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Introduction

Spoken dialogue systems used in call centers and car dashboards reflect years of technological
development. But the smart devices that now accompany people throughout their daily activities and
the extensive integration of sensors and actuators into people’s environments demand new concepts in
dialogue modeling and management in order to provide intuitive, proactive, personalized, context-aware,
multi-modal, multi-domain dialogue systems.

The past few years have seen the development of many intelligent speech-enabled virtual assistants for
mobile users, such as Siri, S Voice, Google Now, SpeakToIt, Vlingo and Iris. These applications use
GIS connectivity for navigation and to contextualize tasks such as search. Other multimodal applications
(e.g. Wikitude, WikiHood, FieldTrip) can pro-actively present encyclopedic information about the user’s
surroundings, such as landmarks and points of interest, as the user walks around. Augmented reality and
wearable technology such as Google Glass are presenting new opportunities for dialogue systems ‘on
the go’.

In this proliferation of location-aware systems in the industry, together with research efforts in spatial
and mobile contexts, we see a convergence of efforts (e.g. the Word2Actions workshop at NAACL 2012,
the Computational Models of Spatial Language Interpretation and Generation workshop series and the
Vision and Language workshop at NAACL 2013) towards what we call Dialogue In Motion: any form
of interaction between a computer/robot and a human in motion - for example a pedestrian or a driver, in
the real world or in a simulated environment. Natural language interactions are promoted as a more direct
interaction medium, but they raise additional challenges in the context of dynamic spatial environments.
This workshop focuses on these challenging issues in language processing for dialogues in motion.

We received 20 submissions; all papers received three reviews from our program committee. We accepted
seven papers for oral presentation and six for poster and/or demo presentation. Several of the papers are
on in-car dialogue systems, which have a long track record of non-trivial implementations combining
voice, GUI, haptic, and gestures with additional constraints on user’s cognitive load and environment
context. Others are on pedestrian navigation and virtual guides, human-robot interaction, and rapid
prototyping and statistical dialogue management for dialogue in motion.

We wish to thank all those who submitted papers. We also gratefully acknowledge the work of the
members of our program committee. Special thanks go to Tiphaine Dalmas (University of Edinburgh)
for acting as main contact for the workshop, and to Bonnie Webber (University of Edinburgh) for helpful
comments along the way.

We hope you enjoy the workshop!
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Abstract

Mobile Internet access via smartphones
puts demands on in-car infotainment sys-
tems, as more and more drivers like to ac-
cess the Internet while driving. Spoken
dialog systems support the user by less
distracting interaction than visual/haptic-
based dialog systems. To develop an intu-
itive and usable spoken dialog system, an
extensive analysis of the interaction con-
cept is necessary. We conducted a Wizard
of Oz study to investigate how users will
carry out tasks which involve multiple ap-
plications in a speech-only, user-initiative
infotainment system while driving. Re-
sults show that users are not aware of dif-
ferent applications and use anaphoric ex-
pressions in task switches. Speaking styles
vary and depend on type of task and di-
alog state. Users interact efficiently and
provide multiple semantic concepts in one
utterance. This sets high demands for fu-
ture spoken dialog systems.

1 Introduction

The acceptance of smartphones is a success story.
These devices allow people to access the Internet
nearly anywhere at anytime. While driving, using
a smartphone is prohibited in many countries as it
distracts the driver. Regardless of this prohibition,
people use their smartphone and cause severe in-
juries (National Highway Traffic Safety Adminis-
tration (NHTSA), 2013). In order to reduce driver
distraction, it is necessary to integrate the smart-
phone’s functionality safely into in-car infotain-
ment systems. Since hands and eyes are involved
in driving, a natural and intuitive speech-based in-
terface increases road safety (Maciej and Vollrath,
2009). There are already infotainment systems
with Internet applications like e.g. weather, music

streaming, gas prices, news, and restaurant search.
However, not all of them can be controlled by nat-
ural speech.

In systems based on graphic and haptic modal-
ity, the functionality is often grouped into various
applications. Among other things, this is due to
the limited screen size. The user has to start an
application and select the desired functionality. A
natural speech interface does not require a frag-
mentation of functionalities into applications, as
people can express complex commands by speech.
In single-application tasks, such as calling some-
one, natural speech interfaces are established and
proven. However, users often encounter complex
tasks, which involve more than one application.
For example, while hearing the news about a new
music album, the driver might like to start listen-
ing to this album via Internet radio. Spoken lan-
guage allows humans to express a request such
as “Play this album” easily, since the meaning is
clear. However, will drivers also use this kind of
interaction while using an in-car spoken dialog
system (SDS)? Or is the mental model of ap-
plication interaction schema dominant in human-
computer interaction? In a user experiment, we
confront drivers with multi-domain tasks, to ob-
serve how they interact.

While interacting with an SDS, one crucial
problem for users is to know which utterances the
system is able to understand. People use different
approaches to solve this problem, for example by
reading the manual, using on-screen help, or rely-
ing on their experiences. In multi-domain dialog
systems, utterances can be quite complex, thus re-
membering all utterances from the manual or dis-
playing them on screen would not be possible. As
a result, users have to rely on their experience in
communications to know what to say. Thus, an
advanced SDS needs to understand what a user
would naturally say in this situation to execute a
certain task.
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In this paper, we present results from a Wizard
of Oz (WoZ) experiment on multi-domain in-
teraction with an in-car SDS. The goal of this
study is to build a corpus and analyze it ac-
cording to application awareness, speaking styles,
anaphoric references, and efficiency. Our results
provide a detailed insight how drivers start multi-
application tasks and switch between applications
by speech. This will answer the question whether
they are primed to application-based-interaction
or use a natural approach known from human-
human-communication. The results will be used
to design grammars or language models for work-
ing prototypes, which establish a basis for real
user tests. Furthermore, we provide guidelines for
multi-domain SDSs.

The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of other
studies in this context. Section 3 describes the do-
main for the user experiment which is presented
in Section 4. Data analysis methods are defined
in Section 5. We present the results in Section 6
and discuss them in Section 7. Finally, we con-
clude and give guidelines for multi-domain SDSs
in Section 8.

2 Related Work
Many studies exist which evaluate SDSs concern-
ing performance, usability, and driver distraction
(a good overview provides Ei-Wen Lo and Green
(2013)). Usually, participants are asked to com-
plete a task, while driving in a simulated envi-
ronment or in real traffic. Geutner et al. (2002),
for example, showed that a virtual co-driver con-
tributes to ease of use with little distraction effects.
In their WoZ experiment, natural language was
preferred to command-and-control input. How-
ever, no in-depth analysis of user utterances is pre-
sented. Cheng et al. (2004) performed an analy-
sis of natural user utterances. They observed that
drivers, occupied in a driving task, use disfluent
and distracted speech and react differently than by
concentrating on the speech interaction task. None
of the studies provide in-depth analysis of multi-
domain tasks, as our work does.

Multi-domain SDS exist like e.g. SmartKom
(Reithinger et al., 2003) or CHAT (Weng et al.,
2007). They presented complex systems with
many functionalities, however, they do not eval-
uate subtask switching from users’ point of view.
In CHAT, the implicit application switch was even
disabled due to “extra burden on the system”. Do-

main switches are analyzed in human-human com-
munication as e.g. in Villing et al. (2008). How-
ever, people interact differently with a system than
with a human. Even in human-computer commu-
nication, speaking styles differ depending on type
of task, as (Hofmann et al., 2012) showed in a
web-based user study. In order to develop an intu-
itive multi-application SDS, it is necessary to an-
alyze how users interact in a driving situation by
completing tasks across different domains.

3 User Tasks
In a user experiment it is crucial to set real tasks
for users, since artificial tasks will be hard to re-
member and can reduce their attention. We ana-
lyzed current in-car infotainment systems with In-
ternet access and derived eight multi-domain tasks
from their functionality (see Table 1). The sub-
tasks were classified according to Kellar et al.
(2006)’s web information classification schema in
information seeking (Inf), information exchange,
and information maintenance. Since information
maintenance is not a strong automotive use case,
these tasks were grouped together with informa-
tion exchange. We call them action subtasks (Act)
as they initiate an action of the infotainment sys-
tem (e.g. “turn on the radio”).

No App 1 App 2 App3
1 POI Search Restaurant Call
2 Knowledge Ski Weather Navigation
3 Weather Hotel Search Address book
4 Play Artist News Search Forward by eMail
5 Navigation Restaurant Save as Favorite
6 News Search Play Artist Share on Facebook
7 News Search Knowledge Convert Currency
8 Navigation Gas Prices Status Gas Tank

Table 1: Multi-application user tasks.

Since only few use cases involve more than
three applications, every user task is a story of
three subtasks. In task number 5 for example, a
user has to start a subtask, which navigates him
to Berlin. Then he would like to search an Italian
restaurant at the destination. Finally, he adds the
selected restaurant to his favorites. The focus is on
task entry and on subtask switch, thus the subtasks
require only two to four semantic concepts (like
Berlin or Italian restaurant). One of these con-
cepts is a reference to the previous subtask (like
at the destination or the selected restaurant) to en-
sure a natural cross-application dialog flow. After
the system’s response for one subtask the user has
to initiate the next subtask to complete his task.
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4 User Experiment

Developing an SDS means specifying a grammar
or training statistical language models for speech
recognition. These steps precede any real user test.
In system-initiated dialogs, with a few possible ut-
terances, specifying a grammar is feasible. How-
ever, in strictly user-initiative dialogs with mul-
tiple applications, this is rather complicated. A
WoZ study does not require to develop speech
recognition and understanding as this is performed
by a human. Analyzing the user utterances of a
WoZ experiment provides a detailed view of how
a user will interact with the SDS. This helps in de-
signing spoken dialogs and specifying grammars
and/or training language models for further eval-
uations (Fraser and Gilbert, 1991; Glass et al.,
2000).

Interaction schemes of people vary among each
other and depend on age, personality, experience,
context, and many more. It is essential to con-
duct a user study with people who might use the
SDS later on. A study by the NHTSA (National
Highway Traffic Safety Administration (NHTSA),
2013) showed that in 2011 73% of the drivers in-
volved in fatal crashes due to cell phone use, were
less than 40 years old. For this reason, our study
considers drivers between 18 and 40 years who
are technically affine and are likely to buy a car
equipped with an infotainment system with Inter-
net access.

4.1 Experimental Set-Up

When designing a user interaction experiment, it
is important that it takes place in a real environ-
ment. As driving on a real road is dangerous, we
used a fixed-base driving simulator in a laboratory.
In front of the car, a screen covers the driver’s field
of view (see Figure 1). Steering and pedal signals
are picked from the car’s CAN bus. It is impor-
tant that the user assumes he is interacting with
a computer as “human-human interactions are not
the same as human-computer interactions” (Fraser
and Gilbert, 1991). The wizard, a person in charge
of the experiment, was located behind the car and
mouse clicks or any other interaction of the wizard
was not audible in the car. To ensure a consistent
behavior of the wizard, we used SUEDE (Klem-
mer et al., 2000) to define the dialog, which also
provides an interface for the wizard. SUEDE de-
fines a dialog in a state machine, in which the sys-
tem prompts are states and user inputs are edges

between them. The content of system prompts was
synthesized with NUANCE Vocalizer Expressive1

version 1.2.1 (Voice: anna.full). During the ex-
periment, after each user input the wizards clicks
the corresponding edge and SUEDE plays the next
prompt. All user utterances are recorded as audio
files.

Figure 1: Experimental Set-Up

4.2 Experiment Design

Infotainment systems in cars are used while driv-
ing. This means the user cannot concentrate on the
infotainment system only, but also has to focus on
the road. According to multiple resource theory,
the human’s performance is reduced when human
resources overlap (Wickens, 2008). In a dual-task
scenario, like using the infotainment system while
driving, multiple resources are allocated and may
interfere. Considering this issue, we use a driving
task to keep the participants occupied while they
interact with the SDS. This allows us to observe
user utterances in a stressful situation.

Infotainment systems in cars are often equipped
with large displays providing visual and haptic
interaction. These kinds of interaction compete
for human resources which are needed for driv-
ing. This results in driver distraction, especially
in demanding secondary tasks (Young and Regan,
2007). Furthermore, a visual interface can also in-
fluence the communication of users (e.g. they ut-
ter visual terms). As we intent to study how a user
interacts naturally with a multi-domain SDS, we
avoid priming effects by not using any visual in-
terface.

4.2.1 Primary Task: Driving Simulator
One major requirement for the driving task is to
keep the driver occupied at a constant level all
the time. Otherwise, we would not be able to
analyze user utterances on a fine-grained level.

1http://www.nuance.com/for-business/mobile-
solutions/vocalizer-expressive/index.htm
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Therefore, we used the Continuous Tracking and
Reaction (ConTRe) task (Mahr et al., 2012) which
allows controlled driving conditions. It consists of
a steering and a reaction task, which require oper-
ating the steering wheel and pedals. In the steering
task, a yellow cylinder moves unpredictable right
and left at a constant distance from the driver and
the driver must always steer towards it. This is
similar to driving on a curved road. Sometimes a
driver needs to react to sudden events to prevent an
accident. For this a traffic light shows randomly
red and green and requires the driver to push the
throttle or brake pedal. The movement of the yel-
low cylinder and the appearance of the stop light
can be controlled by manipulating control vari-
ables. The “hard driving setting” from Mahr et al.
(2012) was used in this study.

4.2.2 Secondary Task: cross application tasks
with speech interaction

As described in Section 3, a task consists of three
subtasks and each subtask requires two to four se-
mantic concepts. For a user it is possible to insert
multiple concepts at once:

U: “Search an Italian restaurant at the destination”

or as single utterances in a dialog:
U: “Search an Italian restaurant”

S: “Where do you search an Italian restaurant?”

U: “At my destination”

For all possible combinations prompts were speci-
fied. SUEDE provides a GUI for the wizard to se-
lect which semantic concept a user input contains.
Dependent on the selection, either another concept
is requested or the answer is provided. Further-
more, a user input can optionally contain a verb
expressing what the system should do. For exam-
ple, if users say “Italian Restaurant” the reaction
is the same as they would say “Search an Italian
restaurant”.

The user has basically two options to select or
switch to an application. Either an explicit selec-
tion such as:

U: “Open restaurant application”

S: “Restaurant, what do you want?”

or an implicit selection such as:
U: “Search an Italian restaurant”

By using an explicit selection, users assume they
have to set the context to a specific application.
After that, they can use the functionality of this
application. This is a common interaction schema
for visual-based infotainment systems or smart-
phones, as they cluster their functionality into var-

ious applications. An implicit selection is rather
like current personal assistants interact, as they do
not cluster their functionality. Implicit selection
facilitates the interaction for users since they can
get an answer right away. After the user provided
the necessary input for one subtask, the system re-
sponds for example:

S: “There is one Italian restaurant: Pizzeria San Marco.”

Then the user needs to initiate an application
switch to proceed with his task.

A system enabling user-initiated dialogs cannot
always understand the user correctly. Especially in
implicit selection, the language models increase,
and thus recognition as well as understanding is
error prone (Carstensen et al., 2010). Further-
more, the user could request a functionality which
is not supported by the system. Therefore, error
handling strategies need to be applied. In terms
of miscommunication, it can be distinguished be-
tween misunderstanding and non-understanding
(Skantze, 2007). In the experiment, two of our
tasks do not support an implicit application switch,
but require an explicit switch. So if users try to
switch implicitly, the system will not understand
their input in one task and will misinterpret it in
the other task. A response to misunderstanding
might look like:

U: “Search an Italian restaurant”

S: “In an Italian restaurant you can eat pizza”

A non-understanding informs the user and encour-
ages him to try another request:

S: “Action unknown, please change your request”

These two responses are used until the user
changes his strategy to explicit selection. If that
does not happen, the task is aborted by the wizard
if the user gets too frustrated. This enables us to
analyze whether users will switch their strategy or
not and how many turns it will take.

4.3 Procedure

The experiment starts with an initial questionnaire
to create a profile of the participant, concerning
age, experience with smartphones, infotainment
systems and SDSs. Then participants are intro-
duced to the driving task and they have time to
practice till being experienced. After complet-
ing a baseline drive, they start to use the SDS.
For each spoken dialog task users get a story de-
scribing in prose what they like to achieve with
the system. To minimize priming effects, they
have to remember their task and are not allowed to
keep the description during the interaction. There

4



is no explanation or example of the SDS, apart
from a start command for activation. After the
start command, the system plays a beep and the
user can say whatever he likes to achieve his
task. The exploration phase consists of four tasks,
in which users can switch applications implic-
itly and explicitly. Then they rate the usability
of the system with the questionnaire: Subjective
Assessment of Speech System Interfaces (SASSI)
(Hone and Graham, 2000). In the second part of
the experiment, four tasks with different interac-
tion schemes for application switches are com-
pleted randomly: implicit & explicit switch pos-
sible, misunderstanding, non-understanding, and
dialog-initiative change.

5 Dialog Data Analysis

All audio files of user utterances were transcribed
and manually annotated by one person concerning
the application selection/switch, speaking style,
anaphoric references, and semantic concepts.

First of all, for each application entry and switch
it was classified whether the participant used an
implicit or explicit utterance. Additionally, the
non-understanding and misunderstanding data sets
were marked whether the dialog strategy was
changed and how many dialog turns this took.

Since most of the user utterances were implicit
ones (see Section 6.1), we classified them fur-
ther into different speaking styles. In the data
set of implicit utterances, five different speaking
styles could be identified. Table 2 shows them
with an example. The illocutionary speech act to
search a hotel is always the same, but how users
express their request varies. Keyword style and
explicit demand is rather how we expect people
to speak with machines, as these communication
forms are short commands and might be regarded
as impolite between humans. Kinder and gentler
communications forms are implicit demands, Wh-
questions, and Yes-No-Questions. This is how we
would expect people to interact with each other.

Keyword Style “Restaurant search. Berlin”
Implicit Demand “I’d like to search a restaurant in

Berlin.”
Wh-Question “Which restaurants are in Berlin?”
Yes-No-Question “Are there any restaurants in Berlin?”
Explicit Demand “Search restaurants in Berlin”

Table 2: Speaking styles of user utterances.

Two applications are always linked with a com-
mon semantic concept. The user has to refer to

this concept which he can do in various ways with
anaphoric expressions. The annotation of the data
set is based on Fromkin et al. (2003) and shown
in Table 3 (Examples are user utterances in re-
sponse to the system prompt “Navigation to Berlin
started”). In an elliptic anaphoric reference the
concept is not spoken, but still understood because
of context - also called gapping. Furthermore,
pronominalization can be used as an anaphor. We
distinguish between a pronoun or adverb anaphor
and an anaphor with a definite noun phrase, since
the later contains the type of semantic concept.
Another way is simply to rephrase the semantic
concept.

Elliptic “Search restaurants.”
Pronoun, Adverb “Search restaurants there.”
Definite Noun Phrase “Search restaurants in this city.”
Rephrase “Search restaurants in Berlin.”

Table 3: Anaphoric reference types.

6 Results
In the following, results on application awareness,
speaking style, anaphoric expressions, efficiency,
and usability are presented. We analyzed data
from 31 participants (16m/15f), with average age
of 26.65 (SD: 3.32). 26 people possess and use a
smartphone on a regular basis and 25 of them are
used to application-based interaction (18 people
use 1-5 apps and 7 people use 6-10 apps each day).
Their experience with SDS is little (6-Likert Scale,
avg: 3.06, SD: 1.48) as well as the usage of SDSs
(5-Likert Scale, avg: 2.04, SD: 1.16). We asked
them how they usually approach a new system or
app to learn its interaction schema and scope of
operation. On the smartphone, all 31 of them try
a new app without informing themselves how it is
used. Concerning infotainment systems, trying is
also the most used learning approach, even while
driving (26 people). This means, people do not
read a manual, but the system has to be naturally
usable.

In total, we built a corpus of interactions with 5h
25min with 3h 08min of user speech. It contains
243 task entries and 444 subtask switches. Due to
data loss 5 task entries could not be analyzed. Sub-
task switches were less than theoretically possible,
because misunderstanding and non-understanding
tasks were aborted by the wizard if the user did
not change his strategy. Concerning the type of
subtask, we analyzed 91 action and 152 informa-
tion seeking subtasks for task entries, as well as
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236 actions and 208 information seekings for task
switches.

6.1 Application Awareness

The SDS was designed to be strictly user-
initiative: after a beep users could say whatever
they liked. We counted 4.9% of user utterances as
explicit entries to start a task, which means users
in general assume either the SDS is already in the
right application context or it is not based on dif-
ferent applications. This is an interaction schema
which would rather be used with a human com-
munication partner. 1.1% explicit utterances in
subtask switches reinforce this assumption. Utter-
ances addressing more than one application could
not be observed.

Furthermore, we analyzed whether users
change their strategy from implicit to explicit
subtask switch if the system does not react as
expected. The implicit switch was prevented
and the system answered as if a misunderstand-
ing or a non-understanding has occurred. Ta-
ble 4 shows results for the number of subtask
switches (subt. sw.), number of successful strategy
changes (succ.), and average number of user utter-
ances (avg. UDT) till the strategy was changed.
In total, only in 43.7% subtask switches users
changed their strategy. The difference between
non-understanding and misunderstanding was not
significant (p=0.051), however, this might due to
small sample size.

subt. sw. succ. avg. UDT
non-underst. 42 15 2.93 (SD=1.91)
misunderst. 45 23 3.74 (SD=1.79)

Table 4: Dialog repair changes to explicit strategy.

In summary, only 6% of user utterances ad-
dressed the application explicitly and only 43.7%
of users changed their strategy from implicit to ex-
plicit. These results reveal that most users are not
aware of different applications or do not address
applications differently in a speech-only infotain-
ment system. They interact rather like with a hu-
man being or with a personal assistant than with a
typical in-car SDS.

6.2 Speaking styles of implicit application
selection

Even if people interact without being aware of dif-
ferent applications, they might speak to a system
in another way than to a human. We analyzed

the implicit user utterances according to different
speaking styles (see Figure 2). Overall, explicit
demand dominates with 37.07% for task entry and
42.42% for subtask switching. Keyword style is
used in 16.16% for task entry and 9.29% for sub-
task switches. As mentioned, explicit demand and
keyword style are rather used in human-computer
interaction. Here, slightly more than half of the
participants (entry: 53.23%; switch: 51.71%) use
this kind of interaction. The other half interacts
in kinder and gentler forms known from human-
human communication.

Comparing task entry and subtask switch, dif-
ferences could be found in keyword style, implicit
demand, and Yes-No-Question. In the first contact
with the system, users might be unsure what it is
capable of, therefore, often keywords were used
to find out how the system reacts. Additionally,
the task description was formulated in implicit de-
mand style, thus an unsure user might remember
this sentence and use it. Concerning the Yes-No-
Questions, they might be a reaction to the naturally
formulated system prompts, thus the user adapts to
a human-human-like communication style.

Finally, we compare information seeking sub-
tasks with action subtasks. In action subtasks, im-
plicit and explicit demand style dominate. This
is reasonable, as people give commands in either
form and expect a system reaction. Likewise, it
was anticipated that question styles are used for in-
formation seeking. One interesting finding is that
keyword style is more often used in information
seeking. This could be due to priming effects of
using search engines like Google2, in which users
only insert the terms they are interested in and
Google provides the most likely answers.

In summary, speaking styles vary. Sometimes
the system is considered as a human-like commu-
nication partner and sometimes users try to reach
their goal as fast as possible by giving short com-
mands. However, speaking styles depend on the
type of subtask and dialog state.

6.3 Anaphoric Expressions

In a cross-application task, it is of interest how
users refer to application-linking semantic con-
cepts. Figure 3 shows which kind of anaphoric ex-
pressions were used in implicit utterances. Nearly
half of the utterances (47.68%) contain a rephrase
of the semantic concept and further 31.57% a def-

2www.google.de
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Figure 2: Speaking styles of implicit task entry and subtask switch distinguished by action (Act) and
information seeking (Inf)

inite noun phrase. A rephrase utterance can be
interpreted easily for an SDS, since there is no
need to determine the right antecedent from dia-
log history. A definite noun phrase contains the
semantic type of the antecedent and can be ref-
ered easily in a semantic annotated dialog history.
However, a pronoun or elliptic anaphoric expres-
sion is harder to resolve, as the former only de-
scribes the syntactic form of the antecedent and
the later does not contain any information of the
antecedent. Sometimes, also humans are not able
to resolve an anaphoric expression easily. Com-
paring information seeking and action subtasks,
the only difference can be identified between def-
inite noun phrases and rephrase. In information
seeking subtasks, participants rephrased more of-
ten than using definite noun phrases.
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Figure 3: Anaphoric expressions used in implicit
application switches.

6.4 Efficiency

Especially in the car it is essential to support short
and efficient interactions. In this study, partici-
pants used on average 6.27 (SD: 2.62) words for
one utterance. However, the word length of a user
utterance is only one part which influences dialog
length. The number of semantic concepts uttered
is more important, as the more semantic concepts
are spoken, the less system prompts are needed to
request missing information. The semantic con-
cepts of each user utterance were annotated and

counted (avg: 2.77; SD: 0.73; min: 1; max: 6).
They are set in relation to the maximum required
semantic concepts (avg: 3.26; SD: 0.59; min: 2;
max: 4) for the corresponding subtask. We divide
the spoken concepts by the maximum concepts to
calculate an efficiency score (avg: 0.86; SD: 0.22).
This means 86% of user utterances contain all nec-
essary semantic concepts to answer the request.
Therefore, in-car SDS need to understand multiple
semantic concepts in one utterance to keep a dia-
log short, such as the city, street and street number
for a destination entry.
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0,87 

0
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0,8

1
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Act

Inf
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Figure 4: Efficiency scores of user utterances.

Figure 4 shows efficiency scores split into task
entry and subtask switch as well as action and
information seeking. In total, there is no sig-
nificant difference between task entry and sub-
task switch concerning number of words, seman-
tic concepts, or efficiency score. Comparing types
of subtasks at task entry, the efficiency score for
action subtasks (avg: 0.69; SD: 0.2) is signifi-
cantly (p=0.0018) less than for information seek-
ing subtasks (avg. 0.88; SD 0.22). Although, sig-
nificantly (p=0.0003) more semantic concepts in
actions were required (avg: 3.66; SD: 0.48) than
in information seekings (avg: 3.2; SD: 0.4), users
do not utter more semantic concepts. How many
semantic concepts users can utter in one sentence
while driving, needs to be addressed in the future.

6.5 Usability
Usability is a necessary condition in order to eval-
uate if people will use a system. The SASSI scores
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provide valid evidence of a system’s usability. Fig-
ure 5 shows results separated into the six dimen-
sions System Response Accuracy (SRA), Like-
ability (Like), Cognitive Demand (Cog Dem), An-
noyance (Ann), Habitability (Hab), and Speed. A
7-Likert scale was used and recoded to values [-
3, ..., 3]. If a system is less annoying, its usabil-
ity will be better. Thus, except of cognitive de-
mand and habitability, the usability of our SDS is
rated good. The low habitability score is due to the
fact that we did not explain the SDS and after four
tasks users are not completely accustomed to the
system.

-3

-2

-1

0

1

2

3

SRA Like Cog Dem Ann Hab Speed

SASSI

Figure 5: SASSI Usability scores.

7 Discussion and Further Research

The results show, that users are in general not
aware of different applications in speech-only in-
car SDSs and switch implicitly between different
domains. This interaction schema is similar to
human-human communication, but may differ if
the user is primed through a visual representation.
Concerning speaking styles, more than half of the
participants used keyword style and explicit de-
mand, which might be regarded impolite between
humans. They are aware to communicate with
a system lacking emotions. A user, who is not
sure about the system’s functions, will rather start
with keywords and, after hearing natural formu-
lated system prompts, is likely to adapt to natu-
ral speaking styles. A human-like prompt (instead
of our beep) may ensure the user from the begin-
ning. Obviously, speaking styles depend on type
of task, thus question and keyword style is used
for information seeking and demand style to initi-
ate an action. More than 50% of the participants
used anaphoric expressions, which have to be re-
solved within dialog context. This is comprehen-
sible, as for people it is usually easier and more ef-
ficient to pronounce an anaphor than to pronounce
the antecedent. For reaching their interaction goal
fast and efficient, the participants used multiple se-
mantic concepts in utterances. In total, 86% of
user utterances contain all necessary information

to answer the request. This results in less dialog
turns and thus is fundamental for in-car systems.
In addition, the usability is rated good, thus the
system might be accepted by drivers.

Another crucial point for in-car systems is that
they should distract the driver as little as possible.
It can be assumed that without visual and haptic
distractions, the driver would keep his focus on
the road. However, cognitive demand also causes
distraction. The moderate SASSI score for cogni-
tive demand requires an objective test. Therefore,
we will analyze multi-domain interactions with re-
spect to mental pressure and driver performance
for further research. So far, we have only consid-
ered multi-domain dialogs with one common se-
mantic concept. By referring to multiple seman-
tic concepts, drivers might use more anaphoric ex-
pressions or aggregate them with a general term,
which needs to be address in further experiments.

8 Conclusions

This paper presents results on how young and
technically affine people interact with in-car SDSs
in performing multi-domain tasks. 31 participants
completed all together 243 tasks (each with two
application switches) while driving in a fixed-base
driving simulator. In this experiment, a controlled
WoZ setup was used instead of a real speech
recognition system.

The results identify important guidelines for
multi-domain SDSs. Since users are in general not
aware of applications in speech-only dialog sys-
tems, implicit application switching is required.
However, this should not replace explicit switch-
ing commands. Speaking styles vary and depend
on type of task, and dialog state. Thus language
models must therefore consider this issue. Peo-
ple rely on anaphora, which means an SDS must
maintain a extensive dialog history across multi-
ple applications to enable coreference resolution.
It is further necessary that the SDS supports multi-
ple semantic concepts in one utterance since it en-
ables an efficient interaction and drivers use this.
The SDS’s usability was rated good by the partici-
pants. For further research, we will analyze multi-
domain interaction with respect to driver perfor-
mance and multiple semantic concept anaphora.
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Abstract
Accurate dialog state tracking is crucial
for the design of an efficient spoken dialog
system. Until recently, quantitative com-
parison of different state tracking meth-
ods was difficult. However the 2013 Dia-
log State Tracking Challenge (DSTC) in-
troduced a common dataset and metrics
that allow to evaluate the performance of
trackers on a standardized task. In this pa-
per we present our belief tracker based on
the Hidden Information State (HIS) model
with an adjusted user model component.
Further, we report the results of our tracker
on test3 dataset from DSTC. Our tracker
is competitive with trackers submitted to
DSTC, even without training it achieves
the best results in L2 metrics and it per-
forms between second and third place in
accuracy. After adjusting the tracker using
the provided data it outperformed the other
submissions also in accuracy and yet im-
proved in L2. Additionally we present pre-
liminary results on another two datasets,
test1 and test2, used in the DSTC. Strong
performance in L2 metric means that our
tracker produces well calibrated hypothe-
ses probabilities.

1 Introduction

Spoken dialog systems need to keep a represen-
tation of the dialog state and the user goal to
follow an efficient interaction path. The perfor-
mance of state-of-the-art speech recognition sys-
tems varies widely with domain and environment
with word accuracy rates ranging from less than
70% to 98%, which often leads to misinterpreta-
tion of the user’s intention. Dialog state tracking
methods need to cope with such error-prone auto-
matic speech recognition (ASR) and spoken lan-
guage understanding (SLU) outputs. Traditional

dialog systems use hand-crafted rules to select
from the SLU outputs based on their confidence
scores. Recently, several data-driven approaches
to dialog state tracking were developed as a part
of end-to-end spoken dialog systems. However,
specifics of these systems render comparison of
dialog state tracking methods difficult.

The Dialog State Tracking Challenge (DSTC)
(Williams et al., 2013) provides a shared testbed
with datasets and tools for evaluation of dialog
state tracking methods. It abstracts from subsys-
tems of end-to-end spoken dialog systems focus-
ing only on the dialog state estimation and track-
ing. It does so by providing datasets of ASR and
SLU outputs with reference transcriptions together
with annotation on the level of dialog acts.

In this paper we report initial encouraging re-
sults of our generative belief state tracker. We plan
to investigate discriminative approaches in the fu-
ture.

The rest of the paper continues as follows. In
the next section we formally introduce the dia-
log tracking task together with datasets used in
the DSTC. Then in Section 3 we discuss related
work. Section 4 describes the belief update equa-
tions of our tracker. After that we introduce the
design of our whole tracking system, especially
how we trained the system in a supervised setting
on the train dataset and in an unsupervised setting
on the test dataset. In Section 6 we show results
of our trackers, compare them to other DSTC par-
ticipants, and discuss the results in the context of
design choices and task characteristics.

2 DSTC Problem Definition, Datasets
and Metrics

The task of the DSTC can be formally defined
as computing P(gt|u0:t, a0:t). That is, for each
time step t of the dialog compute the proba-
bility distribution over the user’s hidden goal g
given a sequence of SLU hypotheses from the
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Dataset System # Annotated
train1a A 1013 yes
train1b A 1117 no
train1c A 9502 no
train2 A 643 yes
train3 B 688 yes
test1 A 715 for eval. only
test2 A 750 for eval. only
test3 B 1020 for eval. only
test4 C 438 for eval. only

Table 1: Datasets description. The System col-
umn shows what dialog system was used to col-
lect the dataset. The # column shows the number
of dialogs in the dataset. The last column informs
whether the ground truth annotation was provided
with the dataset.

System Dial. model SLU scores
A open 〈− inf, 0〉
B fixed 〈0, 1〉
C open 〈0, 1〉

Table 2: Main features of the dialog managers
used to collect the datasets. System A and C use
open dialog structure where the user can respond
with any combination of slots on any machine
question. System B uses a fixed dialog structure
where the user can respond only with the concept
the system expects.

beginning of the dialog up to the time t de-
noted as u0:t and a sequence of machine ac-
tions a0:t. It is assumed that the goal is fixed
through the dialog, unless the user is informed
that the requested goal does not exist. In DSTC
the user’s goal consist of nine slots: route,
from.desc, from.neighborhood, from.monument,
to.desc, to.neighborhood, to.monument, date,
time.

The dialog datasets in the DSTC are partitioned
into five training sets and four test sets. Details
and differences of the datasets are summarized in
Table 1 and 2. The datasets come from dialog sys-
tems deployed by three teams denoted as A, B and
C. All the training datasets were transcribed but
only three of them were annotated on the level of
dialog acts. The SLU confidence scores from sys-
tem B are relatively well calibrated, meaning that
confidences can be directly interpreted as proba-
bilities of observing the SLU hypothesis. Confi-
dence scores from the system A are not well cali-

brated as noted by several DSTC participants (Lee
and Eskenazi, 2013; Kim et al., 2013).

The evaluation protocol is briefly described in
Section 6. Its detailed description can be found in
(Williams et al., 2012), its evaluation in (Williams
et al., 2013).

In 2013, nine teams with 27 trackers partici-
pated in the challenge. The results of the best
trackers will be discussed together with the results
of our tracker later in Section 6.

3 Related Work

This section shortly reviews current approaches to
dialog state tracking. We divide the trackers into
two broad families of generative and discrimina-
tive methods.

3.1 Generative Methods

The HIS model (Young et al., 2010) introduces an
approximative method of solving the belief track-
ing as an inference in a dynamic Bayesian network
with SLU hypotheses and machine actions as ob-
served variables and the estimate of the user’s goal
as a hidden variable. The HIS model was im-
plemented several times (Williams, 2010; Gašić,
2011). Recent criticism of generative methods for
belief tracking brought more attention to the dis-
criminative methods (Williams, 2012b).

In the DSTC only few generative system partic-
ipated. Kim et al. (2013) implemented the HIS
model with additional discriminative rescoring,
Wang and Lemon (2013) introduced a very simple
model based on hand-crafted rules. Both of them
scored between the second and the fourth place in
the challenge.

3.2 Discriminative Methods

As was previously mentioned, the discriminative
methods received more attention recently.

The overall winner of the DSTC (Lee and Es-
kenazi, 2013) used a maximum entropy model,
which they claim to be outperformed by bringing
more structure to the model by using the Condi-
tional Random Fields (Lee, 2013). The same type
of model is used also by Ren et al. (2013). Usage
of Deep Neural Networks was tested by Hender-
son et al. (2013).

Žilka et al. (2013) compare a discriminative
maximum entropy model and a generative method
based on approximate inference in a Bayesian net-
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work, with the discriminative model preforming
better.

4 Model

Our model is an implementation of the HIS
model (Young et al., 2010). In HIS the belief state
is viewed as a probability distribution over all pos-
sible user’s goals. The belief state is represented
by a set of so-called partitions, which are sets of
user’s goals that are indistinguishable based on ac-
tions the system observes. It means the probability
mass assigned to a partition spreads to the user’s
goals in the partition proportionally to their’s prior
probabilities. The belief update is performed in
two steps.

Belief refinement ensures that for each user ac-
tion on the SLU n-best list and each partition all
goals in the partition are either consistent with the
user action or not. This step does not change the
belief state, it only enables the actual belief update
to be computed using the update equation (Eq. 1).

The partitions are organized in a tree structure
for which it holds that a child and a parent partition
are identical in some slots and complementary in
the remaining ones. This is ensured by the belief
refinement procedure. For each observed user ac-
tion and each partition it first checks whether all of
the hypotheses in the partition are either consistent
with the action or not. If they are not, it splits the
partition into two partitions with the parent-child
relationship. The inconsistent hypotheses remain
in the parent partition and the consistent ones are
moved to the child. The belief of the original par-
tition is distributed between the new ones in the
ratio of their priors.

To prevent an exponential increase in the num-
ber of partitions during the dialog, a partition re-
combination strategy can be used that removes the
less probable partition and moves their hypothe-
ses to different partitions. We perform partition
recombination at the end of each turn (Henderson
and Lemon, 2008), during the recombination low
probability partitions are merged with their parents
exactly as suggested by Williams (2010).

For the actual belief update the following stan-
dard update equation is used:

Pt+1(p) = k · Pt(p) ·
∑
u∈u

P(u|u) · P(u|p, a) (1)

where k is a normalization constant, Pt(p) is belief
in partition p after turn t, a is the machine action

taken in turn t, u is a set of observed user actions,
P(u|u) is the score of action u in the SLU n-best
list u. In this definition P0(p) is a prior probabil-
ity of partition p; the prior might be either uniform
or estimated from the training data. The list u is
extended with an unobserved action ũ whose prob-
ability is:

P(ũ|u) = 1−
∑

u∈u\{ũ}
P(u|u). (2)

P(u|p, a) in the update equation is the user
model, i.e. how likely the user is to take an ac-
tion u given that the last machine action was a and
user’s goal is represented by partition p.

In our case:

P(u|p, a) =
Λ(p, u, a)∑

p′ ∈ partitions

Λ(p′, u, a) · size(p′)

(3)
where size(p) is the number of possible user’s
goals represented by p and Λ(p, u, a) is an indi-
cator function that evaluates to 1 when user’s ac-
tion u is compatible with the goal represented by
p given the last machine’s action was a, otherwise
Λ evaluates to 0.

Λ is defined in the following way, for every ob-
served action u ∈ u \ {ũ}:

Λ(p, u, a) = Λ′(p, u, a) (4)

where Λ′ is a deterministic function that encodes
the meanings of user and machine actions for a
given partition. The rules expressed by Λ′ are for
example:

∀a : Λ′(ps=w, inform(s = v), a) =

{
1 if v = w

0 if v 6= w

and

Λ′(ps=w, yes(), conf (s = v)) =

{
1 if v = w

0 if v 6= w

where ps=w represents a partition where slot s has
value w, inform(s = v) is user’s action assigning
value v to the slot s and conf (s = v) is machine
action requiring confirmation that slot s has value
v.

For an unobserved action ũ we define Λ as:

Λ(p, ũ, a) =
∏

u∈u\{ũ}
(1− Λ′(p, u, a)). (5)
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This definition assumes that user’s unobserved
action ũ uniformly supports each partition not sup-
ported by any of the observed user’s actions u.
Λ(p, ũ, a) evaluates to 1 if none of user’s actions
support given partition, otherwise it evaluates to
0. This can be viewed as an axiom of our system,
alternatively we could assume that ũ supports all
partitions, not only those not supported by any ob-
served action.

The key property of the update equations for-
mulated in this way is that the probability of a par-
tition representing a hypothesis that a user’s goal
was not mentioned in any of the SLU lists up to
the time t does not outweigh probability of ob-
served goals even though the prior probability of
unobserved hypothesis is usually orders of mag-
nitude higher than the probability of all observed
hypotheses. However, when two goals are indis-
tinguishable based on the SLU input then the ratio
of their probabilities will be exactly the ratio of
their priors.

Belief update equations are generic and in-
dependent of the internal structure of partitions.
When the tracker has to be adapted to a new dia-
log domain with the fixed goal the application de-
veloper needs to supply only a new definition of
Λ′ and partition splitting mechanism adjusted ac-
cording to Λ′.

4.1 Differences to the Original HIS
The key difference between our HIS implementa-
tion and previous HIS systems is in the formula-
tion of the user model. Previous HIS-based sys-
tems (Young et al., 2010; Gašić, 2011) factorize
the user model as:

Porig(u|p, a) = k · P(T (u)|T (a)) · M(u, p, a)

where P(T (u)|T (a)) is a dialog act type bigram
model and M is a deterministic item matching
model that is similar to our Λ. Based on a descrip-
tion of the item matching model given in (Keizer
et al., 2008; Young et al., 2010; Gašić, 2011) we
deduce that it evaluates to a constant c+ instead of
1 when the user action is consistent with the parti-
tion and to c− instead of 0 otherwise. It holds that
0 ≤ c− � c+ ≤ 1, e.g. c− = 0.1 and c+ = 0.9.

In our tracker, we omit the dialog act type model
since it is not a mandatory component of the user
model and it can be added later. However, the
most important systematic difference between our
tracker and the original HIS formulation is that in-
stead of using a reduced user model, which would

Par. Pt Porig
t+1 Pours

t+1

pa 1/3 1/3 1/4
pb 1/3 1/3 1/4
pc 1/3 1/3 1/2

Table 3: Comparison of the effects of original HIS
user model and our modified user model. Initially
all partitions are equally likely. After performing
belief update using Eq. 1 the original model out-
puts probabilities in the column Porig

t+1 , the column
Porig

t+1 shows results of our user model.

be Porig(u|p, a) = Λ(p, u, a) in the original HIS,
we use the formulation given in Eq. 3. The origi-
nal HIS does not use a concept of partition’s size
(size(p′) in Eq. 3) that we need for the definition
of our user model.

We will illustrate the difference between these
two approaches on a minimalistic abstract exam-
ple. Suppose the belief space consists of three par-
titions pa, pb and pc, each of them having probabil-
ity of 1/3 and representing one possible user’s goal
(i.e. size(p∗) = 1). There are two actions on the
SLU list: ua,b that is consistent only with pa and
pb (i.e. Λ′(pa, ua,b, ∗) = 1), and uc that is con-
sistent only with pc. Both ua,b and uc are equally
probable, P(ua,b|u) = P(uc|u) = 1/2. Accord-
ing to one intuition pa and pb should share support
given to them by action ua,b, on the other hand pc

does not share the action uc with any other par-
tition. Thus after updating the probability using
Eq. 1 one would expect Pt+1(pc) to be higher than
Pt+1(pa). Now we can compare the output of our
model and the original HIS side by side as shown
in Table 3. The user model as formulated in the
original HIS leads to a new belief state where all
partitions are equally probable. However, accord-
ing to our modified user model partition pc is twice
as probable than pa or pb. This is, we argue, closer
to human intuition.

The update equation for a partition p in this sim-
plistic example is:

Pt+1(p) = k · P(p) · (P(ua,b|u) · P(ua,b|p, ∗)+
P(uc|u) · P(uc|p, ∗)).

For every partition the original model would
output the same probability:

Porig
t+1 (p) = k1

1
3

(
1
2
· c+ +

1
2
· c−
)

=
1
3
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However our model gives the following equa-
tion for both pa and pb:

Pour
t+1(px) = k2

1
3

(
1
2
· 1

1 + 1
+

1
2
· 0

1

)
=

1
4

where x ∈ {a, b}. The impact of ua,b on px is di-
vided by a factor of 2 since it is shared by two par-
titions each representing one possible user goal.
For pc we have:

Pour
t+1(pc) = k2

1
3

(
1
2
· 0

1 + 1
+

1
2
· 1

1

)
=

1
2
.

This is how values in Table 3 were computed.
Another extension of the original HIS is how

we handle the unobserved action. To our knowl-
edge, the original HIS systems (Young et al., 2010;
Gašić, 2011) do not deal with probability of unob-
served action; Williams (2010) presents a differ-
ent way of handling the unobserved action. We
provide unified way how to handle unrecognized
mass on the SLU list. In the original HIS model,
partition punobs not supported by any of the ob-
served actions obtains probability by M evalu-
ating to c− on each observed action. In our
model, punobs receives non-zero probability due to
Λ(punobs, ũ, ∗) evaluating to 1 (see Eq. 5).

5 Tracker Design and its Variants

The previous section gave detailed description of
the update equations of our HIS based tracker.
This section presents an overall design of differ-
ent implemented tracker variants. We will discuss
how we use the bus route database and how we
perform supervised and unsupervised prior adap-
tation.

5.1 Single Slot Tracking versus Joint
Tracking of Multiple Slots

An advantage of a HIS-based systems is that they
make it possible to track a joint probability distri-
bution over a user’s goal. This advantage is two-
fold. First, it enables usage of a joint prior, either
learned from training data or from the bus sched-
ule database. Second, tracking a joint distribution
makes it possible to use more information from
SLU hypotheses. We will illustrate this on an ex-
ample. Suppose that SLU is able to extract multi-
ple slots from one user’s utterance, in our example
it might be interpreted as:

inform(route=61,to.desc=cmu) 0.5
inform(route=60,to.desc=zoo) 0.4

And the machine explicitly confirms the route:
expl-confirm(route=61)

If the user’s response is interpreted as:
negate() 0.8
affirm() 0.1

Then the system tracking only marginal proba-
bilities over single slots will correctly consider
route 60 as being more probable but user’s nega-
tion will have no effect on marginal distribution of
to.desc. However, a system tracking the joint
distribution will now correctly rank zoo higher
than cmu. The disadvantage of tracking joint hy-
potheses is that it requires more computational re-
sources. A tracker tracking all slots independently
with a uniform prior is denoted as IBMindep

uniform, a
tracker tracking joint hypotheses with a uniform
prior as IBMjointly

uniform.

5.2 Bus Schedule Database
Along with the dialog dataset DSTC organizers
provided a database with bus schedules for routes
in Pittsburgh area. We tested possibility to use re-
lation between bus routes and bus stops that can be
extracted from the database. First, we normalized
bus stop names as found in the SLU hypotheses
(e.g. by removing prepositions), in this way we
were able to match 98 percent of bus stops found
in the SLU to stops in the database.

An initial analysis of the data revealed that
only around 55% of route , from.desc, to.desc
hypotheses annotated by human annotators as a
ground truth were also found in the database.
This means that either callers were often asking
for non-existing combinations or the database was
mismatched.

Our tracker utilizing the database tracked joint
hypotheses for route , from.desc and to.desc slots
and hypotheses with combinations not found in the
database were penalized. The prior of a joint par-
tition pr,f,t, for a route r from destination f to des-
tination t, was computed as:

P(pr,f,t) = Puniform ·DB(r, f, t)

Where DB is

DB(r , f , t) =

{
1 if 〈r, f, t〉 ∈ database
1
c otherwise

where parameter c is a penalty constant for hy-
potheses not in the database. The value of c is
estimated by parameter search on the train data.
This tracker will be denoted as IBMjointly

db .
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Test set 3
Schedule 2 Schedule 3

joint
acc.

avg.
acc.

joint
L2

avg.
L2

joint
acc.

avg.
acc.

joint
L2

avg.
L2

Team 6 (Lee and Eskenazi, 2013) .558 .680 .801 .597 .589 .823 .779 .367
Team 8 (unknown authors) .424 .616 .845 .559 .408 .716 .878 .422
Team 9 (Kim et al., 2013) .499 .657 .914 .710 .551 .828 .928 .461
Team 3 (Žilka et al., 2013) .464 .645 .831 .669 .528 .794 .734 .390
1-best baseline .448 .620 .865 .611 .492 .703 .839 .514
IBMjointly

uniform .521 .654 .785 .575 .557 .804 .746 .344
IBMindep

uniform .521 .654 .786 .576 .558 .806 .746 .343
IBMjointly

db .523 .657 .774 .564 .559 .806 .738 .339
IBMindep

train-to-test .563 .680 .694 .513 .609 .828 .644 .285
IBMindep

unsup .573 .689 .685 .505 .611 .834 .634 .279

Table 4: Results on the DSTC test set 3. Higher accuracy is better, whereas lower L2 score is better.
Numbers in bold highlight performance of the best tracker in the selected metric. The first four rows
show teams that performed the best in at least one of the selected metrics. For each team in each metric
we show performance of the best submitted tracker. This means that numbers in one row do not have to be
from a single tracker. It is an upper bound of the team’s performance. The fifth row shows performance
of a 1-best baseline tracker that always picks the SLU hypothesis with the top confidence. The rest are
different variants of our tracker. Here the bold numbers show where our tracker performed better than the
best tracker submitted to the DSTC. A light gray highlight of a cell denotes the overall best performance
in online setting, a dark gray highlight denotes the best performance while tracking offline.

5.3 Priors Adaptation

We tested two variants of adjusting prior probabili-
ties of user goals. We estimated prior probabilities
as a mixture of the uniform probability and empir-
ical distribution estimated on the training data.

In the first experiment the empirical probabili-
ties were estimated using the annotation that was
available in the training data. We tracked the
slots independently because the empirical joint
distribution would be too sparse to generalize on
the test data. We used one prior distribution to
guide the selection of route hypotheses Prroute

and one shared distribution for possible destina-
tion names Prdesc. This distribution is trained on
data from both from and to destinations thus gain-
ing a more robust estimate compared to using two
separate distributions for from.desc and to.desc.
This tracker will be denoted as IBMindep

train-to-test.
In the second experiment we used the test data

without the ground truth labels to estimate the em-
pirical prior. We first ran the tracker with the uni-
form prior on the testing set and we used the out-
put hypotheses as a basis for the empirical distri-
bution. The prior of a hypothesis is proportional
to a sum of all tracker output scores for the hy-

pothesis. This scheme is called unsupervised prior
adaptation by Lee and Eskenazi (2013). Note that
the prior was computed on the test dataset. Thus
this technique is not directly applicable to a realis-
tic setting where the belief tracker has to produce a
belief for each dialog from the test set the first time
it sees it. This tracker will be called IBMindep

unsup.

6 Evaluation

We evaluated all our tracker variants on the DSTC
test3 dataset using the protocol designed for the
challenge participants. We also present initial re-
sults of the basic IBMindep

uniform and IBMjointly
uniform track-

ers for test1 and test2 datasets. Several quanti-
ties were measured in three different schedules,
which defines, which moments of the dialog the
evaluation is performed. Here we report results
for schedule 2 and 3. Schedule 2 takes into ac-
count all turns when the relevant concept appeared
on user’s SLU list or was mentioned by the dialog
system. Schedule 3 evaluates belief at the end of
the dialog, i.e. at the moment when the queried
information is presented to the user.

We report accuracy, which is the ratio of dialogs
where the user goal was correctly estimated, and
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the L2 score, which is the Euclidean distance of
the vector of the resulting belief from a vector hav-
ing 1 for the correct hypothesis and 0s for the oth-
ers. For both of these the average values over all
tracked slot is reported as well as the value for the
joint hypotheses. The accuracy informs us how of-
ten the correct query to the database will be made.
The L2 score tells us how well-calibrated the re-
sults are, which can be important for disambigua-
tion and for statistical policy optimization.

6.1 Method

We used one thousand partitions as the limit for
the number of tracked hypotheses. For each
tracker ran on the test set 3 we used only the top
five SLU hypotheses.

All parameters for mixing the empirical prior
probability with uniform distribution in trackers
IBMindep

train-to-test and IBMindep
unsup were estimated us-

ing 3-fold cross validation scheme on the training
data. The best parameter setting on the training
data was then used in evaluation on the test set.

Test set 1
joint
acc.

avg.
acc.

joint
L2

avg.
L2

Team 6 .364 .862 .989 .278
Team 9 .225 .789 1.154 .354
Team 2 .206 .777 1.234 .409
1-best baseline .138 .626 1.220 .530
IBMjointly

uniform .332 .813 .992 .282
IBMindep

uniform .331 .804 1.010 .304

Table 5: Preliminary results for schedule 3 on the
DSTC test set 1 of our two trackers compared to
three overall well performing teams. For teams 6
and 9 see Table 4, team 2 is (Wang and Lemon,
2013). The legend of the table is the same as in
Table 4.

Even though we concentrated mainly on test-
ing the tracker on dataset 3, we also ran it on the
datasets 1 and 2. For the datasets 1 and 2 we used
the single best SLU hypothesis from the live sys-
tem. Such hypothesis was assigned 99% probabil-
ity and the remaining 1% was left for the unob-
served action. For the datasets 1 and 2 a post hoc
computed SLU hypotheses are available in addi-
tion to the live data. In our experiments, using the
post hoc computed SLU hypotheses with normal-
ized confidence scores yielded worse results for
our tracking systems.

Test set 2
joint
acc.

avg.
acc.

joint
L2

avg.
L2

Team 6 .526 .854 .885 .311
Team 9 .268 .748 1.098 .450
Team 2 .320 .764 1.148 .470
1-best baseline .141 .487 1.185 .648
IBMjointly

uniform .431 .789 .846 .316
IBMindep

uniform .413 .778 .875 .332

Table 6: Preliminary results for schedule 3 on the
DSTC test set 2. For teams see Tables 4 and 5.
The legend of the table is the same as in Table 4.

6.2 Results
Results of our trackers on the DSTC dataset 3 are
summarized in Table 4. Preliminary results of
the trackers on datasets 1 and 2 whose confidence
scores are not that well calibrated are shown in Ta-
bles 5 and 6. The running time of the trackers
was on average below 0.05 seconds per turn1. The
only exception is IBMjointly

db that executes plenty of
database queries. Although we did not focus on
the computational performance optimization most
of the trackers are suitable for on-line use.

6.3 Discussion
Quantitative Comparison to DSTC Trackers.
First let us discuss results of our trackers on test 3
(Table 4). Here both basic variants of the tracker
IBMindep

uniform and IBMjointly
uniform perform almost identi-

cally. This is because test 3 uses fixed dialog flow
as discussed in Section 2, minor differences in per-
formance between IBMindep

uniform and IBMjointly
uniform are

caused only by numerical issues. The trackers are
around the third place in accuracy. In joint L2 met-
rics they outperform the best tracker in DSTC sub-
mitted by Team 6 (Lee and Eskenazi, 2013).

Tracker utilizing database IBMjointly
db does not

show any significant improvement over the same
tracker without database-based prior IBMjointly

uniform.
We hypothesize that this is because of the fact that
people frequently asked for non-existing combina-
tions of routes and stops, which were penalized for
not being in the database, as discussed in Sec. 5.2.

Next follow the results of tracker IBMindep
train-to-test

that learns priors for single slots on training
dataset and uses them while inferring user’s goal
on the test set. In test set 3 priors enhanced

1On one core of Intel Xeon CPU E3-1230 V2, 3.30GHz,
with memory limitation of 1GB.
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tracker’s performance in all metrics and the tracker
outperformed all DSTC trackers.

Interesting results were achieved by IBMindep
unsup

that performed even better than the IBMindep
train-to-test.

It uses a prior trained on the test set by running the
tracker with a uniform prior. The tracker was run
for three iterations each time using output of the
previous iteration as a new prior.

After running the experiments with the top 5
SLU hypotheses, we performed an experiment that
investigated influence of n-best list length on the
tracker’s accuracy. We evaluated five system vari-
ants that received 1, 2, 3, 4 and 5 best SLU hy-
potheses. The overall trend was that initially per-
formance increased as more SLU hypotheses were
provided however then performance started de-
creasing. The 3-best variant achieved about 1.5%
increase in joint accuracy compared to the 1-best.
However, when using more than 3 best hypothe-
ses, the performance slightly decreased. For in-
stance, IBMindep

uniform using 1-best hypothesis per-
formed comparable to the 5-best configuration.
Similar behavior of generative systems assuming
observation independence has already been ob-
served in different domains (Vail et al., 2007).

Based on these results we deduce two conclu-
sions. First, strong performance of IBMindep

uniform
1-best system compared to the 1-best baseline sys-
tem suggests that the main added value of our
tracker in this domain is in the aggregation of ob-
servations from multiple time steps, not in track-
ing multiple hypotheses from one turn. Sec-
ond, we attribute the effect of decreasing accu-
racy to the correlation of ASR errors from con-
secutive dialog turns. As noted by Williams
(2012b), correlated ASR errors violate the as-
sumption of observation independence that is as-
sumed by HIS. Extending the user model with
an auto-regressive component, that is with depen-
dence on observations from the previous time step
(i.e. P(ut|ut−1, p, a)), might help to tackle this
problem in generative models (Wellekens, 1987).

To summarize the results on test set 3, even
without any prior adaptation on the data our
tracker is competitive with the best submissions
to DSTC. After incorporating prior knowledge it
outperforms all submitted trackers.

On test set 1 and test set 2 (see Tables 5 and 6)
the trackers perform second in accuracy. In L2
metrics the trackers are competitive with the best
tracker in DSTC submitted by Team 6 and they

outperform it in one out of four cases. It is inter-
esting that our basic strategy that ignores live SLU
scores performed that strong.

However, on test 1 and test 2, which make it
possible to input multiple slots in one user utter-
ance, IBMjointly

uniform outperforms IBMindep
uniform, both in

accuracy and L2. We hypothesize that this is be-
cause of effect of tracking joint distributions de-
scribed in Section 5.1.

Qualitative Comparison to DSTC Trackers.
Compared to another HIS-based system (Kim et
al., 2013) participating in the DSTC, our imple-
mentation does not suffer from the problem of as-
signing high probability to the hypothesis that the
user goal was not observed so far. This might be
due to our modified user model. Therefore our im-
plementation does not need a final transformation
of belief scores as reported by Kim et al. (2013).

Additionally, our implementation does not
exhibit the forgetting behavior as experienced
by Žilka et al. (2013). Forgetting is undesirable
given the validity of assumption that the user’s
goal remains fixed in the whole dialog, which is
the case of DSTC bus schedule domains.

7 Conclusion

Although the use of generative trackers was re-
cently criticized by Williams (2012a), our re-
sults show that at least in some metrics (e.g. L2
metrics on dataset 3) a generative tracker can
outperform the best state-of-the-art discriminative
tracker (Lee and Eskenazi, 2013). Even though
we agree that the discriminative approach might be
more promising, it seems that in general there are
conditions where generative models learn faster
than discriminative models (Ng and Jordan, 2001).
Thus it might be beneficial to use a generative
tracker for a newly deployed dialog system with
only a few training dialogs available and switch to
a discriminative model once enough training data
from an already running system is collected. En-
semble trackers incorporating both generative and
discriminative models as used by Lee and Eske-
nazi (2013) might also be an interesting direction
for future research.
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We would like to thank Jiřı́ Havelka for his valu-
able comments on a draft of this paper. This work
was partially funded by the GetHomeSafe project
(EU 7th Framework STREP project No. 288667).

17



References
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Jurčı́ček. 2013. Comparison of bayesian discrim-
inative and generative models for dialogue state
tracking. In Proceedings of the SIGDIAL 2013 Con-
ference, pages 452–456, Metz, France, August. As-
sociation for Computational Linguistics.

18



Proceedings of the of the EACL 2014 Workshop on Dialogue in Motion (DM), pages 19–27,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Click or Type: An Analysis of Wizard’s Interaction for Future Wizard
Interface Design

Srinivasan Janarthanam1, Robin Hill2, Anna Dickinson2, Morgan Fredriksson3

1 School of Mathematical and Computer Sciences, Heriot-Watt University
2 School of Informatics, University of Edinburgh

3 Liquid Media AB, Stockholm
sc445@hw.ac.uk

Abstract

We present an analysis of a Pedestrian
Navigation and Information dialogue cor-
pus collected using a Wizard-of-Oz inter-
face. We analysed how wizards preferred
to communicate to users given three differ-
ent options: preset buttons that can gen-
erate an utterance, sequences of buttons
and dropdown lists to construct complex
utterances and free text utterances. We
present our findings and suggestions for
future WoZ design based on our findings.

1 Introduction

Wizard-of-Oz environments (WoZ) have been be-
come an essential tool for collecting and studying
dialogue between humans pretending to be ma-
chines and human users in various domains. It is
an effective way to collect dialogues between real
users and dialogue systems before actually imple-
menting the dialogue system. In this framework,
participants interact with an expert human oper-
ator (known as “Wizard”) who is disguised as a
dialogue system. These Wizards replace one or
more parts of the dialogue system such as speech
recognition, natural language understanding, di-
alogue management, natural language generation
modules and so on. Real users interact differently
with humans and computers. While their expecta-
tions with human interlocutors are high and varied,
they are ready to adapt and “go easy” on comput-
ers during interaction (Pearson et al., 2006). So, in
a WoZ framework, the conversation between real
users and the Wizards (pretending to be dialogue
systems) are of an appropriate type to be used for
dialogue system design and not as complex as in
human-human conversation.

In order to provide a speedy response, most
WoZ systems are designed in such a way that re-
sponses are hard wired to buttons so that they can

be sent to the synthesizer at the touch of a button.
However, in order to handle unexpected situations,
most WoZ interfaces also have a free text interface
that allows the Wizard to type any text to be syn-
thesised by the synthesizer. Are free text interfaces
used only under unexpected situations? In this pa-
per, we analyse how free text interfaces are used
by Wizards in a pedestrian tourist navigation and
information dialogue and discuss how the results
of our analysis be used to inform future WoZ de-
signs. These dialogues were collected as a part of
SpaceBook EU FP7 project.

In Section 2, we present previous work in WoZ
interfaces and the domain of pedestrian navigation
and information. We then present our WoZ setup
and data collection in Section 3 and 4. In Section
5, we present our analysis of the corpus, issues and
suggestions in Sections 6 and 7.

2 Related work

Wizard-of-Oz (WoZ) frameworks have been used
since early 90s in order to collect human-computer
dialogue data to help design dialogue systems
(Fraser and Gilbert, 1991). WoZ systems have
been used extensively to collect data to learn di-
alogue management policies (Rieser and Lemon,
2011) and information presentation strategies
(Demberg et al., 2011).

Pedestrian navigation and information systems
is a domain of interest to many mobile phone
applications. Applications such as Siri, Google
Maps Navigation, or Sygic deal with the task of
navigation while TripAdvisor, Triposo, etc . focus
on the tourist information problem. Additionally,
several research prototypes have been built to gen-
erate navigation instructions (Bartie and Mack-
aness, 2006; Shroder et al., 2011) and to have con-
versations with tourists (Janarthanam et al., 2013).
WoZ experiments enable the collection of realis-
tic data to assist in the development and testing of
these systems.
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Figure 1: Wizard of Oz interface - Google Satellite Map and StreetView

3 WoZ setup

The wizard interface consisted a browser window
showing a Google Map and Street View with the
Tourists position. Google StreetView showed
the Tourist’s point of view (see Figure 1). The
Wizard was able to communicate information to
the Tourist in three different ways in the Wizard
Response Panel (see Figure 2):

Hot buttons: By clicking on one of several
buttons with commonly used phrases (e.g. “OK.
I’ll suggest a route for you”, “You want to cross
the road whenever you can”, “Would you like
further information about that?”). Buttons were
organised thematically in sections such as: con-
firmations, ways of asking the Tourist to repeat
what they had said, ways to indicate to the Tourist
that the Wizard was doing something and they
should wait (“Just a moment, please”, “I’m just
finding that out for you now” and “Apologies for
the delay”) and directions. The range of choices
available via the buttons (there were nine different
confirmations) was intended to allow the Wizard
to mimic the variability of human speech; they
were grouped to facilitate rapid identification and
selection.

Sequences: By generating text from a sequence
of drop-down menus, e.g. (where items in square
brackets are drop-down lists): “You want to take
the [count] [pathway] on your [direction]).

Free text: By typing free text into a text editor.

Pre-entered phrases for Hot Buttons were se-
lected following two previous Wizard of Oz exper-
iments where the Tourist and the Wizard commu-
nicated by voice; common expressions used dur-
ing these sessions were summarised and presented
on an initial evaluation interface which was evalu-
ated with 15 dyads. Results from that experiment
fed into the WoZ interface above.

At the bottom right of the screen, there was a
scrollable record of the Wizard’s output in case
the participant needed to confirm what had been
sent to the Tourist. Finally, there was a selection
of system comments the Wizard could make, for
example to note system problems such as prob-
lems hearing the Tourist. This information was
recorded by the system but not sent to the Tourist.
Additionally, screen capture software was used to
record all the on-screen interaction. As a back-up,
the lab was videoed on DV cassette using a tripod-
mounted camcorder.

Instructions to participants were developed to
encourage participants (i.e. playing the role of
Tourists) to solve problems without directing them
too much. e.g. “You’ve heard a story about a
statue of a dog that you think is nearby and would
like to take a photo of the dog and perhaps learn
a little more about the story.”, “You have arranged
to have lunch with a friend in a nearby pub. You
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Figure 2: Wizard of Oz interface - Wizard response panel

can’t remember the exact name but you are sure it
had the word “Bell” in the title.”

The Tourist was equipped with an Android mo-
bile phone (Samsung Galaxy Note) and headset.
The phone ran a custom-built app that sent live
GPS, satellite and accelerometer data back to the
WoZ system while receiving the Wizards text mes-
sages and converting them to speech. As a back-
up, and to ensure the reliability of the position-
ing data, a GPS logging application (My Tracks)
also recorded the data every two seconds on the
phone. Time-stamping within the files permits off-
line synchronisation with the speech data.

4 Data collection

Participants were enrolled using an events organ-
ising website called EventBrite1. Two participants
attended each experimental session and were as-
signed to one of two roles: the Tourist or the Wiz-
ard. At the end of the experiment each received
£10. Ten dyads (twenty people) completed the
experiment. They were aged between 19 and 26
(mean 22), and had lived in Edinburgh between
0.7 and 10 years (mean 2.9). 8 were male, and 12
female.

After participants had arrived at the lab, they
signed a consent form and provided demographic

1www.eventbrite.com

information (age, sex, and length of time in Ed-
inburgh). The task descriptions were handed out
and roles were assigned. The Wizard was given
supplementary information about some of the lo-
cations and Google Map print-outs, but was in-
structed to make up any answers to questions
asked by the Tourist if necessary.

After an initial equipment test and training,
the Tourist dialled a standard Edinburgh landline
number on the mobile phone which connected to a
Skype account and the experiment began. If the
call dropped, the Tourist would redial and con-
tinue. There was a basic set of tasks assigned to
the Tourist, but they were encouraged to expand
and adapt this and were free to ask any tourist or
navigation-based questions that they thought of on
the way.

The Tourist traversed Edinburgh on their own;
the Wizard and experimenter remained in a labo-
ratory. The Wizard used GPS information and dia-
logue with the Tourist to establish location. For the
Wizard, the Tourist’s view had to be reconstructed
using the display software available. These di-
alogue sessions ranged between 41:56 to 66:43
minutes. The average dialogue duration (accord-
ing to the transcriber) for the 10 dyads was 51min
46s.

Please note that for each run, a new pair of Wiz-
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ard and Tourist were used. Wizards were not re-
tained to do more than one run because we wanted
to collect data from a variety of human wizards in
order to study variations in how each wizard dealt
with the navigation task.

5 Corpus analysis

We analysed the corpus collected based on the
three types of response generation mechanisms:
hot buttons, sequences and free text, to under-
stand their relative utility. We wanted to explore
whether pre-configured text was used when avail-
able, or whether the user’s interaction with the
pre-configured and free text sections of the inter-
face were influenced by other considerations than
availability.

Analysis showed that buttons corresponding
to preset utterances were used only 33% (+/- 14)
of the time. Although wizards had the option of
constructing complex utterances using a sequence
of drop down lists, they only used such sequences
9% (+/- 9) of the time. 58% (+/-19) of Wizard
utterances were generated using the free text inter-
face. This may imply that the buttons did not offer
what the Wizards wanted to say; in which case, we
would anticipate that their self-created utterances
would be very different from those pre-configured.

Individual differences: Use of the button inter-
face varied between Wizards, with some using it
very rarely and others depending on it when it pro-
vided a feature they required. The highest was
82.7% while the lowest use of free text was 31.7%.
Table 1 shows that 6 out of 10 Wizards used the
free text interface more than 60% of the time. It
is likely that these differences were due to individ-
ual variations such as speed of typing and comfort
with using an array of buttons.

Usage of free text interface Wizard count
Below 30% 0
30-40% 3
40-50% 1
50-60% 0
60-70% 3
70-80% 1
80-90% 2

Table 1: Usage of free text interface

As an example of these individual differences,
one Wizard used the button-press interface only
once during the first navigation task (to ask “What
can you see at the moment?”), choosing to direct

the Tourist almost exclusively through use of the
free text interface. By contrast, of the twelve Wiz-
ard utterances in another session’s initial naviga-
tion task, only two were free text. It is interesting
to note, however, that the Tourist commented “I’ve
a feeling (the Wizard) is laughing at me right now.”

5.1 Hot button interface

We analysed how frequently each hot button in the
interface was used by Wizards. We also counted
how frequently the same text as the buttons was
generated using the free text interface. This will
show us if Wizards tend to type the same text that
can effectively be generated at the push of a hot
button. The following table shows the frequency
of each hot button used over the 10 dialogues that
we analysed.

There were forty buttons in total. Two initial
buttons intended to be used at the start of the ex-
periment or when the call was restarted after a
problem: “Okay, we are ready to go. Please pre-
tend to have just dialed Space Book and say hello.”
and “Hello, SpaceBook speaking.” (These were
used 29 times) and two intended for the end of
the call: “Thank you for using SpaceBook” and
“Goodbye” (10 times). Table 2 shows the fre-
quency of usage for other hot buttons.

Utterance type Frequency
Confirmation (e.g. Yes, Okay, Certainly) 168
Navigation (e.g. “Keep going straight ahead”) 114
Filler (e.g. “Just a moment please”) 60
Repeat request (e.g. “Sorry, could you repeat

that please?”) 34
Visual checks (“Can you see it yet?”/

“What can you see at the moment?”) 32
Offer of further information/ help 30
References (e.g. “According to Wikipedia”) 20
Negation (“No”, “No, that’s wrong”) 18
Failure (“I’m afraid I don’t know the

answer to that”) 8

Table 2: Usage of Hot Buttons

The above table presents a Zipfian curve with
some utterances such as “Okay”, “Keep going
straight ahead” having high frequency and some
utterances such as “I’m afraid I don’t know the an-
swer to that,” “I couldn’t understand that, sorry”
with extremely low frequency. Even the highest
frequency utterance, “Okay” was only used about
5 times per session on average. This does not
mean that the Wizard acknowledged the subject at
such low frequency but, as the analysis below in-
dicates, decided to acknowledge the user with free
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text-generated utterances.

5.2 Free text utterances
We analysed the free text utterances generated by
the Wizards. This analysis, we believe, could
show us how to build better Wizard interfaces for
collecting dialogue data for pedestrian navigation.
First, we counted the number of free text utter-
ances that duplicated Hot Button text. Then, we
analysed the other utterances generated using the
free text interface.

Table 3 presents the frequency of utterances that
were generated using the free text interface but
were the same as hot button text. The table shows
that even though there are hot buttons for utter-
ances such as “Yes”, “Sorry”, Wizards tended to
type them into the free text interface. In some
cases these words were followed by a more com-
plex utterance which the Wizard had chosen to de-
liver as a single statement (e.g. “Yes, that’s the
way to go.”, “no, you should turn around”), and
second, these utterances are short and could easily
be typed rather than searching for the correspond-
ing hot button. Also, Wizards sometimes used
alternative spellings for words such as “Okay”
which could be produced using a hot button. The
word “Ok” was used 15 times in 10 sessions.

Text Frequency
Yes 45
Sorry 21
No 21
Take the next left 4
No problem 3
Certainly 2
Thank you 1

Table 3: Usage of Free Text for utterances same as
Hot Buttons

In addition, Wizards use free text to generate
utterances that are paraphrases of hot button utter-
ances, such as:

• “Keep going”, “Just keep walking”, etc

• “Great”, “Excellent”, etc

• “One moment”, “Wait a second please”, etc

• “Of course”

• “Okay cool”

These analyses imply that free text is not ac-
cessed only in the last resort because the user can-
not find the hot button that says what they’d like

to say. Clearly, the interaction is more complex
and concerns both speed (the contrast of typing a
short utterance such as “Yes” compared with the
time needed to discover the correct button on a dis-
play and navigate to it with a mouse) and the user’s
imposition of their own identity on the conversa-
tion; where the hot button interface offered sev-
eral confirmatory utterances, users often used their
own (e.g. “Great, “Excellent”, “Cool”), utterances
which were, presumably, part of the way these
Wizards more normally interacted with peers.

In this section, we present the other types of
utterances Wizards generated using the free text
interface.

1) Check user’s location:
Wizards asked several free text questions to check
where the user was, given that the positioning
system on smartphones was not entirely accurate.
They framed most questions as yes/no check
questions and enriched them with situational cues
(e.g.“Is the Pear Tree on your right?”, “Have
you reached the Royal Mile yet?”, “Can you see
Nicolson Square?”, “Have you passed the primary
school on your left?”).

2) Informing user’s location:
Wizards sometimes informed users of their loca-
tion. e.g. “This is West Nicolson Street”.

3) Complex navigation instructions:
Using the free text interface, Wizards generated
a variety of complex navigation instructions that
were not covered by the hot buttons. These include
instructions where the subject was asked to carry
out two instructions in sequence (e.g. “Turn left,
and keep walking until you get to Chapel Street”),
orienting the user (e.g. “You want the road on your
right”, “Please go back in the direction you came
from”), signaling to the user that he/she was walk-
ing in the wrong direction (e.g. “You’re going the
wrong way”), a priori instructions to destination
(e.g. “To get there you will need to keep going
up the Royal Mile. Then turn left at the junction
between North and South Bridge. Walk up South
Bridge, and it will change to Nicolson Street. Sur-
geon’s Hall will be on the left hand side.”).

Some navigation instructions were complex be-
cause they were not general instructions but direct
responses to the Tourist’s question. One exam-
ple of this was by Dynamic Earth (dyad 07) when
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the Wizard told the Tourist to follow a footpath.
Tourist: “One of the footpaths banks to the right,
and the other goes straight forward. Which one?”,
the Wizard answered: “You want the one that is
straight forward.”

The navigation directions on hot buttons were
necessarily very general (e.g. Keep going straight
ahead/ Take the next left) and Wizards frequently
used the free text to enrich the directions and make
them more specific, e.g. (dyad 09) “Walk down
Crichton Street towards the Mosque.” In the ini-
tial navigation task, this Wizard used the free text
interface 7 times, and the navigation hot buttons
only 4 times. Each segment of free text enriched
the interaction by providing specific navigational
information, so where the Wizard could have se-
lected the hot button for “Keep going straight”,
instead she chose to add value to the interaction
through the use of place names and typed, “Con-
tinue straight onto West Richmond Street”.

A similar pattern can be seen in the interaction
in dyad 10 where the Wizard used the free text op-
tion to navigate the Tourist according to objects
in his environment. e.g. “Turn right at the traffic
lights” and “Walk straight down past the Bingo on
your left.”. Of the 22 Wizard utterances in the first
navigation task in the dyad, only 5 were hot but-
tons. 14 were navigation instructions, of which 3
were button-presses and one (“Walk straight on”)
paraphrased an existing button. The Tourist got
lost in this task, so there was also some checking
on his location.

These are not isolated examples. In total, over
the ten dyads, 308 utterances from the total 927
free text utterances were Wizards “enriching” their
navigation directions by adding contextual cues,
most commonly the name of the street or a land-
mark to help situate the Tourist. For example,
“You can reach it by turning right down Holyrood
Road at the junction.”, “Please head towards the
Mosque”.

Although 33% of overall free text utterances
were enriched navigation instructions, this over-
all pattern varied depending on the dyad, ranging
from dyad 03 where 62.5% were enriched instruc-
tions, to dyad 08, where only 8% were enriched.

These value-added uses of the free text suggest
that the addition of contextual cues is regarded as
important by the individuals acting as Wizards.
An improved WoZ interface might seek to support
such utterances.

4) Reassuring user:
Wizards presented information such as landmarks
users can see as they walk along to reassure
them that they are on the right track (e.g. “You
will pass Richmond Place on your left”, “You
will walk past the Canongate Kirk on your right
beforehand”).

5) Informing time/distance to destination:
Wizards presented how long it will take to reach
the destination to set the right expectation in the
user’s mind (e.g. “It will be about a two minute
walk”, “the gym is 200 metres along this road on
your right”).

6) Providing destination information:
Wizards provided information about the location
of destination in reference to the user (e.g. “And
Bonsai Bar Bistro will be on the left, just before
you reach The Pleasance”, “The Museum of
Edinburgh will be on the left”) or other landmarks
(e.g. “The Scottish Parliament is next to Our
Dynamic Earth”, “The entrance is on the other
side”). Note that this interaction, too, is normally
enriched by situational cues.

7) Informing destinations that match search
criteria:
Some tasks presented to subjects did not specify
the actual name of the destination. Hence when
they asked the Wizard for a matching destination,
Wizards used free text to suggest destinations
that match the search criteria (e.g. “There is
a restaurant called Bonsai Bistro”, “There are
three museums to visit. They are Museum of
Edinburgh, People’s Story Museum, and Museum
of Childhood”).

8) Check if destination reached and identified:
Wizards checked whether users had reached their
destination by asking them to confirm if they had
(e.g. “Have you reached it?”, “Have you found
the sports centre?”). The hot button ”Can you see
it yet?” covered this functionality, but once more,
free text allowed the user to increase situational
specificity by identifying the target.

9) Additional information about landmarks:
Wizards presented additional information about
landmarks such as its name (“the hill besides par-
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liament is in fact 2 hills, the rocky cliffs you can
see are called crags”, “behind that is arthurs seat”),
the year it was built/opened (e.g. “it was opened
in 1999”), what it functions as (e.g. “offices for a
newspaper publisher”).

In some cases such free text utterances were
produced in response to questions asked by
Tourists. For example, when the Tourist of dyad
05 passed the Fringe office, they asked, “Do you
know what dates the Fringe is on this year?”.
The Wizard used free text to answer the question.
Later in the same experiment, the Tourist identi-
fied Vodka Rev as a landmark (“Down past Vodka
Rev?”) and the Wizard responded with free text
about the landmark: “Vodka Rev does half price
food on Mondays.”.

10) Signalling connection problems:
Wizards informed users when they lost the user’s
GPS signal (e.g. “hold on 1 second, gps connec-
tion gone”) and to establish contact and check
user’s attention (e.g. “hello?”, “I can’t hear you at
the moment”).

Further, some Wizards used the free text to hu-
manise the person-to-person element of the inter-
action. They would chat to Tourists, make jokes
(“I cannot answer rhetorical questions, as I am
both a computer and aware they are not meant to
be answered.”) and in one case, invite the Tourist
out for a drink.

6 Issues with free text

As one can imagine, there are issues with free text
utterances generated by Wizards.

Spelling:
Several words used in free text utterances were
misspelled. e.g. “roundabaout”, “entrace”, “ple-
sae”, “toewards”, “You want ot cross the roD”)
etc. These ranged from 0 to 13 errors per session
with a mean of 3.6 (+/- 3.9) errors per session.
Adjacent words were sometimes joined together
(e.g. “atyour”, “upahead”, etc) and sometimes
incorrectly segmented with space (e.g. “collection
sof”, “hea ryou”, etc). Some entity names were
misspelled as well (e.g. “Critchon”, “Dyanmic
Earth”, “artthurs seat”, etc). Spelling errors can
reflect poorly when the utterances are synthesized
and the misspelled words mispronounced.

Syntax:
We also found a few syntactic errors in utterance
construction (e.g. “Continue going Chambers
street”). Similar to spelling errors, utterances with
improper syntax can sound weird to the Tourist
and could lead to confusion and misunderstanding
instructions.

Incorrect entity names:
Wizards did not always get street names correct,
e.g. in dyad 02, the Wizard directed the Tourist to
“Nicholas Square” and the Tourist needed to seek
clarification that he meant “Nicolson Square”.

Time and effort:
It takes time and can slow the interaction with the
user, leading to issues like interruptions and the
flow of the conversation being upset.

7 Suggestions

Based on the above analysis, we propose a list
of suggestions to build a better Wizard of Oz in-
terface for collecting dialogues concerning pedes-
trian navigation and exploration. The objective of
the WoZ system is to provide an effective inter-
face to Wizards to interact with Tourists while pre-
tending to be dialogue systems. One of the impor-
tant requirements is that Wizards should be able
to generate context appropriate utterances quickly
to make the dialogue appear more natural with-
out unnecessary lag between a user’s requests and
the system’s responses. Hot buttons are designed
so that the utterance can generated at the push of
a button. However as our data shows, Wizards
tended to use the free text interface about 60% of
the time.

While there are situations in which free text is
necessary, in general it risks slowing the interac-
tion and potentially confusing the Tourist when
words are mis-spelled or omitted. In addition,
supporting the Wizard more effectively with an
improved WoZ interface is likely to permit them
to spend more time supporting and informing
the Tourist. Free text utterances can lead to slow
system response and there is therefore a need to
find a compromise between the two. We have the
following suggestions:

1. More hot buttons:
Some utterances generated using the free text in-
terface could not be generated using the hot but-
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tons or the sequences. These include reassuring
users, informing them of the time/distance to des-
tination, informing them of search results, etc.
While free text is a useful interface to Wizards to
generate unforeseen utterances, more hot buttons
covering new functionality can be faster to use.

However, introducing additional hot buttons
would add complexity to the interface, which is
likely to have the undesireable effect of encourag-
ing users to avoid the cluttered display in favour if
the straightforward free text interface. One partial
solution is to ensure that buttons are organised and
grouped in ways that are intuitive for the Wizard.
This, and the optimum number of buttons for the
display, should be investigated experimentally.

2. Multi functional hot buttons:
Some free text utterances were complex versions
of simple utterances that were already covered by
hot buttons. For instance, utterances like “Keep
going up Nicolson Street” or “Keep walking until
you get to Chapel Street” can be seen as a version
of “Keep going straight ahead” but with some ap-
pended information (i.e. street name, landmark).

The interface could be designed so that hot
button utterances could be modified or appended
with more information. For example, a single
click the hot button might send the utterance to
the free text editor, allowing the Wizard to add
more information, whereas a double click would
send the utterance directly to the TTS.

3. Spell check, grammar check and auto cor-
rection:
To ensure that the speech synthesizer works as ef-
fectively as possible, the utterances typed in the
free text editor must be correctly spelled. One so-
lution to the frequent mis-spelling made by Wiz-
ards typing at speed is to automatically spell check
and correct text typed in the free text interface.

Ensuring that text is correct would reduce the
risk of the speech synthesizer mispronouncing
misspelt names and words. Similarly, a grammar
check would mean that the synthesised utterances
felt more natural.

Since there is the danger of an automatic spell
checker making mistakes, the spell check and cor-
rection should happen when the Wizard finishes
typing a word or utterance and the auto corrected
word or utterance be shown to the Wizard before
it is sent to the TTS.

4. Autocomplete:
Autocomplete is a feature that predicts the next
words the user intends to type based on those
already typed. It is currently used by search
engines such as Google to complete users’ search
queries based on their search history and profile.
A similar feature that can complete utterances
taking into account the user’s request, dialogue
history, and the spatial context could speed up the
response time of the Wizard.

5. Location aware WoZ interface:
The WoZ system could be “aware” of the user’s
surroundings. Such a solution might enable the
interface to have dynamically changing buttons,
so when the user is headed up Nicolson Street,
the “Keeping going” button could have Nicolson
Street on it. Information about entities around
the user can also be assigned to hot buttons dy-
namically. However, hot buttons with dynamically
changing labels and functionality could be cogni-
tively overloading to Wizards.

Of course, the addition of such functionality
to the WoZ interface must be carefully evaluated.
A dynamic interface may be harder to learn, and
increasing the number of buttons may, counter-
intuitively, mean that users are less likely to select
hot buttons because the effort to scan the array of
buttons is greater than the effort needed to type ut-
terances, particularly short ones, into a free text
box.

8 Conclusion

In this paper, we presented a Wizard of Oz system
that was used to collect dialogues in the domain of
pedestrian navigation and information. We anal-
ysed the corpus collected to identify how Wizards
preferred to interact with the pedestrian users and
why. We identified issues with free text interfaces
that was used by majority of Wizards and sug-
gested improvements towards future Wizard inter-
face design.
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Abstract

In this paper we describe a set of tech-
niques we found suitable for building
multi-modal search applications for au-
tomotive environments. As these ap-
plications often search across different
topical domains, such as maps, weather
or Wikipedia, we discuss the problem
of switching focus between different do-
mains. Also, we propose techniques use-
ful for minimizing the response time of the
search system in mobile environment. We
evaluate some of the proposed techniques
by means of usability tests with 10 novice
test subjects who drove a simulated lane
change test on a driving simulator. We re-
port results describing the induced driving
distraction and user acceptance.

1 Introduction

The task of designing mobile search user inter-
faces (UIs) that combine multiple application do-
mains (such as navigation, POI and web search)
is significantly harder than just placing all sin-
gle domain solutions adjacent to one another. We
propose and evaluate a set of UI techniques use-
ful for implementing such systems. The tech-
niques are exemplified using a prototype multi-
modal search assistant tailored for in-car use. The
prototype supports several application domains in-
cluding navigation and POI search, Wikipedia,
weather forecasts and car owner’s manual. Fi-
nally, we report usability evaluation results using
this prototype.

2 Related Work

Two examples of multi-modal search UIs for au-
tomotive are the Toyota Entune1 and the Honda

1http://www.toyota.com/entune/

Link2. Both infotainment systems integrate a
set of dedicated mobile applications including
a browser, navigation, music services, stocks,
weather or traffic information. Both use a tablet or
a smartphone to run the mobile applications which
brings the advantage of faster upgrades of the in-
car infotainment suite. Home screens of these sys-
tems consist of a matrix of square tiles that corre-
spond to individual applications.

The answers presented to the user should only
contain highly relevant information, e.g. present-
ing only points of interest that are near the cur-
rent location. This is called conversational maxim
of relevance (Paul, 1975). Many other lessons
learned by evaluating in-car infotainment systems
are discussed in (Green, 2013).

In recent years, personal assistant systems like
Siri (Aron, 2011), Google Now! (Google, 2013)
and the Dragon Mobile Assistant (Nuance, 2013)
started to penetrate the automotive environment.
Most of these applications are being enhanced
with driving modes to enable safer usage while
driving. Dragon Mobile Assistant can detect
whether the user is in a moving car and auto-
matically switches to “Driver Mode” that relies
on speech recognition and text-to-speech feed-
back. Siri recently added spoken presentation
of incoming text messages and voice mail, and
it also allows to dictate responses. Besides the
speech-activated assistant functionality, Google
Now! tries to exploit various context variables
(e.g. location history, user’s calendar, search his-
tory). Context is used for pro-active reminders that
pop-up in the right time and place. Speech recog-
nition of Google Now! has an interesting feature
that tries to act upon incomplete/interim recogni-
tion results; sometimes the first answer is however
not the right one which is later detected and the
answer is replaced when results are refined.

2http://owners.honda.com/hondalink/
nextgeneration

28



3 UI techniques to support search while
driving

Below we present selected techniques we found
useful while designing and testing prototype
search UIs for automotive.

3.1 Nearly stateless VUI

While driving and interacting with an application
UI, it often happens that the driver must interrupt
interaction with the system due to a sudden in-
crease of cognitive load associated with the pri-
mary task of driving. The interaction is either
postponed or even abandoned. The UI activity
may later be resumed but often the driver will
not remember the context where s/he left off. In
heavily state-based systems such as those based
on hierarchical menus, reconstruction of applica-
tion context in the driver’s mind may be costly and
associated with multiple glances at the display.

In order to minimize the need for memorizing
or reconstructing the application context, we ad-
vocate UIs that are as stateless as possible from
the user’s point of view. In the context of spoken
input, this means the UI should be able to process
all voice input regardless of its state.

This is important so that the driver does not need
to recall the application state before s/he utters a
request. For instance, being able to ask “Where
can we get a pizza” only after changing screen to
“POI search” can be problematic as the driver (1)
needs to change screens, (2) needs to remember
what the current screen is, and (3) may need to
look at the display to check the screen state. All
of these issues may increase driver distraction (its
haptic, visual and mental components).

3.2 Self-sufficient auditory channel

According to the subjective results of usability
tests described in Section 6 and according to ear-
lier work on automotive dictation (Macek et al.,
2013), many drivers were observed to rely primar-
ily on the audio-out channel to convey information
from the UI while driving and they also preferred
it to looking at a display. A similar observation
was made also for test drivers who listened to and
navigated news articles and short stories (Kunc et
al., 2014).

Two recommendations could be abstracted from
the above user tests. First, the UI should produce
verbose audio output that fully describes what
happens with the system (in cases when the driver

controls the UI while driving). This includes spo-
ken output as well as earcons indicating important
micro-states of the system such as “listening” or
“processing”. Second, the UI should enable the
user to easily replay what has been said by the
system, e.g. by pressing a button, to offset the se-
rial character of spoken output. These steps should
make it possible for selected applications to run in
a display-less mode while driving or at least mini-
mize the number of gazes at the display.

3.3 Distinguish domain transition types

By observing users accessing functions of mul-
tiple applications through a common UI, we ob-
served several characteristic transition types.

Hierarchical. The user navigates a menu tree,
often guided by GUI hints.

Within domain. Users often perform multiple
interactions within one application, such as per-
forming several Wikipedia queries, refining them
and browsing the retrieved results.

Application switching. Aware of the namings
of the applications supported by the system, users
often switch explicitly to a chosen domain before
uttering a domain-specific command.

Direct task invocation. Especially in case of UIs
having a unifying persona like Siri (Aron, 2011),
users do not view the system as a set of appli-
cations and instead directly request app-specific
functions, regardless of their past interaction.

Subdialog. The user requests functionality out
of the current application domain. The corre-
sponding application is invoked to handle the re-
quest and then the focus returns automatically to
the original domain. Examples include taking a
note or checking the weather forecast while in the
middle of another task.

Undo. A combined “undo” or “go back” fea-
ture accessible globally at a key press proved use-
ful during our usability testing to negate any un-
wanted actions accidentally triggered.

Figure 1 shows samples for the above transi-
tion types using an example multi-domain search
assistant further described in Section 4. Similar
lists of transition types ware described previously,
e.g. (Milward et al., 2006). Based on observing
human interactions with our prototype system, we
built a simple probabilistic model to control the
likelihood of the system taking each of the above
transition types, and used it to rescore the results
of the ASR and NLU systems.
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Figure 1: Transitions in a multi-domain system.

3.4 Early and incremental feedback about
the application state

Mobile search UIs often depend both on local and
remote resources such as ASR and NLU services
and various data providers. In mobile environ-
ments, availability and response times of remote
services may vary significantly. Most mobile UIs
address this problem by responding with a beep
and displaying a “processing” sign until the fi-
nal answer is rendered. We describe a UI tech-
nique that combines redundant local and remote
resources (ASR and NLU) to quickly come up
with a partial meaningful response that addresses
the user’s request. Chances are that the first re-
sponse based on partial understanding is wrong
and the following prompt must correct it.

Figure 2 shows a template definition for a sys-
tem prompt that starts playing once the system is
confident enough about the user’s intent being a
weather forecast question. The system provides
forecasts for the current location by default but
can switch to other locations if specified by the
user. Supposing the system is equipped with real-
time ASR and NLU that quickly determine the
high-level intent of the user, such as “weather fore-
cast”, the initial part of the prompt can start play-
ing almost immediately after the user has stopped
speaking. While a prefix of this prompt is play-
ing, more advanced ASR and NLU models de-
liver a finer-grained and more precise interpreta-
tion of the input, including any slot-value pairs
like “location=London”. Once this final interpre-
tation is known, the playback can be directed via
the shortest path to the identified variable prompt
segments like <location>. Further, the selec-
tion of prompt prefix to be played can be guided
by a current estimate of service delays to mini-
mize chances of potential pauses before speaking
prompt segments whose values are not yet known.

Figure 2: Sample incremental prompt graph. Seg-
ments are annotated with durations in round brack-
ets and min/max times before an unknown slot
value has to be spoken (ms).

4 Voice search assistant prototype

In this section we briefly present a voice search in-
terface that was developed by incrementaly imple-
menting the four UI techniques presented above.
While interim versions of this system were only
evaluated subjectively, formal evaluation results
are presented for the final version in Section 6.

The voice search assistant covers six applica-
tion domains shown in Figure 3. Navigation ser-
vices include spoken route guidance together with
unified destination entry by voice (addresses and
POIs). Some POIs are accompanied by user re-
views that can be read out as part of POI details.

Figure 3: Prototype home screen (apps as tiles).

Further, the user can search various knowledge
sources like Wikipedia, Wolfram Alpha and the
web. The retrieved results are pre-processed and
the first one is played back to the user with the
possibility of navigating the result list.

To simulate asynchronous events, the system
reads out Skype text messages. The driver can also
create location and time based reminders that pop
up during the journey.

Finally, the system supports full-text search
over the car owner’s manual. Relevant text pas-
sages are read out and displayed based on a prob-
lem description or question uttered by the driver.
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5 Usability testing setup and procedure

A low-fidelity driving simulator setup similar to
the one described in (Curin et al., 2011) was
used to conduct lane change tests using (Mattes,
2003). Tests were conducted with 10 novice sub-
jects and took approximately 1 hour and 20 min-
utes per participant. At the beginning and at the
end of the test, subjects filled in pre-test and post-
test questionnaires. Before the actual test, each
participant practised both driving and using the
prototype for up to 20 minutes. The evaluated
test consisted of four tasks: an initial undistracted
drive (used to adapt a custom LCT ideal path for
each participant), two distracted driving trips in
counter-balanced order, and a final undistracted
drive (used for evaluation). Each of the four drives
was performed at constant speed of 60km/h and
took about 3.5 minutes. During the distracted
driving tasks, the users were instructed verbally
to perform several search tasks using the proto-
type. During task 1, subjects had to set destina-
tion to “office”, then find a pharmacy along the
route, check the weather forecast and take a note
about the forecast conditions. Task 2 only dif-
fered slightly by having a different destination and
POI, and by the user searching Wikipedia instead
of asking about weather.

6 Usability testing results

Objective distraction was measured using mean
deviation (MDev) and standard deviation
(SDLP ) of the vehicle’s lateral position (Mattes,
2003). Two versions of both statistics were
obtained: overall (computed over the whole trip)
and using lane-keeping segments only. The graph
in Figure 4 shows averaged results for the final
undistracted drive and for the first and second
distracted driving tasks (reflecting the order of the
tasks, not their types). We observe that using the
search UI led to significant distraction during lane
change segments but not during lane keeping.
Also, the distraction results for the first trip show
higher variance which we attribute to the users
still adapting to the driving simulator and to
using the UI. The observed distraction levels are
comparable to our earlier results obtained for a
text dictation UI when used with a GUI display
(Curin et al., 2011).

Several observations came out of the subjec-
tive feedback collected using forms. The users re-
ported extensive use of the auditory channel (both
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Figure 4: Driving distraction while using a multi-
modal search UI.

in and out) only with occasional glimpses at the
screen (we however observed that objectively they
looked at the display more often than they reported
subjectively). Users also missed some informa-
tion in the voice output channel such as audio indi-
cation of route calculation progress (which could
take several seconds). Reading any text from the
screen was found difficult, and users requested that
playback be improved; see related follow-up study
(Kunc et al., 2014). Interestingly, multiple partic-
ipants requested voice commands that would du-
plicate buttons like “next” and “previous”, even in
cases where speech would be less efficient. This
may show a tendency to stick with a single modal-
ity as described by (Suhm et al., 2001). Addi-
tionally, the users requested better synchronization
of navigation announcements like “take exit 4 in
200 metres” with the output of other applications.
The baseline behaviour utilized in the test was
that high-priority navigation prompts interrupted
the output of other applications. Navigation, POI
search, simple note-taking and constrained search
domains like weather and Wikipedia were found
most useful (in this order). Open web search
and browsing an original car owner’s manual were
considered too distracting to use while driving.

7 Conclusion

We described several recipes for building spoken
search applications for automotive and exempli-
fied them on a prototype search UI. Early us-
ability testing results for the prototype were pre-
sented. Our future work focuses on improving the
introduced techniques and exploring alternative UI
paradigms (Macek et al., 2013).
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Abstract
In this paper we describe a method for
developing a virtual instructor for pedes-
trian navigation based on real interactions
between a human instructor and a human
pedestrian. A virtual instructor is an agent
capable of fulfilling the role of a human
instructor, and its goal is to assist a pedes-
trian in the accomplishment of different
tasks within the context of a real city.
The instructor decides what to say using
a generation by selection algorithm, based
on a corpus of real interactions generated
within the world of interest. The instructor
is able to react to different requests by the
pedestrian. It is also aware of the pedes-
trian position with a certain degree of un-
certainty, and it can use different city land-
marks to guide him.

1 Introduction and previous work

Virtual instructors are conversational agents that
help a user perform a task. These agents can be
useful for many purposes, such as language learn-
ing (Nunan, 2004), training in simulated envi-
ronments (Kim et al., 2009) and entertainment
(Dignum, 2012; Jan et al., 2009).

Navigation agents generate verbal route direc-
tions for users to go from point A to point B in
a given world. The wide variety of techniques to
accomplish this task, range from giving complete
route directions (all route information in a single
instruction), to full interactive dialogue systems
which give incremental instructions based on the
position of the pedestrian. Although it can recog-
nize pre-established written requests, the instruc-
tor presented in this work is not able to interpret
utterances from the pedestrian, leaving it unable to
generate a full dialogue. The instructor’s decisions
are based on the pedestrian actual task, his posi-
tion in the world, and the previous behavior from

different human instructors. In order to guide a
user while performing a task, an effective instruc-
tor must know how to describe what needs to be
done in a way that accounts for the nuances of
the virtual world and that is enough to engage the
trainee or gamer in the activity.

There are two main approaches toward automat-
ically producing instructions. One is the selection
approach, in which the task is to pick the appropri-
ate output from a corpus of possible outputs. The
other is the composition approach, in which the
output is dynamically assembled using some com-
position procedure, e.g. grammar rules.

The natural language generation algorithm used
in this work is a modified version of the generation
by selection method described in (Benotti and De-
nis, 2011).

The advantages of generation by selection are
many: it affords the use of complex and human-
like sentences, the system is not bound to use writ-
ten instructions (it may easily use recorded audio
clips, for example), and finally, no rule writing by
a dialogue expert or manual annotations is needed.
The disadvantage of generation by selection is that
the resulting dialogue may not be fully coherent
(Shawar and Atwell, 2003; Shawar and Atwell,
2005; Gandhe and Traum, 2007).

In previous work, the selection approach to
generation has been used in non task-oriented
conversational agents such as negotiating agents
(Gandhe and Traum, 2007), question answering
characters (Leuski et al., 2006) and virtual pa-
tients (Kenny et al., 2007). In the work pre-
sented in this paper, the conversational agent is
task-oriented.

In Section 2 we introduce the framework used
in the interaction between the navigation agent and
the human pedestrians. We discuss the creation of
the human interaction corpus and the method for
natural language generation in Section 3; And in
Section 4 we explain the evaluation methods and
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the expected results.

2 The GRUVE framework

One of the major problems in developing systems
that generate navigation instructions for pedestri-
ans is evaluating them with real users in the real
world. This evaluations are expensive, time con-
suming, and need to be carried out not just at the
end of the project but also during the development
cycle.

Consequently, there is a need for a common
platform to effectively compare the performances
of several verbal navigation systems developed by
different teams using a variety of techniques.

The GIVE challenge developed a 3D virtual in-
door environment for development and evaluation
of indoor pedestrian navigation instruction sys-
tems (Byron et al., 2007; Koller et al., 2007).
In this framework, users walk through a building
with rooms and corridors, and interact with the
world by pressing buttons. The user is guided by
a navigation system that generates route instruc-
tions.

The GRUVE framework presented in (Ja-
narthanam et al., 2012) is a web-based environ-
ment containing a simulated real world in which
users can simulate walking on the streets of real
cities whilst interacting with different navigation
systems. This system focus on providing a simu-
lated environment where people can look at land-
marks and navigate based on spatial and visual in-
structions provided to them. GRUVE also pro-
vides a embedded navigation agent, the Buddy
System, which can be used to test the framework.
Apart from the virtual environment in which they
are based an important difference between GIVE
and GRUVE is that, in GRUVE, there is a cer-
tain degree of uncertainty about the position of the
user.

Figure 1: Snapshot of the GRUVE web-client.

GRUVE presents navigation tasks in a game-
world overlaid on top of the simulated real world.
The main task consists of a treasure hunting simi-
lar to the one presented in GIVE. In our work, we
use a modified version of the original framework,
in which the main task has been replaced by a set
of navigation tasks.

The web-client (see Figure 1) includes an inter-
action panel that lets the user interact with his nav-
igation system. In addition to user location infor-
mation, users can also interact with the navigation
system using a fixed set or written utterances. The
interaction panel provided to the user consists of a
GUI panel with buttons and drop-lists which can
be used to construct and send requests to the sys-
tem in form of abstract semantic representations
(dialogue actions).

3 The virtual instructor

The virtual instructor is a natural language agent
that must help users reach a desired destination
within the virtual world. Our method for devel-
oping an instructor consists of two phases: an an-
notation phase and a selection phase. In Section
3.1 we describe the annotation phase. This is per-
formed only once, when the instructor is created,
and it consists of automatically generating a cor-
pus formed by associations between each instruc-
tion and the reaction to it. In Section 3.2 we de-
scribe how the utterance selection is performed ev-
ery time the virtual instructor generates an instruc-
tion.

3.1 Annotation

As described in (Benotti and Denis, 2011), the cor-
pus consists in recorded interactions between two
people in two different roles: the Direction Giver
(DG), who has knowledge of how to perform the
task, and creates the instructions, and the Direc-
tion Follower (DF), who travels through the envi-
ronment following those instructions.

The representation of the virtual world is given
by a graph of nodes, each one representing an in-
tersection between two streets in the city. GRUVE
provides a planner that can calculate the optimal
path from any starting point to a selected desti-
nation (this plan consists in the list of nodes the
user must travel to reach the desired destination).
As the DF user walks through the environment, he
cannot change the world that surrounds him. This
simplifies the automatic annotation process, and
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the logged atoms are:
• user position: latitude and longitude, indicat-

ing position relative to the world.
• user orientation: angle between 0-360, indi-

cating rotation of the point of view.
In order to define the reaction associated to each

utterance, it is enough to consider the position to
which the user arrives after an instruction has been
given, and before another one is requested. Nine
destinations within the city of Edinburgh were se-
lected to be the tasks to complete (the task is to
arrive to each destination, from a common starting
point, see Figure 2). Each pair of DG and DF had
to complete all tasks and record their progress.

Figure 2: The 9 selected tasks .

For the creation of the corpus, a slightly mod-
ified version of the GRUVE wizards-desk was
used. This tool is connected to the GRUVE web-
client, and allows a human user to act as DF, gen-
erating instructions to assist the user in the com-
pletion of the task and monitoring his progression.
Each instruction generated by a DG was numbered
in order, in relation to each task. For example: if
the fifth instruction given by the third DG, while
performing the second task, was ”Go forward and
cross the square”, then that instruction was num-
bered as follows:

5.3.2− ”Go forward and cross the square”.

This notation was included to maintain the gener-
ation order between instructions (as the tasks were
given in an arbitrary specific order for each DG).
With last-generated, we refer to the instructions
that were generated in the last 3 runs of each DG.
This notion is needed to evaluate the effect of the
increasing knowledge of the city (this metric is ex-
plained in Section 4).

As discussed in (Benotti and Denis, 2011) mis-
interpreted instructions and corrections result in

clearly inappropriate instruction-reaction associa-
tions. Since we want to avoid any manual anno-
tation, but we also want to minimize the quantity
of errors inside the corpus, we decided to create
a first corpus in which the same person portraits
the roles of DG and DF. This allows us to elim-
inate the ambiguity of the instruction interpreta-
tion on the DF side, and eliminates correction in-
structions (instructions that are of no use for guid-
ance, but were made to correct a previous error
from the DG, or a wrong action from the DF).
Later on, each instruction in this corpus was per-
formed upon the virtual world by various others
users, their reactions compared to the original re-
action, and scored. For each task, only the instruc-
tions whose score exceeded an acceptance thresh-
old remained in the final corpus.

3.2 Instruction selection

The instruction selection algorithm, displayed in
Algorithm 1 consists in finding in the corpus the
set of candidate utterances C for the current task
plan P, which is the sequence of actions that needs
to be executed in the current state of the virtual
world in order to complete the task. We use the
planner included in GRUVE to create P. We de-
fine:

C = {U ∈ Corpus | P starts with U.Reaction}

In other words, an utterance U belongs to C if the
first action of the current plan P exactly matches
the reaction associated to the utterance U. When-
ever the plan P changes, as a result of the actions
of the DF, we call the selection algorithm in order
to regenerate the set of candidate utterances C.

Algorithm 1 Selection Algorithm
C ← ∅
action← nextAction(currentObjective)
for all Utterance U ∈ Corpus do

if action = U.Reaction then
C ← C ∪ U

end if
end for

All the utterances that pass this test are consid-
ered paraphrases and hence suitable in the current
context. Given a set of candidate paraphrases, one
has to consider two cases: the most frequent case
when there are several candidates and the possible
case when there is no candidate.
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• No candidate available: If no instruction is
selected because the current plan cannot be
matched with any existing reaction, a default,
neutral, instruction ”go” is uttered.
• Multiple candidates available: When multi-

ple paraphrases are available, the agent must
select one to transmit to the user. In this case,
the algorithm selects one from the set of the
last-generated instructions for the task (see
Section 3.1).

4 Evaluation and expected results

Is this section we present the metrics and evalua-
tion process that will be performed to test the vir-
tual instructor presented in Section 3, which was
generated using the dialogue model algorithm in-
troduced in Section 3.2.

4.1 Objective metrics

The objective metrics are summarized below:
• Task success: successful runs.
• Canceled: runs not finished.
• Lost: runs finished but failed.
• Time (sec): average for successful runs.
• Utterances: average per successful run.
With this metrics, we will compare 3 systems:

agents A, B and C.
Agent A is the GRUVE buddy system, which

is provider by the GRUVE Challenge organizers
as a baseline. Agent B consists of our virtual in-
structor, configured to select a random instruction
when presented with multiple candidates (see Sec-
tion 3.1). Agent C is also our virtual instructor, but
when presented with several candidates, C selects
a candidate who is also part of the last-generated
set. As each task was completed in different or-
der by each DG when the corpus was created, it
is expected that in every set of candidates, the
most late-generated instructions were created with
greater knowledge of the city.

4.2 Subjective metrics

The subjective measures will be obtained from re-
sponses to a questionnaire given to each user at the
end of the evaluation, based partially on the GIVE-
2 Challenge questionnaire (Koller et al., 2010). It
ask users to rate different statements about the sys-
tem using a 0 to 10 scale.

The questionnaire will include 19 subjective
metrics presented below:

Q1: The system used words and phrases that
were easy to understand.
Q2: I had to re-read instructions to understand
what I needed to do.
Q3: The system gave me useful feedback about my
progress.
Q4: I was confused about what to do next.
Q5: I was confused about which direction to go
in.
Q6: I had no difficulty with identifying the objects
the system described for me.
Q7: The system gave me a lot of unnecessary
Information.
Q8: The system gave me too much information all
at once.
Q9: The system immediately offered help when I
was in trouble.
Q10: The system sent instructions too late.
Q11: The systems instructions were delivered too
early.
Q12: The systems instructions were clearly
worded.
Q13: The systems instructions sounded robotic.
Q14: The systems instructions were repetitive.
Q15: I lost track of time while solving the overall
task.
Q16: I enjoyed solving the overall task.
Q17: Interacting with the system was really
annoying.
Q18: The system was very friendly.
Q19: I felt I could trust the systems instructions.

Metrics Q1 to Q12 assess the effectiveness and
reliability of instructions, while metrics Q13 to
Q19 are intended to assess the naturalness of the
instructions, as well as the immersion and engage-
ment of the interaction.

4.3 Expected results
Based on the results obtained by (Benotti and De-
nis, 2011) in the GIVE-2 Challenge, we expect a
good rate of successful runs for the agent. Further-
more, the most interesting part of the evaluation
resides in the comparison between agents B and C.
We expect that the different selection methods of
this agents, when presented with multiple instruc-
tion candidates, can provide information about the
form in which the level of knowledge of the vir-
tual world or environment modifies the capacity
of a Direction Giver to create correct, and useful,
instructions.
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Abstract

In this paper we describe how we mine in-
teractions between a human guide and a
human visitor to build a virtual guide. A
virtual guide is an agent capable of fulfill-
ing the role of a human guide. Its goal is
to guide visitors to each booth of a virtual
fair and to provide information about the
company or organization through interac-
tive objects located at the fair.

The guide decides what to say, using a
graph search algorithm, and decides how
to say using generation by selection based
on contextual features. The guide decides
where to speak at the virtual fair by creat-
ing clusters using a data classification al-
gorithm to learn in what positions the hu-
man guide decided to talk.

1 Introduction and previous work

Fairs are spaces where companies that offer simi-
lar products and services meet to promote them. A
virtual fair emulates a real fair and can be available
before the real fair happens in order to promote it
to its potential visitors.

The virtual fair used in this work is a tourism
fair that took place in Mexico, where visitors could
find in each company’s booth interactive video and
links to tourist companies’ websites promoting
particular products. The goal of the virtual guide
is to walk the user through the virtual fair, provid-
ing information about the companies’ booths and
inviting them to click on interactive objects to ob-
tain more information.

In (Jan et al., 2009) the authors describe a vir-
tual guide used to promote an island in the online
game Second Life whose goal was to provide in-
formation to US army veterans. Our approach dif-
fers to that of (Jan et al., 2009) in that the virtual
guide learns where to speak and how to realize

its contributions from an automatically annotated
corpus, rather than by using manually designed
rules. However, our guide is not able to interpret
utterances from the visitor, its decisions are only
based on the visitor behavior. Natural language
generation is achieved by adapting the generation
by selection method described in (Benotti and De-
nis, 2011a; Benotti and Denis, 2011b).

The generation by selection method affords the
use of complex and human-like sentences, and
it does not need rule writing by a dialogue ex-
pert or manual annotations, among other of their
many advantages. The disadvantage of corpus
based generation is that the resulting dialogue may
not be fully coherent. Shawar and Atwell (2003;
2005) present a method for learning pattern match-
ing rules from corpora in order to obtain the
dialogue manager for a chatbot. Gandhe and
Traum (2007a; 2007b) investigate several dia-
logue models for negotiating virtual agents that are
trained on an unannotated human-human corpus.
Both approaches report that the dialogues obtained
by these methods are still to be improved because
the lack of dialogue history management results
in incoherence. Since in task-based systems, the
dialogue history is restricted by the structure of
the task, the absence of dialogue history manage-
ment is alleviated by tracking the current state of
the task.

In Section 2 we introduce the corpus used by
this work. We discuss the clustering method used
on the corpus in Section 3; the clustering is used
to decide where to speak. After that, we describe
in Section 4 the mechanisms for instruction gener-
ation and graph search used to guide the visitors.
Later, in Section 5 we show the results obtained
in the evaluation process and compare our sys-
tem’s performance with other virtual instructors.
Finally, in Section 6 we elaborate a conclusion
about the virtual guide performance and capabili-
ties, as well as discuss the possible improvements.
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2 Virtual guide human-human corpus

We collected a corpus using a human guide in a
wizard of Oz setup (Kelley, 1983). The corpus is
comprised by 5 correct sessions in total performed
by the same virtual tour guide, and according to
the desired behavior and actions as specified for
both participants. We recorded 2 hours and 2 min-
utes of virtual fair guided visits which produced
a total of 136 utterances, having employed 18.02
words and 89.29 characters in average per utter-
ance. 9 different interactive objects were clicked
located in 4 different booths in average per ses-
sion. In Figure 1 we show an aerial view of the vir-
tual fair and the occurrence of utterances, marked
in blue.

Figure 1: Map of registered utterances in corpus.
A higher color intensity denotes a higher utterance
density in the area.

3 Behavior-based utterance clustering

The generation by selection method that we use in
this work is based on contextual features, in partic-
ular it is based on the position of the visitor inside
the virtual fair and the actions that are affordable
from that region in the fair. Deciding whether two
positions in the fair have the same affordances, or,
as we call it, fall into the same region is critical to
select appropriate utterances from the corpus de-
pending on the guide’s location and task progress.

The discretization employed in (Benotti and
Denis, 2011a) was geometrical discretization, di-

viding the world in regions based on the area vis-
ible to the guide. Instead of doing a geometri-
cal discretization our virtual fair discretization was
behavior-oriented which means that regions are
delimited by clustering utterances that were ut-
tered in a close position from each other. In the
corpus utterances tend to cluster around decision
points, locations there is more than one affordable
and salient action available to the user and when
the help and direction of the guide is required.

Geometrical region identification based on vis-
ibility normally requires a larger corpus in order
to get a correct utterance generation, because the
chance of having a region without any utterance
occurrence inside is higher. In such discretiza-
tion, different regions may contain a very differ-
ent number of utterances while using behavior-
oriented discretization results in regions with a
similar number of utterances each. That is why
the behavior-oriented discretization is an advan-
tage for our virtual guide, since our corpus is con-
siderably smaller to that used in (Benotti and De-
nis, 2011a).

We ran a modified version of the k-means clus-
tering algorithm (Pakhira, 2009) that avoids empty
clusters over our corpus to group instructions. As
paraphrase instructions, while performing a task,
occur in a same decision point, then we wanted
close instructions to be in the same cluster, and
therefore our criteria of “similarity” between them
was euclidean distance. Ideally, different decision
points should be in different clusters to guarantee
selected utterances are appropriate in every situa-
tion.

Let us visualize virtual fair as a directed graph
(V,E) where V = regions, and if a, b ∈ V
then (a, b) ∈ E if and only if there is at least
one utterance in the corpus whose immediate re-
action was moving from region a to the region b.
If we choose a low number of clusters the k-means
clustering algorithm would cluster instructions of
different nature, and conversely a too high value
would make the virtual fair disconnected. Then, to
obtain an optimal clustering -and therefore an op-
timal discretization- we maximize the k parameter
such that the virtual fair’s graph is still connected.

Discretization is finally obtained by matching
every position (x, y) in the environment to the
nearest cluster’s centroid. We show in Figure 2 the
virtual fair discretized in k = 22 regions, as that
number was the maximum number of clusters we
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could reach without breaking the graph connectiv-
ity. Regions are delimited by lines and centroids
are represented by white squares.

Figure 2: Virtual fair divided in k = 22 regions

4 The virtual guide

The virtual guide must direct visitors through the
fair to interactive objects in order to complete its
promotion duty in each visit session. We show in
Figure 3 a situation in which a visitor is near an
interactive object and the virtual guide encourages
him/her to click it generating an utterance whose
translation is “If you click on the green cube you
will access Lawson’s website where you can learn
more about them and the communication services
they offer”.

We can see the use of a referring expression, a
negative politeness strategy (Brown and Levinson,
1987) to suggest an action but not impose it while
some information about the Lawson firm is given.

In subsection 4.1 we discuss about the corpus
automatic annotation. Then we describe how ut-
terances are selected in subsection 4.2.

4.1 Corpus annotation

Our annotation process was simpler and more
straightforward than (Benotti and Denis, 2011a),
where artificial intelligence planning is used to
normalize reactions, mainly due to the fact that
users can not change the virtual fair state during
their visit, they can only change their own posi-

Figure 3: The virtual guide took the visitor to an
interactive object and encourages him/her to ma-
nipulate it

tion and visibility area (defined by the orientation
in the virtual fair) and manipulate interactive ob-
jects.

In a virtual fair visit, the set of user’s relevant
actions are:
• Move from one region to another
• Change orientation to left or right
• Click on an interactive object
Consequently, the set of atoms representing a

virtual fair’s state was simplified to
• user-region(region)
• user-orientation(x,y,z,w) 1

• clicked(anInteractiveObject)
In short, to do automatic annotation on the vir-

tual guide’s corpus, it was sufficient to observe the
subsequent action to each utterance by looking for
a change on any of the atoms shown above, and
annotating and associating the corresponding reac-
tion to the utterance and the valid atoms set when
it was said.

4.2 Selecting what to say
The virtual guide’s goal is to make the visitor visit
a number of given objectives, namely a set of
stands and interactive objects. Using the virtual
fairs discretization and taking the directed graph
representation we presented in Section 3, the vir-
tual guide uses the A* algorithm to obtain a path,
that is a sequence of actions, from its current po-
sition to the region where the next objective is lo-
cated. In case the visitor got lost or simply took
an alternative path, the virtual guide recalculates
the shortest path and proceeds to guide the visitor
through it.

1In quaternion representation
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Clearly, in order to do this calculation it is criti-
cal that every objective is reachable from any node
in the graph, so choosing a k parameter in the dis-
cretization process must be done taking care of
that.

The virtual guide gives the visitor a new instruc-
tion depending on next actions to perform using
the selection algorithm taken from (Benotti and
Denis, 2011a), shown in Algorithm 1. The al-
gorithm obtains set of utterances C, all of which
have a reaction that corresponds to the sequence
of actions that the virtual guide wants the visitor
to perform next.

Algorithm 1 Virtual guide’s selection algorithm
C ← ∅
action← nextAction(currentObjective)
for all Utterance U ∈ Corpus do

if action ≈ U.Reaction then
C ← C ∪ U

end if
end for

5 Evaluation results

In the evaluation process 11 evaluators partici-
pated, completing the proposed visit to the virtual
fair, each manipulating 9 interactive objects. Eval-
uators were also asked to complete a questionnaire
after the tour, in which we wanted to obtain several
subjective metrics. We were particularly interested
in the questions

• S1: I had difficulties identifying the objects
that the system described for me

• S2: The Utterances sounded robotic

• S3: The system was repetitive

where we previously supposed the virtual guide
would have better results than other virtual instruc-
tors, if we consider the results showed in (Benotti
and Denis, 2011a).

We compared our virtual guide results with the
two best symbolic systems built for another vir-
tual environment, the GIVE-2 Challenge. Those
systems were NA from INRIA and SAAR from
University of Saarland (see (Koller et al., 2010)).
Furthermore, we checked if the virtual guide re-
sults were similar to another virtual instructor, also
built for GIVE-2, called OUR, in which generation

by selection was applied to make natural language
generation possible.

In Table 1 we show the results for each virtual
instructor in the three categories we are interested.
We can see that the virtual guide obtained signif-
icantly better results than the SAAR and NA and
in questions S1, S2 and S3, as we had supposed.
All three questions range from 1 (one) to 9 (nine),
the lower the number the better the system (since
questions are negative).

Table 1: Results comparison between virtual guide
and three GIVE-2 systems

Question NA SAAR OUR VP
S1 4.1 4 3 1.81
S2 5.2 4.75 3.6 1.82
S3 6.55 6.3 5.4 2

6 Conclusions and future work

In this paper we described the construction of a
virtual guide for a virtual fair with the purpose of
guiding visitors through the stands and to interac-
tive objects located inside the fair. Inmersive vir-
tual fairs and expositions constitute a promising
way to promote such events.

On our evaluation, the virtual guide had com-
parable results than the virtual instructor GIVE-2
implemented using generation by selection, using
a much smaller corpus. Our guide got better re-
sults that the two best performing symbolic sys-
tems. These results are preliminary, but also en-
couraging.

A possible extension of this work could be that
virtual guide can continue to improve its behavior
by learning online when input from a human guide
of the fair is available. If more corpus is available
in this way the virtual guide could discard those
utterances that do not lead most visitors to perform
the intended reaction.

As a result of this work we conclude that vir-
tual guide met the basic functions of navigation
and natural language generation that we expected
and that the resulting prototype is ready to be
deployed at the virtualization of events website
http://www.inixiavf.com/.
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Abstract

This paper briefly sketches new work-in-
progress (i) developing task-based scenar-
ios where human-robot teams collabora-
tively explore real-world environments in
which the robot is immersed but the hu-
mans are not, (ii) extracting and construct-
ing “multi-modal interval corpora” from
dialog, video, and LIDAR messages that
were recorded in ROS bagfiles during task
sessions, and (iii) testing automated meth-
ods to identify, track, and align co-referent
content both within and across modalities
in these interval corpora. The pre-pilot
study and its corpora provide a unique,
empirical starting point for our longer-
term research objective: characterizing the
balance of explicitly shared and tacitly as-
sumed information exchanged during ef-
fective teamwork.

1 Overview

Robots that are able to move into areas where peo-
ple cannot during emergencies and collaboratively
explore these environments by teaming with hu-
mans, have tremendous potential to impact search
and rescue operations. For human-robot teams
to conduct such shared missions, humans need to
trust that they will be kept apprised, at a miniu-

Figure 1: Outside View: Video Image & LIDAR.

mum, of where the robot is and what it is sensing,
as it moves about without them present.

To begin documenting the communication chal-
lenges humans face in taking a robot’s perspective,
we conducted a pre-pilot study1 to record, iden-
tify and track the dialog, video, and LIDAR in-
formation that is explicitly shared by, or indirectly
available to, members of human-robot teams when
conducting collaborative tasks.

1.1 Approach

We enlisted colleagues to be the commander (C) or
the human (R) controlling a mobile physical robot
in such tasks. Neither could see the robot. Only
R could “see for” the robot, via its onboard video
camera and LIDAR. C and R communicated by
text chat on their computers, as in this example,

R 41: I can see in the entrance.
C 42: Enter and scan the first room.

R 44: I see a door to the right and a door to the left.
C 45: Scan next open room on left.

Utterances R 41 & C 42 occur when the robot is
outdoors (Fig. 1) and R 44 & C 45 occur after it
moves indoors (Fig. 2). Although our approach re-
sembles a Wizard and Oz paradigm (Riek, 2012),

1Statisticians say pre-pilots are for “kicking the tires,”
early-stage tests of scenarios, equipment, and data collection.

Figure 2: Inside View: Video Image & LIDAR.
Brightness and contrast of video image increased
for print publication.
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with C as User and R as Wizard controlling the
robot, there is no intent for R to deceive C.

In these dialog snippets, notice that the doors
mentioned in R 44 are not visible in the image
of that utterance’s time interval and, even if they
had been visible, their referents were context-
dependent and ambiguous. How are the robot and
human to refer to the same door? This challenge
entails resolving several types of co-reference (lin-
guistic, are they talking about the same door? vi-
sual, are they looking at the door? navigational, is
one backing into a door no longer in view but pre-
viosuly stored in its map?) Successful communi-
cation on human-robot teams, where humans send
messages to direct robot movements and receive
robot-processed messages as the robot navigates,
entails effective identification of named referents
(such as doors), both within and across available
modalities during exploratory tasks. The research
question is, how might the identification and align-
ment of entities using combinations of (i) NLP
on dialog, (ii) image processing on the video and
LIDAR stream, with (iii) robot position, motion,
and orientation coordinates, support more effec-
tive human-robot missions?

We conducted the pre-pilot study with ten trial
sessions to collect multi-modal data from C-R and
R-only scenarios (Table 1). Each session involved
a single participant playing the role of R with con-
trol over the physical robot, or two participants,
one person playing R and one playing C.

Team R’s Task
R only Rotate in place and describe surroundings.
R only Move along road, describe surroundings.
C, R Follow C’s guidance in navigating build-

ing’s perimeter, describe surroundings.
C, R Follow C’s guidance in searching buildings

for specified objects.

Table 1: Pre-pilot Scenarios.

Participants sat indoors and could not see the robot
outside, roughly 30 meters away. In each session,
R was instructed to act as though he or she were
situated in the robot’s position and to obey C. R
was to consider the robot’s actions as R’s own,
and to consider available video and LIDAR point
cloud feeds as R’s own perceptions.

1.2 Equipment
All participants worked from their own comput-
ers. Each was instructed, for a given scenario, to
be either C or R and to communicate by text only.

On their screen they saw a dedicated dialog (chat)
window in a Linux terminal. For sessions with
both C and R, the same dialog content (the ongo-
ing sequence of typed-in utterances) appeared in
the dialog window on each of their screens.

The physical robot ran under the Robot Operat-
ing System (ROS) (Quigley et al., 2009), equipped
with a video camera, laser sensors, magnetome-
ter, GPS unit, and rotary encoders. R could “see
for the robot” via two ROS rviz windows with live
feeds for video from the robot’s camera and con-
structed 3D point cloud frames.2 R had access to
rotate and zoom functions to alter the screen dis-
play of the point cloud. C saw only a static bird’s-
eye-view map of the area. R remotely controlled
over a network connection the robot’s four wheels
and its motion, using the left joystick of an X-Box
controller.

1.3 Collection

During each session, all data from the robot’s sen-
sors and dialog window was recorded via the ros-
bag tool and stored in a single bagfile.3 A bagfile
contains typed messages. Each message contains
a timestamp (specified at nanosecond granularity)
and values for that message type’s attributes. Mes-
sage types geometry msgs/PoseStamped, for ex-
ample, contain a time stamp, a three-dimensional
location vector and a four-dimensional orientation
vector that indicates an estimate of the robot’s lo-
cation and the direction in which it is facing. The
robot’s rotary encoders generate these messages
as the robot moves. The primary bagfile message
types most relevant to our initial analyses4 were:

1) instant messenger/StringStamped
that included speaker id, text utterances

2) sensor msgs/PointCloud2
that included LIDAR data

3) sensor msgs/CompressedImage
with compressed, rectified video images

4) sensor msgs/GPS, with robot coordinates
Message types are packaged and published at dif-
ferent rates: some are published automatically at
regular intervals (e.g., image frames), while oth-
ers depend on R, C, or robot activity (e.g., dialog
utterances). And the specific rate of publication
for some message types can be limited at times by
network bandwidth constraints (e.g. LIDAR data).
Summary statistics for our initial pre-pilot collec-

2LIDAR measures distance from robot by illuminating
targets with robot lasers and generates point cloud messages.

3http://wiki.ros.org/rosbag
4We omit here details of ROS topics, transformation mes-

sages, and other sensor data collected in the pre-pilot.
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tion consisting of ten task sessions conducted over
two days, and that together spanned roughly five
hours in real-time, are presented in Table 2.

#bagfile msgs 15, 131K #dialog utts 434
min per sn 140, 848 min per sn 15
max per sn 3, 030K max per sn 116
#tokens 3, 750 #image msgs 10, 650
min per sn 200 min per sn 417
max per sn 793 max per sn 1, 894
#unique words 568 #LIDAR msgs 8, 422
min per sn 84 min per sn 215
max per sn 176 max per sn 2, 250

Table 2: Collection Statistics (sn = session).

2 From Collection to Interval Corpora

After collecting millions of messages in the pre-
pilot with content in different modalities, the im-
mediate research challenge has been identifying
the time interval that covers the messages directly
related to the content in each utterance.

We extracted each utterance message u and its
corresponding time stamp t. For a given u, we ex-
tracted the five image, five point cloud, and five
GPS messages immediately preceding and the five
of each immediately following u, based on mes-
sage time-stamps, for a total of thirty sensor mes-
sages per utterance. These message types were
published independent of the robot’s movement,
approximately once per second. In the second
phase, we assigned the earliest and latest time
stamp from the first-phase messages to delimit an
interval [ts, te] and conducted another extraction
round from the bagfile, this time pulling out all
messages with time stamps in that interval as pub-
lished by the rotary encoders, compass, and iner-
tial measurement unit, only when the robot moved.
The messages from both phases constitute a ten-
second interval corpus for u.

These interval corpora serve as a first approx-
imation at segmenting the massive stream pub-
lished at nanosecond-level into units pertaining to
commander-robot dialog during the task at hand.
With manual inspection, we found that many
automatically-constructed intervals do track rele-
vant changes in the robot’s location. For exam-
ple, the latest interval in a task’s time sequence
that was constructed with the robot being outside a
building is distinct from the first interval that cov-
ers when the robot moves inside the building.5

5This appears likely due to the paced descriptions in R’s
utterances. Another pre-pilot is needed to test this hypothesis.

3 Corpora Language Processing

Each utterance collected from the sessions was
tokenized, parsed, and semantically interpreted
using SLURP (Brooks et al., 2012), a well-
tested NLP front-end component of a human-robot
system.6 The progression in SLURP’s analysis
pipeline for utterance C 45 is shown in Figure 3.

SLURP extracts a parse tree (top-left), identifies
a sub-tree that constitutes a verb-argument struc-
ture, and enumerates possibly matching sense-
specific verb frames from VerbNet (Schuler, 2005)
(bottom-left). VerbNet provides a syntactic to se-
mantic role mapping for each frame (top-right).
SLURP selects the best mapping and generates a
compact semantic representation (bottom-right).7

In this example, the correct sense of “scan” is se-
lected (investigate-35.4) along with a frame that
matches the syntactic parse. Overall, half the com-
mands run through SLURP generated a semantic
interpretation. Of the other half, roughly one quar-
ter failed or had errors at parsing and the other
quarter at the argument matching stage.

Figure 3: Analyses of Scan next open room on left.

Our next step is to augment SLURP’s lexicon
and retrain a parser for new vocabulary so that we
can directly map semantic structures of the pre-
pilot corpora into ResearchCyc8, an extensive on-
tology, for cross-reference to other events and ob-
jects, already stored and possibly originated as vi-
sual input. Following McFate (2010), we will test

6https://github.com/PennNLP/SLURP.
7Verbnet associates each frame with a conjunction of

boolean semantic predicates that specify how and when event
participants interact, for an event variable (not shown).

8ResearchCyc and CycL are trademarks of Cycorp, Inc.
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Figure 4: Outside View: Image, Zones, Overlay

the mapping of matched VerbNet frames to Re-
searchCyc’s semantic predicates to assess its lexi-
cal coverage for our corpora.

4 Image Processing

Interval corpus images were labelled by a neu-
ral network trained for visual scene classifica-
tion (Munoz, 2013) of nine material classes: dirt,
foliage, grass, road, sidewalk, sky, wall, wood, and
ground cover (organic debris). Figures 4 and 5
show the images from Figures 1 and 2 with two
additional versions: one with colored zones for
system-recognized class boundaries and another
with colored zones as trasparent overlays on the
original. The classes differentiate terrain types
that work well with route-finding techniques that
leverage them in selecting traversible paths. As the
robot systems are enhanced with more sophisti-
cated path planning software, that knowledge may
be combined with recognized zones to send team
members messages about navigation problems as
the robot explores where they cannot go.

Accuracy is limited at the single image level:
the actual grass in Figure 4 is mostly mis-classified
as dirt (blue) along with some correctly identified
grass (green), while the floor in Figure 5 is mis-
classified as road, although much of what shows
through the window is correctly classified as fo-
liage. We are experimenting with automatically
assigning natural language (NL) labels to a range
of objects and textures recognized in images from
other larger datasets. We can retrieve labeled im-
ages stored in ResearchCyc via NL query con-
verted into CycL, allowing a commander to, for
example, ask questions about objects and regions
using terms related to but not necessarily equal to
the original recognition system-provided labels.

5 Related Work

We are aware of no other multi-modal corpora
obtained from human-robot teams conducting ex-
ploratory missions with collected dialog, video
and other sensor data. Corpora with a robot

Figure 5: Inside View: Image, Zones, Overlay.
Brightness and contrast of video image and over-
lay increased for print publication.

recording similar data modalities do exist (Green
et al., 2006; Wienke et al., 2012; Maas et al., 2006)
but for fundamentally different tasks. Tellex et al.
(2011) and Matuszek et al. (2012) pair commands
with formal plans without dialog and Zender et al.
(2008) and Randelli et al. (2013) build multi-level
maps but with a situated commander.

Eberhard et al. (2010)’s CReST corpus contains
a set-up similar to ours minus the robot; a hu-
man task-solver wears a forward-facing camera
instead. The SCARE corpus (Stoia et al., 2008)
records similar modalities but in a virtual environ-
ment, where C has full access to R’s video feed.
Other projects yielded corpora from virtual envi-
ronments that include route descriptions without
dialog (Marge and Rudnicky, 2011; MacMahon et
al., 2006; Vogel and Jurafsky, 2010) or referring
expressions without routes (Schütte et al., 2010;
Fang et al., 2013), assuming pre-existing abstrac-
tions from sensor data.

6 Conclusion and Ongoing Work

We have presented our pre-pilot study with data
collection and corpus construction phases. This
work-in-progress requires further analysis. We are
now processing dialog utterances for more system-
atic semantic interpretation using disambiguated
VerbNet frames that map into ResearchCyc pred-
icates. We will run object recognition software
retrained on a broader range of objects so that
it can be applied to images that will be labelled
and stored in ResearchCyc micro-worlds for sub-
sequent co-reference with terms in the dialog ut-
terances. Ultimately we want to establish in real
time links across parts of messages in different
modalities that refer to the same abstract enti-
ties, so that humans and robots can share their
separately-obtained knowledge about the entities
and their spatial relations — whether seen, sensed,
described, or inferred — when communicating on
shared tasks in environments.
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Abstract

We present a multi-threaded Interaction
Manager (IM) that is used to track differ-
ent dimensions of user-system conversa-
tions that are required to interleave with
each other in a coherent and timely man-
ner. This is explained in the context of
a spoken dialogue system for pedestrian
navigation and city question-answering,
with information push about nearby or vis-
ible points-of-interest (PoI).

1 Introduction

We present a multi-threaded Interaction Manager
(IM) that is used to track different dimensions of
user-system conversations and interleave the dif-
ferent converational threads coherently. The IM
that we present interacts with the user in a spa-
tial domain and interleaves navigation informa-
tion along with historical and cultural information
about the entities that users can see around them.
In addition, it aims to answer questions that users
might have about those entities. This presents
a complex conversational situation where several
conversational threads have to be interleaved in
such a way that the system utterances are pre-
sented to the user at the right time but in a pri-
oritised order, and with bridging utterances when
threads are interrupted and resumed. For instance,
a navigation instruction may be important (since
the user is walking up to a junction at which they
need to turn) and therefore it needs to be spoken
before continuing information presentation about
an entity or answering other ongoing questions.

2 Related work

Previously, multi-threaded interaction was used
to handle multiple simultaneous tasks in human-
robot interaction (HRI) scenarios (Lemon and
Gruenstein, 2004). This idea also turns out to be

important for cases where humans are interacting
with a variety of different web-services in paral-
lel. Human multitasking in dialogue is discussed
in (Yang et al., 2008).

(Lemon and Gruenstein, 2004) presented a
multi-threaded dialogue management approach
for managing several concurrent tasks in an HRI
scenario. The robot could, for example be flying
to a location while simultaneously searching for
a vehicle, and utterances about both tasks could
be interleaved. Here, conversational threads were
managed using a representation called the “Dia-
logue Move Tree”, which represented conversa-
tional threads as branches of the tree, linked to an
“Activity Tree” which represented the states of on-
going robot tasks (deliver medical supplies, fly to a
waypoint, search for a truck), which could be ac-
tive simultaneously. The situation for our pedes-
trian navigation and information system is simi-
lar - concurrent tasks need to be managed coher-
ently via conversation. The approach adopted in
this paper is similar to (Lemon and Gruenstein,
2004). However, in this work we separate out
a domain-general thread called ‘dialogue control’
which handles generic issues like clarification of
reference across all tasks. This increasing modu-
larisation of the dialogue threads makes it possible
to learn individual dialogue policies for each one,
in future work.

(Nakano et al., 2008) presented an approach
where one of the several expert modules handling
different tasks is activated based on the user input,
but only one verbal expert is active at any one time.
In contrast to this, we present an approach where
several thread managers each handling a different
task can be activated in parallel and their outputs
stored and retrieved based on priority.

3 Multi-threaded IM

The Interaction Manager (IM) is the central com-
ponent of any spoken dialogue system architec-
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Figure 1: Interaction Manager Architecture

ture. Generally, it takes as input the user’s utter-
ances in the form of dialogue acts from the parser
and identifies the next dialogue action to present to
the user. Dialogue about a domain task is managed
using a dialogue strategy or policy (e.g. (Young,
2000; Lemon and Pietquin, 2007)). A dialogue
policy is a mapping between dialogue states and
dialogue actions, which are semantic representa-
tions of what the system should say next.

In order to handle multiple tasks simul-
taneously, we present an architecture for a
multi-threaded interaction manager that treats
conversation about each domain task as a thread.
These conversational threads are interleaved and
managed using techniques such as multi-queuing,
priority based pushing, and queue revision. We
describe these techniques below. The architecture
of the Interaction Manager is shown in figure 1.

Multi-threading and queuing
In order to manage complex interactions involving
several conversational tasks/topics, we propose
that the each task be handled by a thread manager
within the interaction management framework.
Each such manager will handle a conversational
thread using a dialogue policy. Each thread
manager will be fed with the input from the user
and the dialogue actions generated will be stored
in separate queues. This approach allows the
interaction manager to produce several dialogue
actions at the same time although for different

conversational tasks.

Prioritised Queue Management
Dialogue actions from the several threads are
stored in separate queues. The queues can be
assigned priorities that decide the order in which
items from the queues will be popped. The
dialogue actions in the queues are pushed to the
user based on an order of priority (see below).
This priority can either be fixed or dynamic based
on context. The system and user engagement
should also be checked so that system utterances
are pushed only when the system and user are not
speaking already.

Queue Revision: resuming and bridging
The dialogue actions are generated and stored in
queues. Therefore, there is a difference between
the time they are generated and time that they are
pushed. Therefore dialogue actions in the queues
are revised periodically to reflect changes in con-
text. Obsolete dialogue actions will have to re-
moved for two reasons. Firstly, pushing them to
the user may make the conversation incoherent be-
cause the system may be speaking about an entity
that is no longer relevant and secondly, these obso-
lete dialogue actions may delay other other impor-
tant dialogue actions from being pushed on time.
In addition, it may also be useful to edit the dia-
logue actions to include discourse markers to sig-
nify topic change (Yang et al., 2008) and bridge
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phrases to reintroduce a previous topic. We dis-
cuss some examples later in section 4.3.

4 SPACEBOOK Interaction Manager

As a part of the SpaceBook EU FP7 project,
we implemented the above design for a multi-
threaded interaction manager that presents the user
with navigational instructions, pushes PoI infor-
mation, and manages QA questions (Janarthanam
et al., 2013). It receives the user’s input in the
form of a dialogue act (DA) from the ASR mod-
ule and the user’s location (latitude and longitude),
orientation, and speed from the Pedestrian Tracker
module. Based on these inputs and the dialogue
context, the IM responds with a system output di-
alogue act. It should be noted that the location
coordinates of the user are sent to the IM every 2
seconds. This allows the IM to generate location
aware information at a high frequency. In addition,
the IM has to deal with incoming requests and re-
sponses from the user’s spoken inputs. With the
possibility of system utterances being generated
at a frequency of one every two seconds, there is
a need for an efficient mechanism to manage the
conversation and reduce the risk of overloading
the user with information. These tasks are treated
as separate conversational threads.

4.1 Conversational Threads
The SpaceBook IM manages the conversation
using five conversational threads using dedicated
task managers. Three threads: ‘navigation’,
‘question answering’ and ‘PoI pushing’, represent
the core tasks of our system. In addition, for
handling the issues in dialogue management,
we introduce two threads: ‘dialogue control’
and ‘request response’. These different threads
represent the state of different dimensions of the
user-system conversation that need to interleave
with each other coherently. Each of the threads
is managed by a thread manager using a dialogue
policy. Each thread can generate a dialogue ac-
tion depending on the context, as described below:

Dialogue Control
During the course of the conversation, the IM uses
this thread to manage user requests for repetition,
issues with unparsed (i.e. not understood) user
utterances, utterances that have low ASR confi-
dence, and so on. The dialogue control thread is
also used to manage reference resolution in cases
where referring expressions are underspecified.

The IM resolves anaphoric references by keeping
a record of entities mentioned in the dialogue
context. It stores the name and type information
for each entity (such as landmark, building, etc)
mentioned in previous utterances by either user
or system. Subsequent user references to these
entities using expressions such as “the museum”,
“the cafe”, and so on, are resolved by searching
for the latest entity of the given type. In cases
where the IM cannot resolve the referent, it asks
the user to clarify.

Request Response
The user can also initiate tasks that interest
him/her at anytime during the conversation.
These tasks include searching for an entity (e.g.
a museum or a restaurant), requesting navigation
instructions to a destination, and asking questions
about the entities in the city database such as their
location (“Where is X?”, “How far is X?”). Dur-
ing navigation, users might want to ask questions
about the destination, ask for next instructions,
etc. All these user requests are handled using
the request response thread. For instance, when
the user asks for directions, the IM resolves the
destination entity (perhaps using clarification)
in the city model and acknowledges the user
request. The task is then further handled using the
Navigation thread.

Navigation
The IM identifies the location of the destination
entity and queries a city database (Bartie and
Mackaness, 2013) for a route plan. Using the route
plan, the navigation thread presents step-by-step
instructions to the user based on the current loca-
tion and orientation of the user. The IM contin-
uously monitors users to determine if at any time
they are deviating from the planned route and pro-
vides corrective instructions. As users get near
to the next node on the route plan, the next in-
struction is given. The IM uses highly salient vis-
ible landmarks (Bartie et al., 2013) and popular
landmarks near the nodes to instruct the user (e.g.
“When you reach Clydesdale Bank, turn left on
to Nicolson Square”). The IM also informs users
when they pass by recognisable landmarks, just to
reassure them that they are on the right track (e.g.
“You will pass by Tesco on the right”). When the
user is close to his/her destination, the IM deter-
mines whether the destination is visible to the user,
informs the user, and closes the task.
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Usr: I want to go to the National Gallery.
Sys: Ok. I am now looking for directions to
the National Gallery.
Sys: The National Gallery is on Queens Street
at about 300 meters away.
....
Sys: Can you see the Bank of Scotland about
300 meters away on your left? It has a big
green dome.
Usr: Yes. I can see it.
Sys: Walk towards it.
Sys: Can you see the National Gallery in front
of you at about 100 meters? It is a building
with Roman architecture.
Usr: Yes.
Sys: You have now reached your destination.

Question Answering
The system also answers ad hoc questions from
the user (e.g. “Who is David Hume?”, “What is
the Old College?”, “Who was William Wallace”,
etc). These are sent to the QA server and answered
based on responses from the Question-Answering
(QA) server (Janarthanam et al., 2013). The
dialogue policy here is to answer the user’s
question with the first snippet available and ask
the user to request for more if more snippets are
available and he or she is interested.

Pushing PoI Information
When the user is mobile, the IM identifies pop-
ular points of interest (PoI) on the route based on
two factors: proximity and visibility. The dialogue
policy is to introduce the PoI, query the QA server
for snippets and push the first snippet to the user.
The user is encouraged to ask for more informa-
tion if he/she is interested.

Sys: In front of you, about 200 meters away is
Old College. It has a grey dome on top.
Sys: Situated on South Bridge, Old College is
. . .
Sys: Ask for more information if interested.

4.2 Priority assignment in SpaceBook
Priority is assigned to the above dialogue threads
as follows:

Priority 1. Dialogue control (repeat request, clari-
fications etc)

Priority 2. Responding to user requests
Priority 3. System initiated navigation task actions
Priority 4. Responses to User-initiated QA actions
Priority 5. PoI Push actions

For instance, informing the user of a PoI could be
delayed if the user needs to be given an instruction
to turn at the junction he is approaching.

4.3 Queue revision and bridging utterances
The queues need to be revised at regular intervals
in order to keep the information in them relevant
to context. For instance, the dialogue action of in-
forming the user of his/her location is deleted after
5 seconds, as this tends to become obsolete. Sim-
ilarly, dialogue actions corresponding to informa-
tion segments in PoI and QA queues are edited to
inform the utterance generator of other interven-
ing dialogue actions so that it can use appropri-
ate bridge phrases to reintroduce the focus of the
conversational thread. For instance, as shown in
the example below, the utterance generator inserts
a bridge phrase (i.e. “More on Old College”) to
reintroduce the focus of the PoI push task because
of the intervening user request and the subsequent
system response.

Sys: In front of you, about 200 meters away is
the Old College. It has a grey dome on top.
User: Where am I?
Sys: You are on Chambers street.
Sys: More on Old College. Situated on South
Bridge, the Old College is......

5 Conclusion

We presented an architecture for a multi-threaded
Interaction Manager that can handle multiple con-
versational tasks. We also described an implemen-
tation of the architecture in a dynamic spatial en-
vironment. The SpaceBook IM is a multi-tasking
IM that aims to interleave navigation information
along with historical information about the enti-
ties users can see around them. In addition, it aims
to answer questions users might have about those
entities.
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Abstract

In this paper we introduce a new UI
paradigm that mimics radio broadcast
along with a prototype called Radio One.
The approach aims to present useful infor-
mation from multiple domains to mobile
users (e.g. drivers on the go or cell phone
users). The information is served in an en-
tertaining manner in a mostly passive style
– without the user having to ask for it– as
in real radio broadcast. The content is gen-
erated on the fly by a machine and inte-
grates a mix of personal (calendar, emails)
and publicly available but customized in-
formation (news, weather, POIs). Most of
the spoken audio output is machine syn-
thesized. The implemented prototype per-
mits passive listening as well as interaction
using voice commands or buttons. Initial
feedback gathered while testing the proto-
type while driving indicates good accep-
tance of the system and relatively low dis-
traction levels.

1 Introduction

The main purpose of this paper is to describe a
prototype of the Radio One concept. Radio One
presents music, news, emails, relevant POI and
other information to the user in a mostly passive
way, similarly to conventional radios. Users can
interract with the system as well using voice com-
mands or buttons. The concept was refined and
initially tested with prerecorded audio-visual sce-
narios using the Wizard-of-Oz (WOZ) technique
(Macek et al., 2013).

Here we describe the early prototype implemen-
tation of the system and summarize initial feed-
back collected during informal testing.

2 Related Work

Applications that produce customized audio
streams can be found in many online music deliv-
ery services including Spotify, Pandora, or iTunes.
While the above services often focus on music
only, other providers (BBC, CNN) publish their
spoken content in the form of podcasts. Spoken
audio used for podcasts is often recorded by pro-
fessional speakers as opposed to the concept pre-
sented here. The Aha radio (Aha, 2014) provides
various thematic streams of information including
music, news, social network updates or Points of
Interest (POI). Content can be selected manually
by switching between channels. Similar strategies
are utilized by Stitcher (Stitcher, 2014) and other
services. The concept presented here attempts in-
sted to preselect the content automatically and on
the fly while preserving the option to request the
content explicitely.

Many in-car infotainment systems adopted the
use of voice control and utilize information di-
rectly from on-line services; e.g. (BMW, 2014)
and (Ford, 2014). All of the abovementioned ap-
plications use mobile data connection to deliver
audio stream (as opposed to text) to the user. This
can lead to large data downloads and potentially to
high bills from mobile network providers.

3 Radio One Concept

Radio One mimics radio broadcast by generating
infotainment content on the fly. Unlike real radios,
Radio One customizes its content to the particular
listener and should even adapt automatically while
the user interacts with it. In addition to the content
typically played by radios, the synthetic content
also includes private information like calendar or
emails. Most of the spoken output is produced by
a text-to-speech system with the exception of pod-
casts.

The presented information stream is sparse with
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the intervals between spoken segments filled with
music and moderator small-talk. The content
structure is configurable and can be adapted both
automatically, based on observing habits of the
user, or via explicit voice commands or buttons.

The main benefit of dynamically generated con-
tent is that the system can easily include dynamic
personal content and that the infotainment stream
can be efficiently controlled by the user and in-
fluenced by the environment (such as expected
duration of the drive or current road conditions).
From a technical perspective, the connection re-
quirements are much smaller compared to audio
transfers, as Radio One mostly downloads textual
feeds only. Downloading redundant information
can be avoided by knowing what has already been
presented to the particular user. Further, the user
can navigate in the broadcast, either to specific
topics by using voice commands, or just backward
and forward by using buttons. This option should
reduce potential stress related to a driver concen-
trating on a broadcasted topic knowing s/he would
be unable to replay. The radio presents informa-
tion from the covered domains continuously. The
stream of presented information also serves as a
natural way of teaching the user about the sup-
ported domains. By hearing that news are read
as part of the radio stream, the user finds out that
news is one category that can be requested by
voice commands.

4 System Description

Although previous WOZ tests (Macek et al.,
2013) were sufficient to collect the initial user
feedback, their flexibility and fidelity was limited.
The prototype described in this paper is intended
for testing of concepts and for conducting realistic
usability tests in a car. The implemented prototype
is a fully functioning system, although still with a
limited feature set.

4.1 Architecture

The overall architecture of the system is depicted
in Figure 1. The system collects inputs both from
manual controls (steering wheel buttons, rotary
knob) and from ASR (voice commands). Multi-
ple on-line and off-line data sources provide con-
tent. While driving, GPS information about the
car position is used together with an optional cal-
culated route and POI data to plan overall broad-
casting. The core of the Radio One system (see

Figure 1: Radio One big picture.

Figure 2: Radio One architecture.

Figure 2) is the scheduler. The scheduler is re-
sponsible for planning both the type of content
and the time of its presentation. The content as-
sociated with higher expected cognitive load (e.g.
emails or calendar) can be planned for segments
of the journey that have low driving difficulty (e.g.
straight highway). The overall architecture aims
to be highly configurable and context-aware to be
able to produce heterogeneous content based on
differing user preferences and changing state of
the environment.

4.2 Controls

Multiple button configurations are possible, rang-
ing from a “speech button-only” setup to several
buttons used to provide quick access to frequently
used functions. For in-car setups, the availabil-
ity of buttons is often limited. A configuration of
3 buttons in a row (in addition to speech button)
can be used to let the user navigate back and forth
using the two outer buttons and request more de-
tails or pause/resume the broadcast with a central
button. Both “per-item” (e.g. single email, song
or news title) and “per-bundle” navigation (“bun-
dle” being a coherent group of affiliated items, e.g.
emails) can be supported by short and long presses
of the navigation buttons. Other functions would
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typically be available through voice commands
only, or also through a touch interface where avail-
able (e.g. on a cell phone or in a parked car).

Alternatively to the buttons on the steering
wheel, a rotary knob can be placed on the side of
the driver’s seat (depicted on the left of Figure 3).
Usually, a single knob press initiates speech input,
while turning the knob navigates back and forth in
items. Per-bundle navigation can be triggered ei-
ther by using greater turns or by turning the knob
while pressed.

The voice control subsystem is hybrid with
speech recognition and understanding being done
both remotely and locally. This way, functions
are available even when off-line while benefit-
ing from improved accuracy and coverage of the
server models when on-line. Free-form commands
are understood (e.g. “email” or “would you read
my email please”).

4.3 Content and Presentation

Two modes of operation are implemented. The
off-line mode permits testing with locally saved
data or data specifically tailored for various exper-
iments. The on-line mode collects data (e.g. email,
calendar, news) periodically from the network and
presents it at appropriate times.

News are collected periodically from config-
urable network sources and grouped by topic. Two
forms of news presentation are implemented. A
shorter version is used during news summaries.
A longer version can be requested by an explicit
voice request like “tell me more” or by pressing a
“details” button.

Emails undergo elementary pre-processing to
improve their suitability for being read out loud.
Emails longer than a configured threshold are
shortened at the end of the sentence. Email his-
tories are also skipped. The user can request a full
version of the email using a voice command like
“read the whole message”.

Moderator commentaries are tailored to the
content they accompany. We use a set of hand-
crafted prompt templates for natural language gen-
eration. Prompt templates are grouped according
to the context that triggers them into pools of al-
ternatives, from which prompts are selected ran-
domly while avoiding repetitions. Moderators can
announce upcoming content or refer to content
that just finished playing. Prompt templates often
contain variables referring to various properties of

the neighbouring content (e.g. name of the preced-
ing song or topic of the upcoming news).

Information is presented as a story, typically
with a brief summary-of-the-broadcast at the be-
ginning. This order can be interrupted by sudden
events (e.g. emails arriving, hot breaking news,
POI announcements) with proper moderator com-
ments to indicate what is happening. The infor-
mation is grouped together in bundles of the same
type (e.g. email summaries are not mixed with cal-
endar or news items). Typical in-car presentation
order starts with music to allow the listener to get
concentrated on driving. Then a summary is pro-
vided followed by blocks of music and informa-
tion bundles.

In contrast to our earlier WOZ study, the cur-
rent version of the prototype does not present any
visual information as we focus on the driving sce-
nario. The previous WOZ study indicated that this
information was distracting to the driver and not
much valued by the participants.

Figure 3: Alternative user interface controls

4.4 Implementation

The prototype is implemented in Java. It uses
a local text-to-speech system (TTS). We use the
Nuance Vocalizer premium voices to provide the
best available TTS quality. Current implementa-
tion is primarily in English (moderators and their
comments) although playback of content in other
languages (currently Czech) is supported as well.
Language detection is done automatically (Cy-
bozu Labs, 2014). The system was tested both
on a PC (Windows 7) and on tablets and phones
(Android, Windows 8). Emails are currently re-
trieved using the IMAP protocol so various email
providers can be used. News are currently down-
loaded from the Feedzilla (Feedzilla, 2014) REST
API and from other RSS feeds.

Calendar events are retrieved from the user’s
Google Calendar account. The radio automati-
cally announces individual upcoming events and
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also plays summaries about the remaining events
of the day (also can be requested by voice).

Like real radios, we use characteristic earcons
and jingles to introduce particular types of infor-
mation (e.g. email, news or calendar) and other
sounds to separate individual information items
from each other (e.g. earcons between emails or
news titles).

For testing purposes we use infra-red remote
control buttons (see right hand part of Figure 3)
mounted to the steering wheel, with key events re-
ceived by a special purpose hardware and passed
to Radio One via Bluetooth.

We use either an AUX cable or a radio FM
transmitter to integrate with the car’s audio sys-
tem. The current prototype implements music
playback, presents news, email, weather reports
and calendar summaries. Initial work was done
on presenting POIs near the current location. An
arbitrary list of MP3 files can be used as a source
of music. Ideally, user’s own collection of music
is used during the tests. ID3 tags of music files are
utilized in the process of generating voice prompts
spoken by moderators as part of their small talk
(e.g. “This was a song by the Beatles”).

5 Usability testing

Initially, a WOZ experiment was conducted with-
out having the system implemented. Test subjects
drove a low-fidelity driving simulator while lis-
tening to a radio stream broadcasted by the wiz-
ard, who played pre-recorded audio-visual snip-
pets trying to satisfy user’s requests. We described
results of this experiment previously in (Macek
et al., 2013). The main feedback from this ex-
periment was that the users perceived the quality
of synthesized speech sufficiently. The visual in-
formation shown by the wizard contained mostly
static pictures or short texts in large fonts. Most
of the users did not find the screen useful in this
setup. Therefore the current radio prototype is
screen-less. Two groups of users could be iden-
tified. The first one used the system in the same
way as a standard radio, with minimal interaction.
The other group preferred to be “in control” and
used both buttons and voice commands to ask for
specific content.

Multiple informal tests were conducted by 4 test
drivers in real traffic. More extensive testing is still
in preparation. The feedback collected so far was
positive, indicating that the TTS quality was suf-

ficient. Even with a small number of test drivers
it became apparent that the roles of customization
and automatic adaptation to preferences of a spe-
cific user will be crucial.

Information-heavy content like certain kinds of
news was sometimes considered difficult to lis-
ten to while driving, which was in part due to
all of the test drivers being non-native speakers
of English. Adding jingles to separate the pre-
sented news items from one another improved the
perception of the system significantly. The news
feeds used by the prototype were originally not
intended for audio presentation, which does im-
pact their understandability, but the effect does not
seem to be major. Lighter content like weather
forecasts and calendar announcements were con-
sidered easy to understand.

The test drivers considered it important to be
able to use their personal data (news, email, mu-
sic). This motivated the inclusion of information
sources in languages other than English and the
addition of automatic language identification so as
to select proper TTS voices. The fact that multi-
ple languages were present in the broadcast was
not perceived adversely. One shortcoming of the
tested system was still a low variability of moder-
ators’ comments.

6 Conclusion

We presented a work-in-progress demonstration
prototype of a novel method for presenting in-
formation to users on-the-go. A preceding WOZ
study indicated promising user acceptance which
was also confirmed using the described prototype.
When comparing with existing systems, the sys-
tem presented here has much lower requirements
on communication bandwidth, requires less hu-
man work for content authoring and permits a
higher level of personalization. Amount of inter-
activity depends very much on user preferences.

In future work we would like to pay attention
to evaluation of user feedback on more extensive
usability tests. It will be interesting to see to what
extent the user will opt for active interaction with
the system and for the particular interaction tech-
niques.
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Abstract
Navigation of blind people is different
from the navigation of sighted people and
there is also difference when the blind per-
son is recovering from getting lost. In this
paper we focus on qualitative analysis of
dialogs between lost blind person and nav-
igator, which is done through the mobile
phone. The research was done in two out-
door and one indoor location. The analy-
sis revealed several areas where the dialog
model must focus on detailed information,
like evaluation of instructions provided by
blind person and his/her ability to reliably
locate navigation points.

1 Introduction

When blind people travel independently, it may
happen that they get lost. This happens when they
can not find any useful navigation points. Use of
existing GPS based navigation systems is of no use
as the maps do not provide appropriate navigation
points and the GPS localization is imprecise (tens
of meters, where the lost blind person needs preci-
sion at highest in meters). In such situation blind
people typically use one of two following meth-
ods to recover. First they can ask people in their
surrounding for help. Second they can call friend
or dedicated assistance center. The first method
is currently more favorable for blind people, but
they have experience with both methods. In each
method the dialog has different structure due to the
different context information available to the help-
ing person (called navigator) and lost blind person.

In our research we focus on the second method,
navigation through mobile phone call. Balata et
al. (2013b) showed that such method is usable and
navigator can successfully guide blind person in
outdoor environment. This is because the blind
person is able to efficiently describe his/her po-
sition. Balata et al. (2013a) found that there is

quite good coverage of locations that are very well
known to blind persons and that they should be
able to navigate other lost blind person there.

These findings show that building some kind of
assistance center where blind people can help each
other is a promising idea. Our intention is to ex-
tend such a center in a way that the helping per-
son will be replaced by natural language based di-
alog system. According to Pittermann (2005) this
dialog system belongs to the category “Dialog as
purposeful activity” with overlapping to the cate-
gory “Dialogue as collaborative activity”. The key
questions we focus on are:

• How the selection of an appropriate form of
language depends on aspects of the environ-
ment?

• What is the structure of the dialog with re-
spect to the environment?

In the initial step of this work-in-progress re-
search, we want to analyze the communication be-
tween lost blind person and the navigator in or-
der to analyze the dialog structure and make ini-
tial observation about the context information in-
terchange and verification dialog. Such dialog is
very important for navigator to find out, where ex-
actly the blind person get lost. With the knowl-
edge of the way of communication between lost
blind person and navigator we will be able in the
future replace the navigator with a navigation sys-
tem based on natural language understanding.

In order to gather and analyze initial data we
ran an experiment in which the blind person got
lost and was asked to call the assistance center
which mediated connection to suitable navigator.
Together, they tried to find the actual position of
blind person and they tried to navigate him/her to
end of the track.
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2 Related Work

Many current dialog systems are based on statisti-
cal approach when analyzing the semantics of spo-
ken dialog as presented by Jurcicek (2007). Us-
ing belief state tracking provides better results for
cases of noisy input. Ma et al. (2012) introduced
system that is combining geographical knowledge
of landmarks with dialog system itself and work
with probabilities of particular locations.

Recovering from lost scenario can be also com-
pared to robot localization problem as presented
by Thrun (1998) and Thrun et al. (2001), more
exactly to kidnapped robot problem, where robot
with knowledge of its position is moved to differ-
ent location without providing this information to
the robot. This scenario is testing the ability of
robot to recover from being lost while expecting
to be on another place. These methods are based
on probabilistic algorithms, working with proba-
bilities of measurement while being on a certain
place.

However we do not expect blind person to wear
any precise sensors for distance measurements and
localization, we can benefit from his/her senses
(touch, hearing and olfaction) that can provide set
of reliable observations.

3 Experiment Description

3.1 Collected Data

We set up an experiment in order to collect and an-
alyze initial data about the dialog structure of lost
blind person and sighted navigator person. During
the experiment we recorded the course of the test
with two cameras, one was on the blind person’s
shoulder and one was used for 3rd person view of
the scene in order to show context (environment)
of the test. Moreover, we recorded the blind per-
son’s position using GPS coordinates in outdoor
and blind person’s interaction with mobile naviga-
tion application. Camera recordings and GPS logs
were used only for post-test evaluation. The di-
alog between the blind person and navigator was
recorded and annotated.

3.2 Participants

For the experiment, 13 blind people, 8 female
and 5 male, were invited by e-mail and following
snowball effect. All the participants had blindness
of category 4 and 5 – according to ICD-10 WHO
classification.

3.3 Procedure

In the experiment, we focused on three types of
location, two outdoor and one indoor: city cen-
ter streets (track A), open city park (track B) and
university building (track C). We selected these
three types of location in order to analyze possi-
ble differences in the dialog structure or types of
provided information.

The script of the experiment was similar for
each type of location. The participant was given a
mobile phone with mobile navigation application
for blind called NaviTerier Vystrcil et al. (2012).
NaviTerier provides TTS synthesized description
of the predefined track divided into segments. For
each segment the description of the environment
and navigation to the next segment was tailored
with respect to the way how blind people navi-
gate. Borders of segments are selected on places
that could be easily recognizable by blind people
(e.g. corner of building, doors, etc.). Each partici-
pant had a goal to go from start point to the end of
the track using the mobile navigation application
for blind. In order to put the participant into the
“recovery from lost” situation, the navigation in-
structions were intentionally modified to represent
a mistake in the track description (a realistic mis-
take), which caused that the participant get lost.
When the participant realized that he/she is lost,
a navigator from assistance center was called and
they tried to find out the location of blind person
and navigate him/her to the end of the track.

Navigator was seated in an office without visual
contact to lost blind person. He knew all three
routes very well. The only source of information
about the lost blind person was dialog done by a
phone call.

3.3.1 Track A - City Center Streets

In track A the participant was asked to navigate
to the Vaclavska passage, see Figure 1. The nav-
igation instruction were changed so that the two
streets (Trojanova and Jenstejnska) were switched
so that the participant get lost at the T crossing of
Jenstejnska and Vaclavska street. The navigation
using the mobile navigation application for blind
in this type of environment was easy for partici-
pants and they all get lost at the desired location.

The navigator and participant had several nav-
igation points there to get oriented. First of all,
there was a nearby busy street Resslova, which can
be heard. Next there was a closed gateway with
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metal gate, which is quite unique for this location.
There were also waste bins (containers), phone
booth and entrance to the underground garage.

3.3.2 Track B - Open City Park
In track B the participant was asked to navigate
through the park to the restaurant, see Figure 1.
The navigation instruction were changed so that
the two junctions were skipped and the participant
ended near the middle of the park, where fountain
is located.

In this type of location, there were also not
many unique navigation points. The most us-
able were two perpendicular streets with trams, the
fountain in the middle of the park and two unique
stairs. There were also multiple benches and grass
plots.

3.3.3 Track C - Building
In track C the participant was asked to navigate
through the building from the entrance to the yard,
see Figure 1. The navigation instructions were
changed so that instead of taking stairs down, the
participant was asked to take stairs up and he/she
got lost in the small corridor, where the last doors
should be located but they were not there. The
navigation using the NaviTerier application in this
type of environment was easy for the participants
and they all get lost at the desired location.

At the place, where the participant got lost,
there were several navigation points. First point
was showcase from metal and glass at the expected
location of doors to the yard. Then there was
wooden door secured with metal bars and wooden
stairs going up and down.

4 Results and Discussion

In the track A and track C, the participants got lost
at location very well known to the navigator, thus
the identification of lost blind person location was
mostly fast and easy. In the track B, participants
got sometimes lost at locations unfamiliar for the
navigator due to the ambiguity of the environment
and thus the location identification process was
complicated.

The dialog structure of the communication be-
tween lost blind person and the navigator corre-
sponds to the model introduced by Balata et al.
(2013b). At the beginning the blind person de-
scribes his/her location, track instructions and the
problem description, i.e. what is the difference be-
tween instructions of navigation application and

Figure 1: Visualization of individual tracks A, B
and C used in the experiment. The intended path
is shown by solid line. Path shown by dashed line
shows the real path leading to the point, where the
participant got lost – yellow exclamation mark –
and from where the participant was navigated back
to the path.

reality. After the beginning the dialog continues
by iterative searching of unique navigation points
that may help the navigator to find the position and
orientation of the lost blind person, until he/she
gets to the location from which he/she can con-
tinue with the track. The dialog system should
take into account following findings about the di-
alog structure.

When the blind person get lost, he/she uses in-
formation, provided by navigation application for
sections that seemed to him/her correct and cor-
responding with reality, for description of his/her
current position, e.g. “I am in the Vaclavska
street.” The dialog system should take into ac-
count uncertainty of information provided by lost
blind person, possibility that the blind person got
lost much earlier and the navigation instructions
for next several segments were corresponding with
the reality by coincidence.

The fact that the blind person gets lost is lit-
tle bit stressy for him/her. Therefor he/she may
provide illogical answers to some questions, e.g.
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Q: “Could you provide me with the description of
your current position?” and A: “I would rather go
to the start of the track and describe the track from
the beginning.”

Description of current position of blind person
is very different from the description of sighted
person. The dialog system should take into ac-
count that the blind person may not find partic-
ular navigation point, but it does not mean that
the navigation point is not there. Moreover, some
navigation points may be difficult or impossible to
find by blind person. Similar issue is identifica-
tion of particular navigation points. The blind per-
son may have difficulties to distinguish between
bend, turning, intersection and end of pavement.
This may be misleading to dialog system. On the
other hand, when the blind person confirms that
particular navigation point was found, the system
should check, if it is really the one, e.g. when
doors are found, the system should check the ma-
terial or type of the doors.

Blind persons use other senses than sight to scan
the current position and navigation points. Even
though the senses are more sensitive, the provided
information may not be accurate, e.g. the blind
person is reporting inclining pavement and in real-
ity there is flat pavement.

It seems that the preferred sense is connected
with the type of environment. In the track B with
low density of navigation points which are am-
biguous the blind persons preferred hearing.

Some navigation points are not permanent and
may by varying. E.g. when there are two streets,
one near (not busy) and one far (busy) and the
blind person is asked to locate busy street, this
information will depend on the current traffic on
both streets. Together with the fact that term busy
is subjective, the blind person may locate wrong
street.

Some blind persons (the ones with high con-
fidence of independency and orientation skills)
tended to get oriented independently to the dialog
with navigator. That means they provided the nav-
igator with required information, but at the same
time they were moving and they were disrupting
the navigators mental model of the blind person’s
location.

There is not a standardized vocabulary how
blind persons describe objects. Therefore they
tend to use wide range of words and also
metaphoric descriptions to describe the same ob-

ject.

5 Conclusion and Future Work

In this paper, we did initial analysis of dialogs be-
tween blind person, who got lost when walking on
a track with the instructions from mobile naviga-
tion application, and navigator, who is trying to
help him get oriented. The research was done in
three different locations, in city center streets, in
open city park and in building. The dialog be-
tween blind person and navigator was recorded
and qualitatively analyzed in order to reveal dialog
features which can be used for improvement of the
navigation itself and later it can help to replace the
human navigator with automated system.

Initial analysis showed that the type of location
may have impact on strategy, how the blind per-
son explore his/her surroundings and how he/she
tries to get oriented. In city center streets (track
A) and in building (track C) the blind persons
were able to explore their surroundings and they
allowed the navigator to find out, where they prob-
ably are. In open city park (track B) the blind
persons had problem to find navigation points and
sometimes they were trying to get oriented inde-
pendently, which led to the difficulties for naviga-
tor to find their position. In many cases, the blind
persons were using the information from mobile
navigation application until the point where they
got lost. Unfortunately, such information may al-
ready be misleading. As a general finding, the dia-
log should focus also on verification of navigation
points, which may not be permanent (e.g. finding
busy street, when there are more streets around) or
which may be not identified in not enough detail.

In future, we would like to focus on individual
aspects found in qualitative analysis and design
strategies into the dialog model between lost blind
person and navigator and evaluate it quantitatively.
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Abstract

Open environments present an attention
management challenge for conversational
systems. We describe a kiosk system
(based on Ravenclaw–Olympus) that uses
simple auditory and visual information to
interpret human presence and manage the
system’s attention. The system robustly
differentiates intended interactions from
unintended ones at an accuracy of 93%
and provides similar task completion rates
in both a quiet room and a public space.

1 Introduction

Dialog systems designers try to minimize disrup-
tive influences by introducing physical and be-
havioral constraints to create predictable environ-
ments. This includes using a closed-talking mi-
crophone or limiting interaction to one user at a
time. But such constraints are difficult to apply
in public environments such as kiosks (Bohus and
Horvitz, 2010; Foster et al., 2012; Nakashima et
al., 2014), in-car assistants (Kun et al., 2007; Hof-
mann et al., 2013; Misu et al., 2013) or on mo-
bile robots (Haasch et al., 2004; Sabanovic et al.,
2006; Kollar et al., 2012). To implement dialog
systems that operate in public spaces, we have to
relax some of these constraints and deal with addi-
tional challenges. For example, the system needs
to select the correct interlocutor, who may be only
one of several possible ones in the vicinity, then
determine whether they are initiating the process
of engaging with the system.

In this paper we focus on the problems of
identifying a potential interlocutor in the environ-
ment, engaging them in conversation and provid-
ing suitable channel-maintenance cues (Bruce et
al., 2002; Fukuda et al., 2002; Al Moubayed and
Skantze, 2011). We address these problems in the
context of a simple application, a kiosk agent that

Figure 1: Ravenclaw–Olympus augmented with
multimodal input and output functions.

accepts tasks such as taking a message to a named
recipient. To evaluate the effectiveness of our ap-
proach we compared the system’s ability to man-
age conversations in a quiet room and in a public
area.

The remainder of this paper is organized as fol-
lows: we first describe the system architecture,
then present the evaluation setup and the results,
then review related work and finally conclude with
an analysis of the study.

2 System Architecture

Figure 1 shows the architecture; it incorporates
Ravenclaw/Olympus (Bohus et al., 2007) stan-
dard components (in white), new components (in
black) and modified ones (shaded). In the system
pipeline, the Audio Server receives audio from a
microphone, endpoints it and sends it to the ASR
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Figure 2: Face states; some are animations.

engine (PocketSphinx); the decoding is passed to
NLU (Phoenix parser). ICE (Input Confidence Es-
timation) (Helios) assigns confidence scores for
the input concepts. Based on user’s input and
the context, the Dialog Manager (DM) determines
what to do next, perhaps using data from the
Domain Reasoner (DR). An Interaction Manager
(IM) initiates a spoken response using Natural
Language Generation (NLG) and Text-to-Speech
(TTS) component.

Three components were added: (1) Multimodal
Capture acquires audio and human position data
using a Kinect device 1. (2) Awareness deter-
mines whether there is a potential interlocutor in
the vicinity and their current position, using skele-
tal and azimuth information. (3) Talking Head
that conveys the system’s state (as shown in Fig-
ure 2): whether it’s active (conversing and hint-
ing) or idle (asleep and doze) and whether fo-
cused concepts are grounded (conversing and non-
understanding); certain state representations (e.g.,
conversing) are coordinated with the TTS compo-
nent.

3 Evaluation

A robust system should be able to function as well
in a difficult situation as in a controlled one. We
compare the system’s performance in two environ-
ments, public and quiet, and evaluate the (a) sys-
tem’s awareness of intended users, and its (b) end-
to-end performance.

The same twenty subjects participated in both
1See http://www.microsoft.com/en-us/

Kinectforwindows/develop/. Three sources are
tapped: the beam-formed audio, the sound source azimuth
and skeleton coordinates. Video data are not used.

experiments: a mix of American, Indian, Chinese
and Hispanic with different fluency levels of En-
glish. None of them had previously interacted with
this system prior to this study.

The subjects were told that they would interact
with a virtual agent displayed on a screen. Their
task for the awareness experiment was to make the
agent aware that they wished to interact. For the
end-to-end system performance, the task was to
instruct the agent to send a message to a named
recipient.

3.1 Situated Awareness

We define situated awareness as correctly engag-
ing the intended interlocutor (i.e., verbally ac-
knowledge the user’s presence) under two con-
ditions. When the user is positioned (i) inside
the visual range of the Kinect at LOC-0 in Fig-
ure 3(a); and (ii) outside the visual range of the
Kinect at LOC-1 in Figure 3(a). We used the effec-
tive range of the camera’s documented horizontal
field of view (57◦); hereafter referred as its cone-
of-awareness.

We conducted the awareness experiment in a
public space, a lounge at a hub connecting mul-
tiple corridors. The area has tables and seating,
self-serve coffee, a microwave oven, etc. The ex-
periment was conducted during regular hours, be-
tween 10am to 6pm on weekdays. During these
times we observed occupants discussing projects,
preparing food, making coffee, etc. No direct at-
tempt was made to influence their behavior and we
believe that they made no attempt to accommo-
date our activities. Accordingly, the natural sound
level in the room varied in unpredictable ways. To
supplement naturally-occurring sounds, we played
audio of a conversation between two humans, an
extract from the SwitchBoard corpus (Graff et al.,
2001). It was played using a loudspeaker placed at
LOC-2 in Figure 3(a). The locations (0, 1, and 2)
are all 1.5m from the Kinect, which we deemed to
be a comfortable distance for the subjects. LOC-
1 and LOC-2 are 70◦ to the left and right of the
Kinect, outside its cone.

To detect the presence of an intended user, we
build an awareness model that uses three sensory
streams viz., voice activity, skeleton, and sound
source azimuth. This model relies on the co-
incidence of azimuth angle and the skeleton angle
(along with voice activity) to determine the pres-
ence of an intended user. We compare the pro-
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Figure 3: (a) Plan of Public Space (lounge);(b) Plan of Quiet Room (lab). Dark circled markers indicate
locations (LOC-0, LOC-1, LOC-2), discussed in the text.

Condition Voice +Skeleton +Azimuth
Outside
the cone 28% − 93%
Inside

the cone − 25% 93%

Table 1: Accuracy for the Awareness Detection

posed model with two baselines: (1) conventional
voice-activity-detection (VAD): once speech is de-
tected the system responds as if a conversation is
initiated and (2) based on skeleton plus VAD: once
the skeleton appears in front of the Kinect and a
voice is heard, the system engages in conversation.

Table 1 shows the combination of sensory
streams we used under two conditions. For the
outside-the-cone condition, the participants stand
in LOC-1 as shown in Figure 3(a) and follow the
instructions from the agent. Initially, the sub-
ject’s skeleton is invisible to the agent; however
the subject is audible to the agent. Therefore, in
certain combinations of sensors (e.g., voice +
skeleton model and voice + skeleton
+ azimuth model) the system attempts to guide
them to move in front of it, i.e. to LOC-0, an
ideal position for interacting with the system. For
inside-the-cone condition, subjects stand at LOC-
0 where the agent can sense their skeleton.

When user stands at LOC-1 i.e., outside-
the-cone voice + skeleton model and
voice + skeleton + azimuth models
are functionally the same since the source of
distraction has no skeleton in the cone. When
user stands at LOC-0, i.e., inside-the-cone voice
alone is the same as voice + skeleton
model since the agent always sees a skeleton in

front of it. Therefore, this variant was not used.
We treated awareness detection as a binary de-

cision. An utterance is classified either as “in-
tended” or “unintended”. We manually labeled the
utterances whether they were directed at the sys-
tem (“intended”), “unintended” otherwise. Accu-
racy on “intended” speech is reported in the Ta-
ble 1. Within each condition, the order of the ex-
periments with different awareness strategies was
randomized.

We observe that the voice + skeleton +
azimuth model proves to be robust in the pub-
lic space. Its performance is significantly better,
t(38) = 8.1, p ≈ 0.001, compared to the other
baselines in both conditions. This result agrees
with previous research (Haasch et al., 2004; Bohus
and Horvitz, 2009) showing that a fusion of multi-
modal features improves performance over a uni-
modal approach. Our result indicates that a sim-
ple heuristic approach, using minimal visual and
audio features, provides usable attention manage-
ment in open environments. This approach helped
the system handle a complex interaction scenario
such as out-of-cone speech directed to the sys-
tem. If the speaker is out of range but is producing
possibly system-directed utterances, system urges
them to step to the front. We believe it can be ex-
tended to other complex cases by introducing ad-
ditional logic.

3.2 End-to-End System Performance

To investigate the effect of the environment, we
compare the system’s performance in public space
and quiet room. The average noise level in the
quiet room is about 47dB(A) with computers as
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Metric Public
Space

Quiet
Room

Success Ratio 15/20 16/20
Avg # Turns 14.2 16.4
Concept Acc 67% 68%

Table 2: Public Space vs Quiet Room Performance

the primary source of noise. The background
sound level in the public space was 46dB; other
natural sources ranged up to 57dB. The audio dis-
tractor measured 57dB. The same ASR acoustic
models and processing parameters were used in
both environments. The participant stood at LOC-
0 in Figure 3(a) during the public space experi-
ment and Figure 3(b) during the quiet room ex-
periment. In both experiments, LOC-0 is 1.5m
away from the system. We used the voice +
skeleton + azimuth model to discriminate
user speech from distractions in the environment.

We gave each participant a randomized series
of message-sending tasks, e.g. “send a message
to 〈person〉 who is in room 〈number〉”. Subjects
had a maximum of 3 minutes to complete; each
task required 7 turns. The number of tasks com-
pleted (over the group) is reported in terms of
task “success-ratio”. Table 2 shows the success-
ratio of the task, the average number of turns
needed to complete the task, and the system’s per-
utterance concept accuracy (Boros et al., 1996).
There were no statistically significant differences
between quiet room and public space, (t(38) <
2, p > 0.5, on any metric). We conclude that
the channel maintenance technique we tested was
equally effective in both environments.

4 Related Work

The problem of deploying social agents in public
spaces has been of enduring interest; (Bohus and
Horvitz, 2010) list engagement as a challenge for
a physically situated agent in open-world interac-
tions. But the problem was noted earlier and solu-
tions were proposed; e.g a “push-to-talk” protocol
to signal the onset of intended user speech (Stent
et al., 1999). (Sharp et al., 1997; Hieronymus et
al., 2006) described the use of attention phrase as
a required prefix to each user input. Although ex-
plicit actions are effective, they need to be learned
by users. This may not be practical for systems in
public areas engaged by casual users.

A more robust approach involves fusing sev-
eral sources of information such as audio, gaze

and pose(Horvitz et al., 2003; Bohus and Horvitz,
2009) (Hosoya et al., 2009; Nakano and Ishii,
2010). Previous works have shown that fusion
of different sensory information can improve at-
tention management. The drawback of such ap-
proaches is in the complexity of the sensor equip-
ment. Our work attempts to create the rele-
vant capabilities using a simple sensing device
and relying on explicitly modeled conversational
strategies. Others are also using the Microsoft
Kinect device for research in dialog. For example,
(Skantze and Al Moubayed, 2012) and (Foster et
al., 2012) presented a multiparty interaction sys-
tems that use Kinect for face tracking and skeleton
tracking combined with speech recognition.

In our current work, we show that situational
awareness can be integrated into an existing dia-
log framework, Ravenclaw–Olympus, that was not
originally designed with this functionality in mind.
The source code of the framework presented in
this work is publicly available for download 1 and
the acoustic models that have been adapted to the
Kinect audio channel 2

5 Conclusion

We found that a conventional spoken dialog sys-
tem can be adapted to a public space with mini-
mal modifications to accommodate additional in-
formation sources. Investigating the effectiveness
of different awareness strategies, we found that a
simple heuristic approach that uses a combination
of sensory streams viz., voice, skeleton and az-
imuth, can reliably identify the likely interlocutor.
End-to-end system performance in a public space
is similar to that observed in a quiet room, indi-
cating that, at least under the conditions we cre-
ated, usable performance can be achieved. This
is a useful finding. We believe that on this level,
channel maintenance is a matter of articulating a
model that specifies appropriate behavior in dif-
ferent states defined by a small number of dis-
crete features (presence, absence, coincidence).
We conjecture that such a framework is likely to
be extensible to more complex situations, for ex-
ample ones involving multiple humans in the en-
vironment.

1http://trac.speech.cs.cmu.edu/repos/
olympus/tags/KinectOly2.0/

2http://trac.speech.cs.cmu.edu/repos/
olympus/tags/KinectOly2.0/Resources/
DecoderConfig/AcousticModels/Semi_
Kinect.cd_semi_5000/
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Abstract

Holding non-co-located conversations
while driving is dangerous (Horrey and
Wickens, 2006; Strayer et al., 2006),
much more so than conversations with
physically present, “situated” interlocutors
(Drews et al., 2004). In-car dialogue
systems typically resemble non-co-located
conversations more, and share their
negative impact (Strayer et al., 2013). We
implemented and tested a simple strategy
for making in-car dialogue systems aware
of the driving situation, by giving them
the capability to interrupt themselves
when a dangerous situation is detected,
and resume when over. We show that this
improves both driving performance and
recall of system-presented information,
compared to a non-adaptive strategy.

1 Introduction

Imagine you are driving on a relatively free high-
way at a constant speed and you are talking with the
person next to you. Suddenly, you need to overtake
another car. This requires more attention from you;
you check the mirrors before you change lanes, and
again before you change back. Plausibly, an attent-
ive passenger would have noticed your attention
being focused more on the driving, and reacted to
this by interrupting their conversational contribu-
tion, resuming when back on the original lane.

Using a driving simulation setup, we implemen-
ted a dialogue system that realises this strategy. By
employing incremental output generation, the sys-
tem can interrupt and flexibly resume its output.
We tested the system using a variation of a stand-
ard driving task, and found that it improved both
driving performance and recall, as compared to a
non-adaptive baseline system.

Figure 1: Overview of our system setup: human
controls actions of a virtual car; events are sent to
DM, which controls the speech output.

2 The Setup

2.1 The Situated In-Car System

Figure 1 shows an overview of our system setup,
with its main components: a) the driving simulator
that presents via computer graphics the driving task
to the user; b) the dialogue system, that presents,
via voice output, information to the user (here, cal-
endar entries).

Driving Simulation For the driving simulator,
we used the OpenDS Toolkit,1 connected to a steer-
ing wheel and a board with an acceleration and
brake pedal, using standard video game hardware.
We developed our own simple driving scenarios
(derived from the “ReactionTest” task, which is dis-
tributed together with OpenDS) that specified the
driving task and timing of the concurrent speech,
as described below. We modified OpenDS to pass
real-time data (e.g. car position/velocity/events in
the simulation, such as a gate becoming visible
or a lane change) using the mint.tools architec-
ture (Kousidis et al., 2013). In addition, we have
bridged INPROTK (Baumann and Schlangen, 2012)
with mint.tools via the Robotics Service Bus (RSB,
Wienke and Wrede (2011)) framework.

1http://www.opends.eu/
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Figure 2: Driver’s view during experiment. The
green signal on the signal-bridge indicates the tar-
get lane.

Dialogue System Using INPROTK, we imple-
mented a simple dialogue system. The notion of
“dialogue” is used with some liberty here: the user
did not interact directly with the system but rather
indirectly (and non-intentionally) via driving ac-
tions. Nevertheless, we used the same modularisa-
tion as in more typical dialogue systems by using a
dialoge management (DM) component that controls
the system actions based on the user actions. We
integrated OpenDial (Lison, 2012) as the DM into
INPROTK,2 though we only used it to make simple,
deterministic decisions (there was no learned dia-
logue policy) based on the state of the simulator
(see below). We used the incremental output gen-
eration capabilities of INPROTK, as described in
(Buschmeier et al., 2012).

3 Experiment

We evaluated the adaptation strategy in a driving
simulation setup, where subjects performed a 30
minute, simulated drive along a straight, five-lane
road, during which they were occasionally faced
with two types of additional tasks: a lane-change
task and a memory task, which aim to measure the
driving performance and the driver’s ability to pay
attention to speech while driving, respectively. The
two tasks occured in isolation or simultaneoulsy.

The Lane-Change Task The driving task we
used is a variant of the well-known lane-change
task (LCT), which is standardised in (ISO, 2010):
It requires the driver to react to a green light posi-
tioned on a signal gate above the road (see Figure 2).
The driver (otherwise instructed to remain in the
middle lane) must move to the lane indicated by

2OpenDial can be found at http://opendial.
googlecode.com/.

Table 1: Experiment conditions.

Lane Change Presentation mode Abbreviation

Yes CONTROL CONTROL_LANE
Yes ADAPTIVE ADAPTIVE_LANE
Yes NO_TALK NO_TALK_LANE
No CONTROL CONTROL_EMPTY

the green light, remain there until a tone is sounded,
and then return again to the middle lane. OpenDS
gives a success or fail result to this task depending
on whether the target lane was reached within 10
seconds (if at all) and the car was in the middle lane
when the signal became visible. We also added a
speed constraint: the car maintained 40 km/h when
the pedal was not pressed, with a top speed of 70
km/h when fully pressed. During a Lane-change,
the driver was to maintain a speed of 60 km/h, thus
adding to the cognitive load.

The Memory Task We tested the attention of
the drivers to the generated speech using a simple
true-false memory task. The DM generated utter-
ances such as “am Samstag den siebzehnten Mai
12 Uhr 15 bis 14 Uhr 15 hast du ‘gemeinsam Essen
im Westend mit Martin’ ” (on Saturday the 17th
of May from 12:15–14:15 you are meeting Mar-
tin for Lunch). Each utterance had 5 information
tokens: day, time, activity, location and partner,
spoken by a female voice. After utterance comple-
tion, and while no driving distraction occurred, a
confirmation question was asked by a male voice,
e.g. “Richtig oder Falsch? – Freitag” (Right or
wrong? – Friday). The subject was then required
to answer true or false by pressing one of two re-
spective buttons on the steering wheel. The token
of the confirmation question was chosen randomly,
although tokens near the beginning of the utterance
(day and time) were given a higher probability of
occurrence. The starting time of the utterance re-
lative to the gate was varied randomly between 3
and 6 seconds before visibility. Figure 3 gives a
schematic overview of the task and describes the
strategy we implemented for interrupting and re-
suming speech, triggered by the driving situation.

3.1 Conditions

Table 1 shows the 4 experiment conditions, de-
noting if a lane change was signalled, and what
presentation strategy was used. Each condition ap-
peared exactly 11 times in the scenario, for a total
of 44 episodes. The order of episodes was randomly
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t1 t2 sucgate lane t3

0
1
2
3
4

am Samstag den siebzehn- den siebzehnten Mai …
am Samstag den siebzehnten Mai um 12 Uhr hast du ‘Besprechung mit Peter’

ADAPTIVE

CONTROL

Figure 3: Top view of driving task: as the car moves to the right over time, speech begins at t1, the gate with
the lane-change indicator becomes visible at t2, where in the adaptive version speech pauses. Successful
lane change is detected at suc; successful change back to the middle lane is detected at lane, and resumes.
(If no change back is detected, the interruption times out at t3). All red-dotted lines denote events sent
from OpenDS to the Dialogue Manager.

generated for each subject. With this design, sub-
jects perceive conditions to be entirely random.

3.2 Dependent Variables

The dependent variables for the Memory task
are (a) whether the subject’s answer was correct
(true/false), and (b) the response delay, which is
the time from the end of the clarification ques-
tion to the time the true or false button was
pressed. For the driving task, the dependent vari-
ables are the OpenDS performance measurements
success/failure (as defined above) and reaction time
(time to reach the target lane).

3.3 Procedure

After signing a consent form, subjects were led into
the experiment room, where seat position and audio
level were adjusted, and were given written instruc-
tions. Next, the OpenDS scenario was initiated. The
scenario started with 10 successive lane-change sig-
nal gates without speech, for driving training. An
experimenter provided feedback during training
while the subjects familiarized themselves with the
driving task. Following the training gates came a
clearly-marked “START” gate, signifying the be-
ginning of the experiment to the subjects (at this
point, the experimenter left). There was a “FINISH”
gate at the end of the scenario. The whole stretch of
road was 23 km and took approximately 30 minutes
to complete. After the driving task, the subjects
were given a questionnaire, which asked them to
identify the information presentation strategies and
assign a preference.

Table 2: Subjects’
judgement of task
difficulty.

Diff. Freq.

4 (easy) 8
3 7
2 1
1 (hard) 1

Table 3: Subjects’ system
preference.

Preference Freq.

ADAPTIVE 3
CONTROL 9
Neither 5

4 Results

In total, 17 subjects (8 male, 9 female, aged 19-
36) participated in the study. All of the subjects
were native German speakers affiliated with AN-
ONYMIZED University. As reported in the post-test
questionnaire, all held a driving license, two had
previous experience with driving simulators and
only one had previous experience with spoken dia-
logue systems. Table 2 shows the subjects’ assess-
ment of difficulty, while Table 3 shows their prefer-
ence between the different strategies. Most subjects
found the task relatively easy and either prefer the
speech not to adapt or have no preference.

Memory task The overall percentages of correct
answers to the system’s recall questions (across all
subjects) are shown in Table 4. We see that the sub-
jects’ performance in this task is considerably bet-
ter when the system adapts to the driving situation
(ADAPTIVE_LANE condition) rather than speaking
through the lane change (CONTROL_LANE con-
dition). In fact, the performance in the ADAPT-
IVE_LANE condition is closer to the control upper
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Table 4: Performance in memory task per condi-
tion.

Condition Percentage

CONTROL_EMPTY 169/180 (93.9%)
ADAPTIVE_LANE 156/172 (90.7%)
CONTROL_LANE 150/178 (84.3%)

Table 5: Success in driving task per condition (as
reported by OpenDS).

Condition Success

NOTALK_LANE 175/185 (94.6%)
ADAPTIVE_LANE 165/174 (94.8%)
CONTROL_LANE 165/180 (91.7%)

bound (CONTROL_EMPTY condition). We tested
significance of the results using a generalized lin-
ear mixed model with CONDITION and SUBJECT

as factors, which yields a p-value of 0.027 when
compared against a null model in which only SUB-
JECT is a factor. No significant effects of between-
subjects factors gender, difficulty or preference
were found. In addition, the within-subject variable
time did not have any significant effect (subjects do
not improve in the memory task with time).

The average response delay (from the end of
the recall question to the button press) per condi-
tion across all subjects is shown in Figure 4. Sub-
jects reply slower to the recall questions in the
CONTROL_LANE condition, while their perform-
ance in the ADAPTIVE_LANE condition is indis-
tinguishable from the CONTROL_EMPTY condi-
tion (in which there is no distraction). Addition-
ally, there is a general decreasing trend of response
delay with time, which means that users get ac-
quainted with the task (type of information, format
of question) over time. Both factors (condition
and time) are significant (repeated measures AN-
OVA, 2x2 factorial design, Fcondition = 3.858, p =
0.0359,Ftime = 4.672, p = 0.00662). No significant
effects were found for any of the between-subject
factors (gender, difficulty, preference).

Driving task The success rate in the lane-change
task per condition is shown in Table 5. Here too
we find that the performance is lower in the CON-
TROL_LANE condition, while ADAPTIVE_LANE

does not seem to affect driving performance, when
compared to the NOTALK_LANE condition. The
effect is significant (p = 0.01231) using the same
GLMM approach and factors as above.
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Figure 4: User answer response delay under three
conditions.

5 Discussion, Conclusions, Future Work

We have developed and tested a driving simula-
tion scenario where information is presented by a
spoken dialogue system. Our system has the unique
ability (compared to today’s commercial systems)
to adapt its speech to the driving situation: it in-
terrupts itself when a dangerous situation occurs
and later resumes with an appropriate continuation.
Using this strategy, information presentation had
no impact on driving, and dangerous situations no
impact on information recall. In contrast, a system
that blindly spoke while the driver was distracted
by the lane-change task resulted in worse perform-
ance in both tasks: subjects made more errors in
the memory task and also failed more of the lane-
change tasks, which could prove dangerous in a
real situation.

Interestingly, very few of the subjects preferred
the adaptive version of the system in the post-task
questionnaire. Among the reasons that they gave
for this was their inability to control the interrup-
tions/resumptions of the system. We plan to ad-
dress the issue of control by allowing future ver-
sions of our system to accept user signals, such as
speech or head gestures; it will be interesting to see
whether this will impact driving performance or not.
Further, more sophisticated presentation strategies
(e.g., controlling the complexity of the generated
language in accordance to the driving situation) can
be tested in this framework.
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Abstract 

This paper presents a first, largely qualitative 

analysis of a set of human-human dialogues 

recorded specifically to provide insights in how 

humans handle pauses and resumptions in 

situations where the speakers cannot see each 

other, but have to rely on the acoustic signal alone. 

The work presented is part of a larger effort to find 

unobtrusive human dialogue behaviours that can be 

mimicked and implemented  in-car spoken 

dialogue systems within in the EU project Get 

Home Safe, a collaboration between KTH, DFKI, 

Nuance, IBM and Daimler aiming to find ways of 

driver interaction that minimizes safety issues,. The 

analysis reveals several human temporal, 

semantic/pragmatic, and structural behaviours that 

are good candidates for inclusion in spoken 

dialogue systems. 

1 Introduction 

In-car spoken dialogue systems face specific 

challenges that are of little or no relevance for 

systems designed for other environments. The 

two most striking of these are (1) the very strong 

focus on safety in the driving situation and (2) 

the fact that the person who speaks to the system 

– its user, in other words the driver in the 

majority of cases – does so in an environment 

that may change quite drastically from the 

beginning of an interaction to its completion. The 

most straightforward source for this change is the 

fact that the car (and the user) moves through the 

environment while the dialogue progresses. The 

dynamic and mobile nature of the surrounding 

traffic adds to the complexity. Generally 

speaking, safety is the key concern when 

designing spoken dialogue systems for in-car use. 

While poor performance in spoken dialogue 

systems can clearly be a nuisance to a driver, the 

promise of using properly designed spoken 

dialogue instead of other interfaces is increased 

safety. This promise is based in the nature of 

speech: it does not require the driver to divert the 

use hands and eyes from the driving, and it is a 

mode of communication that most are quite used 

to and comfortable with, so should not induce 

great amounts of cognitive load. 

We present a corpus consisting of a set of 

human-human dialogues recorded specifically to 

provide insights in how humans handle 

interruptions - how they pause and resume 

speaking - in situations where the speakers 

cannot see each other, but have to rely on the 

acoustic signal alone, and a preliminary analysis 

of these which reveals several candidates for 

inclusion in in-car spoken dialogue systems. 

Finally, we discuss how these can be 

implemented and how a selection of them are 

included in the Get Home Safe experiment 

implementation. 

2 Background and related work 

In a government-commissioned survey from 

2011, the Swedish National Road and Transport 

Research Institute reviews several hundred 

research publications on traffic safety and the use 

of mobile phones and other communication 

devices [Kircher et al., 2011]. Amongst the most 

striking findings: although there is a broad 

consensus that visual-manual interactions (e.g. 

using social media or texting) with 

communication devices impair driving 

performance, bans have not had any measurable 

effects in terms of lowered accident rates or 

insurance claims. Ban compliance statistics show 
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that bans have an effect on driver behaviour the 

first year, after which drivers return to their 

former habits. With bans being virtually 

ineffective, solutions must be sought elsewhere. 

Allowing drivers to manage more tasks using 

speech, which does not occupy hands and eyes, 

would decrease the time spent in visual-manual 

interaction while driving, provided that the 

drivers can be persuaded to use the systems.  

Clearly, the systems must work well - a large 

proportion of errors may well put the driver at 

risk (e.g. Kun et al., 2007). It is also unlikely that 

drivers can be persuaded to use systems that do 

not work well. But using hand-free and eyes-free 

controls may not suffice. Kircher et al. (2011) 

notes that there is virtually no evidence that 

hands-free telephony is less risky than hand-held 

use, suggesting that the conversations in 

themselves may be a risk factor. Speaking to a 

person who is present in the car and who shares 

the driver’s situation, however, is much safer 

(Peissner et al., 2011), suggesting that a system 

that is perceived as and behaves like a co-present 

human is a sensible aim. In the EU project Get 

Home Safe, of which this research is a part, we 

call such systems humanlike proactive systems. 

Where a traditional spoken dialogue system 

bases its decisions largely on (1) whether it has 

something to say, (2) what the user has just said, 

and (3) whether the user is speaking or is silent, a 

humanlike proactive system will also consider (4) 

the (traffic) situation, (5) the user’s (driver's) 

estimated attention, and (6) the urgency of the 

task at hand, much like a passenger might.  

This paper focusses on two broad types of 

proactive humanlike behaviours: user controlled 

pacing, referring to the ability to pause at the 

whim of the user in the middle of a conversation, 

or even an utterance, and then resume the 

conversation; and situation sensitive speech, the 

ability to allow the situation to affect the manner 

in which the system speaks. We are searching for 

behaviours that people use when interrupted, 

either by their interlocutor or by some event in 

their environment, and when they resume the 

original dialogue again. We are specifically 

interested in behaviours that can be implemented 

in the Get Home Safe architecture without major 

changes to existing applications. The architecture 

allows a central manager to instruct applications 

to stop where they are and maintain their inner 

state until instructed to either exit or continue 

where they were.  

The task has been approached by others, albeit 

in different manners. Villing (2010) presents an 

analysis of interruptions and resumptions in 

human-human in-vehicle dialogues, as well as 

implications for future in-car dialogue systems, 

and Yang et al. (2011) used human-human multi-

tasking dialogues that involved a poker game as 

the main task, and a picture game as an 

interrupting real-time task. 

3 Method 

Our goal is to collect and analyse data that will 

provide an insight to how a human speaker deals 

with interruptions in in-car dialogue (our target 

setting) and to find relevant behaviours that can 

be successfully mimicked in an in-car human-

computer environment. The question can be 

subdivided: How does a human speaker stop 

speaking when faced with an (possible) 

interruption? How does a human speaker resume 

speaking after such an event? Which of these 

behaviours are plausible candidates for inclusion 

in a spoken dialogue system? 

3.1 Data Collection 

Setting. Collecting data from a real driving 

situation is time consuming, not to say dangerous 

when adding a secondary task. We have instead 

opted to simulate the key elements of interest in 

our dialogue recording studio – a safe recording 

environment consisting of several physically 

distinct locations that are interconnected with 

low and constant latency audio and video. The 

interlocutors were placed in different rooms, and 

communicated through pairs of wireless close-

range microphones and loudspeakers. 

Subjects. The purpose of this data collection is 

not for example training a recognizer, but the 

generation of a consistent set of candidate 
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behaviours for implementation in a spoken 

dialogue system – one that contains behaviours 

that could all plausibly be used by the same 

speaker. To achieve this, we consistently use the 

same single male speaker in the role as the 

system (“speaker”, hereafter) for all recordings. 

For the user role (“listener”, hereafter), a 

balanced variety of speakers were used: two sets 

of 8 listeners, both balanced for gender, were 

used. None of the listeners had any previous 

knowledge of this research. All listeners were 

rewarded with one cinema ticket. They were told 

that those who performed the task best would 

earn a second ticket, and the top performers from 

each setup received a second ticket after the 

recordings were completed. 

Task. The data collection was designed as a dual 

task experiment. The main task for the speaker 

was to read three short informative texts about 

each of three cities (Paris, Stockholm, and 

Tokyo), arranged so that the first is quite general, 

the second more specific, and the third deals with 

a quite narrow detail with some connection to the 

city. This task is equivalent to what one might 

expect from a tourist information system. For the 

listener, the main task is to listen to the city 

information. The listener is motivated by the 

knowledge that the reading of each segment - 

that is each of the nine informative texts - is 

followed by three questions on the content of the 

text. Their performance in answering these 

questions and in completing the secondary task 

counted towards the extra movie ticket. The 

secondary task was designed as follows. At 

irregular, random intervals, a clearly visible 

coloured circle would appear, either in front of 

the speaker or the listener. When this happened, 

the speaker was under obligation to stop the 

narration and instead read a sequence of eight 

digits from a list. The listener must then to repeat 

the digit sequence back to the speaker, after 

which the speaker could resume the narration.  

Conditions. We considered two characteristics 

of in-car interruptions that we assumed would 

have an effect on how humans react to the 

interruption and to how they resume speaking 

after it: the source of an interruption can be 

either internal or external in an in-car dialogue 

(our target setting); and the duration and content 

of an interruption varies, they can be brief or 

even the result of a mistake, or they can be long 

and contentful. The condition mapping to the 

first of these characteristics was designed such 

that the coloured circle signalling an interruption 

was presented randomly to either the speaker, 

mapping to en external event visible to the 

system but not the driver, or to the listener, 

mapping to an interruption from the driver to the 

system (the listener had to speak up to inform the 

speaker that the circle was present). The second 

condition was designed such that in one set of 

eight dialogues, the coloured circle would start 

out yellow, and as soon as the speaker became 

silent, it would randomly either disappear 

(causing only a short interruption with light or no 

content, corresponding to e.g. a false alarm) or 

turn red, in which case the sequence of digits 

would be read and repeated (a contentful 

interruption). In the other set of eight recordings, 

the circle always went straight to red, and always 

caused digits to be read and repeated. 

3.2 Analysis 

Each channel of each recording was segmented 

into silence delimited speech segments 

automatically, and these were transcribed using 

Nuance Dragon Dictate. The transcriptions were 

then corrected by a human annotator, and 

labelled for interruptions and resumptions. In this 

initial analysis, we looked at temporal statistics 

(e.g. the durations between interruption from the 

listener and silence from the speaker), 

semantics/pragmatics (e.g. lexical choices, 

insertions, repetitions) and syntax (e.g. where in 

an utterance resumption begins).  

4 Results 

A categorical difference was found in the 

distribution of speaker response times (from the 

onset of a listener interruption to the offset of 

speaker speech) depending on whether the 

interruption occurred in the middle of a phrase or 

close to the end of the phrase. In the first case, 

the vast majority of the response times are 
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distributed between 300 and 700 ms, with a clear 

mode around 400 ms. Only a fraction of response 

times are slower than 700 ms, and none except 

one is faster than 300 ms. Phrase final 

interruptions show an almost flat response time 

distribution, with only a very weak mode around 

500 ms, and a large proportion with response 

times longer than 700 ms.  

For lexical/pragmatic choices, we find a 

categorical variation for the insertion of 

vocalizations we somewhat lazily term filled 

pauses (e.g. "eh", "em") and what we equally 

lazily term lexical cue phrases (e.g. "right", "ok") 

before resumption. The existence of such 

insertions, as well as the choice of vocalization, 

is straightforwardly dependant on the 

contentfulness of the interruption. For short 

interruptions of light content, filled pauses are 

nearly never inserted before resumption. Lexical 

cue phrases are inserted, but rarely. In the typical 

case, the speaker goes straight back to the 

informational text. For long, contentful 

interruptions, resumption is initiated by an 

insertion in an overwhelming majority of cases. 

If the insertion consists of one vocalization only, 

this is nearly always a filled pause. If more than 

one vocalization is present, then lexical cue 

phrases occur frequently, but overall, lexical cue 

phrases are no more common here than in the 

case of the short interruptions.  

In the case of structural comparisons, the one 

clear distinction we found has to do with what, if 

any, material is repeated at resumption, a 

characteristic that varies strongly with the type of 

interruption. For long interruptions, in every 

instance but a handful, the speaker either repeats 

the entire utterance in which the interruption 

occurs, or - in the few cases where an 

interruption occurred just as an utterance came to 

an end - with the next utterance. For short 

interruptions, resumptions also start most 

regularly from either the start of the current 

utterance or from the start of the next one. 

However, starts from the beginning or end of the 

current phrase, word, or even part of word are 

also frequent.  

5 Discussion 

We think that the three main findings presented 

in the results are all good candidates for 

implementation. The different distributions of 

response times suggest that if an interruption 

occurs centrally, in the midst of a production, the 

speaker stops as fast as possible - the distribution 

is largely consistent with reaction time 

distributions. Towards the end of phrases, the 

distribution is flat and quite different to what one 

would expect if reaction time was the main 

governing factor. The larger proportion of long 

response times suggests that when the speaker is 

close to the end of a phrase, finishing the phrase 

first might be preferable to stopping as soon as 

reaction permits. From an implementation 

perspective, this is quite encouraging. In order to 

create a behaviour consistent with this, we need 

to halt system speech with a reaction time of 

around 3-500ms. If possible (i.e. if the system 

knows how much time remains of its production), 

we may instead complete the utterance if less 

than, say, 700ms remains.  

Seemingly, short light content interruptions 

need no specific signalling of resumption. If such 

signalling is made, it is in the form of a lexical 

cue phrase, such as "ok" or "right". Resumptions 

following longer, contentful interruptions are 

routinely initiated by a filled pause. This may be 

solely due to the speaker's need to find the 

correct place in the script to start over, but it is 

noteworthy that instead of doing this in silence, 

the speaker opts to vocalize. For implementation, 

resumptions following contentful subdialogues 

should start with a filled pause and perhaps a 

lexical cue phrase.  

The straightforward interpretation of the third 

finding is that in the case of short interruptions, 

both speaker and listener have the point of 

interruption in fresh memory, and need no 

reminder, while long interruptions require the 

speaker to help the listener out by recapitulating 

what was last said. In the latter case, the system 

can simply start over with its last utterance 

(provided that it produces its synthesis on a 

granularity of at least utterance level).  
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