
Proceedings of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH) @ EACL 2014, pages 1–8,
Gothenburg, Sweden, April 26 2014. c©2014 Association for Computational Linguistics

A New Implementation for Canonical Text Services

Jochen Tiepmar
Christoph Teichmann

Gerhard Heyer
Computer Science Department

Leipzig University
billion-words@e-humanities.net

Monica Berti
Gregory Crane

Humboldt Chair of Digital Humanities
Leipzig University

monica.berti@uni-leipzig.de

crane@informatik.uni-leipzig.de

Abstract

This paper introduces a new implemen-
tation of the Canonical Text Services
(CTS) protocol intended to be capa-
ble of handling thousands of editions.
CTS was introduced for the Digital Hu-
manities and is based on a hierarchical
structuring of texts down to the level of
individual words mirroring traditional
practices of citing. The paper gives
an overview of CTS for those that are
unfamiliar and establishes its place in
the Digital Humanities research. Some
existing CTS implementations are dis-
cussed and it is explained why there
is a need for one that is able to scale
to much larger text collections. Eval-
uations are given that can be used to
illustrate the performance of the new
implementation.

1 Introduction

Canonical Text Services (CTS) (Smith, 2009)1

is a standard that resulted from research in the
Digital Humanities community on citation in
a digital context. It consists of two parts: an
URN scheme that is used to express citations
and a protocol for the interaction of a client
and a server to identify text passages and re-
trieve them.

CTS is an attempt to formalize citation
practices which allow for a persistent identi-
fication of text passages and citations which

1http://www.homermultitext.org/hmt-doc/
index.html

express an ontology of texts as well as links be-
tween texts (Smith and Blackwell, 2012). The
same citation scheme can be used across dif-
ferent versions of a text, even across language
borders.

All these properties make CTS attractive
as an approach to the presentation of large,
structured collections of texts. The frame-
work will have little impact however as long
as there is no implementation that can scale
to the amount of texts currently available for
Digital Humanities research and still perform
at a level that makes automatic processing of
texts attractive. Therefore the implementa-
tion of the scheme presented here allows for
large repositories without becoming infeasibly
slow.

2 Overview of Canonical Text
Services

For readers unfamiliar with Canonical Text
Services this section provides a short introduc-
tion to the CTS protocol and explains its role
in the wider context of the CITE architecture.
In order to make the explanations given in this
section a little more concrete they are followed
by example applications of CTS. Before we go
into the technical details of the CTS format,
a general review of the motivations and ap-
proaches behind CTS will be helpful.

CTS incorporates the idea that citations
provide an inherent ontology of text passages.
A citation of the first word of the first sen-
tence of section 1 in this paper, when made in
exactly that way, implies part-whole relation-
ships between the word and the sentence, the
sentence and the section and finally the section
and the whole article. Canonical Text Services
derive their name from the assumption that
each text which is included in a CTS reposi-
tory is associated with a canonical way of cit-

1



ing it which has been established by a com-
munity of researchers working with the text
or texts similar to it. Where no such schemes
exist they may be defined when a work first
enters a repository. These canonical citation
schemes are especially common in Classics re-
search from which much of the work on CTS
originated. Such schemes often abstract away
from any concrete manifestation of a text2 in
favour of schemes that can be applied across
different incarnations. Returning to the ex-
ample task of citing portions of this article,
one could cite the same word by referencing
a specific line. The latter approach is prob-
lematic, since simply printing the article with
a different font size could completely change
the lines in which words appear. For this rea-
son canonical citations generally rely on logical
properties of the text.

Using logical properties of the text implies
that citations can be carried over from one
specific incarnation to another. It may even
be possible to apply the same citation scheme
to versions that are written in different lan-
guages. This means that different versions of
a text can form another element of a hier-
archy. Here the part-whole relations are re-
peated, with different versions of a text be-
longing to larger groups as explained in section
2.1. When such citations are coupled with a
service that resolves the citations and is capa-
ble of giving an inventory of all the citations
it can resolve, then this can be a powerful tool
in Digital Humanities research.

2.1 The CTS URN scheme

We give a short review of the structure of a
CTS URN used to identify a text passage3.
Any canonical reference must start with the
prefix:
urn:cts
which simply identifies the string as an URN

for a canonical citation. This is followed by
three parts that contain the main information
for every citation. The first of these parts iden-
tifies a name space in which the following el-
ements of the citation are meaningful. This
part allows for different authorities to define

2For example a specific printing.
3For a more extensive discussion see

http://www.homermultitext.org/hmt-docs/
specifications/ctsurn/

their own schemes for citing works. This sec-
tion is followed by an identifier of the work
that is cited. Finally the URN is completed
by a string identifying a text node or passage
in the work that is cited, which could corre-
spond to a specific word, a section or even the
complete work. To summarize the format of a
CTS URN is:
urn:cts:name_space:work_identifier:

passage_identifier

where the final part can be dropped in or-
der to identify the complete text of a work.
The ontology for the work level is given by
the URN scheme itself which requires that the
work identifier has the structure:
text_group.work.version.exemplar

here only the text group part is mandatory.
Every other section can be dropped if every
following section is also dropped. The text
group can be used for any collection of texts
that the manager of a CTS service would like
to group together such as all the works of an
author, all the works from a certain area or all
the works created at a certain time. The work
portion identifies a specific text within that
group. The version part refers to a specific
edition or translation of the work and finally
the exemplar identifier selects a specific exam-
ple of a version of a text. The latter three parts
of a work identifier correspond to levels of the
hierarchy posited by the Functional Require-
ments for Bibliographic Records (FRBR).

CTS URNs end with a passage identifier.
This identifier can further be divided into the
parts:
Citable_Node@Subsection

where the citable node must correspond to
some XML element within the text that is
cited. The hierarchy that is used in these
nodes is up to the person managing the cita-
tions. The hierarchy can be expressed by sep-
arating different levels with the delimiter “.”
and every level can be omitted as long as all
following levels are also omitted. A subsection
can be used to select a smaller part of a citable
node by identifying words to select. There are
some additional options that can be used in a
CTS URN, among them the option to combine
passages into new subsections by using a range
operator, and the interested reader is encour-
aged to consult the official documentation for

2



the standard.
CTS URNs can be used to identify and con-

nect text passages. A natural task in connec-
tion with citations is the retrieval of collections
of citations and the text sections associated
with them. This task is addressed in the next
section.

2.2 The CTS Protocol

This section summarizes the CTS protocol for
the retrieval of text sections and citations4.

The first main request that the protocol de-
fines is:
GetPassage

which can be used to retrieve a passage of a
text associated to an URN in order to fulfil the
actual purpose of a citation. This request also
shows one of the main uses of the ontology that
is implied in the way works and passages are
cited. When a work identifier is “incomplete”
then the service is allowed to pick an instance
of the work to deliver. When a passage identi-
fier is “incomplete” then the passage delivered
includes all passages with identifiers that could
complete it.

The second main request is:
GetValidReff

which is used to obtain all the citations at
a certain level that the current repository can
support. Here it is possible to state how many
levels should be present in the answer.

The final request that will be discussed in
this section is:
GetCapabilities

which is used to obtain the different texts
known to a server and the way that they can be
cited i.e. the structure of their passage identi-
fiers.

With the given requests it is possible to fulfil
the main tasks of a citation software: find cita-
tions and/or resolve them. Other systems can
then build on top of these requests. One exam-
ple for an architecture that includes CTS ca-
pabilities in a wider framework is CITE which
is explained in the next section.

4More information can be found at
http://www.homermultitext.org/hmt-docs/
specifications/cts/

2.3 CTS in the Context of the CITE
Architecture

The Collections, Indexes and Texts (CITE) ar-
chitecture is a large framework for reference to
the objects of study in Digital Humanities5.
The general design philosophy is to use URNs
as a modern way of encoding citations.

Besides providing a general framework for
referencing objects and texts, with the latter
task being implemented by CTS, CITE also
defines a standard for encoding relations be-
tween references. An example would be to link
a section of a text about geometry to a draw-
ing which it uses as an example. The CITE
architecture also includes protocols for resolv-
ing and obtaining the references that can be
defined within it. Since CTS takes care of ci-
tations concerning texts and the tasks associ-
ated with them, an implementation of the CTS
protocol is an important first step towards a
complete implementation of the CITE archi-
tecture.

2.4 Example Applications

In this section we review two example appli-
cations for the CTS/CITE infrastructure: the
generation of digital editions for the Classics
and creating editions of so called fragmentary
texts.

2.4.1 New Features of Digital Editions

Several features of a true digital edition have
already begun to emerge: they have been im-
plemented and they offer demonstrable ben-
efits that justify such added labour as they
demand. Each of the following features re-
quires the ability to identify precise words
and phrases in particular versions of a work.
The CTS/CITE architecture provides a mech-
anism to support core new functions within
the emerging form of born-digital editions:

1. Translators must work with the realiza-
tion that they are to be aligned to the
original and that they will, in fact, help
make the original source text itself in-
tellectually accessible to readers with no
knowledge of the source language. Ev-
ery reader should use the Greek and the

5More information on CITE can be found
at http://www.homermultitext.org/hmt-doc/cite/
index.html

3



Latin. Ideally, translators should align
their own translations to the source text
and provide notes explaining where and
why the source text and translation can-
not be aligned.

2. We need multi-texts, i.e., editions that
can encapsulate the entire textual history
of a work so that readers can see not
only variants from the manuscript tra-
dition but also variations across editions
over time. No reader should ultimately
ever have to wonder how a new edition
varies from its predecessors. Encapsulat-
ing the full textual tradition of every work
will take a very long time but we can be-
gin by representing not only textual vari-
ants but also providing more than one dig-
itized edition. Again, scholars need the
functionality of the CTS/CITE architec-
ture to represent the relationships among
different versions of a work.

3. Editors of Greek and Latin texts must
encode, at the very least, their interpre-
tations of the morpho-syntactic functions
of every word in every text. This should,
in fact, impose little extra cost if editors
are agonizing, as they should, over every
word. Where the editor thinks that there
are multiple interpretations that should
be considered, then these should be pro-
vided along with an explanation of each.
The morpho-syntactic analyses are funda-
mental to modern linguistic analysis and
also provide a wholly new form of reading
support.

4. All proper names must be aligned to
authority lists such as the Pleiades
Gazetteer or the Perseus Smith Dictio-
nary of Greek and Roman Biography. We
also need conventions for encoding our
textual evidence for the relationship be-
tween different named entities (e.g., X is
the son of Y). Such annotations enable
new methods of analysing and visualis-
ing our sources with methods from ge-
ographic information systems and social
network analysis.

5. All instances of textual reuse need to be
annotated, including cases where we have

reason to believe particular words and
phrases are either quoted or paraphrased.

2.4.2 Fragmentary Texts

Among various example applications (Smith,
2009; Smith and Blackwell, 2012; Almas and
Beaulieu, 2013), the CTS/CITE Architecture
is being implemented by the Perseus Project
for representing fragmentary texts of Classical
lost authors. By fragmentary texts we mean
texts preserved only through quotations and
reuses by later authors, such as verbatim quo-
tations, paraphrases, allusions, translations,
and so on (Berti et al., 2009; Almas and Berti,
2013).

The first need for representing such texts
is to visualize them inside their embedding
context and this means to select the string of
words that belong to the portion of text which
is classifiable as reuse. The CTS/CITE Archi-
tecture provides us with a standard identifier
syntax for texts, passages, and related objects
and with APIs for services which can retrieve
objects identified via these protocols (Smith
and Blackwell, 2012).

For example, the following set of identifiers
might be used to represent a reuse of a lost text
of the Greek author Istros, which has been pre-
served by Athenaeus of Naucratis in the Deip-
nosophists, (Book 3, Chapter 6)6 (Almas and
Berti, 2013):
urn:cts:greekLit:tlg0008.tlg001.

perseus-grc1:3.6@῎Ιστρος[1]-συκοφάνται[1]
is a CTS URN for a subset of passage 3.6 in

the perseus-grc1 edition of the work identified
by tlg001 in the group of texts associated with
Athenaeus, identified by tlg0008. The URN
further specifies a string of text in that pas-
sage starting at the first instance of the word
“῎Ιστρος” and ending at the first instance of
the word “συκοφάνται”.
urn:cite:perseus:lci.2

is a CITE URN identifier for the instance
of lost text being reused. This URN identifies
an object from the Perseus Collection of Lost
Content Items (lci) in which every item points
to a specific text reuse of a lost author as it is
represented in a modern edition.

6For a prototype interface see http://perseids.
org/sites/berti_demo/ (source code at https://
github.com/PerseusDL/lci-demo)

4



These URNs represent distinct technology-
independent identifiers for the two cited ob-
jects, and by prefixing them with the http:
//data.perseus.org URI prefix (represent-
ing the web address at which they can be
resolved) we create stable URI identifiers for
them, making them compatible with linked
data best practices 7:
http://data.perseus.org/citations/

urn:cts:greekLit:tlg0008.tlg001.
perseus-grc1:3.6@῎Ιστρος[1]-συκοφάνται[1]8

http://data.perseus.org/collections/
urn:cite:perseus:lci.2

The CITE Objects URNs may be organized
into various types of collections of data, such
as representations of text reuses in traditional
print editions, all text reuses attributed to a
specific author, all text reuses quoted by a
specific author, all text reuses dealing with a
specific topic, all text reuses attributed to a
specific time period, etc. CITE collections are
used to define and retrieve distinct digital rep-
resentations of discrete objects, including as-
sociated meta data about those objects. Ex-
ample CITE collections used to support the
encoding of text reuses for this project include
the abstract lost text entities themselves, digi-
tal images of manuscripts of the extant source
texts that quote those lost texts, commentaries
on instances of text reuse and linguistic anno-
tations of the quoted text (Almas et al., 2014).

3 Existing Implementations

There are two general purpose implementa-
tions of the CTS protocol that the authors of
this paper are aware of. The first is an imple-
mentation based on a XML database. This im-
plementation is part of the Alpheios project9.
Using a XML database seems natural consid-
ering the fact that the CTS architecture re-
quires data to take the form of XML files. It
would be interesting to compare the perfor-
mance of this implementation with that of the
one that will be presented here, but since the
Alpheios tool is not yet complete and has only

7http://sites.tufts.edu/perseusupdates/
beta-features/perseus-stable-uris/

8At the time of this writing, complete implemen-
tation of the CTS standard for resolution of passage
subreferences at the data.perseus.org address is still
pending.

9http://alpheios.net/

been tested with a few hundred texts as in-
put10 any comparison would seem unfair.

The second project to implement the CTS
protocol that we are aware of is based on a
SparQL endpoint11. Similar to the XML based
approach the use of SparQL for CTS is intu-
itive. The part-of relations that are implied
by the structure of URNs could easily be mod-
elled with triple expressions. The implementa-
tion has not yet been optimized to work with
large numbers of input texts and is therefore
not suited to a comparison with the tool pre-
sented in this paper. While the use of triples to
encode the logical relations seems natural, it
is necessary to reconstruct all relations already
implied by the structure of the URN Strings.
This means that there is a potential for opti-
mization that can be exploited by using the
structure of these strings in order to store all
information implicitly.

4 A New Implementation

So far this paper has argued that Canonical
Text Services can provide an important in-
frastructure for Digital Humanities research.
Recently it has also been highlighted (Crane
et al., 2012) that repositories of texts such as
the Internet Archive12 have the potential to
allow Digital Humanities researchers to work
with text collections that encompass billions
or even trillions of words. CTS is one tool in
the attempt to handle this mass of data with-
out being overwhelmed by it. Since existing
implementations of the CTS protocol are not
yet able to scale to the data quantities that
the Digital Humanities community could pro-
vide, we found it necessary to create a new
implementation. In order to find out whether
our implementation can deal with such a large
number of texts, it will be necessary to give
an evaluation of performance. This section in-
troduces the main ideas concerning this new
implementation and shows that it is indeed ca-
pable of the required scaling.

10Personal communication with Bridget Almas, the
main developer of the Alpheios CTS implementation.

11The implementation can be found at https://
github.com/neelsmith/sparqlcts.

12https://archive.org/index.php

5



4.1 Using the Tree Structure of the
Data

The main technical problem that needs to be
solved in order to generate an efficient imple-
mentation of the Canonical Text Services pro-
tocol is the efficient mapping of URNs to texts,
sections in these texts and the required meta
data. Both tasks require the fast mapping of
possible prefixes of valid identifiers. There are
two obvious solutions to this problem.

The first is the use of a prefix tree or trie
in order to be able to deal with underspecified
data. This would make it possible to read in
the portion of the URN that is specified and
then either have a copy of the text or text sec-
tion associated with this prefix associated with
the tree node or construct the necessary infor-
mation by visiting all daughter nodes. The
former choice would be more efficient in terms
of nodes visited, but the latter choice would
require less memory.

The second option is the use of
the lexicographic ordering of the
URNs. Consider the set of strings
S = {a.a.a, a.b.a, a.b.b, a.b.c, a.c.a, . . .}. If
all the strings are moved into a data structure
that respects the lexicographic ordering of the
strings, then all the strings matching a.b ∗13

can be found by locating the position of the
largest string that is lexicographically smaller
than or equal to a.b 14 and then visiting all
following entries in the data structure until
one lexicographically equal to or greater than
a.c15 is found. Since MySQL16 already im-
plements the B-Tree (Bayer and McCreight,
1972) data structure to manage its table
indexes we chose this second approach for
our implementation. It is used for the work
identifiers to select a text that matches a
prefix. In the case of passage identifiers all
nodes that match a certain prefix are visited
and the required text is constructed. The first
approach of using prefix trees was also tested
but did not lead to a significant decrease in
the time or memory requirements since it was
not native to the database used.

13Here ∗ denotes an arbitrary sequence of charac-
ters.

14In this case a.a.a.
15In this case a.c.a.
16See www.mysql.com.

4.2 Putting Everything into a
Relational Database

With the problem of handling the URNs
solved by tree structures, all that remains is to
manage the data that can be found by using
the URNs and keeping an index of the URNs.
Because the CTS standard requires that the
URNs of a work are ordered, this also means
that this ordering needs to be preserved. This
is achieved by simply keeping a column that
stores a numbering. It is ensured that this
numbering is sequential without gaps. This
means that it is possible to retrieve a certain
number of neighbours by simply increment-
ing and retrieving passages according to this
counter. As a result the efficient retrieval of
passages that span a range of URNs is possible
with only 3 requests, implemented by retriev-
ing the number of the first and last URNs in
the range and then merging all text chunks in
this range into one passage.

As mentioned earlier, the text of a retrieved
section is built up from smaller parts when
a node higher in the hierarchy is retrieved.
We thereby reduce the amount of memory re-
quired since only segments of the data need to
be stored. This is unlikely to be a bottleneck,
since we assume that the length of a text is
not a variable that can grow arbitrarily.

Meta data on the edition level is stored as
a simple data entry. For each individual URN
we store the language and type of its associ-
ated content.

4.3 Evaluation

Here we want to show that our implementa-
tion is able to scale to the large amounts of
data potentially available to Digital Humani-
ties researchers today and that it can handle
the large amounts of data potentially gener-
ated by cooperative editing. In order to do
this we designed tests that can be used to ac-
cess the performance of our Canonical Text
Services implementation. The following Tests
were used:

1. retrieve a list of all editions, then get all
the valid URNs and the full passage for
each edition

2. collect the first 1000 editions, then obtain
the first URN at the lowest level within

6



each edition and its second neighbour, re-
trieve the first full word for both17, finally
get the subsection between both words.

Test 1 measures the speed with which the
data store can be explored even with a large
number of editions and how quickly a passage
spanning the whole edition can be constructed.
It can be assumed that the time needed to exe-
cute will increase with the amount of editions
that are added to a repository and with the
length of the individual texts.

Test 2 checks how quickly the implementa-
tion can find subsections and is not expected
to take substantially longer for our implemen-
tation as the number of editions increases. It
is mainly intended to show that behaviour on
single texts is not impacted by the number of
editions managed and that the construction
of larger passages from elementary chunks is
handled efficiently.

Both tests were run by using a small seed
of data18 that was copied repeatedly in order
to arrive at the number of necessary editions.
The data will be made available. Our imple-
mentation ran on a server with a 2.4 GHz CPU
and 1GB of RAM. The requests necessary for
our tests ran on a different machine in order
to factor in the problem of communication. In
future tests it would be possible to distribute
the requests between different clients to focus
more on this point.

Figure 1 contains the results for Test 1. The
amount of time taken is linear in the number
of editions since every new text was generated
once. While the construction of all the texts
took several hours for the larger collections,
the list of all editions was retrieved within a
second or less. There is a surprising spike that
could be due to factors external to our pro-
gram which could have a strong impact on
such comparatively short time measurements.

Figure 2 gives the results for Test 2. As ex-
pected the behaviour is not greatly impacted
by the number of editions in the collection.
The variation between the different numbers
of editions is within a second for the com-
plete task and the average time needed per
retrieval task varies by only ten milliseconds.

17A word not containing special characters and
longer than 2 characters.

181000 editions.

Ti
m

e 
in

 M
ill

is
ec

on
ds

0

5×106

107

1.5×107

2×107

2.5×107

Number Of Editions
0 2000 4000 6000 8000 104

Ti
m

e 
in

 M
ill

is
ec

on
ds

0

200

400

600

800

1000

Number Of Editions
0 2000 4000 6000 8000 104

Figure 1: Evaluation results for test 1. The
upper graph shows the overall amount of time
taken to complete the test for different num-
bers of editions. The second graph shows the
time it took to just retrieve the list of all the
editions in the collection.

Ti
m

e 
in

 M
ill

is
ec

on
ds

7.4×104

7.6×104

7.8×104

8×104

8.2×104

Number Of Editions
0 2000 4000 6000 8000 104

Ti
m

e 
in

 M
ill

is
ec

on
ds

70

72.5

75

77.5

80

82.5

Number Of Editions
0 2000 4000 6000 8000 104

Figure 2: Evaluation results for test 2. The
upper graph gives the amount of overall time
elapsed in the retrieval of the subsections. The
lower graph gives the amount of time needed
on average per subsection retrieved. The av-
erage was rounded down.

7



Both measures show a slight increase as the
number of editions goes over 3000 but then
stabilise.

Overall the experiments show that handling
thousands of text is indeed feasible with our
implementation on a relatively modest server
even for the hardest possible task of recon-
structing all the texts in the collection from
their smallest parts. Subtasks that do not re-
quire retrieving all the texts show little impact
from increasing the number of editions.

5 Conclusion

This paper gave a short introduction into the
use of the Canonical Text Services Protocol
for Digital Humanities research. It also pre-
sented a new implementation of the CTS pro-
tocol that can handle large amounts of data.
The tools that we presented will be made avail-
able at:
http://ctstest.informatik.

uni-leipzig.de/

This address is also used to house the data
presented in the evaluation as well as some ad-
ditional statistics that were generated.

At the time of this writing a new version of
the CTS standard was close to completion. As
soon as it is published we plan to make our im-
plementation fully compliant. Currently there
are still some details in which our implemen-
tation diverges from this newest version of the
standard. Once this process is complete the
next step will be the creation of a perma-
nent CTS capable repository that will be inte-
grated with the CLARIN research infrastruc-
ture (Boehlke et al., 2013).

Acknowledgements

Parts of the work presented in this paper
are the result of the project “Die Biblio-
thek der Milliarden Wörter”. This project is
funded by the European Social Fund. “Die
Bibliothek der Milliarden Wörter” is a coop-
eration project between the Leipzig Univer-
sity Library, the Natural Language Processing
Group at the Institute of Computer Science at
Leipzig University, and the Image and Signal
Processing Group at the Institute of Computer
Science at Leipzig University.

References

Bridget Almas and Marie-Claire Beaulieu. 2013.
Developing a new integrated editing platform
for source documents in classics. Literary and
Linguistic Computing, 28(4):493–503.

Bridget Almas and Monica Berti. 2013. Perseids
collaborative platform for annotating text re-
uses of fragmentary authors. In DH-Case 2013.
Collaborative Annotations in Shared Environ-
ments: metadata, vocabularies and techniques in
the Digital Humanities.

Bridget Almas, Monica Berti, Dave Dubin, Greta
Franzini, and Simona Stoyanova. 2014. The
linked fragment: TEI and the encoding of text
reuses of lost authors. paper submitted to the
Journal of the Text Encoding Initiative - Issue 8
- Selected Papers from the 2013 TEI Conference.

Rudolf Bayer and Edward Meyers McCreight.
1972. Organization and maintenance of large or-
dered indexes. Acta Informatica, 1(3):173–189.

Monica Berti, Matteo Romanello, Alison Babeu,
and Gregory Crane. 2009. Collecting fragmen-
tary authors in a digital library. In Proceedings
of the 9th ACM/IEEE-CS joint conference on
Digital Libraries, pages 259–262.

Volker Boehlke, Gerhard Heyer, and Peter Witten-
burg. 2013. IT-based research infrastructures
for the humanities and social sciences — devel-
opments, examples, standards, and technology.
it - Information Technology, 55(1):26–33.

Gregory Crane, Bridget Almas, Alison Babeu, Lisa
Cerrato, Matthew Harrington, David Bamman,
and Harry Diakoff. 2012. Student researchers,
citizen scholars and the trillion word library. In
Proceedings of the 12th ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 213–222.

D. Neel Smith and Christopher W. Blackwell.
2012. Four URLs, limitless apps: Separation of
concerns in the Homer Multitext architecture.
In Donum natalicium digitaliter confectum Gre-
gorio Nagy septuagenario a discipulis collegis
familiaribus oblatum: A Virtual Birthday Gift
Presented to Gregory Nagy on Turning Seventy
by His Students, Colleagues, and Friends. The
Center of Hellenic Studies of Harvard Univer-
sity.

D. Neel Smith. 2009. Citation in classical studies.
Digital Humanities Quarterly, 3(1).

8


