has rather 
good precision and many patient-disease rela-
tions were identified that could be used to enrich 
the phenotypes of the patients. Large variations 
in the precision of the different negations were 
found, but restricting the scopes of negations, 
contributes to increasing the precision of the 
negations. Furthermore, this also resulted in an 
increase in the number of hits generated without 
severely affecting the precision of the hits. 
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Negation Total  
occurrences 

Incidence 
precision 

Average 
distance 

All negations 500	
   0.722	
   4.9	
  
True neg. 449	
   0.724	
   4.7	
  
Subject neg. 51	
   0.706	
   6.4	
  

Table 2: Evaluation parameters for negations. 

Table 3: Performance with hard negation cutoffs. 

Negation  
cutoff 

Total 
hits 

Unique 
hits 

Incidence 
precision 

None 5741 164 0.867 
4 5964 171 0.854 
10 5836 166 0.864 
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Abstract 

Narrative information in Electronic Health Records 

(EHRs) and literature articles contains a wealth of 

clinical information about treatment, diagnosis, 

medication and family history. This often includes 

detailed phenotype information for specific 

diseases, which in turn can help to identify risk 

factors and thus determine the susceptibility of 

different patients.  Such information can help to 

improve healthcare applications, including Clinical 

Decision Support Systems (CDS). Clinical text 

mining (TM) tools can provide efficient automated 

means to extract and integrate vital information 

hidden within the vast volumes of available text. 

Development or adaptation of TM tools is reliant 

on the availability of annotated training corpora, 

although few such corpora exist for the clinical 

domain.  In response, we have created a new 

annotated corpus (PhenoCHF), focussing on the 

identification of phenotype information for a 

specific clinical sub-domain, i.e., congestive heart 

failure (CHF). The corpus is unique in this domain, 

in its integration of information from both EHRs 

(300 discharge summaries) and literature articles (5 

full-text papers). The annotation scheme, whose 

design was guided by a domain expert, includes 

both entities and relations pertinent to CHF.  Two 

further domain experts performed the annotation, 

resulting in high quality annotation, with 

agreement rates up to 0.92 F-Score.   

1 Introduction 

An ever-increasing number of scientific articles 

is published every year. For example, in 2012, 

more than 500,000 articles were published in 

MEDLINE (U.S. National Library of Medicine , 

2013). A researcher would thus need to review at 

least 20 articles per day in order to keep up to 

date with latest knowledge and evidence in the 

literature (Perez-Rey et al., 2012). 

EHRs constitute a further rich source of 

information about patients’ health, representing 

different aspects of care (Jensen et al., 2012). 

However, clinicians at the point of care have 

very limited time to review the potentially large 

amount of data contained within EHRs. This 

presents significant barriers to clinical 

practitioners and computational applications 

(Patrick et al., 2006).  

TM tools can be used to extract phenotype 

information from EHRs and the literature and 

help researchers to identify the characteristics of 

CHF and to better understand the role of the 

deterioration in kidney function in the cycle of 

progression of CHF. 

2 Related work 

There are many well-known publicly available 

corpora of scientific biomedical literature, which 

are annotated for biological entities and/or their 

interactions (often referred to as events) (Roberts 

et al., 2009; Xia  &  Yetisgen-Yildiz, 2012). 

Examples include GENIA (Kim et al., 2008), 

BioInfer (Pyysalo et al., 2007)  GREC 

(Thompson et al., 2009), PennBioIE (Kulick et 

al., 2004), GENETAG (Tanabe et al., 2005) and 

LLL’05 (Hakenberg et al., 2005). However, none 

of these corpora is annotated with the types of 

entities and relationships that are relevant to the 

study of phenotype information.  

On the other hand, corpora of clinical text 

drawn from EHRs are rare, due to privacy and 

confidentiality concerns, but also because of the 

time-consuming, expensive and tedious nature of 

producing high quality annotations, which are 

reliant on the expertise of domain experts 

(Uzuner et al., 2011). A small number of corpora, 

however, have been made available, mainly in 

the context of shared task challenges, which aim 

to encourage the development of information 

extraction (IE) systems. These corpora vary in 

terms of the text type and annotation granularity. 

For example, the corpus presented in (Pestian et 

al., 2007) concerns only structured data from 

radiology reports, while the corpus presented in 

(Meystre  &  Haug, 2006) contains unstructured 

parts of EHRs, but annotated with medical 

problem only at the document level.   

Other corpora are more similar to ours, in that 

that they include text-bound annotations 
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corresponding to entities or relations.  CLEF 

(Clinical E-Science Framework) (Roberts et al., 

2008) was one of the first such corpora to 

include detailed semantic annotation. It consists 

of a number of different types of clinical records, 

including clinic letters, radiology and 

histopathology reports, which are annotated with 

a variety of clinical entities, relations between 

them and co-reference. However, the corpus has 

not been made publicly available. The more 

recent 2013 CLEF-eHEALTH challenge 

(Suominen et al., 2013) corpus consists of EHRs 

annotated with named entities referring to 

disorders and acronyms/abbreviations, mapped 

to UMLS concept identifiers.  

The Informatics for Integrating Biology at the 

Bedside (i2b2) NLP series of challenges have 

released a corpus of de-identified clinical records 

annotated to support a number of IE challenges 

with multiple levels of annotation, i.e., entities 

and relations (Uzuner et al., 2008; Uzuner, 

2009). The 2010 challenge included the release 

of a corpus of discharge summaries and patient 

reports in which named entities and relations 

concerning medical problems, tests and 

treatments were annotated (Uzuner et al., 2011).  

A corpus of EHRs from Mayo Clinic has been 

annotated with both linguistic information (part-

of–speech tags and shallow parsing results) and 

named entities corresponding to disorders (Ogren 

et al., 2008; Savova et al., 2010).    

3 Description of the corpus 

The discharge summaries in our PhenoCHF 

corpus constitute a subset of the data released for 

the second i2b2 shared task, known as 

“recognising obesity” (Uzuner, 2009). 

PhenoCHF corpus was created by filtering the 

original i2b2 corpus, such that only those 

summaries (a total of 300) for patients with CHF 

and kidney failure were retained.  

The second part of PhenoCHF consists of the 

5 most recent full text articles (at the time of 

query submission) concerning the characteristics 

of CHF and renal failure, retrieved from the 

PubMed Central Open Access database. 

4 Methods and results 

The design of the annotation schema was guided 

by an analysis of the relevant discharge 

summaries, in conjunction with a review of 

comparable domain specific schemata and 

guidelines, i.e., those from the CLEF and i2b2 

shared tasks. The schema is based on a set of 

requirements developed by a cardiologist. Taking 

into account our chosen focus of annotating 

phenotype information relating to the CHF 

disease, the cardiologist was asked firstly to 

determine a set of relevant entity types that relate 

to CHF phenotype information and the role of 

the decline in kidney function in the cycle of 

CHF (exemplified in Table 1), secondly to locate 

words that modify the entity (such as polarity 

clues) and thirdly to identify the types of 

relationships that exist between these entity types 

in the description of phenotype information 

(Table 2) .  

Secondly, medical terms in the records are 

mapped semi-automatically onto clinical 

concepts in UMLS, with the aid of MetaMap 

(Aronson, 2001). 

The same annotation schema and guidelines 

were used for both the discharge summaries and 

the scientific full articles. In the latter, certain 

annotations were omitted, i.e., organ entities, 

polarity clues and relations. This decision was 

taken due to the differing ways in which 

phenotype information is expressed in discharge 

summaries and scientific articles. In discharge 

summaries, phenotype information is explicitly 

described in the patient’s medical history, 

diagnoses and test results. On the other hand, 

scientific articles summarise results and research 

findings. This means that certain types of 

information that occur frequently in discharge 

summaries are extremely rare in scientific 

articles, such that their occurrences are too sparse 

to be useful in training TM systems, and hence 

they were not annotated. 

The annotation was carried out by two medical 

doctors, using the Brat Rapid Annotation Tool 

(brat) (Stenetorp et al., 2012), a highly-

configurable and flexible web-based tool for 

textual annotation.  
Annotations in the corpus should reflect the 

instructions provided in the guidelines as closely 

as possible, in order to ensure that the 

annotations are of ahigh quality. A standard 

means of providing evidence regarding the 

reliability of annotations in a corpus is to 

calculate a statistic known as the inter-annotator 

agreement (IAA). IAA provides assurance that 

different annotators can produce the same 

annotations when working independently and 

separately. There are several different methods of 

calculating IAA, which can be influenced by the 

exact nature of the annotation task. We use the 

measures of precision, recall and F-measure to 
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indicate the level of inter-annotator reliability 

(Hripcsak  &  Rothschild, 2005). In order to 

carry out such calculations, one set of 

annotations is considered as a gold standard and 

the total number of correct entities is the total 

number of entities annotated by this annotator. 

Precision is the percentage of correct positive 

predictions annotated by the second annotator, 

compared to the first annotator’s assumed gold 

standard. It is calculated as follows: 

 

P = TP / TP + FP 

Recall is the percentage of positive cases 

recognised by the second annotator. It is 

calculated as follows: 

R = TP / TP + FN 

F-score is the harmonic mean between 

precision and recall. 

 F-score =  

2* (Precision * Recall) / Precision + Recall 

 We have calculated separate IAA scores for 

the discharge summaries and the scientific 

articles. Table 3 summarises agreement rates for 

term annotation in the discharge summaries, 

showing results for both individual entity types 

and macro-averaged scores over all entity types. 

Relaxed matching criteria were employed, such 

that annotations added by the two annotators 

were considered as a match if their spans 

overlapped. In comparison to related efforts, the 

IAA rates shown in Table 3 are high.  However, 

it should be noted that the number of targeted 

classes and relations in our corpus is small and 

focused, compared to other related corpora.   

Agreement statistics for scientific articles are 

shown in Table 4. Agreement is somewhat lower 

than for discharge summaries, which this could 

be due to the fact that the annotators (doctors) 

are more used to dealing with discharge 

summaries in their day-to-day work, and so are 

more accustomed to locating information in this 

type of text. Scientific articles are much longer 

and generally include more complex language, 

ideas and analyses, which may require more than 

one reading to fully comprehend the information 

within them. Table 5 shows the agreement rates 

for relation annotation in the discharge 

summaries. The agreement rates for relationships 

are relatively high. This can partly be explained 

by the deep domain knowledge possessed by the 

annotators and partly by the fact that the 

relationships to be identified were relatively 

simple, linking only two pre-annotated entities.

Table 1. Annotated phenotype entity classes 

 

Entity Type Description Example 

Cause any medical problem that 

contributes to the occurrence of 

CHF 

 

 
Risk factors A condition that increases the 

chance of a patient having the 

CHF disease 

 

 
Sign & 

symptom 

any observable manifestation 

of a disease which is 

experienced by a patient and 

reported to the physician 

 

 

Non-

traditional 

risk factor 

Conditions  associated with 

abnormalities in kidney 

functions that put the patient at 

higher risk of developing 

“signs & symptoms” and 

causes of CHF 

 

 

Organ Any body part 
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Relation 

Type 

Description Example 

Causality This relationship links two 

concepts in cases in which 

one concept causes the 

other to occur. 

 

 
 

Finding This relationship links the 

organ to the manifestation 

or abnormal variation that 

is observed during the 

diagnosis process. 

 

 

Negate This is one-way relation to 

relate a negation attribute 

(polarity clue) to the 

condition it negates. 

 

 
Table 2. Description of Annotated Relations 

Table 3. Term annotation agreement statistics for discharge summaries 

Table 4. Overall agreement statistics for terms annotation in scientific articles 

 Causality Finding Negate Macro-

average 

F-score 0.86 0.94 0.95 0.91 

Table 5. Relation annotation and agreement statistics for discharge summaries 

5 Conclusion 

This paper has described the creation of a new 

annotated corpus to facilitate the customisation 

of TM tools for the clinical domain. The corpus
1
 

consists of 300 discharge summaries and 5 full-

text articles from the literature, annotated for 

CHF phenotype information, including causes, 

risk factors, sign & symptoms and non- 

traditional risk factors. Discharge summaries 

have also been annotated with relationships 

holding between pairs of annotated entities. A 

total 7236 of entities and 1181 relationships have 

been annotated. Extracting phenotype 

                                                           
1 Guidelines and stand-off annotation are publicly available 

at https://code.google.com/p/phenochf-

corpus/source/browse/trunk 

information can have a major impact on our 

deeper understanding of disease ethology, 

treatment and prevention (Xu et al., 2013). 

Currently we are working on confirming the 

utility of the annotated corpus in training and 

customising TM tools, i.e., adapting different 

sequence tagging algorithms (such as 

Conditional Random Fields (CRF) and Hidden 

Markov Model (HMM)) to extract 

comprehensive clinical information from both 

discharge summaries and scientific articles.

 
 Causality Risk 

factor 

Sign & 

Symptom 

Non-

traditional 

risk factor 

Polarity 

clue 

Organ Macro-

average 

F-score 0.95 0.94 0.97 0.83 0.94 0.92 0.92 

 Cause Risk factor Sign & 

Symptoms 

Non-

traditional 

risk factor 

Macro-average 

F-score 0.82 0.84 0.82 .77 0.81 
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Abstract 

Agile text mining is widely used for commercial 

text mining in the pharmaceutical industry. It can 

be applied without building an annotated training 

corpus, so is well-suited to novel or one-off 

extraction tasks. In this work we wanted to see how 

efficiently it could be adapted for healthcare 

extraction tasks such as medication extraction. The 

aim was to identify medication names, associated 

dosage, route of administration, frequency, 

duration and reason, as specified in the 2009 i2b2 

medication challenge.  

 

Queries were constructed based on 696 discharge 

summaries available as training data. Performance 

was measured on a test dataset of 251 unseen 

documents. F1-scores were calculated by 

comparing system annotations against ground truth 

provided for the test data.  

 

Despite the short amount of time spent in adapting 

the system to this task, it achieved high precision 

and reasonable recall (precision of 0.92, recall of 

0.715). It would have ranked fourth in comparison 

to the original challenge participants on the basis of 

its F-score of 0.805 for phrase level horizontal 

evaluation. This shows that agile text mining is an 

effective approach towards information extraction 

that can yield highly accurate results.  

1 Introduction 

Medication information occupies a sizeable 

portion of clinical notes, especially discharge 

summaries. This includes medications on 

admission, during hospital course, and at 

discharge. This information is useful for clinical 

tasks such as inferring adverse drug reactions, 

clinical trial recruitment, etc. The i2b2 Natural 

Language Processing (NLP) challenges 

encourage the development of systems for 

clinical applications, using a shared task, 

publicly available clinical data, and comparison 

of performance with the other participating 

systems, subject to rigid evaluation metrics. The 

2009 challenge (Uzuner, Solti, & Cadag, 2010) 

aimed to extract mentions of medication names, 

associated dosage, route of administration, 

frequency, duration and the reason for 

medication.  

The project used the Linguamatics Interactive 

Information Extraction (I2E) platform. This 

combines NLP,  terminologies and search 

technology to provide a unique “agile” text 

mining approach (Milward et al., 2005) that can 

yield highly precise results in a small amount of 

time. The approach involves semantic annotation 

and indexing of data followed by interactive 

design of queries that capture typical syntactic 

and semantic features of the desired information. 

While the system uses machine learning 

approaches within its core linguistic processing, 

the final set of queries are essentially 

syntactic/semantic rules identifying specific 

information in the text. 

2 Section Identification 

Although discharge summaries are considered to 

be unstructured data, there are typical 

characteristics associated with them. There is a 

specific flow of information within every 

discharge summary, starting with details of 

patient’s admission, followed by the hospital 

course and ending with discharge instructions. 

Other common sections include chief complaint, 

physical examination, etc. There were more than 

twenty headings to express discharge 

medications in the training data (“Medications on 

discharge,” “Discharge meds,” etc.). The training 

data was processed to identify section headings 

and multiple forms of the same heading were 

normalized to a single heading. The plain text 
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was converted into XML with tags representing 

section names. 

3 Offset Information 

To allow evaluation of results in the i2b2 format, 

the text was preprocessed to include line 

numbers and word numbers as further XML 

annotations.  

4 Natural Language Processing 

Indexing documents with I2E uses a standard 

NLP pipeline involving tokenization of the text, 

part-of-speech tagging, and linguistic chunking. 

The output of the pipeline provides useful 

linguistic information, particularly about the 

location of noun phrases and verb phrases, for 

use in entity extraction and querying.   

5 Terminologies 

The I2E platform uses hierarchical terminologies 

to extract entities from the text. These can 

include freely available terminologies such as 

MeSH, and the NCI thesaurus, as well as 

proprietary terminologies such as MedDRA. A 

series of regular expressions allow for the 

indexing of numeric terms (integers, fractions, 

decimal numbers) and measurement units (length, 

time, weight, etc.). In addition, custom 

terminologies can be created for specific tasks by 

combining or merging existing terminologies, or 

by using the system itself to help discover 

terminology from the data. 

6 Querying 

The I2E framework provides an interactive 

querying experience that is similar to a web 

search. While users can enter text queries just as 

one might in an internet search engine,  the query 

interface also allows specification of linguistic 

and non-linguistic units as ‘containers’ for other 

units. For example, it is possible to search for a 

noun phrase within a sentence and to specify 

words, regular expressions and concepts from 

terminologies. Non-linguistic units can be 

customized to regulate the ordering of items 

within the container, the number of items that 

may occur between two items and whether they 

are constrained by linguistic boundaries, such as 

the sentence.  The output of the query can also be 

customized so as to provide structured 

representation of the query results. 

 As an example, one of the typical ways a 

medication is prescribed follows the construct: 

“Aspirin 625 mg p.o. b.i.d.” This means Aspirin 

with a dosage of 625 milligrams is to be 

consumed orally (p.o.), twice a day (b.i.d.). A 

query to capture this construct can be constructed 

as a non-linguistic phrase, starting with (a) a 

pharmacological substance (a concept from the 

appropriate branch of the NCI-thesaurus), 

followed by (b) a numerical term, (c) a unit for 

measuring weight, (d) a dosage abbreviation and 

finally, (e) an abbreviation for the frequency of 

medication.  

A query containing items only for (a), (b) and (c) 

will give results for all phrases containing a 

pharmacological substance followed by its 

dosage (Aspirin 625 mg, Tylenol 350 mg, etc.). 

The graphical query interface is sufficiently 

flexible to allow many different orderings of 

these constructs and to negate false positive 

results. 

 User defined terminologies can be 

systematically constructed to allow consistent 

matching of lists of terms and to generate concise 

queries. For example, candidates for 

abbreviations corresponding to the route of 

administration were found by constructing a 

query with items for (a), (b), (c) and (e) and an 

empty word container for (d). This gave all 

phrases containing (a), (b), (c), and any word in 

the discharge summary that was followed by (e). 

The results of this query were candidates for 

route of administration. The efficiency of 

querying in I2E provides an opportunity to 

interactively refine parts of the final query and 

discover terms in the training data that might be 

missed by regular expressions and thesauri.   

Queries can also be limited to specific sections 

of the document. The pre-processing step 

described above identified sections in discharge 

summaries of the i2b2 medications challenge 
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corpus. The queries can thus be limited to only a 

few specific sections such as “Medications on 

Admission” and “Medications on Discharge” by 

embedding the query in a section container. The 

challenge specified not to include medications 

mentioned as allergies for a patient. Results 

obtained in the allergies section of discharge 

summaries were therefore ignored using this 

approach. 

7 Post-processing 

I2E’s default output is an HTML table with 

columns corresponding to different containers 

used in the query. Output can also be limited to 

predefined columns of interest. Multiple queries 

are often required to capture different pieces of 

information spread across the corpus. In the i2b2 

challenge, there are multiple fields associated 

with every mention of medication. A single 

structured record corresponding to every mention 

of medication is expected as an output. Spasic et 

al. (2010) view the challenge as a template filling 

task where the participating system is expected 

to fill slots in a template. Thus, the output can be 

configured to be 6 columns representing each of 

the templates. Following their terminology, 

different semantic queries filled different slots of 

the same template. These slots were aggregated 

into a single template using post-processing. 

Multiple issues had to be taken care of in this 

step. Different queries captured parts of the text 

corresponding to the same slot. For example, a 

query aimed at capturing a particular linguistic 

construct may extract frequency as “daily after 

dinner,” while another query may capture its 

substring “daily.” In this case, the former 

extraction, which is the longer string, received 

priority as per the challenge specifications. 

Another important problem encountered was that 

of multiple matches for the same field. For 

example, Insulin and Aspart were identified as 

separate pharmacological substances during the 

indexing process. However, “Insulin aspart” is 

considered as a single medication name as per 

the challenge specifications. Two separate 

templates are thus created. The results of the post 

processing collapse them into one. Certain terms 

from the terminologies did not match the 

definition of a medication, since terminology 

branches are often generic. For example, the 

Chemicals and Drugs branch of MeSH 

constitutes terms such as coffee. Therefore, a list 

of false positives for medication names 

corresponding to these matches was generated 

from the training data.  

8 Experiments 

The i2b2 website offers downloading of the NLP 

dataset for the 2009 challenge after signing a 

Data Usage Agreement. The training data 

consists of 696 discharge summaries. A subset of 

ten documents with gold standard annotations 

has been made available by the organizers. The 

test dataset consists of 251 documents which 

were annotated by the participants under a 

community annotation experiment conducted by 

the organizers (Uzuner, Solti, Xia, et al. 2010). 

These 251 documents and their corresponding 

gold standard annotations are also available. The 

performance was calculated using phrase level 

and token level metrics for horizontal and 

vertical evaluations as defined in (Uzuner, Solti, 

& Cadag, 2010). The phrase level horizontal 

evaluation measures the performance of a system 

across all six fields. This was used as a primary 

metric to rank the results in the challenge. 

Terminology P R F1 

NCI  0.953 0.657 0.777 

MeSH  0.923 0.563 0.699 

NCI + MeSH  0.932 0.688 0.792 

NCI + FDA  0.947 0.678 0.790 

MeSH + FDA  0.921 0.571 0.705 

NCI + MeSH + 

FDA 
0.931 0.698 0.798 

NCI + MeSH + 

FDA + RxNorm  
0.92 0.715 0.805 

Table 1: Comparison of Different Terminologies. 

In order to assess the utility of different 

terminologies, the same set of queries were 

modified by replacing the concept from one with 

the corresponding concept in another. For 

example: Pharmacological substance from NCI 
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was replaced with Chemicals and Drugs from 

MeSH. This offered an objective way to compare 

the coverage of MeSH and NCI with respect to 

medication names. Coverage of multiple 

terminologies can be leveraged by aggregating 

the results of queries resulting from different 

terminologies. NCI thesaurus, MeSH, a list of 

FDA drug labels, and RxNorm were used. In 

addition a custom terminology was prepared by 

capturing medication names in the training data 

that were missed by the terminologies. The best 

F-score was obtained when query results for all 

sources were aggregated. Addition of sources 

resulted in a drop in precision but increased 

recall. Table 1 summarizes these results, where 

columns P and R denote precision and recall 

respectively.     

9 Results 

Twenty teams representing 23 organizations and 

nine countries participated in the medication 

challenge. The other systems used a variety of 

rule-based, machine-learning and hybrid systems, 

with the most popular being rule-based systems 

(Uzuner et al., 2010). The best ranked system, 

detailed in Patrick & Li (2009), was an example 

of a hybrid system, using both rule-based and 

statistical classifiers.  

No. Group P R F1 

1 USyd  0.896 0.82 0.857 

2 Vanderbilt  0.840 0.803 0.821 

3 Manchester  0.864 0.766 0.812 

*  I2E  0.920 0.715 0.805 

4 NLM  0.784 0.823 0.803 

5 BME - 

Humboldt   
0.841 0.758 0.797 

6 OpenU  0.850 0.748 0.796 

7 UParis  0.799 0.761 780 

8 LIMSI  0.827 0.725 0.773 

9 UofUtah  0.832 0.715 0.769 

10 U 

Wisconsin 

Madison  

0.904 0.661 0.764 

Table 2: Phrase level horizontal evaluation 

Phrase level horizontal evaluation was used as a 

metric to rank the performance of participants in 

the challenge. Table 2 compares the performance 

of I2E with the top ten participants in the 

challenge using this metric. It achieves highly 

precise results as compared to other participants 

of the challenge. The vertical evaluation which 

measures the performance along individual fields 

showed that the system performed poorly on 

duration and reason, in common with other 

systems. As reported by the organizers of the 

challenge (Uzuner et al., 2010), capturing 

duration and reason is a hard task. They report 

that this is primarily due to the variation in 

length and content of these fields in the training 

and testing data. 

10 Conclusion 

Extracting information through interactive design 

of queries can achieve highly precise results in a 

short amount of time. Much of the time in this 

project was spent on pre-processing documents 

to allow the results to conform to the i2b2 format. 

The time taken on query development was of the 

order of a few weeks, including a couple of days 

training in the system at the start of the project. 

This process requires far less specialist 

knowledge of Artificial Intelligence than other 

solutions to this challenge and the easy to use 

interface means refinement is straightforward. 

Clearly, recall still needs to be improved: our 

best system would have been ranked 4th out of 

21 systems in the phrase level horizontal 

evaluation. Examination of the training material 

suggests this is due to gaps in the drug coverage 

provided by the terminologies rather than gaps in 

the query patterns. We will therefore concentrate 

on extending drug coverage in our future work. 
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Abstract
This paper describes first results using
the Unified Medical Language System
(UMLS) for distantly supervised relation
extraction. UMLS is a large knowledge
base which contains information about
millions of medical concepts and relations
between them. Our approach is evaluated
using existing relation extraction data sets
that contain relations that are similar to
some of those in UMLS.

1 Introduction

Distant supervision has proved to be a popular ap-
proach to relation extraction (Craven and Kum-
lien, 1999; Mintz et al., 2009; Hoffmann et al.,
2010; Nguyen and Moschitti, 2011). It has the
advantage that it does not require manually anno-
tated training data. Distant supervision avoids this
by using information from a knowledge base to
automatically identify instances of a relation from
text and use them in order to generate training data
for a relation extraction system.

Distant supervision has already been applied
to the biomedical domain (Craven and Kumlien,
1999; Thomas et al., 2011). Craven and Kum-
lien (1999) were the first to apply distant supervi-
sion and used the Yeast Protein Database (YPD) to
detect sentences containing subcellar-localization
relations. Thomas et al. (2011) trained a clas-
sifier for protein-protein interactions (PPI) using
the knowledge base IntAct and evaluated their ap-
proach on different PPI corpora.

There have also been recent applications of dis-
tant supervision outside the biomedical domain.
The use of Freebase to train a classifier, e.g.
(Mintz et al., 2009; Riedel et al., 2010), has proved
popular. Other, such as Hoffmann et al. (2010),
use Wikipedia info-boxes as the knowledge base.

Applications of distant supervision face several
challenges. The main problem is ensuring the

quality of the automatically identified training in-
stances identified by the self-annotation. The use
of instances that have been incorrectly labelled as
positive can lower performance (Takamatsu et al.,
2012). Another problem arises when positive ex-
amples are included in the set of negative train-
ing instances, which can occur when information
is missing from the knowledge base (Min et al.,
2013; Ritter et al., 2013; Xu et al., 2013).

Evaluation of relation extraction systems that
use distant supervision represents a further chal-
lenge. In the ideal case an annotated evaluation set
is available. Others, such as Ritter et al. (2013) and
Hoffmann et al. (2011), use Freebase as knowl-
edge base and evaluate their classifier on an an-
notated New York Times corpus. However, if no
evaluation set is available leave-out can be used
where the data identified using distant supervision
used for both training and testing (Hoffmann et al.,
2010).

This paper makes use of the Unified Medical
Language System (UMLS) as a knowledge source
for distant supervision. It is widely used for
biomedical language processing and readily avail-
able. The advantage of UMLS is that it contains
information about a wide range of different types
of relations and therefore has the potential to gen-
erate a large number of relation classifiers. To our
knowledge, it has not been used as a knowledge
source to train relation extraction systems.

Evaluating such as wide range of relation clas-
sifiers is not straightforward due to the lack of
gold-standard data. As an alternative approach we
make use of existing annotated data sets and iden-
tify ones which contain relations that are similar to
those included in UMLS.

The next section provides a short description of
UMLS. We then describe how we acquire existing
data sets to evaluate certain relations. In section 4
we present our first results using UMLS for distant
supervision.
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2 Unified Medical Language System

The Unified Medical Language System1 is a set
of files and software which combines different
biomedical vocabularies, knowledge bases and
standards. The Metathesaurus is a database within
UMLS which contains several million biomedical
and health related names and concepts and rela-
tionships among them. All different names of a
concept are unified by the Concept Unique Identi-
fiers (CUI). MRREL is a subset of the Metathe-
saurus and involves different relationships be-
tween different medical concepts defined by a pair
of CUIs. Many of them are child-parent rela-
tionships, express a synonymy or are vaguely de-
fined as broader or narrower relation. Other re-
lations are more specific, such as has location or
drug contraindicated for. This work focuses on
more specific types of relations.

3 Acquiring Evaluation Data Sets

We examined a number of relation extraction data
sets in order to identify ones that could be used to
evaluate our system. The aim is to find a data set
that is annotated with relations that are similar to
some of those found in the UMLS. If an appropri-
ate relation can be identified then a relation extrac-
tion system can be trained using information from
the UMLS and evaluated using the data set.

To determine whether a data set is suitable we
used MetaMap (Aronson and Lang, 2010) to iden-
tify the CUIs for each related item. We then com-
pared each pair against the MRREL table to deter-
mine whether it is included as a relation. To in-
crease coverage we also included parent and child
nodes in the mapping process.

Table 1 shows the mappings obtained for two
of the data sets: the DDI 2011 data set (Segura-
Bedmar et al., 2011) and the data set described by
Rosario and Hearst (2004).

The DDI data set contains information about
drug-drug interactions and includes a single re-
lation (DDI). The relations it contained were
mapped onto 701 CUI pairs. 266 (37.9%) of these
mappings could be matched to the MRREL rela-
tion has contraindicated drug. Many of the CUI
pairs could also be mapped to the isa relationship
in MRREL, but this is a very general relationship
and the matches are caused by the large number of
these in UMLS rather than it being a reasonable

1https://www.nlm.nih.gov/research/umls/

match for the DDI relation.
The data set described by Rosario and Hearst

(2004) focuses on different relationships between
treatments and diseases. The two most com-
mon relations TREAT FOR DIS (TREAT), denot-
ing the treatment for a particular disease, and PRE-
VENT (PREV), which indicates that a treatment
can be used to prevent a disease. The MRREL
isa relationship also matches many of these re-
lations, again due to its prevalence in MRREL.
Other MRREL relations (may be prevented by
and may be treated by) match fewer CUI pairs but
seem to be better matches for the TREAT and
PREV relations.

Relation MRREL
DDI (701) has contraindicated drug (266),

isa (185), may treat (57),
has contraindication (51)

PREV (41) isa (11), may be prevented by (5)
TREAT (741) isa (172), may be treated by (118)

Table 1: Relation mapping to MRREL

It is important to note that it is not always possi-
ble to find a CUI mapping for each entity and the
mapping process means that the mapping cannot
be guaranteed to be correct in all cases. High cov-
erage does not necessarily mean that a corpus is
very similar to a certain MRREL relation, just that
many of the CUI pairs which have been mapped
to the related entities in the corpus occur often to-
gether in a certain MRREL relation. However, in
the absence of any other suitable evaluation data
we assume that high coverage is an indicator that
the relations are strongly similar and use these two
data sets for evaluation.

4 Distant Supervision using UMLS

In this section we carry out two different dis-
tant supervised experiments using UMLS. The
first experiment will be evaluated on a subset
of the DDI 2011 training data set using the
MRREL relation has contraindicated drug and
has contraindication. The second experiment
uses the MRREL relations may be treated by and
may be prevented by and are evaluated on the
Rosario & Hearst data set.

We use 7,500,000 Medline abstracts annotated
with CUIs using MetaMap (choosing the best
mapping as annotation) as a corpus for distant su-
pervision. Our information extraction platform
based on a system developed for the BioNLP
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Shared Task 2013 (Roller and Stevenson, 2013).
In contrast to our previous work, our classification
process relies on the Shallow Linguistic Kernel
(Giuliano et al., 2006) in combination with Lib-
SVM (Chang and Lin, 2011) taking the kernel as
input.

4.1 Experiment 1: DDI 2011

The DDI 2011 data set was split into training and
test sets for the experiments. Table 2 presents
results that place the distant supervision perfor-
mance in context. The naive classification ap-
proach predicts all candidate pairs as positive. The
supervised approach is trained on the training set,
using the same kernel method as our distant su-
pervised experiments and evaluated on the test set.
This represents the performance that can be ob-
tained using manually labelled training data and
can be considered as an upper bound for distant
supervision.

Method Prec. / Recall / F1
naive 0.098 / 1.000 / 0.178
supervised 0.428 / 0.702 / 0.532

Table 2: DDI 2011 baseline results

The distant supervision approach requires pairs
of positive and negative CUI to be identified.
These pairs are used to identify positive and nega-
tive examples of the target relation from a corpus.
Pairs which occur in our target MRREL relation
are used as positive CUI pairs. Negative pairs are
generated by selecting pairs of CUIs that are occur
in any other MRREL relation.

Sentences containing these CUI pairs are iden-
tified in the subset of the MetaMapped Medline.
In the basic setup (basic), sentences containing a
positive pair will be considered as a positive train-
ing example. There are many cases where just the
occurrence of a positive MRREL pair does not ex-
press the target relation. In an effort to remove
this noisy data we apply some simple heuristics.
The first discards all training instances with more
than five words (5w) between the two entities, an
approach similar to one applied by Takamatsu et
al. (2012). The second discards positive sentences
containing a comma between the related entities
(com). We found that commas often indicate a sen-
tence containing a list of items (e.g. genes or dis-
eases) and that these sentences do not form good
training examples due to the multiple relations that
are possible when there are several items. Finally

we also apply a combination of both techniques
(5w+com).

1000 positive examples were generated using
each approach and used for training. Although it
would be possible to generate more examples for
some approaches, for example basic, applying the
combination of techniques (5w+com) significantly
reduces the number of instances available.

Method has contraindication has contraindicated
(P./R./F1) drug (P./R./F1)

basic 0.146 / 0.371 / 0.210 0.158 / 0.598 / 0.250
5w 0.109 / 0.641 / 0.187 0.207 / 0.487 / 0.290
com 0.212 / 0.560 / 0.308 0.177 / 0.498 / 0.261
5w+com 0.207 / 0.487 / 0.291 0.214 / 0.471 / 0.294

Table 3: Evaluation with DDI 2011

Table 3 presents results of the experiments.
The results show that all applied techniques for
both MRREL relations outperform the naive ap-
proach. The best results in terms of F1 score
for the has contraindication MRREL relation
are obtained using the com selection technique.
Applying just 5w leads to worse results than
using the basic approach. The situation for
has contraindicated drug is different. The classi-
fier provides for all techniques a better F1 score
than the basic approach. The best results are
achieved by using 5w+com. It is interesting to see,
that both MRREL relations provide similar aver-
age classification results, even if both relations are
different from the target relation and cover com-
pletely different CUI pairs. It is also interest-
ing that the MRREL relation has contraindication
has a lower coverage to the DDI relation than
has contraindicated drug, but provides slightly
better results overall. A problem with the distant
supervised classification of these two MRREL re-
lations is their low occurrence in our Medline sub-
set. Using more training data will often lead to
better results. In our case, if we apply the com-
bined selection technique, there are fewer positive
training instances than are available to the super-
vised approach, making it difficult to outperform
the supervised approach.

4.2 Experiment 2: Rosario & Hearst
The second experiment addresses the prob-
lem of detecting the MRREL relations
may be prevented by and may be treated by.
Parts of the Rosario & Hearst data set are used
to evaluate this relation. This data set differs
in structure from the DDI data set. Instead of
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annotating the entities in the sentence according
to its relation, the annotations in the data set
indicate whether a certain relation occurs in the
sentence. This data set does not contain any
negative examples. If a sentence contains two
entities, it will always describe a certain relation.
A supervised classifier is created by dividing the
data set into training and test sets. The test set
contains 253 different sentences (221 describe
a TREAT relation, 15 a PREV relation and 17
involve other relationships). Positive and negative
CUI pairs are selected in a different way to the
previous experiment. The two most frequent
relations in the data set are TREAT and PREV.
A classifier for a particular relation is trained
using sentences annotated with the corresponding
MRREL relation as positive instances. Negative
instances are identified using the other relation.
For example, the classifier for the TREAT relation
is trained using positive examples identified
using may be treated by with negative examples
generated using may be treated by.

Table 4 shows the baseline results on the data
set using a naive and a supervised approach on the
two original relations TREAT and PREV. Perfor-
mance of the naive approach for TREAT is very
high since the majority of sentences in the data set
are annotated with that relation.

Data Set Method Prec. / Recall / F1

TREAT
naive 0.874 / 1.000 / 0.933
supervised 0.944 / 0.923 / 0.934

PREV
naive 0.059 / 1.000 / 0.112
supervised 0.909 / 0.667 / 0.769

Table 4: Rosario & Hearst baseline results

Table 5 shows the results for the various dis-
tant supervision approaches. Again, 1000 positive
training examples were used to train the classifier.
Since the F-Score of the naive and the supervised
approaches of TREAT are very high, it is difficult
to compete with the may be treated by distant su-
pervised classifier. However, considering that just
15.9% of the TREAT instance pairs of the train-
ing set match the MRREL may be treated by re-
lation, the results are promising. Furthermore, the
precision of all may be treated by distant super-
vised experiments outperform the naive approach.
The best results are achieved using com as selec-
tion technique.

The experiments using the PREV relation for
evaluation are more interesting. Due to its low

occurrence in the test set it is more difficult to
detect this relation. The distant supervised clas-
sifier trained with the may be prevented by rela-
tion easily outperforms the naive approach. The
best overall F1 scoer results are achieved using
the 5w technique. As expected the distant super-
vised results are outperformed by the supervised
approach. However, the recall for all distantly su-
pervised approaches are at least as high as those
obtained using the supervised approach.

may be treated by may be prevented by
evaluated on TREAT evaluated on PREV

Method (P./R./F1) (P./R./F1)
basic 0.926 / 0.733 / 0.818 0.286 / 0.667 / 0.400
5w 0.925 / 0.783 / 0.848 0.407 / 0.733 / 0.524
com 0.928 / 0.819 / 0.870 0.222 / 0.800 / 0.348
5w+com 0.924 / 0.769 / 0.840 0.361 / 0.867 / 0.510

Table 5: Evaluation with Rosario & Hearst data
set

5 Conclusion and Discussion

In this paper we presented first results using
UMLS to train a distant supervised relational clas-
sifier. Evaluation was carried out using existing
evaluation data sets since no resources directly an-
notated with UMLS relations were available. We
showed that using a distantly supervised classifier
trained on MRREL relations similar to those found
in the evaluation data set provides promising re-
sults.

Overall, our system works with some compo-
nents which should be improved to achieve better
results. First, we rely on a cheap and fast anno-
tation using MetaMap, which might produce an-
notation errors. In addition, the use of noisy dis-
tant supervised training data decreases the classi-
fication quality. An improvement of the selection
process and an improvement of the classification
method, such as Chowdhury and Lavelli (2013),
could lead to better classification results. In future
we would also like to make further use of existing
data sets with similar relations to those of interest
to evaluate distant supervision approaches.
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Abstract

The aim of this work is to infer a model
able to extract cause-effect relations be-
tween drugs and diseases. A two-level
system is proposed. The first level car-
ries out a shallow analysis of Electronic
Health Records (EHRs) in order to iden-
tify medical concepts such as drug brand-
names, substances, diseases, etc. Next,
all the combination pairs formed by a
concept from the group of drugs (drug
and substances) and the group of diseases
(diseases and symptoms) are characterised
through a set of 57 features. A supervised
classifier inferred on those features is in
charge of deciding whether that pair rep-
resents a cause-effect type of event.

One of the challenges of this work is the
fact that the system explores the entire
document. The contributions of this pa-
per stand on the use of real EHRs to dis-
cover adverse drug reaction events even in
different sentences. Besides, the work fo-
cuses on Spanish language.

1 Introduction

This work deals with semantic data mining within
the clinical domain. The aim is to automatically
highlight the Adverse Drug Reactions (ADRs) in
EHRs in order to alleviate the work-load to sev-
eral services within a hospital (pharmacy service,
documentation service,. . . ) that have to read these
reports. Event detection was thoroughly tackled in
the Natural Language Processing for Clinical Data
2010 Challenge. Since then, cause-effect event ex-
traction has emerged as a field of interest in the
Biomedical domain (Björne et al., 2010; Mihaila
et al., 2013). The motivation is, above all, practi-
cal. Electronic Health Records (EHRs) are studied
by several services in the hospital, not only by the

doctor in charge of the patient but also by the phar-
macy and documentation services, amongst oth-
ers. There are some attempts in the literature that
aim to make the reading of the reports in English
easier and less time-consuming by means of an au-
tomatic annotation toolkit (Rink et al., 2011; Bot-
sis et al., 2011; Toldo et al., 2012). This work is
a first approach on automatic learning of relations
between drugs causing diseases in Spanish EHRs.

This work presents a system that entails two
stages in cascade: 1) the first one carries out the
annotation of drugs or substances (from now on-
wards both of them shall be referred to as DRUG)
and diseases or symptoms (referred to as DIS-
EASE); 2) the second one determines whether a
given (DRUG, DISEASE) pair of concepts repre-
sents a cause-effect reaction. Note that we are in-
terested in highlighting events involving (DRUG,
DISEASE) pairs where the drug caused an adverse
reaction or a disease. By contrast, often, (DRUG,
DISEASE) pairs would entail a drug prescribed to
combat a disease, but these correspond to a differ-
ent kind of events (indeed, diametrically opposed).
Besides, (DRUG, DISEASE) pairs might represent
other sort of events or they might even be unre-
lated at all. Finally, the system should present the
ADRs marked in a friendly front-end. To this end,
the aim is to represent the text in the framework
provided by Brat (Stenetorp et al., 2012). Figure 1
shows an example, represented in Brat, of some
cause-effect events manually tagged by experts.

There are related works in this field aiming at
a variety of biomedical event extraction, such as
binary protein-protein interaction (Wong, 2001),
biomolecular event extraction (Kim et al., 2011),
and drug-drug interaction extraction (Segura-
Bedmar et al., 2013). We are focusing on a variety
of interaction extraction: drugs causing diseases.
There are previous works in the literature that try
to warn whether a document contains or not this
type of events. There are more recent works that
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Figure 1: Some cause-effect events manually annotated in the Brat framework.

cope with event extraction within the same sen-
tence, that is, intra-sentence events. By contrast, in
this work we have realised that around 26% of the
events occur between concepts that are in differ-
ent sentences. Moreover, some of them are at very
long distance. Hence, our method aims at provid-
ing all the (DRUG, DISEASE) concepts within the
document that represent a cause-effect relation.

We cope with real discharge EHRs written by
around 400 different doctors. These records are
not written in a template, that is, the EHRs do not
follow a pre-determined structure, and this, by it-
self entails a challenge. The EHRs we are dealing
with are written in a free structure using natural
language, non-standard abbreviations etc. More-
over, we tackle Spanish language, for which little
work has been carried out. In addition, we do not
only aim at single concept-words but also at con-
cepts based on multi-word terms.

2 System overview

The system, as depicted in Figure 2 entails two
stages.

EHR
Stage 1:

ANNOTATING
CONCEPTS

Stage 2:
EXTRACTING

EVENTS

MARKED 
EHR

Figure 2: The ADR event extraction system.

In the first stage, relevant pairs of concepts have
to be identified within an EHR. Concept annota-
tion is accomplished by means of a shallow anal-
yser system (described in section 2.1). Once the
analyser has detected (DRUG, DISEASE) pairs in
a document, all the pairs will be examined by
an inferred supervised classifier (described in sec-
tion 2.2).

2.1 Annotating concepts by shallow analysis
The first stage of the system has to detect and an-
notate two types of semantic concepts: drugs and
diseases. Each concept, as requested by the phar-
macy service, should gather several sub-concepts
stated as follows:

1. DRUG concept:

(a) Generic names for pharmaceutical
drugs: e.g. corticoids;

(b) Brand-names for pharmaceutical drugs:
e.g. Aspirin;

(c) Active ingredients: e.g. vancomycin;
(d) Substances: e.g. dust, rubber;

2. DISEASE concept:

(a) Diseases
(b) Signs
(c) Symptoms

These concepts were identified by means of a
general purpose analyser available for Spanish,
called FreeLing (Padró et al., 2010), that had been
enhanced with medical ontologies and dictionar-
ies, such as SNOMED-CT, BotPLUS, ICD-9-CM,
etc. (Oronoz et al., 2013). This toolkit is able
to identify multi-word context-terms, lemmas and
also POS tags. An example of the morphological,
semantic and syntactic analysis, provided by this
parser is given in Figure 3. In the figure two pieces
of information can be distinguished: for exam-
ple, given the word “secundarios” (meaning sec-
ondaries) 1) the POS tag provided is AQOM corre-
sponding to Qualificative Adjective Ordinal Mas-
culine Singular; and 2) the provided lemma is “se-
cundario” (secondary). Besides, in a third layer,
the semantic tag is given, that is, the tag “ENFER-
MEDAD” (meaning disease) involves the multi-
word concept “HTP severa” (severe pulmonary
hypertension).
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Figure 3: Lemmas, POS-tags and semantic tags are identified by the clinic domain analyser (diseases in
yellow and drugs or substances in violet).

2.2 Extracting adverse drug reaction events
using inferred classifiers

The goal of the second stage is to determine if a
given (DRUG, DISEASE) pair represents an ADR
event or not. On account of this, we resorted to
supervised classification models. These models
can be automatically inferred from a set of doc-
uments in which the target concepts had been pre-
viously annotated. Hence, first of all, a set of an-
notated data representative for the task is required.
To this end, our starting point is a manually anno-
tated corpus (presented in section 2.2.1). Besides,
in order to automatically learn the classifier, the
(DRUG, DISEASE) pairs have to be described in an
operative way, that is, in terms of a finite-set of
features (see section 2.2.2). The supervised clas-
sification model selected was a type of ensemble
classifier: Random Forests (for further details turn
to section 2.2.3).

2.2.1 Producing an annotated set
A supervised classifier was inferred from an-

notated real EHRs. The annotation was carried
out by doctors from the same hospital that pro-
duced the EHRs. Given the text with the con-
cepts marked on the first stage (turn to section 2.1)
and represented within the framework provided by
Brat1, around 4 doctors from the same hospital an-
notated the events. This annotated set would work
as a source of data to get instances that would
serve to train supervised classification models, as
the one referred in section 2.2.

2.2.2 Operational description of events
As it is well-known, the success of the techniques
based on Machine Learning relies upon the fea-
tures used to describe the instances. Hence, we se-
lected the following features that eventually have

1Brat is the framework a priori selected as the output
front-end shown in Figure 1

proven useful to capture the semantic relations be-
tween ADRs. The features can be organised in the
following sets:

• Concept-words and context-words: to be
precise, we make use of entire terms
including both single-words and multi-
words.

– DRUG concept-word together with
left and right context words (a con-
text up to 3, yielding, thus, 7 fea-
tures).

– DISEASE concept-word together
with left and right context words (7
features).

• Concept-lemmas and context-lemmas
for both drug and disease (14 features
overall)

• Concept-POS and context-POS for both
drug and disease (14 features)

• Negation and speculation: these are
binary valued features to determine
whether the concept words or their con-
text was either negated or speculated (2
features).

• Presence/absence of other drugs in the
context of the target drug and disease (12
features)

• Distance: the number of characters from
the DRUG concept to the DISEASE con-
cept (1 feature).

2.2.3 Inferring a supervised classifier

Given the operational description of a set of
(DRUG, DISEASE) pairs, this stage has to deter-
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mine if there exists an ADR event (that is, a cause-
effect relation) or not. To do so, we resorted
to Random Forests (RFs), a variety of ensemble
models. RFs combine a number of decision trees
being each tree built on the basis of the C4.5 algo-
rithm (Quinlan, 1993) but with a distinctive char-
acteristic: some randomness is introduced in the
order in which the nodes are generated. Particu-
larly, each time a node is generated in the tree, in-
stead of chosing the attribute that maximizes the
Information Gain, the attribute is randomly se-
lected amongst the k best options. We made use
of the implementation of this algorithm available
in Weka-6.9 (Hall et al., 2009). Ensemble models
were proved useful on drug-drug interaction ex-
traction tasks (Thomas et al., 2011).

3 Experimental results

We count on data consisting of discharge sum-
maries from Galdakao-Usansolo Hospital. The
records are semi-structured in the sense that there
are two main fields: the first one for personal data
of the patient (age, dates relating to admittance)
that were not provided by the hospital for privacy
issues; and the second one, our target, a single
field that contains the antecedents, treatment, clin-
ical analysis, etc. This second field is an unstruc-
tured section (some hospitals rely upon templates
that divide this field into several subfields, provid-
ing it with further structure). The discharge notes
describe a chronological development of the pa-
tient’s condition, the undergone treatments, and
also the clinical tests that were carried out.

Given the entire set of manually annotated doc-
uments, 34% were randomly selected without re-
placement to produce the evaluation set. The re-
sulting partition is presented in Table 1 (where the
train and evaluation sets are referred to as Train
and Eval respectivelly).

Documents Concepts Relations
Train 144 6,105 4,675
Eval 50 2,206 1,598

Table 1: Quantitative description of the data.

All together, there are 194 EHRs manually
tagged with more than 8,000 concepts (entailing
diseases, symptoms, drugs, substances and proce-
dures). From these EHRs all the (DRUG,DISEASE)

pairs are taken into account as event candidates,
and these are referred to as relations in Table 1.

The system was assessed using per-class aver-
aged precision, recall and f1-measure as presented
in Table 2.

Precision Recall F1-measure
0.932 0.849 0.883

Table 2: Experimental results.

Semantic knowledge and contextual features
have proven very relevant to detect cause-effect re-
lations. Particularly, those used to detect the con-
cepts and also negation or speculation of the con-
text in which the concept appear.

A manual inspection was carried out on both the
false positives and false negative predictions and
the following conclusions were drawn:

• The majority of false positives were caused
by i) pairs of concepts at a very long distance;
ii) pairs where one of the elements is related
to past-events undergone while the other el-
ement is in the current treatment prescribed
(e.g. the disease is in the antecedents and the
drug in the current diagnostics).

• The vast majority of false negatives were
due to concepts in the same sentence where
the context-words are irrelevant (e.g. filler
words, determiners, etc.).

4 Concluding Remarks and Future Work

This work presents a system that first identifies rel-
evant pairs of concepts in EHRs by means of a
shallow analysis and next examines all the pairs
by an inferred supervised classifier to determine if
a given pair represents a cause-effect event. A rel-
evant contribution of this work is that we extract
events occurring between concepts that are in dif-
ferent sentences. In addition, this is one of the first
works on medical event extraction for Spanish.

Our aim for future work is to determine whether
the (DRUG, DISEASE) pair represents either a rela-
tion where 1) the drug is to overcome the disease;
2) the drug causes the disease; 3) there is no rela-
tionship between the drug and the disease.

The aim of context features is to capture charac-
teristics of the text surrounding the relevant con-
cepts that trigger a relation. More features could
also be explored such as trigger words, regular pat-
terns, n-grams, etc.
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Abstract
Vector Space Models are limited with low
frequency words due to few available con-
texts and data sparseness. To tackle this
problem, we generalize contexts by inte-
grating semantic relations acquired with
linguistic approaches. We use three meth-
ods that acquire hypernymy relations on a
EHR corpus. Context Generalization ob-
tains the best results when performed with
hypernyms, the quality of the relations be-
ing more important than the quantity.

1 Introduction

Distributional Analysis (DA) (Harris, 1954; Firth,
1957) computes a similarity between target words
from the contexts shared by those two words.
This hypothesis is applied with geometric meth-
ods, such as the Vector Space Model (VSM) (Tur-
ney and Pantel, 2010). The advantage of the VSM
is that the similarity of word meaning can be easily
quantified by measuring their distance in the vec-
tor space, or the cosine of the angle between them
(Mitchell and Lapata, 2010). On the other hand,
a major inconvenience is data sparseness within
the matrix that represents the vector space (Tur-
ney and Pantel, 2010). The data sparseness prob-
lem is the consequence of the word distribution in
a corpus (Baroni et al., 2009): in any corpus, most
of the words have a very low frequency and ap-
pear only a few times. Thus, those words have a
limited set of contexts and similarity is difficult to
catch. Thus, methods based on DA perform better
when more information is available (Weeds and
Weir, 2005; van der Plas, 2008) and are efficient
with large corpora of general language. But with
specialized texts, as EHR texts that are usually of
smaller size, reducing data sparseness is a major
issue and methods need to be adapted.

Semantic grouping of contexts should decrease
their diversity, and thus increase the frequency of

the remaining generalized contexts. We assume
that generalizing contexts may influence the distri-
butional context frequencies. Information for gen-
eralization can be issued from existing resources
or can be computed by linguistic approaches. In
this paper, we propose to use semantic relations
acquired by relation acquisition methods to group
words in contexts. We define a method that
switches words in DA contexts for their hierar-
chical parent or morphosyntactic variant that have
been computed on the corpus with linguistic ap-
proaches before applying the VSM method.

In the following, we first present the related
work, then our method and we finally describe the
different experiments we led. The results obtained
on the EHR corpus are then evaluated in terms of
precision and MAP, and analyzed.

2 Related work

Our approach relates with works that influence
distributional contexts to improve the performance
of VSMs. Some of them intend to change the
way to consider contexts; Broda et al. (2009) do
not use the raw context frequency in DA, but they
first rank contexts according to their frequency,
and take the rank into account. Other models
use statistical language models to determine the
most likely substitutes to represent the contexts
(Baskaya et al., 2013). They assign probabilities to
arbitrary sequences of words that are then used to
create word pairs to feed a co-occurrence model,
before performing a clustered algorithm (Yuret,
2012). The limit of such methods is that their per-
formance is proportional to vocabulary size and re-
quires the availability of training data.
Influence on contexts may also be performed by
embedding additional semantic information. The
semantic relations may be issued from an exist-
ing resource or automatically computed. With
a method based on bootstrapping, Zhitomirsky-
Geffet and Dagan (2009) modify the weights of
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the elements in contexts relying on the seman-
tic neighbors found with a distributional similar-
ity measure. Based on this work, Ferret (2013)
uses a set of examples selected from an origi-
nal distributional thesaurus to train a supervised
classifier. This classifier is then applied for
reranking the neighbors of the thesaurus selec-
tion. Within Vector Space Model, Tsatsaronis and
Panagiotopoulou (2009) use a word thesaurus to
interpret the orthogonality of terms and measure
semantic relatedness.
With the same purpose of solving the problem of
data sparseness, other methods are based on di-
mensionality reduction, such as Latent Semantic
Analysis (LSA) in (Padó and Lapata, 2007) or
Non-negative Matrix Factorization (NMF) (Zheng
et al., 2011). Matrix decomposition techniques are
usually applied to reduce the dimensionality of the
original matrix, thereby rendering it more infor-
mative (Mitchell and Lapata, 2010).

Our approach differs from the aforementioned
ones in that we add semantic information in con-
texts to reduce the number of contexts and to in-
crease their frequency. Contrary to these latter ap-
proaches, we do not reduce the contexts by remov-
ing information but by generalyzing information
and integrating extra semantic knowledge.

3 VSM and context generalization

The contexts in which occurs a target word have
associated frequencies which may be used to form
probability estimates. The goal of our method is
to influence the distributional context frequencies
by generalizing contexts.

Step 1: target and context definition During
this step, we define targets and contexts, with dif-
ferent constraints for their extraction. To adapt
our method to specialized texts, we identify terms
(specific terminological entities that denote an
event) with a term extractor (YATEA (Aubin and
Hamon, 2006)). Target words are both nouns
and terms (T). Their distributional contexts corre-
spond to a graphical window of n number of words
around the targets (Wilks et al., 1990; Schütze,
1998; Lund and Burgess, 1996). We consider two
different window sizes defined in section 4.

Linguistic approaches During the generaliza-
tion process, we use three existing linguistic ap-
proaches: two that acquire hypernymy relations
and one to get morphosyntactic variants. Lexico-

syntactic Patterns (LSP) acquire hypernymy re-
lations. We use the patterns defined by (Hearst,
1992). Lexical Inclusion (LI) acquires hypernymy
relations and uses the syntactic analysis of the
terms. Based on the hypothesis that if a term is
lexically included in another, generally there is a
hypernymy relation between the two terms (kid-
ney transplant - cadaveric kidney transplant) (Bo-
denreider et al., 2001). Terminological Variation
(TV) acquires both hypernyms and synonyms. TV
uses rules that define a morpho-syntactic transfor-
mation, mainly the insertion (blood transfusion -
blood cell transfusion (Jacquemin, 1996).

Step 2: context generalization Once targets
and contexts are defined, we generalize contexts
with the relations acquired by the three linguis-
tic approaches we mentioned. To integrate the
relations in contexts, we replace words in con-
text by their hypernym or morphosyntactic variant.
We define two rules: (1) if the context matches
with one hypernym, context is replaced by this
hypernym. (2) if the context matches with sev-
eral hypernyms or variants, we take the hypernym
or variant frequency into account, and choose the
most frequent hypernym/variant. The generaliza-
tion step is individually or sequentially performed
when several relation sets are available.

Step 3: computation of semantic similarity
After the generalization step, similarity between
target words is computed. As we previously de-
crease diversity in contexts, we choose a mea-
sure that favors words appearing in similar con-
texts. We use the Jaccard Index (Grefenstette,
1994) which normalizes the number of contexts
shared by two words by the total number of con-
texts of those two words.

Parameter: thresholds The huge number of re-
lations we obtain after computing similarity be-
tween targets leads us to remove the supposed
wrong relations with three thresholds: (i) number
of shared lemmatized contexts (2 for a large win-
dow, 1 for a small window) ; (ii) number of the
lemmatized contexts (2 for a large window, 1 for
a small window) ; (iii) number of the lemmatized
targets (3 for both window sizes). For each pa-
rameter, the threshold is automatically computed,
according to the corpus, as the mean of the values
of parameters on the corpus. And we experiment
two thresholds on similarity score we empirically
defined : sim > 0.001 and sim > 0.0005.
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4 Experiments

In this section, we present the material we use for
the experiments and evaluation, and the distribu-
tional parameter values of the VSM automatically
determined from the data. We then describe the
generalization sets we experiment and the evalua-
tion measures we used for evaluation.

4.1 Corpus

We use the collection of anonymous clinical En-
glish texts provided by the 2012 i2b2/VA chal-
lenge (Sun et al., 2013).

The corpus is pre-processed within the Ogmios
platform (Hamon et al., 2007). We perform mor-
phosyntactic tagging and lemmatization with Tree
Tagger (Schmid, 1994), and term extraction with
YATEA (Aubin and Hamon, 2006).

4.2 Distributional parameters

We consider two window sizes: a large window
of 21 words (± 10 words, centered on the tar-
get, henceforth W21) and a narrow one of 5 words
(± 2 words, centered on the target, W5).

The window size influences on the type, the
volume and the quality of the acquired relations.
Generally, the smaller windows allow to acquire
more relevant contexts for a target, but increase
the data sparseness problem (Rapp, 2003). They
give better results for classical types of relations
(eg. synonymy), whereas larger windows are more
appropriate for domain relations (eg. colloca-
tions)(Sahlgren, 2006; Peirsman et al., 2008).

4.3 Generalizing distributional contexts

We define several sets of context generalization.
We experiment in step 2 different ways of gener-
alizing contexts. We use as a baseline the VSM
without any generalization in the contexts (VS-
Monly), and compare the generalization sets to it.

Regarding context generalization, we first ex-
ploit the relations acquired from only one linguis-
tic approach. We apply the method described
at the section 3 (step 2) by separately using the
three different sets of relations automatically ac-
quired. Distributional contexts are replaced by
their hypernym acquired with lexico-syntactic pat-
terns (VSM/LSP) and lexical inclusion (VSM/LI),
and by their morphosyntactic variants acquired
with terminological variation (VSM/TV). Then,
we replace contexts with relations acquired by two
approaches (TV then LI, LSP then TV, etc.). This

generalization is done sequentially: we generalize
all the contexts with the relations acquired by one
method (e.g. LI), and then with the relations ac-
quired by another method (e.g. TV). And finally,
similarly to what we perform with two methods,
we experiment the generalization of contexts by
relations acquired with the three different linguis-
tic approaches (e.g. LSP then LI then TV). We
experiment all the possible combinations. With
both the single and multiple generalization, we
aim at evaluating the contribution of each method
but also the impact of the order of the methods.

4.4 Evaluation

In order to evaluate the quality of the acquired re-
lations, we compare our relations to the 53,203
UMLS relations between terms occurring in our
EHR corpus. We perform the evaluation with
the Mean Average Precision (MAP) (Buckley and
Voorhees, 2005) and the macro-precision com-
puted for each target word: semantic neighbors
found in the resource by the total semantic neigh-
bors acquired by our method. We consider three
sets of neighbors: precision after examining 1
(P@1), 5 (P@5) and 10 (P@10) neighbors.

5 Results and discussion

Best results are obtained with a large window of
21 words, with a precision P@1 of 0.243 against
0.032 for a 5 word window, both for VSMonly,
with a threshold of 0.001. Thus, a high thresh-
old on the similarity score is not always relevant.
We observe on this corpus that the generalization
with the several linguistic approaches does not im-
prove the results. For instance, VSM/LI obtains
0.250 of P@1 with a > 0.001 threshold, and this
precision is the same with VSM/LI+TV and with
VSM/LI+LSP. This is an interesting behavior, dif-
ferent from what have been observed so far on
more general French corpora that contains cook-
ing recipes (Périnet and Hamon, 2013).

We discuss here the results we obtain for terms,
for the two thresholds on the similarity score: a
low and a higher thresholds, with relations with a
similarity above 0.0005 and above 0.001. We ob-
serve that with a higher threshold, the precision is
higher, with a P@1 of 0.243 against 0.187 for the
lower threshold (when considering VSMonly). As
for the number of relations acquired, with a lower
threshold we obtain more relations (3,936 rela-
tions acquired for the baseline) than with a higher
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threshold (326 relations for the baseline).
We evaluate precison after examining three

groups of neighbors. The best results are ob-
tained with P@1, and in most cases, precision de-
creases when we consider more neighbors: the
more neighbors we consider, the lower precision
is. For a 0.001 threshold, the generalized experi-
ment sets obtain a higher precision than VSMonly,
in any case. While for a 0005 threshold, the use of
LI to generalize contexts decreases the precision.
We also observe that when considering generali-
sation with TV or LSP only, or their combination,
the P@10 is slightly better than P@5.

The MAP values are higher when the thresold
on the similarity measure is low, with 0.446 for
VSM/LI against 0.089 with the > 0.001 thresh-
old. It means that some correct relations are not
well ranked with the similarity score, but are still
present. We observe that the MAP values are
always higher with the generalization sets than
with the baseline with both thresholds: 0.089 for
VSM/LI, 0.446 for VSM/LI+LSP, etc.

Comparison of the experimental sets When
considering the relations found in the UMLS, we
observe that the generalization with LSP brings
the same relations that the baseline VSMonly plus
22 relations, the generalization with TV brings 16
more relations that VSMonly, and finally that the
generalization with LI decreases the number of re-
lations acquired. When the generalization of the
contexts is performed with LI, only with LI or with
LI combined to another method, it decreases the
number of relations acquired as well as the num-
ber of relations found in the resource. On the con-
trary, generalizing contexts with LSP increases the
number of relations acquired as well as the num-
ber of relations found in the UMLS resource. We
obtain the highest number of relations when gener-
alizing contexts with LSP, with 454 relations, and
the highest precision with 0.273 for P@1.

Comparing those results with the relations ac-
quired with the linguistic approaches on the EHR
corpus shows a correlation between the quality of
the relations acquired with the generalized sets and
the relations used for generalization. Indeed, LI
gives the highest number of relations with 14,437
relations, then TV gives 631 relations, and fi-
nally LSP acquires only three relations: pancre-
atic complication - necrosis, pancreatic complica-
tion - abscess, gentle laxative - milk of magnesia.

With these relations, if the second term (eg.

necrosis) is found in the context, it is replaced by
the first term (eg. pancreatic complication). These
three relations used for generalization give better
results in terms of precision that the many relations
given by the two other approaches. We could de-
duce that the number of relations may not be as im-
portant as their quality when they are used for gen-
eralization. But when the LSP are used after TV or
LI, they do not improve the results. From this ob-
servation, we make the hypothesis that these sec-
ond terms may have already been replaced during
the generalization with LI or TV. To confirm or re-
ject this hypothesis, we look closer to the relations
acquired with TV and LI. In TV, we find no rela-
tion including any of these second terms. On the
contrary, with LI, we found the relation milk - milk
of magnesia that inhibits one of the three relations
acquired with the LSP.

We deduce that even if the quality of the re-
lations used for generalization is more important
than their number, the number of relations still
matters. If generalization is first performed with
a great number of relations, then a small number
of relations used for generalization is not enough
and does not improve the results.

6 Conclusion and perspectives

In this work, we face the problem of data sparese-
ness of distributional methods. This problem espe-
cially arises from specialized corpora which have
a smaller size and in which words and terms have
lower frequencies.

To achieve this goal, we propose to generalize
distributional contexts with hypernyms and vari-
ants acquired by three existing approaches. We fo-
cus on the acquistion of relations between terms.
We experimented several generalization sets, us-
ing one, two or the three methods sequentially
to replace words in context by their hypernym or
variant. Evaluation of the method has been per-
formed on an EHR English text collection. Gen-
eralization obtains the best results when realized
with hypernyms. The quality of the relations mat-
ters much more than their number: few but good
relations used to generalize contexts give better re-
sults than many relations of poorer quality. For
future work, we plan to use for generalization re-
lations issued from different distributional and ter-
minological resources. Finally, we will intend to
combine the methods before normalization.
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Abstract

The period character’s meaning is highly
ambiguous due to the frequency of ab-
breviations that require to be followed
by a period. We have developed a hy-
brid method for period character disam-
biguation and the identification of abbre-
viations, combining rules that explore reg-
ularities in the right context of the pe-
riod with lexicon-based, statistical meth-
ods which scrutinize the preceding token.
The texts under scrutiny are clinical dis-
charge summaries. Both abbreviation de-
tection and sentence delimitation showed
an accuracy of about 93%. An error anal-
ysis demonstrated potential for further im-
provements.

1 Introduction

The full stop, or period character, is ambiguous.
As well as its use as a sentence delimiter, it is often
collocated with abbreviations (“Prof.”), occurs in
numeric expressions (“13.2 mg”), including dates,
and appears in a series of special names such as
Web addresses. Minor variations exist between
languages and dialects (for example the use of the
period as decimal delimiter), and rule variations
exist that guide its collocation with abbreviations.
The character-wise analysis of text can produce a
clear distinction between (i) period characters that
are enclosed between two alphanumeric charac-
ters, and (ii) period characters that are adjacent to
at least one non-alphabetic character. Whereas in
the former case the period character can be consid-
ered an internal part of a token, the latter allows for
two interpretations:

1. Period characters that are mandatorily collo-
cated with abbreviations; and

2. Period characters as sentence delimiters.

We focus on text produced by physicians at
the point of care, either directly or via dictation.
The sublanguage of clinical narratives is charac-
terized, among other peculiarities such as mis-
spellings, punctuation errors, and incomplete sen-
tences, by the abundance of acronyms and abbre-
viations (Meystre et al., 2008). It is for this reason
that we focus here on the use of the period char-
acter to distinguish between sentence limits and
abbreviations.

A snippet from a medical text illustrates some
typical phenomena:

3. St.p. TE eines exulz.
sek.knot.SSM (C43.5) li Lab.
majus. Level IV, 2,42 mm
Tumordurchm.

In “3.” the period marks an ordinal num-
ber; “St.p.” is the abbreviation of “Status
post” (state after); “TE” is an acronym de-
rived from “Totale Exzision”. “Exulz.” and
“Tumordurchm.” are ad-hoc abbreviations for
“exulzerierendes” and “Tumordurchmesser” (tu-
mour diameter), respectively. “sek.knot.SSM”
is an ill-formed agglutination of two abbrevia-
tions and one acronym. In correctly formatted
text, they would be separated by spaces (“sek.
knot. SSM”). The abbreviation “sek.” (sec-
ondary) is written in a common lexicalized form,
whereas “knot.” is, once again, an ad-hoc cre-
ation. “SSM” is an acronym for “Superfiziell Spre-
itendes Melanom”. “C43.5” is a code from the
International Classification of Diseases1. “Lab.”
means “Labium”, a common anatomical abbrevi-
ation. “IV” is not an acronym, but a Roman num-
ber. “2,42” is a decimal number, demonstrating
that the comma rather than the period is used as
a decimal separator in German texts. Finally, the
abbreviation “Tumordurchm.” exemplifies that

1http://www.who.int/classifications/icd/en/
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the period can play a double role, viz. to mark an
abbreviation and to conclude a sentence.

In this paper we will describe and evaluate a
methodology that is able to identify and distin-
guish the following: (i) periods that act as sentence
delimiters after ordinary words (such as the period
after “majus”) marked as NSD (normal sentence
delimiter); (ii) periods as abbreviation markers in
the middle of a sentence, marked as MAM (mid-
sentence abbreviation marker), and (iii) periods
that are both abbreviation markers and sentence
delimiters, marked as EAM (end-sentence abbre-
viation marker). From this ternary distinction, two
binary tasks can be derived, viz. the detection of
abbreviations (MAM and EAM), and the detection
of sentence endings (NSD and EAM).

2 Materials and Methods

2.1 Data

We used 1,696 discharge summaries extracted and
anonymized from a clinical information system.
They had an average word count of 302, with a
mean of 55 period characters per document. The
texts were divided into a learning set (1.526 doc-
uments) and an evaluation set (170 documents).
Two word lists were created in advance: (i) a med-
ical domain dictionary (MDDict) with a high cov-
erage of domain-specific terms, excluding abbre-
viations, and (ii) a closed-class dictionary (CC-
Dict) containing common, domain-independent
word forms.

For MDDict, words were harvested from
three sources: a free dictionary of contempo-
rary German2, a word list created out of raw
text extracted from a medical dictionary on CD-
ROM (Pschyrembel, 1997), and medical texts and
forum postings from a patient-centered website3.
The final list comprised approximately 1.45 mil-
lion types, which were subsequently indexed with
Lucene4. This dictionary was modified during a
second step by two Web resources containing
German abbreviations5,6. We accumulated about
5,800 acronym and abbreviation tokens, which
were then removed from the Lucene-indexed dic-
tionary, in order to transform MDDict into a re-
source mostly devoid of abbreviations.

2http://sourceforge.net/projects/germandict/
3http://www.netdoktor.at/
4https://lucene.apache.org/core/
5http://de.wikipedia.org/wiki/Medizinische Abkürzungen
6http://de.wiktionary.org/wiki/Kategorie:Abkürzung
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Figure 1: Period pattern and zoning of left and
right context.

For CCDict we harvested closed-class words
from a German web resource7, i.e. prepositions,
determiners, conjunctions, and pronouns, together
with auxiliary and modal verbs. The purpose of
this was to arrive at a comprehensive list of word
forms that can only be capitalized at the beginning
of a sentence.

Figure 1 shows the pattern used to identify peri-
ods of interest for this study. The right and the left
context were zoned as followed: The string to the
left of the period until the preceding token delim-
iter is the “Left Token” (LToken). The sequence
of spaces, line breaks, or punctuation marks to the
right of the period (“Punctuation String”) is iden-
tified as PStr. The following token, spanning from
the first alphanumeric character to the character
left to the next delimiter, is named RToken.

2.2 Context evaluation
The right context is evaluated first (Algorithm
1). It is based on the following assumptions: (i)
Whenever a period terminates a sentence, the first
character in the following token is capitalized. For
a subset of words this can be ascertained by look-
ing up the closed word class dictionary CCDict
(the restriction to “closed classes” is due to the fact
that German nouns are mandatorily capitalized, in-
cluding nominalized adjectives and verbs); (ii) A
sentence can never be split by a line break, there-
fore a period that precedes the break necessarily
marks the end of the previous sentence; (iii) Most
punctuation signs that follow a period strongly in-
dicate that the period character here plays the role
of an abbreviation marker and does not coincide
with an end-of-sentence marker. Only in the case
where a decision could not be achieved using the

7http://www.deutschegrammatik20.de/
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if RToken begins with lower case character
then
→MAM;

else
if decapitalized RToken matches closed
class token then
→ EAM or NSD;

else
if If PStr contains punctuation
character then
→MAM;

else
if If PStr contains a line break
then
→ NSD or EAM;

else
→ NSD or MAM or EAM;

end
end

end
end

Algorithm 1: Rule-based decision algorithm for
the right context of a period.

algorithm is the left context investigated.
The evaluation of the left context extends the

approach from Kiss and Strunk (2002), who used
the log likelihood ratio (Dunning, 1993) for abbre-
viation detection:

logλ = −2log(L(H0)/L(HA))

H0 is the hypothesis that the occurrence of a pe-
riod is independent of the preceding word, HA the
hypothesis that it is not independent.

We use four scaling functions S1 – S4. The
period character is symbolized by •; C(word, •)
and C(word,¬•) describe the co-occurrence fre-
quency counts. The primary logλ is modified
by sequential composition. Following Kiss and
Strunk (2002), S1 enhances the initial logλ if
C(word, •) is greater than C(word,¬•). S2

varies from−1 to 1 depending on C(word, •) and
C(word,¬•). S3 leads to a reduction of logλ de-
pending on the length of the preceding word. We
introduced a fourth scaling function S4, which re-
flects the fact that most abbreviations are proper
substrings of the shortened original word (e.g.
“exulz.” = “exulzerierend”), with N being the
sum of all found substring matches in the form
subwordi∗ for every subwordi in subword1 •
subword2 • . . . subwordn• in a Lucene search re-

sult.

S4(logλ) : logλ+N(word, •)
This also includes those abbreviations which

have an internal period, such as “St.p”. The reason
why the last scaling function contains an addition,
is to accommodate for cases where C(word, •) <
C(word,¬•) even when word is an abbreviation.
These cases, for which the weighted logλ is nega-
tive, could then nevertheless be pushed to the pos-
itive side in the result of a strong S4.

For the final decision in favor of an abbrevi-
ation, we required that the following two condi-
tions hold: (i) (S1 ◦ S2 ◦ S3 ◦ S4)(logλ) > 0;
(ii) the length of the abbreviation candidate was
within the 95% confidence interval, given the sta-
tistical distribution of all abbreviation candidates
that exhibited a significant collocation (p < 0.01),
C(word, •) > C(word,¬•), and MDDict not
containing word.

3 Results

For the evaluation methodology, a gold standard
was created by a random selection of 500 text
frames, centered around a period with its left and
right context (each 60 characters) from the evalu-
ation set. The two authors rated each period in the
center of the snippet as being an NSD, a MAM
or an EAM. A subset of 100 was rated by both
authors in order to compute the inter-rater agree-
ment. We obtained a Cohen’s kappa (Di Euge-
nio and Glass, 2004, Hripcsak and Heitjan, 2002)
of 0.98, when rating both abbreviation vs. non-
abbreviation, and sentence delimiter vs. non sen-
tence delimiter, respectively. Accuracy, true and
false negative rates (Manning et al., 2008), are
computed for the two processing steps in isolation.
This required making some default assumptions
for the cases in which the result was ambiguous.
The assumptions are based on frequency distribu-
tions of the three values in the learning set. The
left context processing detects abbreviations, but
is unable to distinguish between EAM and MAM.
As the frequency of MAM is much higher, this
value is set wherever NSD is discarded. In the pro-
cessing of the right context, the algorithm may fail
to disambiguate between NSD vs. EAM, or even
terminate with any decision (NSD vs. EAM vs.
MAM), cf. Algorithm 1. In the latter case MAM
is set, as this was determined to be the most fre-
quent phenomenon in the learning data (0.53). In
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the former case, NSD is given preference over
EAM, which has a low frequency in the learn-
ing set (0.03). Table 1 shows accuracy and false
positive / negative rates obtained by left, right and
combined context evaluations.

Accuracy Fpos Fneg
Abbreviation detection

Left 0.914 0.035 0.136
Right 0.880 0.162 0.051
L & R 0.928 0.060 0.082

Sentence delimitation
Left 0.902 0.107 0.077
Right 0.884 0.014 0.211
L & R 0.934 0.062 0.065

Table 1: Abbreviation detection and sentence de-
limitation results.

It is remarkable that the combination of both al-
gorithms only produces a moderate gain in accu-
racy. For the minimization of certain false nega-
tives and false positives, it can be advantageous to
consider the right or left context separately. For in-
stance, the right context algorithm alone is better
at minimizing false positive sentence recognitions,
whereas the left context algorithm is better suited
at minimizing cases of false positive abbreviation
detections. Apart from known issues such as the
above mentioned parsing problems, for which the
reader needs to be familiar with the domain and
the style of the documents, the analysis of mis-
classifications revealed several weaknesses: sen-
sitivity to spelling and punctuation errors (espe-
cially missing spaces after periods) and abbrevia-
tions that can also be read as a normal word (e.g.
“Mal.” for “Malignität” or “Mal” (time)), and ab-
breviations that are still present in MDDict.

4 Related Work

The detection of short forms (abbreviations,
acronyms) is important due to their frequency in
medical texts (Meystre et al., 2008). Several au-
thors studied their detection, normalization, and
context-dependent mapping to long forms (Xu et
al., 2012). CLEF 2013 (Suominen et al., 2013)
started a task for acronym/abbreviation normal-
ization, using the UMLS8 as target terminology.
An F-Measure of 0.89 was reported by Patrick et
al. (2013). Four different methods for abbrevia-

8http://www.nlm.nih.gov/research/umls/

tion detection were tested by Xu et al. (2007). The
fourth method (a decision tree classifier), which
additionally used features from knowledge re-
sources, performed best with a precision of 91.4%
and a recall of 80.3%. Therefore Wu et al. (2011)
compared machine learning methods for abbrevi-
ation detection. Word formation, vowel combina-
tions, related content from knowledge bases, word
frequency in the overall corpus, and local context
were used as features. The random forest classi-
fier performed best with an F-Measure of 94.8%.
A combination of classifiers lead to the highest
F-Measure of 95.7%. Wu et al. (2012) compared
different clinical natural language processing sys-
tems on handling abbreviations in discharge sum-
maries, resulting in MedLEE performing best with
an F-Score of 0.60. A prototypical system, meet-
ing real-time constraints, is described in Wu et
al. (2013).

5 Conclusion and Outlook

We have presented and evaluated a method for
disambiguating the period character in German-
language medical narratives. It is a combination
of a simple rule set and a statistical approach
supported by lexicons. Whereas the crafting of
the rule base considers peculiarities of the docu-
ment language, primarily by exploiting language-
specific capitalization rules, the processing of the
external language resources and the statistical
methodology are unsupervised. Given these pa-
rameters, the accuracy values of about 93% for
both abbreviation detection and sentence delin-
eation are satisfactory, especially when one con-
siders that the texts are error laden and highly
compact, which also resulted in large numbers of
ad-hoc abbreviations. We expect that with a lim-
ited training effort this rate can still be raised fur-
ther. We are aware that the described period dis-
ambiguation procedure should be embedded into
an NLP processing pipeline, where it must be pre-
ceded by a cleansing process that identifies “hid-
den” periods and restores the adherence to basic
punctuation rules by inserting white spaces where
necessary. An improved result can facilitate the
creation of a sufficiently large, manually annotated
corpus, which could then be used as the basis for
the application of machine learning methods. Fur-
thermore, the impact of the different modifications
regarding the left context approach must be evalu-
ated in more detail.
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Abstract

We present work on tuning the Heideltime
system for identifying time expressions in
clinical texts in English and French lan-
guages. The main amount of the method
is related to the enrichment and adap-
tation of linguistic resources to identify
Timex3 clinical expressions and to nor-
malize them. The test of the adapted ver-
sions have been done on the i2b2/VA 2012
corpus for English and a collection of clin-
ical texts for French, which have been an-
notated for the purpose of this study. We
achieve a 0.8500 F-measure on the recog-
nition and normalization of temporal ex-
pressions in English, and up to 0.9431 in
French. Future work will allow to improve
and consolidate the results.

1 Introduction

Working with unstructured narrative texts is very
demanding on automatic methods to access, for-
malize and organize the information contained in
these documents. The first step is the indexing of
the documents in order to detect basic facts which
will allow more sophisticated treatments (e.g., in-
formation extraction, question/answering, visual-
ization, or textual entailment). We are mostly in-
terested in indexing of documents from the med-
ical field. We distinguish two kinds of indexing:
conceptual and contextual.

Conceptual indexing consists in finding out the
mentions of notions, terms or concepts contained
in documents. It is traditionally done thanks to
the exploitation of terminological resources, such
as MeSH (NLM, 2001), SNOMED International
(Côté et al., 1993), SNOMED CT (Wang et al.,
2002), etc. The process is dedicated to the recog-
nition of these terms and of their variants in doc-
uments (Nadkarni et al., 2001; Mercer and Di

Marco, 2004; Bashyam and Taira, 2006; Schulz
and Hahn, 2000; Davis et al., 2006).

The purpose of contextual indexing is to go fur-
ther and to provide a more fine-grained annota-
tion of documents. For this, additional informa-
tion may be searched in documents, such as polar-
ity, certainty, aspect or temporality related to the
concepts. If conceptual indexing extracts and pro-
vides factual information, contextual indexing is
aimed to describe these facts with more details.
For instance, when processing clinical records, the
medical facts related to a given patient can be aug-
mented with the associated contextual informa-
tion, such as in these examples:

(1) Patient has the stomach aches.

(2) Patient denies the stomach aches.

(3) After taking this medication, patient
started to have the stomach aches.

(4) Two weeks ago, patient experienced the
stomach aches.

(5) In January 2014, patient experienced the
stomach aches.

In example (1), the information is purely fac-
tual, while it is negated in example (2). Example
(3) conveys also aspectual information (the med-
ical problem has started). In examples (4) and
(5), medical events are positioned in the time: rel-
ative (two weeks ago) and absolute (in January
2014). We can see that the medical history of pa-
tient can become more precise and detailed thanks
to such contextual information. In this way, fac-
tual information related to the stomach aches of
patient may receive these additional descriptions
which make each occurrence different and non-
redundant. Notice that the previous I2B2 contests1

addressed the information extraction tasks related
to different kinds of contextual information.

1https://www.i2b2.org/NLP
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Temporality has become an important research
field in the NLP topics and several challenges ad-
dressed this taks: ACE (ACE challenge, 2004),
SemEval (Verhagen et al., 2007; Verhagen et al.,
2010; UzZaman et al., 2013), I2B2 2012 (Sun
et al., 2013). We propose to continue working
on the extraction of temporal information related
to medical events. This kind of study relies on
several important tasks when processing the nar-
rative documents : identification and normaliza-
tion of linguistic expressions that are indicative of
the temporality (Verhagen et al., 2007; Chang and
Manning, 2012; Strötgen and Gertz, 2012; Kessler
et al., 2012), and their modelization and chain-
ing (Batal et al., 2009; Moskovitch and Shahar,
2009; Pustejovsky et al., 2010; Sun et al., 2013;
Grouin et al., 2013). The identification of tempo-
ral expressions provides basic knowledge for other
tasks processing the temporality information. The
existing available automatic systems such as Hei-
delTime (Strötgen and Gertz, 2012) or SUTIME
(Chang and Manning, 2012) exploit rule-based
approaches, which makes them adaptable to new
data and areas. During a preliminary study, we
tested several such systems for identification of
temporal relations and found that HeidelTime has
the best combination of performance and adapt-
ability. We propose to exploit this automatic sys-
tems, to adapt and to test it on the medical clinical
documents in two languages (English and French).

In the following of this study, we introduce
the corpora (Section 2) and methods (Section 3).
We then describe and discuss the obtained results
(Section 4.2) and conclude (Section 5).

2 Material

Corpora composed of training and test sets are the
main material we work with. The corpora are in
two languages, English and French, and has com-
parable sizes. All the processed corpora are de-
identified. Corpora in English are built within the
I2B2 2012 challenge (Sun et al., 2013). The train-
ing corpus consists of 190 clinical records and the
test corpus of 120 records. The reference data con-
tain annotations of temporal expressions accord-
ing to the Timex3s guidelines: date, duration, fre-
quency and time (Pustejovsky et al., 2010). Cor-
pora in French are built on purpose of this study.
The clinical documents are issued from a French
hospital. The training corpus consists of 182 clin-
ical records and the test corpus of 120 records. 25

documents from the test set are annotated to pro-
vide the reference data for evaluation.

3 Method

HeidelTime is a cross-domain temporal tagger that
extracts temporal expressions from documents and
normalizes them according to the Timex3 anno-
tation standard, which is part of the markup lan-
guage TimeML (Pustejovsky et al., 2010). This
is a rule-based system. Because the source code
and the resources (patterns, normalization infor-
mation, and rules) are strictly separated, it is pos-
sible to develop and implement resources for ad-
ditional languages and areas using HeidelTime’s
rule syntax. HeidelTime is provided with modules
for processing documents in several languages,
e.g. French (Moriceau and Tannier, 2014). In En-
glish, several versions of the system exist, such as
general-language English and scientific English.

HeidelTime uses different normalization strate-
gies depending on the domain of the documents
that are to be processed: news, narratives (e.g.
Wikipedia articles), colloquial (e.g. SMS, tweets),
and scientific (e.g. biomedical studies). The news
strategy allows to fix the document creation date.
This date is important for computing and normal-
izing the relative dates, such as two weeks ago
or 5 days later, for which the reference point in
time is necessary: if the document creation date is
2012/03/24, two weeks ago becomes 2012/03/10.

Our method consists of three steps: tuning Hei-
delTime to clinical data in English and French
(Section 3.1), evaluation of the results (Section
3.2), and exploitation of the computed data for the
visualization of the medical events (Section 3.3).

3.1 Tuning HeidelTime

While HeidelTime proposes a good coverage of
the temporal expressions used in general language
documents, it needs to be adapted to specialized
areas. We propose to tune this tool to the medi-
cal domain documents. The tuning is done in two
languages (English and French). Tuning involves
three aspects:

1. The most important adaptation needed is re-
lated to the enrichment and encoding of lin-
guistic expressions specific to medical and
especially clinical temporal expressions, such
as post-operative day #, b.i.d. meaning twice
a day, day of life, etc.
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2. The admission date is considered as the refer-
ence or starting point for computing relative
dates, such as 2 days later. For the identi-
fication of the admission date, specific pre-
processing step is applied in order to detect it
within the documents;

3. Additional normalizations of the temporal
expressions are done for normalizing the
durations in approximate numerical values
rather than in the undefined ’X’-value; and
for external computation for some durations
and frequencies due to limitations in Heidel-
Time’s internal arithmetic processor.

3.2 Evaluating the results
HeidelTime is tuned on the training set. It is evalu-
ated on the test set. The results generated are eval-
uated against the reference data with:

• precision P: percentage of the relevant tem-
poral expressions extracted divided by the to-
tal number of the temporal expressions ex-
tracted;

• recallR: percentage of the relevant temporal
expressions extracted divided by the number
of the expected temporal expressions;

• APR: the arithmetic average of the precision
and recall values P+R

2 ;

• F-measure F : the harmonic mean of the pre-
cision and recall values P∗RP+R .

3.3 Exploiting the results
In order to judge about the usefulness of the tem-
poral information extracted, we exploit it to build
the timeline. For this, the medical events are asso-
ciated with normalized and absolute temporal in-
formation. This temporal information is then used
to order and visualize the medical events.

4 Experiments and Results

4.1 Experiments
The experiments performed are the following.
Data in English and French are processed. Data in
two languages are processed by available versions
of HeidelTime: two existing versions (general lan-
guage and scientific language) and the medical
version created thanks to the work performed in
this study. Results obtained are evaluated against
the reference data.

4.2 Results
We added several new rules to HeidelTime (164
in English and 47 in French) to adapt the recog-
nition of temporal expressions in medical docu-
ments. Some cases are difficult to annotate. For
instance, it is complicated to decide whether some
expressions are concerned with dates or durations.
The utterance like 2 years ago (il y a 2 ans) is
considered to indicate the date. The utterance like
since 2010 (depuis 2010) is considered to indicate
the duration, although it can be remarked that the
beginning of the duration interval marks the begin-
ning of the process and its date. Another complex
situation appears with the relative dates:

• as already mentioned, date like 2 years ago
(il y a 2 ans) are to be normalized according
to the reference time point;

• a more complex situation appears with ex-
pressions like the day of the surgery (le jour
de l’opération) or at the end of the treatment
by antiobiotics (à la fin de l’antibiothrapie),
for which it is necessary first to make the ref-
erence in time of the other medical event be-
fore being able to define the date in question.

In Table 1, we present the evaluation results for
English. On the training corpus, with the general
language version and the scientific version of Hei-
delTime, we obtain F-measure around 0.66: preci-
sion (0.77 to 0.79) is higher than recall (0.56). The
values of F-measure and APR are identical. The
version we adapted to the medical language pro-
vides better results for all the evaluation measures
used: F-measure becomes then 0.84, with preci-
sion up to 0.85 and recall 0.84. This is a good im-
provement of the automatic tool which indicates
that specialized areas, such as medical area, use
indeed specific lexicon and constructions. Inter-
estingly, on the test corpus, the results decrease
for the general language and scientific versions
of HeidelTime, but increase for the medical ver-
sion of HeidelTime, with F-measure 0.85. During
the I2B2 competition, the maximal F-measure ob-
tained was 0.91. With F-measure 0.84, our system
was ranked 10/14 on the English data. Currently,
we improve these previous results.

In Table 2, we present the results obtained on
the French test corpus (26 documents). Two ver-
sions of HeidelTime are applied: general lan-
guage, that is already available, and medical, that
has been developed in the presented work. We can
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Versions of HeidelTime Training Test
P R APR F P R APR F

general language 0.7745 0.5676 0.6551 0.6551 0.8000 0.5473 0.6499 0.6499
scientific 0.7877 0.5676 0.6598 0.6598 0.8018 0.5445 0.6486 0.6486
medical 0.8478 0.8381 0.8429 0.8429 0.8533 0.8467 0.8500 0.8500

Table 1: Results obtained on training and test sets in English.
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Figure 1: Visualization of temporal data.

Versions of Test
HeidelTime P R F
general language 0.9030 0.9341 0.9183
medical 0.9504 0.9341 0.9422

Table 2: Results obtained on test set in French.

observe that the adapted version suits better the
content of clinical documents and improves the F-
measure values by 3 points, reaching up to 0.94.

The main limitation of the system is due to
the incomplete coverage of the linguistic expres-
sions (e.g. au cours de, mensuel (during, monthly)).
Among the current false positives, we can find ra-
tios (2/10 is considered as date, while it means lab
results), polysemous expressions (Juillet in rue du
14 Juillet (14 Juillet street)), and segmentation errors
(few days detected instead of the next few days).
These limitations will be fixed in the future work.

In Figure 1, we propose a visualization of the
temporal data, which makes use of the temporal
information extracted. In this way, the medical
events can be ordered thanks to their temporal an-
chors, which becomes a very useful information
presentation in clinical practice (Hsu et al., 2012).
The visualization of unspecified expressions (e.g.
later, sooner) is being studied. Although it seems
that such expressions often occur with more spe-

cific expressions (e.g. later that day).

5 Conclusion

HeidelTime, an existing tool for extracting
and normalizing temporal information, has been
adapted to the medical area documents in two
languages (English and French). It is evaluated
against the reference data, which indicates that
its tuning to medical documents is efficient: we
reach F-measure 0.85 in English and up to 0.94
in French. More complete data in French are be-
ing annotated, which will allow to perform a more
complete evaluation of the tuned version. We plan
to make the tuned version of HeidelTime freely
available. Automatically extracted temporal infor-
mation can be exploited for the visualization of the
clinical data related to patients. Besides, these data
can be combined with other kinds of contextual in-
formation (polarity, uncertainty) to provide a more
exhaustive picture of medical history of patients.
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Abstract 

To the best of our knowledge, this is the first 
work that does drug and adverse event 
detection from Spanish posts collected from a 
health social media. First, we created a gold-
standard corpus annotated with drugs and 
adverse events from social media. Then, 
Textalytics, a multilingual text analysis 
engine, was applied to identify drugs and 
possible adverse events. Overall recall and 
precision were 0.80 and 0.87 for drugs, and 
0.56 and 0.85 for adverse events. 

1 Introduction 

It is well-known that adverse drug reactions 
(ADRs) are an important health problem. Indeed, 
ADRs are the 4th cause of death in hospitalized 
patients (Wester et al., 2008). Thus, the field of 
pharmacovigilance has received a great deal of 
attention due to the high and growing incidence 
of drug safety incidents (Bond and Raehl, 2006) 
as well as to their high associated costs (van Der 
Hooft et al., 2006). 

Since many ADRs are not captured during 
clinical trials, the major medicine regulatory 
agencies such as the US Food and Drug 
Administration (FDA) or the European 
Medicines Agency (EMA) require healthcare 
professionals to report all suspected adverse drug 
reactions. However, some studies have shown 

that ADRs are under-estimated due to the fact 
that they are reported by voluntary reporting 
systems (Bates et al., 2003; van Der Hooft et al., 
2006; McClellan, 2007). In fact, it is estimated 
that only between 2 and 10 per cent of ADRs are 
reported (Rawlins, 1995). Healthcare 
professionals must perform many tasks during 
their workdays and thus finding the time to use 
these surveillance reporting systems is very 
difficult. Also, healthcare professionals tend to 
report only those ADRs on which they have 
absolute certainty of their existence. Several 
medicines agencies have implemented 
spontaneous patient reporting systems in order 
for patients to report ADRs themselves. Some of 
these systems are the MedWatch from the FDA, 
the Yellow Cards  from the UK Medicines 
agency (MHRA) or the website1 developed by 
the Spanish Agency of Medicines and Medical 
devices (AEMPS). Unlike reports from 
healthcare professionals, patient reports often 
provide more detailed and explicit information 
about ADRs (Herxheimer et al., 2010). Another 
important contribution of spontaneous patient 
reporting systems is to achieve patients having a 
more central role in their treatments. However, 
despite the fact that these systems are well-
established, the rate of spontaneous patient 
reporting is very low probably because many 

                                                             

1 https://www.notificaram.es/  
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patients are still unaware of their existence and 
even may feel embarrassed when describing their 
symptoms.  

In this study, our hypothesis is that health-
related social media can be used as a 
complementary data source to spontaneous 
reporting systems in order to detect unknown 
ADRs and thereby to increase drug safety. In 
recent days, social media on health information, 
just like has happened in other areas, have seen a 
tremendous growth (Hill et al., 2013). Examples 
of social media sites include blogs, online forums, 
social networking, and wikis, among many 
others. In this work, we focus on health forums 
where patients often exchange information about 
their personal medical experiences with other 
patients who suffer the same illness or receive 
similar treatment. Some patients may feel more 
comfortable sharing their medical experiences 
with each other rather than with their healthcare 
professionals. These forums contain a large 
number of comments describing patient 
experiences that would be a fertile source of data 
to detect unknown ADRs. 

Although there have been several 
research efforts devoted to developing systems 
for extracting ADRs from social media, all 
studies have focused on social media in English, 
and none of them have addressed the extraction 
from Spanish social media. Moreover, the 
problem is that these studies have not been 
compared with each other, and hence it is very 
difficult to determine the current “state-of-art” of 
the techniques for ADRs extraction from social 
media. This comparison has not been performed 
due to the lack of a gold-standard corpus for 
ADRs. Thus, the goal of our work is twofold: i) 
to create a gold-standard corpus annotated with 
drugs and adverse events and ii) to develop a 
system to automatically extract mentions of 
drugs and adverse events from Spanish health-
related social media sites. The corpus is 
composed by patients’ comments from 
Forumclinic2, a health online networking website 

                                                             

2 http://www.forumclinic.org  

in Spanish. This is the first corpus of patient 
comments annotated with drugs and adverse 
events in Spanish. Also, we believe that this 
corpus will facilitate comparison for future 
ADRs detection from Spanish social media.  

This is a preliminary work, in which we have 
only focused on the automatic detection of 
mentions of drugs and adverse events. Our final 
goal will be to develop a system to automatically 
extract drugs and their side effects. We hope our 
system will be beneficial to AEMPS as well as to 
the pharmaceutical industry in the improvement 
of their pharmacovigilance systems. 

2 Related Work 

In recent years, the application of Natural 
Language Processing (NLP) techniques to mine 
adverse reactions from texts has been explored 
with promising results, mainly in the context of 
drug labels (Gurulingappa et al., 2013; Li et al., 
2013; Kuhn et al., 2010), biomedical literature 
(Xu and Wang, 2013), medical case reports 
(Gurulingappa et al., 2012) and health records 
(Friedman, 2009; Sohn et al., 2011). However, as 
it will be described below, the extraction of 
adverse reactions from social media has received 
much less attention. 

In general, medical literature, such as 
scientific publications and drug labels, contains 
few grammatical and spelling mistakes. Another 
important advantage is that this type of texts can 
be easily linked to biomedical ontologies. 
Similarly, clinical records present specific 
medical terminology and can also be mapped to 
biomedical ontologies and resources. Meanwhile 
social media texts are markedly different from 
clinical records and scientific articles, and 
thereby the processing of social media texts 
poses additional challenges such as the 
management of meta-information included in the 
text (for example as tags in tweets) (Bouillot et 
al., 2013), the detection of typos and 
unconventional spelling, word shortenings 
(Neunedert et al, 2013; Moreira et al., 2013) and 
slang and emoticons (Balahur, 2013), among 
others. Moreover, these texts are often very short 
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and with an informal nature, making the 
processing task extremely challenging. 

Regarding the identification of drug names in 
text, during the last four years there has been 
significant research efforts directed to encourage 
the development of systems for detecting these 
entities. Concretely, shared tasks such as 
DDIExtraction 2013 (Segura-Bedmar et al., 
2013), CHEMDNER 2013 (Krallinger et al., 
2013) or the i2b2 Medication Extraction 
challenge (Uzuner et al., 2010) have been held 
for the advancement of the state of the art in this 
problem. However, most of the work on 
recognizing drugs concerns either biomedical 
literature (for example, MedLine articles) or 
clinical records, thus leaving unexplored this task 
in social media streams.  

Leaman et al., (2010) developed a system to 
automatically recognize adverse effects in user 
comments. A corpus of 3,600 comments from 
the DailyStrength health-related social network 
was collected and manually annotated with a 
total of 1,866 drug conditions, including 
beneficial effects, adverse effects, indications 
and others. To identify the adverse effects in the 
user comments, a lexicon was compiled from the 
following resources: (1) the COSTART 
vocabulary (National Library of Medicine, 2008), 
(2) the SIDER database (Kuhn et al., 2010), (3) 
MedEffect3 and (4) a list of colloquial phrases 
which were manually collected from the 
DailyStrength comments. The final lexicon 
consisted of 4,201 concepts (terms with the same 
CUI were grouped in the same concept). Finally, 
the terms in the lexicon were mapped against 
user comments to identify the adverse effects. In 
order to distinguish adverse effects from the 
other drug conditions (beneficial effects, 
indications and others), the systems used a list of 
verbs denoting indications (for example, help, 
work, prescribe). Drug name recognition was not 
necessary because the evaluation focused only on 
a set of four drugs: carbamazepine, olanzapine, 

                                                             

3 http://www.hc-sc.gc.ca/dhp-mps/medeff/index-
eng.php 

trazodone and ziprasidone. The system achieved 
a good performance, with a precision of 78.3% 
and a recall of 69.9%.  

An extension of this system was accomplished 
by Nikfarjam and Gonzalez (2011). The authors 
applied association rule mining to extract 
frequent patterns describing opinions about drugs. 
The rules were generated using the Apriori tool4, 
an implementation of the Apriori algorithm 
(Agrawal and Srikant, 1994) for association rule 
mining. The system was evaluated using the 
same corpus created for their previous work 
(Leaman et al., 2010), and which has been 
described above. The system achieved a 
precision of 70.01% and a recall of 66.32%. The 
main advantage of this system is that it can be 
easily adapted for other domains and languages. 
Another important advantage of this approach 
over a dictionary based approach is that the 
system is able to detect terms not included in the 
dictionary.  

Benton et al., (2011) created a corpus of posts 
from several online forums about breast cancer, 
which later was used to extract potential adverse 
reactions from the most commonly used drugs to 
treat this disease: tamoxifen, anastrozole, 
letrozole and axemestane. The authors collected 
a lexicon of lay medical terms from websites and 
databases about drugs and adverse events. The 
lexicon was extended with the Consumer Health 
Vocabulary (CHV)5, a vocabulary closer to the 
lay terms, which patients usually use to describe 
their medical experiences. Then, pairs of terms 
co-occurring within a window of 20 tokens were 
considered. The Fisher’s exact test (Fisher, 1922) 
was used to calculate the probability that the two 
terms co-occurred independently by chance. To 
evaluate the system, the authors focused on the 
four drugs mentioned above, and then collected 
their adverse effects from their drug labels. Then, 
precision and recall were calculated by 
comparing the adverse effects from drug labels 
and the adverse effects obtained by the system. 

                                                             

4 http://www.borgelt.net/apriori.html 
5 http://consumerhealthvocab.org 
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The system obtained an average precision of 77% 
and an average recall of 35.1% for all four drugs.  

UDWarning (Wu et al., 2012) is an ongoing 
prototype whose main goal is to extract adverse 
drug reactions from Google discussions. A 
knowledge base of drugs and their adverse 
effects was created by integrating information 
from different resources such as SIDER, 
DailyMed6, Drugs.com7 and MedLinePlus. The 
authors hypothesized that unknown adverse drug 
effects would have a high volume of discussions 
over the time. Thus, the systems should monitor 
the number of relevant discussions for each 
adverse drug effect. However, to the best of our 
knowledge, the UDWarning’s component 
devoted to the detection of unrecognized adverse 
drug effects has not been developed yet.  

Bian et al., (2012) developed a system to 
detect tweets describing adverse drug reactions. 
The systems used a SVM classifier trained on a 
corpus of tweets, which were manually labeled 
by two experts. MetaMap (Aronson and Lang, 
2010) was used to analyze the tweets and to find 
the UMLS concepts present in the tweets. The 
system produced poor results, mainly because 
tweets are riddled with spelling and grammar 
mistakes. Moreover, MetaMap is not a suitable 
tool to analyze this type of texts since patients do 
not usually use medical terminology to describe 
their medical experiences.  

As it was already mentioned, the recognition 
of drugs in social media texts has hardly been 
tackled and little research has been conducted to 
extract relationships between drugs and their side 
effects, since most systems were focused on a 
given and fixed set of drugs. Most systems for 
extracting ADRs follow a dictionary-based 
approach. The main drawback of these systems is 
that they fail to recognize terms which are not 
included in the dictionary.  In addition, the 
dictionary-based approach is not able to handle 
the large number of spelling and grammar errors 
in social media texts. Moreover, the detection of 
                                                             

6 http://dailymed.nlm.nih.gov/dailymed/ 
7 http://www.drugs.com/ 

ADRs has not been attempted for languages 
other than English. Indeed, automatic 
information extraction from Spanish-language 
social media in the field of health remains largely 
unexplored. Additionally, to the best of our 
knowledge, there is no corpus annotated with 
ADRs in social media texts available today. 

3 Method  

3.1 Corpus creation 

In order to create the first corpus in Spanish 
annotated with drugs and adverse events, we 
reviewed the main health-related social networks 
in Spanish language to select the most 
appropriate source of user comments. This 
corpus will be used to evaluate our system. 

Twitter was initially our preferred option due 
to the tremendous amount of tweets published 
each day (nearly 400 millions). However, we 
decided to discard it because Twitter does not 
seem to be the preferred source for users to 
describe their ADRs. Gonzalez et al. (2013) 
gathered a total of 42,327 in a one-month period, 
from which only 216 described ADRs. Although 
Facebook is the most popular social media and 
many Facebook groups dedicated to specific 
diseases have emerged in the last years, we 
discarded it because most of these groups usually 
have restricted access to their members.  Online 
health-related forums are an attractive source of 
data for our corpus due to their high dynamism, 
their great number of users as well as their easy 
access. After reviewing the main health forums 
in Spanish, we chose ForumClinic, an interactive 
program for patients, whose main goal is to 
provide rigorous information about specific 
diseases (such as breast cancer, HIV, bipolar 
disorder, depression, schizophrenia, ischemic 
heart disease, among others) and their treatments. 
Also, this platform aims to increase the 
participation of patients maintaining a discussion 
forum where patients can exchange information 
about their experiences. Figure 1 shows the 
distribution of user comments across the main 
twelve categories defined in the forum. We 
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implemented a web crawler to gather all user 
comments published in ForumClinic to date. 

 

Figure 1 Distribution of user comments. 

Then, we randomly selected a sample of 400 
comments that were manually labeled with drugs 
and adverse events by two annotators with 
expertise in Pharmacovigilance. It should be 
noted that adverse events and ADRs do not refer 
to the same: while an adverse event may or may 
not be caused by a drug, an ADR is an adverse 
event that is suspected to be caused by a drug. A 
drug is a substance used in the treatment, cure, 
prevention or diagnosis of diseases. The corpus 
includes generic and brand drugs as well as drug 
families. Disagreements between the annotators 
were discussed and reconciled during the 
harmonization process, where a third annotator 
helped to make the final decision (some 
examples are shown in Table 1). All the 
mentions of drugs and adverse events were 
annotated, even those containing spelling or 
grammatical errors (for example, hemorrajia). 
Nominal anaphoric expressions, which refer to 
previous adverse events or drugs in the comment, 
were also included in the annotation. The 
annotators found 187 drugs (from which 40 were 
nominal anaphors and 14 spelling errors) and 
636 adverse events (from which 48 were nominal 
anaphors and 17 spelling errors). The corpus is 
available for academic purposes8. 

To measure the inter-annotator agreement we 
used the F-measure metric. This metric 
approximates the kappa coefficient (Cohen, 1960) 

                                                             

8 http://labda.inf.uc3m.es/SpanishADRCorpus 

when the number of true negatives (TN) is very 
large (Hripcsak and Rothschild, 2005). In our 
case, we can state that the number of TN is very 
high since TN are all the terms that are not true 
positives, false positives nor false negatives. The 
F-measure was calculated by comparing the two 
corpora created by the two first annotators. The 
corpus labelled by the first annotator was 
considered the gold-standard. As it was expected, 
drugs exhibit a high IAA (0.89), while adverse 
events point to moderate agreement (0.59). As 
drugs have specific names and there are a limited 
number of them, it is possible to create a limited 
and controlled vocabulary to gather many of the 
existing drugs. On the other hand, patients can 
express their adverse events in many different 
ways due to the variability and richness of 
natural language. 

Sentence Final Decision 

De entre los distintos 
antiretrovirales, transcriptasa 
inversa, proteasa, integrasa y 
fusión, qué grupo sería el 
más potente y cual el menos. 

Names in bold type refer 
to four families of 
inhibitors (that is, drug 
families), and thereby, 
they should be annotated. 

Como complemento proteico 
recomendamos el de los 
laboratorio Vegenat. Si 
compras los complementos 
del Decathlon, asegúrate que 
contenga proteínas. 

The mention 
“complementos del 
Decathlon” should not be 
annotated as a drug since 
it is not a brand-marked 
drug.   

Table 1: Some examples of disagreements between 
annotators 

 

3.2 Constructing a dictionary for drugs and 
adverse events 

Since our goal is to identify drugs and adverse 
events from user comments, the first challenge is 
to create a dictionary that contains all of the 
drugs and known adverse events.  

CIMA9 is an online information center about 
medicines that provides all the daily updated 
official information about drugs. CIMA is 

                                                             

9 http://www.aemps.gob.es/cima/ 
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maintained by the Spanish Agency for Medicines 
and Health Products (AEMPS). It includes 
information on all drugs authorized in Spain and 
their current authorization status. CIMA contains 
a total of 16,418 brand drugs and 2,228 generic 
drugs. Many brand drug names include 
additional information such as dosages, mode 
and route of administration, laboratory, among 
others (for example, “ESPIDIFEN 400 mg 
GRANULADO PARA SOLUCION ORAL 
SABOR ALBARICOQUE” or “ESPIDIFEN 600 
mg GRANULADO PARA SOLUCION ORAL 
SABOR LIMON EFG, 20 sobres”). Since it is 
unlikely that these long names are used by 
patients, we implemented a method to shorten 
them by removing their additional information 
(for example, “ESPIDIFEN”). After applying 
this method, the resulting list of brand drug 
names consisted of 3,662 terms. The main 
limitation of CIMA is that it only provides 
information about drugs authorized in Spain. 
That is, CIMA does not contain information 
about drugs approved only in Latin America. 
CIMA is free and offers a downloadable version 
in XML format. Thus, it provides the 
information in a well-structured format that 
makes it possible to directly extract generic and 
brand drug names as well as other related 
information such as their ATC codes, their 
pharmaceutical company, among others.  
Unfortunately, CIMA does not provide 
information about drug groups. For this reason, 
we decided to consider the WHO ATC system10, 
a classification system of drugs, as an additional 
resource to obtain a list of drug groups.  

MedDRA 11  is a medical terminology 
dictionary about events associated with drugs. It 
is a multilingual terminology, which includes the 
following languages: Chinese, Czech, Dutch, 
French, German, Hungarian, Italian, Japanese, 
Portuguese and Spanish. Its main goal is to 
provide a classification system for efficient 
communication of ADRs data between countries. 
The main advantage of MedDRA is that its 
                                                             

10 http://www.whocc.no/atc_ddd_index/ 
11 http://www.meddra.org/ 

structured format allows easily obtaining a list of 
possible adverse events. MedDRA is composed 
of a five levels hierarchy. We collected the terms 
from the most specific level, "Lowest Level 
Terms" (LLTs)”. This level contains a total of 
72,072 terms, which express how information is 
communicated in practice.  

By analyzing the information from these 
resources, we found that none of them contained 
all of the drugs and adverse events. Patients 
usually use lay terms to describe their symptoms 
and their treatments. Unfortunately, many of 
these lay terms are not included in the above 
mentioned resources. Therefore, we decided to 
integrate additional information from other 
resources devoted to patients to build a more 
complete and comprehensive dictionary. There 
are several online websites that provide 
information to patients on drugs and their side 
effects in Spanish language. For example, 
MedLinePlus and Vademecum contain 
information about drugs and their side effects. 
These websites allow users to browse by generic 
or drug name, providing an information leaflet 
for each drug in a HTML page. Since these 
leaflets are unstructured, the extraction of drugs 
and their adverse effects is a challenging task. 
While drug names are often located in specific 
fields (such as title), their adverse events are 
usually descriptions of harmful reactions in 
natural language. We only developed a web 
crawler to browse and download pages related to 
drugs from Vademecum since this website 
provided an easier access to its drug pages than 
MedLinePlus. We plan to augment the list of 
drugs and adverse events by crawling 
MedLinePlus in future work.  

After extracting drugs and adverse events 
from these different resources, we created a 
dictionary of drugs and adverse events. Table 2 
shows the statistics of our final dictionary. 

Resource Total 

Generic drugs from CIMA 2,228 

Brand drugs from CIMA 3,662   
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Drug group names from the ATC system 466 

Drug names (which are not in CIMA) from 
Vademecum 

1,237 

Total Drugs: 7,593 

Table 2: Number of drugs in the dictionary. 

Resource Total 

Adverse events from MedDRA 72,072 

Adverse events from Vademecum 
(which are not in MedDRA) 

2,793 

Total adverse events: 74,865 

Table 3: Number of adverse events in the dictionary. 

3.3 Using Textalytics and gazetteers to 
identify drugs and adverse events 

Textalytics 12  is a multilingual text analysis 
engine to extract information from any type of 
texts such as tweets, posts, comments, news, 
contracts, etc. This tool offers a wide variety of 
functionalities such as text classification, entity 
recognition, concept extraction, relation 
extraction and sentiment analysis, among others. 
We used a plugin that integrates Textalytics with 
GATE. In this paper, we applied entity 
recognition provided by Textalytics, which 
follows a dictionary-based approach to identify 
entities in texts. We created a dictionary for 
drugs and adverse events from CIMA and 
MedDRA. This dictionary was integrated into 
Textalytics. Additionally, the lists of drugs and 
adverse events collected from the others 
resources (ATC system and Vademecum) were 
used to create GATE gazetteers.  

4 Results and error analysis 

We evaluated the system on the corpus annotated 
with drugs and adverse events.  The results of 
this study show a precision of 87% for drugs and 
85% for adverse events, and a recall of 80% for 
drugs and 56% for adverse events.  

                                                             

12 https://textalytics.com/ 

We performed an analysis to determine the 
main sources of error in the system. A sample of 
50 user comments were randomly selected and 
analyzed. Regarding the detection of adverse 
events, the major cause of false negatives was 
the use of colloquial expressions to describe an 
adverse event. Phrases like “me deja ko (it makes 
me KO)” or “me cuesta más levantarme (it’s 
harder for me to wake up)” were used by patients 
for expressing their adverse events. These 
phrases are not included in our dictionary. A 
possible solution may be to create a lexicon 
containing this kind of idiomatic expressions. 
The second highest cause of false negatives for 
adverse events was due to the different lexical 
variations of the same adverse event. For 
example, ‘depresión (depression)’ is included in 
our dictionary, but their lexical variations such as 
“depremido (depress)”, “me deprimo (I get 
depressed)”, “depresivo (depressive)” or 
“deprimente (depressing)” were not detected by 
our system since they are not in our dictionary. 
Nominalization may be used to identify all the 
possible lexical variations of a same adverse 
event. Another important error source of false 
negatives was spelling mistakes (eg. hemorrajia 
instead of hemorragia). Many users have great 
difficulty in spelling unusual and complex 
technical terms. This error source may be 
handled by a more advanced matching method 
capable of dealing with the spelling error 
problem. The use of abbreviations (“depre” is an 
abbreviation for “depression”) also produces 
false negatives. Techniques such as 
lemmatization and stemming may help to resolve 
this kind of abbreviations.  

False positives for adverse events were mainly 
due to the inclusion of MedDRA terms referring 
to procedures (such as therapeutic, preventive or 
laboratory procedures) and tests in our dictionary. 
MedDRA includes terms for diseases, signs, 
abnormalities, procedures and tests.  We should 
have not included those terms referring to 
procedures and tests since they do not represent 
adverse events.  
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The main source of false negatives for drugs 
seems to be that users often misspelled drug 
names. Some generic and brand drugs have 
complex names for patients. Some examples of 
misspelled drugs are avilify (Abilify) or rivotril 
(ribotril). Another important cause of false 
negatives was due to the fact that our dictionary 
does not include drugs approved in other 
countries than Spain (for example, 
Clorimipramina, Ureadin or Paxil). However, 
ForumClinic has a large number of users in Latin 
America. It is possible that these users have 
posted comments about some drugs that have 
only been approved in their countries. The third 
largest source of errors was the abbreviations for 
drug families. For instance, benzodiacepinas 
(benzodiazepine) is commonly used as benzos, 
which is not included in our dictionary. An 
interesting source of errors to point out is the use 
of acronyms referring to a combination of two or 
more drugs. For instance, FEC is a combination 
of Fluorouracil, Epirubicin and 
Cyclophosphamide, three chemotherapy drugs 
used to treat breast cancer. This combination of 
drugs is not registered in the resources (CIMA 
and Vademecum) used to create our dictionary. 

Most false positives for drugs were due to a 
lack of ambiguity resolution. Some drug names 
are common Spanish words such as “Allí” (a 
slimming drug) or “Puntual” (a laxative). These 
terms are ambiguous and resolve to multiple 
senses, depending on the context in which they 
are used. Similarly, some drug names such as 
“alcohol” or “oxygen” can take a meaning 
different than the one of pharmaceutical 
substance. Another important cause of false 
positives is due to the use of drug family names 
as adjectives that specify an effect. This is the 
case of sedante (sedative) or antidepresivo 
(antidepressant), which can refer to a family of 
drugs, but also to the definition of an effect or 
disorder caused by a drug (sedative effects). 

5 Conclusion  

In this research, we created the first Spanish 
corpus of health user comments annotated with 
drugs and adverse events. The corpus is available 

for research. In this work, we only focused on 
the detection of the mentions of drugs and 
adverse events, but not the relationships among 
them. In future work, we plan to extend the 
system to detect the relationships between drugs 
and their side effects. Also, we would like to 
identify their indications and beneficial effects.  
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Abstract

The documentation of a care episode con-
sists of clinical notes concerning patient
care, concluded with a discharge sum-
mary. Care episodes are stored electron-
ically and used throughout the health care
sector by patients, administrators and pro-
fessionals from different areas, primarily
for clinical purposes, but also for sec-
ondary purposes such as decision support
and research. A common use case is, given
a – possibly unfinished – care episode,
to retrieve the most similar care episodes
among the records. This paper presents
several methods for information retrieval,
focusing on care episode retrieval, based
on textual similarity, where similarity is
measured through domain-specific mod-
elling of the distributional semantics of
words. Models include variants of random
indexing and a semantic neural network
model called word2vec. A novel method is
introduced that utilizes the ICD-10 codes
attached to care episodes to better induce
domain-specificity in the semantic model.
We report on an experimental evaluation
of care episode retrieval that circumvents
the lack of human judgements regarding
episode relevance by exploiting (1) ICD-
10 codes of care episodes and (2) seman-
tic similarity between their discharge sum-
maries. Results suggest that several of the
methods proposed outperform a state-of-
the art search engine (Lucene) on the re-
trieval task.

1 Introduction

Information retrieval (IR) aims at retrieving and
ranking documents relative to a textual query ex-
pressing the information need of a user (Manning
et al., 2008). IR has become a crucial technology
for many organisations that deal with vast amounts
of partly structured and unstructured (free text)
data stored in electronic format, including hospi-
tals and other health care providers. IR is an es-
sential part of the clinical practice; e.g., on-line IR
systems are associated with substantial improve-
ments in clinicians decision-making concerning
clinical problems (Westbrook et al., 2005).

The different stages of the clinical care of a pa-
tient are documented in clinical care notes, con-
sisting mainly of free text. A care episode consists
of a sequence of individual clinical care notes,
concluded by a discharge summary, as illustrated
in Figure 1. Care episodes are stored in elec-
tronic format in electronic health record (EHR)
systems. These systems are used throughout the
health care sector by patients, administrators and
professionals from different areas, primarily for
clinical purposes, but also for secondary purposes
such as decision support and research (Häyrinen et
al., 2008). IR from EHR in general is therefore a
common and important task.

This paper focuses on the particular task of re-
trieving those care episodes that are most similar
to the sequence of clinical notes for a given pa-
tient, which we will call care episode retrieval.
In conventional IR, the query typically consists of
several keywords or a short phrase, while the re-
trievable units are typically documents. In con-
trast, in care episode retrieval, the query consist of
the clinical notes contained in a care episode. The
discharge summary is used separately for evalu-
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Time
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Figure 1: Illustration of care episode retrieval. The
two care episodes (A and B) are composed of
a number of individual clinical notes and a sin-
gle discharge summary. Given an ongoing care
episode (minus the discharge summary), the task
is to retrieve other, similar care episodes.

ation purposes, and is assumed to be unavailable
for constructing a query at retrieval time. Retriev-
able units are thus complete care episodes without
summaries.

We envision a number of different use cases for
a care episode retrieval system. Firstly, it could fa-
cilitate clinicians in decision-making. For exam-
ple, given a patient that is being treated in a hos-
pital, an involved clinician may want to find previ-
ous patients that are similar in terms of their health
history, symptoms or received treatments. Supple-
mentary input from the clinician would enable the
system to give heightened weight to keywords of
particular interest within the care episodes, which
would further be emphasized in the semantic sim-
ilarity calculation during IR. It may help consider-
ably to see what similar patients have received in
terms of medication and further treatment, what
related issues such as bi-conditions or risks oc-
curred, how other clinicians have described cer-
tain aspects, what clinical practice guidelines have
been utilized, and so on. This relates to the un-
derlying principle in textual case-based reasoning
(Lenz et al., 1998). Secondly, it could help man-
agement to get almost real time information con-
cerning the overall situation on the unit for a spe-
cific follow-up period. Such a system could for ex-
ample support managerial decision-making with
statistical information concerning care trends on
the unit, adverse events or infections. Thirdly, it
could facilitate knowledge discovery and research.
For instance, it could enable researchers to map
or cluster similar care episodes to find common
symptoms or conditions. In sum, care episode re-
trieval is likely to improve care quality and consis-
tency in hospitals.

From the perspective of NLP, care episode re-
trieval – and IR from EHRs in general – is a
challenging task. It differs from general-purpose
web search in that the vocabulary, the informa-
tion needs and the queries of clinicians are highly
specialised (Yang et al., 2011). Clinical notes
contain highly domain-specific terminology (Rec-
tor, 1999; Friedman et al., 2002; Allvin et al.,
2010) and generic text processing resources are
therefore often suboptimal or inadequate (Shatkay,
2005). At the same time, development of dedi-
cated clinical NLP tools and resources is often dif-
ficult and costly. For example, popular data-driven
approaches to NLP are based on supervised learn-
ing, which requires substantial amounts of tailored
training data, typically built through manual anno-
tation by annotators who need both linguistic and
clinical knowledge. Additionally, variations in the
language and terminology used in sub-domains
within and across health care organisations greatly
limit the scope of applicability of such training
data (Rector, 1999).

Recent work has shown that distributional mod-
els of semantics, induced in an unsupervised man-
ner from large corpora of clinical and/or medical
text, are well suited as a resource-light approach
to capturing and representing domain-specific ter-
minology (Pedersen et al., 2007; Koopman et al.,
2012; Henriksson et al., 2014). This raises the
question to what extent distributional models of
semantics can alleviate the aforementioned prob-
lems of NLP in the clinical domain. The work
reported here investigates to what extent distribu-
tional models of semantics, built from a corpus of
clinical text in an fully unsupervised manner, can
be used for care episode retrieval. Models include
several variants of random indexing and a seman-
tic neural network model called word2vec, which
will be described in more detail in Section 4.

It has been argued that clinical NLP should ex-
ploit existing knowledge resources such as knowl-
edge bases about medications, treatments, dis-
eases, symptoms and care plans, despite these not
having been explicitly built for doing clinical NLP
(Friedman et al., 2013). Along these lines, a novel
method is proposed here that utilizes the ICD-10
codes – diagnostic labels attached to care episodes
by clinicians – to better induce domain-specificity
in the semantic model. Experimental results sug-
gest that this method outperforms a state-of-the art
search engine (Lucene) on the task of care episode
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retrieval.
Apart from issues related to clinical terminol-

ogy, another problem in care episode retrieval is
the lack of benchmark data, such as the relevance
scores produced by human judges commonly used
for evaluation of IR systems. Although collec-
tions of care episodes may be available, producing
gold standard similarity scores required for evalu-
ation is costly. Another contribution of this paper
is the proposal of evaluation procedures that cir-
cumvent the lack of human judgements regarding
episode similarity. This is accomplished by ex-
ploiting either (1) ICD-10 codes of care episodes
or (2) semantic similarity between their discharge
summaries. Despite our focus on the specific task
of care episode retrieval, we hypothesize that the
methods and models proposed here have the po-
tential to increase performance of IR on clinical
text in general.

2 Data

The data set used in this study consists of the elec-
tronic health records from patients with any type
of heart related problem that were admitted to one
particular university hospital in Finland between
the years 2005-2009. Of these, only the clini-
cal notes written by physician are used. A sup-
porting statement for the research was obtained
from the Ethics Committee of the Hospital District
(17.2.2009 §67) and permission to conduct the re-
search was obtained from the Medical Director of
the Hospital District (2/2009). The total set consist
of 66884 care episodes, which amounts to 398040
notes and 64 million words in total. This full set
was used for training of the semantic models. To
make the experimentation more convenient, we
chose to use a subset for evaluation. This com-
prises 26530 care episodes, amounting to 155562
notes and 25.7 million words in total.

Notes are mostly unstructured, consisting of
free text in Finnish. Some meta-data – such as
names of the authors, dates, wards, and so on – is
present, but is not used for retrieval.

Care episodes have been manually labeled ac-
cording to the 10th revision of the International
Classification of Diseases (ICD-10) (World Health
Organization and others, 2013), a standardised
tool of diagnostic codes for classifying diseases.
Codes are normally applied at the end of the pa-
tient’s stay, or even after the patient has been dis-
charged from the hospital. Care episodes have

one primary ICD-10 code attached and optionally
a number of additionally relevant codes. In this
study, only the primary one is used, because ex-
traction of the secondary codes is non-trivial.

ICD-10 codes have an internal structure that re-
flects the classification system ranging from broad
categories down to fine-grained subjects. For ex-
ample, the first character (J) of the code J21.1
signals that it belongs to the broad category Dis-
eases of the respiratory system. The next two
digits (21) classify the subject as belonging to
the subcategory Acute bronchiolitis. Finally, the
last digit after the dot (1) means that it belongs
to the sub-subclass Acute bronchiolitis due to hu-
man metapneumovirus. There are 356 unique “pri-
mary” ICD-10 codes in the evaluation data set.

3 Task

The task addressed in this study is retrieval of care
episodes that are similar to each other. In con-
trast to the normal IR setting, where the search
query is derived from a text stating the user’s in-
formation need, here the query is based on an-
other care episode, which we refer to as the query
episode. As the query episode may document on-
going treatment, and thus lack a discharge sum-
mary and ICD-10 code, neither of these informa-
tion sources can be relied upon for constructing
the query. The task is therefore to retrieve the most
similar care episodes using only the information
contained in the free text of the clinical notes in
the query episode.

Evaluation of retrieval results generally re-
quires an assessment of their relevancy to the
query. Since similarity judgements by humans
are currently lacking, and obtaining these is time-
consuming and costly, we explored alternative
ways of evaluating performance on the task. The
first alternative is to assume that care episodes are
similar if they have the same ICD-10 code. That is,
a retrieved care episode is considered correct if its
ICD-10 code is identical to the code of the query
episode. It should be noted that ICD-10 codes are
not used in the query in any of the experiments.

Closer inspection shows that the free text con-
tent in care episodes with the same ICD-10 code
is indeed quite similar in many cases, but not al-
ways. Considering all of them equally similar
amounts to an arguably coarse approximation of
relevance. The second alternative tries to remedy
this issue by measuring the similarity between dis-
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charge summaries. That is, if the discharge sum-
mary of a retrieved episode is semantically simi-
lar to the discharge summary of the query episode,
the retrieved episode is assumed to be correct.
In practice, textual similarity between discharge
summaries, and therefore the relevance score, is
continuous rather than binary. It is measured using
the same models of distributional semantics used
for retrieval, which will be described in Section 4.
It should be stressed that the discharge summaries
are not taken into consideration during retrieval in
any of the experiments and are only used for eval-
uation.

4 Method

4.1 Semantic models

A crucial part in retrieving similar care episodes
is having a good similarity measure. Here similar-
ity between care episodes is measured as the sim-
ilarity between the words they contain (see Sec-
tion 4.2). Semantic similarity between words is in
turn measured through the use of word space mod-
els (WSM), without performing an explicit query
expansion step. Several variants of these models
were tested, utilizing different techniques and pa-
rameters for building them. The models trained
and tested in this paper are: (1) classic random
indexing with a sliding window using term in-
dex vectors and term context vectors (RI-Word);
(2) random indexing with index vectors for doc-
uments (RI-Doc); (3) random indexing with in-
dex vectors for ICD-10 codes (RI-ICD); (4) a ver-
sion of random indexing where only the term in-
dex vectors are used (RI-Index); and (5) a seman-
tic neural network model, using word2vec to build
word context vectors (Word2vec).

RI-Word
Random Indexing (RI) (Kanerva et al., 2000) is
a method for building a (pre) compressed WSM
with a fixed dimensionality, done in an incremen-
tal fashion. RI consist of the following two steps:
First, instead of allocating one dimension in the
multidimensional vector space to a single word,
each word is assigned an “index vector” as its
unique signature in the vector space. Index vectors
are generated vectors consisting of mostly zeros
together with a randomly distributed set of several
1’s and -1’s, uniquely distributed for each unique
word; The second step is to induce “context vec-
tors” for each word. A context vector represents

the contextual meaning of a word in the WSM.
This is done using a sliding window of a fixed size
to traverse a training corpus, inducing context vec-
tors for the center/target word of the sliding win-
dow by summing the index vectors of the neigh-
bouring words in the window.

As the dimensionality of the index vectors is
fixed, the dimensionality of the vector space will
not grow beyond the size W ×Dim, where W is
the number of unique words in the vocabulary, and
Dim being the pre-selected dimensionality to use
for the index vectors. As a result, RI models are
significantly smaller than plain word space mod-
els, making them a lot less computationally expen-
sive. Additionally, the method is fully incremental
(additional training data can be added at any given
time without having to retrain the existing model),
easy to parallelize, and scalable, meaning that it is
fast and can be trained on large amounts of text in
an on-line fashion.

RI-Doc
Contrary to sliding window approach used in RI-
Word, a RI model built with document index vec-
tors first assigns unique index vectors to every
document in the training corpus. In the training
phase, each word in a document get the respective
document vector added to its context vector. The
resulting WSM is thus a compressed version of a
term-by-document matrix.

RI-ICD
Based on the principle of RI with document index
vectors, we here explore a novel way of construct-
ing a WSM by exploiting the ICD-10 code classi-
fication done by clinicians. Instead of using doc-
ument index vectors, we here use ICD-code index
vectors. First, a unique index vector is assigned to
each chapter and sub-chapter in the ICD-10 taxon-
omy. This means assigning a unique index vector
to each “node” in the ICD-10 taxonomy, as illus-
trated in Figure 2. For each clinical note in the
training corpus, the index vector of the their pri-
mary ICD-10 code is added to all words within it.
In addition, all the index vectors for the ICD-codes
higher in the taxonomy are added, each weighted
according to their position in the hierarchy. A
weight of 1 is given to the full code, while the
weight is halved for each step upwards in the hi-
erarchy. The motivation for the latter is to capture
a certain degree of similarity between codes that
share an initial path in the taxonomy. As a result,
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Figure 2: Weighting applied to ICD-code index
vectors when training WSMs based on ICD-10
codes (RI-ICD).

this similarity is encoded in the resulting WSM.
As a example: for a clinical note labelled with the
code J21.1, we add the following index vectors
to the context vectors of all its constituting words:
iv(J)× 0.125, iv(J2)× 0.25, iv(J21)× 0.5 and
iv(J21.1) × 1.0. The underlying hypothesis for
building a WSM in this way is that it may cap-
ture relations between words in a way that bet-
ter reflects the clinical domain, compared to the
other domain-independent methods for construct-
ing a WSM.

RI-Index
As an alternative to using word’s (semantic) con-
text vectors, we simply only use their index vec-
tors as their “contextual meaning”. When con-
structing document vectors directly from word in-
dex vectors (see Section 4.2), the resulting docu-
ment vectors represent a compressed version of a
document-by-term matrix.

Word2vec
Recently, a novel method for inducing WSMs was
introduced by Mikolov et al. (2013a), stemming
from the research in deep learning and neural net-
work language models. While the overall objec-
tive of learning a continuous vector space repre-
sentation for each word based on its textual con-
text remains, the underlying algorithms are sub-
stantially different from traditional methods such
as Latent Semantic Analysis and RI. Considering,
in turn, every word in the training data as a target
word, the method induces the representations by
training a simplified neural network to predict the
nearby context words of each target word (skip-

gram architecture), or alternatively the target word
based on all words in its immediate context (BoW
architecture). The vector space representation is
subsequently extracted from the learned weights
within the neural network. One of the main prac-
tical advantages of the word2vec method lies in
its scalability, allowing quick training on large
amounts of text, setting it apart from the majority
of other methods of distributional semantics. Ad-
ditionally, the word2vec method has been shown
to produce representations that surpass in quality
traditional methods such as Latent Semantic Anal-
ysis, especially on tasks measuring the preserva-
tion of important linguistic regularities (Mikolov
et al., 2013b).

4.2 Computing care episode similarity

After having computed a WSM, the next step is
to build episode vectors to use for the actual re-
trieval task. This is done by first normalizing the
word vectors and multiplying them with a word’s
TF*IDF weight. An episode vector is then ob-
tained by summing the word vectors of all its
words and dividing the result by the total num-
ber of words in the episode. Similarity between
episodes is determined by computing the cosine
similarity between their vectors.

4.3 Baselines

Two baselines were used in this study. The first
one is random retrieval of care episodes, which
can be expected to give very low scores and serves
merely as a sanity check. The second one is
Apache Lucene (Cutting, 1999), a state-of-the-art
search engine based on look-up of similar docu-
ments through a reverse index and relevance rank-
ing based on a TF*IDF-weighted vector space
model. Care episodes were indexed using Lucene.
Similar to the other models/methods, all of the free
text in the query episode, excluding the discharge
summary, served as the query string provided to
Lucene. Being a state-of-the-art IR system, the
scores achieved by Lucene in these experiments
should indicate the difficulty of the task.

5 Experiments

In these experiments we strove to have a setup
that was as comparable as possible for all models
and systems, both in terms of text pre-processing
and in terms of the target model dimensionality
when inducing the vector space models. The clin-
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ical notes are split into sentences, tokenized, and
lemmatized using a Constraint-Grammar based
morphological analyzer and tagger extended with
clinical vocabulary (Karlsson, 1995). After stop
words were removed1, the total training corpus
contained 39 million words (minus the query
episodes), while the evaluation subset contained
18.5 million words. The vocabulary consisted of
0.6 million unique terms. Twenty care episodes
were randomly selected to serve as the query
episodes during testing, with the requirement that
each had different ICD-10 codes and consisted of a
minimum of six clinical notes. The average num-
ber of words per query episode is 830.

RI-based and word2vec models have a prede-
fined dimensionality of 800. For RI-based mod-
els, 4 non-zeros were used in the index vectors.
For the RI-Word model, a narrow context win-
dow was employed (5 left + 5 right), weighting
index vectors according to their distance to the tar-
get word (weighti = 21−distit). In addition, the
index vectors were shifted once left or right de-
pending on what side of the target word they were
located, similar to direction vectors as described
in (Sahlgren et al., 2008) These parameters for RI
were chosen based on previous work on semantic
textual similarity (Moen et al., 2013). Also a much
larger window of 20+20 was tested, but without
noteworthy improvements. The word2vec model
is trained with the BoW architecture and otherwise
default parameters. In addition to Apache Lucene
(version 4.2.0)2, the word2vec tool3 was used to
train the word2vec model, and the RI-based meth-
ods utilized the JavaSDM package4. Scores were
calculated using the trec eval tool5.

5.1 Experiment 1: ICD-10 code overlap

In this experiment retrieved episodes with a pri-
mary ICD-10 code identical to that of the query
episode were considered to be correct. The num-
ber of correct episodes varies between 49 and
1654. The total is 7721, and the average is
386. The high total is mainly due to three query
episodes with ICD-10 codes that occur very fre-
quently in the episode collection (896, 1590, and

1http://www.nettiapina.fi/
finnish-stopword-list/

2http://archive.apache.org/dist/
lucene/java/

3https://code.google.com/p/word2vec/
4http://www.nada.kth.se/˜xmartin/java/
5http://trec.nist.gov/trec_eval/

IR model MAP P@10
Lucene 0.1379 0.3000
RI-Word 0.0911 0.2650
RI-Doc 0.1015 0.3300
RI-ICD 0.3261 0.5150
RI-Index 0.1187 0.3200
Word2vec 0.1768 0.3350
Random 0.0154 0.0200

Table 1: Mean average precision and precision at
10 for retrieval of care episodes with the same pri-
mary ICD-10 code as the query episode

1654 times). When conducting the experiment all
care episodes were retrieved for each of the 20
query episodes.

Performance was measured in terms of mean
average precision (MAP) and precision among
the top-10 results (P@10), averaged over all 20
queries, as shown in in Table 1. The best MAP
score is achieved by RI-ICD, almost twice that of
word2vec, which achieved the second best MAP
score, whereas RI-Word performed worst of all.
All models score well above the random baseline,
whereas RI-ICD outperforms Lucene by a large
margin. P@10 scores follow the same ranking.
The latter scores are more representative for most
use cases where users will only inspect the top-n
retrieval results.

5.2 Experiment 2: Discharge summary
overlap

In this experiment retrieved episodes with a dis-
charge summary similar to that of the query
episode were considered to be correct. Using the
discharge summaries of the query episodes, the
top 100 care episodes with the most similar dis-
charge summary were selected as the most simi-
lar care episodes (disregarding the query episode).
This was repeated for each of the methods – i.e.
the five different semantic models and Lucene –
resulting in six different tests. The top 100 was
used rather than a threshold on the similarity score,
because otherwise six different thresholds would
have to be chosen. This procedure thus resulted in
six different test collections, each consisting of 20
query episodes with their corresponding 100 most
similar collection episodes.

Subsequently a 6-by-6 experimental design was
followed where each retrieval method was tested
against each test set construction method. At re-
trieval time, for each query episode, the system re-
trieves and ranks 1000 care episodes. It can be ex-
pected that when identical methods are used for re-
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trieval and test set construction, the resulting bias
gives rise to relatively high scores. In contrast,
averaging over the scores for all six construction
methods is assumed to be a less biased indicator
of performance.

Table 2 shows the number of correctly retrieved
episodes by the different models, with the maxi-
mum being 2000 (20 queries times 100 most sim-
ilar episodes). This gives an indication of the re-
call among a 1000 retrieved episodes per query,
but without caring about precision or ranking. In
general, the numbers are relatively good when the
same model is used for both retrieval and construc-
tion of the test set (cf. values on the diagonal), al-
though in a couple of cases (e.g. with word2vec)
results are better with different models. The RI-
ICD model performs best when used for both re-
trieval and test construction. Looking at the av-
erages, which presumably are less biased indica-
tors, RI-ICD and word2vec seem to have compa-
rable performance, with both of them outperform-
ing Lucene. Other models are less successful, al-
though still much better than the random baseline.

The MAP scores in Table 3 show similar re-
sults, although here RI-ICD yields the best aver-
age score. Both models RI-ICD and word2vec
outperform Lucene. Again the RI-ICD model per-
forms exceptionally well when used for both re-
trieval and test construction.

Finally Table 4 presents precision for top-10 re-
trieved care episodes. Here RI-Doc yields the best
average scores, while RI-ICD and word2vec both
perform slightly worse.

6 Discussion

The goal of the experiments was primarily to
determine which distributional semantic models
work best for care episode retrieval. The exper-
imental results show that several models outper-
form Lucene at the care episode retrieval task.
This suggests that models of higher order seman-
tics contribute positively to calculating document
similarities in the clinical domain, compared with
straight forward boolean word matching (cf. RI-
Index and Lucene).

The relatively good performance of the RI-ICD
model, particularly in Experiment 1, suggests that
exploiting structured or encoded information in
building semantic models for clinical NLP is a
promising direction that calls for further investi-
gation. This approach concurs with the arguments

in favor of reuse of existing information sources
in Friedman et al. (2013). On the one hand, it
may not be surprising that the RI-ICD model is
performing well on Experiment 1, given how it in-
duces semantic relations between words occurring
in episodes with the same ICD-10 code. On the
other hand, being able to accurately retrieve care
episodes with similar ICD-10 codes evidently has
practical value from a clinical perspective.

The different ranking of models in experiments
1 versus 2 confirms that there is a difference be-
tween the two indicators of episode similarity,
i.e. similarity in terms of their ICD-10 codes
versus similarity with regard to their discharge
summaries. In our data a single care episode
can potentially span across several hospital wards.
A better correlation between the similarity mea-
sures is to be expected when narrowing the def-
inition of a care episode to only a single ward.
Also, taking into consideration all ICD-10 codes
for care episodes – not only the primary one –
could potentially improve discrimination among
care episodes. This could be useful in two ways:
(1) to create more precise test sets of the type used
in Experiment 1; (2) to extend RI-ICD models
with index vectors also for the secondary ICD-10
codes.

Input to the models for training was limited to
the free text in the clinical notes, with the ex-
ception of the use of ICD-10 codes in the RI-
ICD model. Other sources of information could,
and probably should, be utilized in a practical
care episode retrieval system applied in a hospi-
tal, such as the structured and coded information
commonly found in EHR systems. Another po-
tential information source is the internal structure
of the care episodes, as episodes containing sim-
ilar notes in the same sequential order are intu-
itively more likely to be similar. We tried comput-
ing exhaustive pairwise similarities between the
individual notes from two episodes and then tak-
ing the average of these as a similarity measure
for the episodes. However, this did not improve
performance on any measure. An alternative ap-
proach may be to apply sequence alignment algo-
rithms, as commonly used in bioinformatics (Gus-
field, 1997), in order to detect if both episodes
contain similar notes in the same temporal order.
We leave this to future work.
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IR model \ Test set Lucene RI-Word RI-Doc RI-ICD RI-Index Word2vec Average Rank
Lucene 889 700 670 687 484 920 725 2
RI-Word 643 800 586 600 384 849 644 5
RI-Doc 665 630 859 697 436 795 680 4
RI-ICD 635 459 659 1191 490 813 707 3
RI-Index 690 491 607 654 576 758 629 6
Word2vec 789 703 702 870 516 1113 782 1
Random 74 83 86 67 84 85 79 7

Table 2: Number of correctly retrieved episodes (max 2000) for different IR models (rows) when using
different models for measuring discharge summary similarity (columns)

IR model \ Test set Lucene RI-Word RI-Doc RI-ICD RI-Index Word2vec Average Rank
Lucene 0.0856 0.0357 0.0405 0.0578 0.0269 0.0833 0.0550 3
RI-Word 0.0392 0.0492 0.0312 0.0412 0.0151 0.0735 0.0416 6
RI-Doc 0.0493 0.0302 0.0677 0.0610 0.0220 0.0698 0.0500 4
RI-ICD 0.0497 0.0202 0.0416 0.1704 0.0261 0.0712 0.0632 1
RI-Index 0.0655 0.0230 0.0401 0.0504 0.0399 0.0652 0.0473 5
Word2vec 0.0667 0.0357 0.0404 0.0818 0.0293 0.1193 0.0622 2
Random 0.0003 0.0003 0.0005 0.0002 0.0003 0.0004 0.0003 7

Table 3: Mean average precision for different IR models (rows) when using different models for measur-
ing discharge summary similarity (columns)

IR model \ Test set Lucene RI-Word RI-Doc RI-ICD RI-Index Word2vec Average Rank
Lucene 0.2450 0.1350 0.1200 0.1650 0.0950 0.1900 0.1583 5
RI-Word 0.1350 0.1500 0.1000 0.1350 0.0600 0.2100 0.1316 6
RI-Doc 0.2000 0.1250 0.2050 0.2200 0.0900 0.2400 0.1800 1
RI-ICD 0.1700 0.0650 0.1350 0.3400 0.0950 0.2050 0.1683 2
RI-Index 0.2000 0.1250 0.1550 0.1250 0.1700 0.2050 0.1633 3
Word2vec 0.1800 0.1200 0.1150 0.2100 0.0850 0.2650 0.1625 4
Random 0.0000 0.0000 0.0050 0.0000 0.0000 0.0000 0.0008 7

Table 4: Precision at top-10 retrieved episodes for different IR models (rows) when using different
models for measuring discharge summary similarity (columns)

7 Conclusion and future work

In this paper we proposed the task of care episode
retrieval as a way of evaluating several distribu-
tional semantic models in their performance at IR.
As manually constructing a proper test set of clas-
sified care episodes is costly, we experimented
with building test sets by exploiting either ICD-10
code overlap or semantic similarity of discharge
summaries. A novel method for generating se-
mantic models utilizing the ICD-10 codes of care
episodes in the training corpus was presented (RI-
ICD). The models, as well as the Lucene search
engine, were applied to the care episode retrieval
task and their performance was evaluated against
the test sets using different evaluation measures.
The results suggest that the RI-ICD model is bet-
ter suited to IR tasks in the clinical domain com-
pared with models trained on local distributions of
words, or those relying on direct word matching.
The word2vec model performed relatively well
and outperformed Lucene in both experiments.

In the results reported here, the internal se-

quence of clinical notes is ignored. Future work
should focus on exploring the temporal (sub-) se-
quence similarities between care episode pairs for
doing care episode retrieval. Further work should
also focus on expanding on the RI-ICD method
by exploiting other types of structured and/or en-
coded information related to clinical notes for
training semantic models tailored for NLP in the
clinical domain.
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