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Abstract S
In this paper, we investigate which fea- NP/\VP
tures are useful for ranking semantic rep-
resentations of text. We show that two ’ /\
methods of generalization improved re- ’I\‘ trgat NP
sults: extended grand-parenting and super- /\
types. The models are tested on a subset of
SemCor that has been annotated with both N PP
Dependency Minimal Recursion Seman- /\ A
tic 'representatlons and WordNet senses. doN . N TR —_
Using both types of features gives a sig- 9
nificant improvement in whole sentence /\
parse selection accuracy over the baseline C;'JJ C'g'ts
model.

Figure 1: Syntactic view of sentencktfeat dogs
1 Introduction and cats with worms”

In this paper we investigate various features to _ _
improve the accuracy of semantic parse ranking'.CateS and their arguments. These can miss some

There has been considerable successful work offfPortant connections between predicates.
syntactic parse ranking and reranking (Toutanova An example parse tree féitreat dogs and cats
et al., 2005; Collins and Koo, 2006; McClosky with wormsis shown in Figure 1, for the interpre-
etal., 2006), but very little that uses pure semanti¢ation “I treat both dogs and cats that have worms”
representations. With recent work on building se{not “I treat, using worms, dogs and cats” or any
mantic representations (from deep grammars sucff the other possibilities)
as LFG (Butt et al., 1999) and HPSG (Sag et al., The semantic representation we use is De-
1999), directly through lambda calculus, or as inpendency Minimal Recursion Semantics (DRMS:
intermediate step in machine translation) the quesCopestake, 2009). The Minimal Recursion Se-
tion of ranking them has become more important.mantics (MRS: Copestake et al., 2005) is a com-
The closest related work is Fujita et al. (2010)putationally tractable flat semantics that under-
who ranked parses using semantic features frorfpecifies quantifier scope. The Dependency MRS
Minimal Recursion Semantics (MRS) and syntacdS an MRS representation format that keeps all
tic trees, using a Maximum Entropy Ranker. Theythe information from the MRS but is Simpler to
experimented with Japanese data, using the Hinoknanipulate. DMRSs differ from syntactic de-
Treebank (Bond et al., 2008), using primarily ele-pendency graphs in that the relations are defined
mentary dependencies: single arcs between pre@etween slightly abstract predicates, not between

*Currently at Pointinside, Inc. !Simplified by omission of non-branching nodes.



surface forms. Some semantically empty surfacescores with statistical constituency parsers using
tokens (such as infinitivéo) are not included, SFs. Agirre et al. (2011) have followed up on
while some predicates are inserted that are not ithose results and re-trained a dependency parser
the original text (such as the null article). on the data where words were replaced with their

A simplified MRS representation of our exam- SFs. This resulted in a very modest labeled at-
ple sentence and its DMRS equivalent are showtachment score improvement, but with a signifi-
in Figure 2. cantly reduced feature set. In arecent HPSG work,

In the DMRS, the basic links between the nodedMacKinlay et al. (2012) attempted to integrate lex-
are present. However, potentially interesting relaical semantic features, including SF backoff, into
tions such as that between the vérgat and its a discriminative parse ranking model. However,
conjoined argumentdogsandcatsare not linked this was not shown to help, presumably because
directly. Similarly, the relation betweeattogs and  the lexical semantic features were built from syn-
cats and wormsis conveyed by the preposition tactic constituents rather than MRS predicates.
with, which links them through its external argu- The ancestor features found to be helpful here
ment ARG1: and) and internal argumenhRG2:  are inspired by the use of grand-parenting in syn-
wormg. There is no direct link. We investigate tactic parse ranking (Toutanova et al., 2005) and
new features that make these links more direcchains in dependency parsing ranking (Le Roux
(Section 3.2). etal., 2012).

We also explore the significance of the effec-
tiveness of links between words that are connected Resources and M ethodology
arbitrarily far away in the semantic graph (Sec-
tion 3.2.3).

Finally, we experimented with generalizing
over semantic classes. We used WordNet semant®1  Corpus: SemCor

files as supertypes to reduce data sparseness (Ser%— evaluate our ranking methods, we are using

t!on 3.2.4). Thls_W|II generallge th.e lexical se_man-the Redwoods Treebank (Oepen et al., 2004) of
tics of the predicates, resulting in a reduction of : : :
feature size and ambiguity. manually dlsamblgua';ed HPSG parses, stormg_full
signs for each analysis and supporting export into
a variety of formats, including the Dependency
MRS (DMRS) format used in this work.
This paper follows up on the work of Fujita et al. The HPSG parses in Redwoods are based on
(2010) in ranking MRS semantic representationsthe English Resource Grammar (ERG; Flickinger,
which was carried out for Japanese. We are con2000) — a hand-crafted broad-coverage HPSG
ducting a similar investigation for English, and grammar of English.
add new features and approaches. Fujita et al. For our experiments, we used a subset of the
(2010) worked with the Japanese Hinoki CorpusRedwoods Treebank, consisting of 2,590 sen-
(Bond et al., 2008) data and used hypernym chaintences drawn from SemCor (Landes et al., 1998).
from the Goi-Taikei Japanese ontology (lkeharalin the SemCor corpus each of the sentences is
et al., 1997) for variable-level semantic backoff.tagged with WordNet senses created at Princeton
This is in contrast to the uniform WordNet seman-University by the WordNet Project research team.
tic file backoff performed here. In addition, this The average length of the Redwoods SemCor sen-
work only focuses on MRS ranking, whereas Fu-tences is 15.4 words, and the average number of
jita etal. (2010) combined MRS features with syn-parses is 247.
tactic features to improve syntactic parse ranking From the treebank we can export the DMRS.
accuracy. The choice of which words become predicates is
Our use of WordNet Semantic Files (SF) to re-slightly different in the SemCor/WordNet and the
duce lexical feature sparseness is inspired by seleRG. The ERG lexicon groups together all senses
eral recent papers. Agirre et al. (2008, 2011) havéhat have the same syntactic properties, making
experimented with replacing open-class wordghem underspecified for many sense differences.
with their SFs. Agirre et al. (2008) have shown Thus elementary predicatat,,.; could be any of
an improvement in full parse and PP attachmenthe WordNet sensesat,,.; “feline mammal usu-

In this section we introduce the corpus we work
on, and the features we extract from it.
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Figure 2: MRS and DMRS fortreat cats and dogs with worms



Tops, act ,, body, change,

ani nal ,, artifact, cognition, comuni cati on,

attri bute, body, conpetition, consunption,
cognition, conmunication, cont act ,, creation,

event, feeling, enoti on, noti on,

food, group, perception, possession,

| ocati on,, notive, soci al , stative,

obj ect , person, weat her ,

phenonenon, plant, o
possessi on, process, Table 2: WordNet Verb Semantic Files.
quantity, rel ation,

shape,, state, the semantic dependency features (Baseline). 17—
substance, tinge, 18 are the conjunctive features (LR). 19-22 are the

Table 1: WordNet Noun Semantic Files.

preposition role features (PR).

Sample Features

#
ally having thick soft fur and no ability to roar”, 0
cat,.o “an informal term for a youth or man” and 1
six more? In some cases, DMRS decomposes a 2
single predicate into multiple predicates (ehgre 3
into in,, this, place,). The ERG and WordNet also 4
often make different decisions about what consti- 5
tutes a multiword expression. For these reasons 6
the mapping between the two annotations is not 7
always straightforward. In this paper we use the g8
mapping between the DRMS and WordNet anno- 9
tations produced by Pozen (2013). 10

Using the mapping, we exploited the sense tag- 11
ging of the SemCor in several ways. We ex- 12
perimented both with replacing elementary pred- 13
icates with their synsets, their hypernyms at var- 14
ious levels and with their semantic files (Landes 15
et al.,, 1998), which generalize the meanings of 16

0 treat,.; ARG1 pron ARG2 and,.)
0 and. L-IND dog,:; R-IND caty,.1)
0 with,, ARG1 and. ARG2 wormy,1)
1 treat,.; ARG1 pron)

1 treat,.,; ARG2 and,.)

1 and. L-IND dogy,.1)

1 and. R-IND caty.1)

1 with,, ARG1 and,.)

1 with, ARG2 wormy,.1)

2 treat,:; pron and,.)

2 withy, and, wormy,.1)

3 treat,,.; pron)

3 treat,:; and.)

3 and, dog,,.1)

3and, caty.1)

3 withy, and,.)

3 withy, wormy,. 1)

words that belong to the same broad semantic cat-17
egoriess These dozens of generalized semantic 18

1 treat,.; ARG2 dog,,.1)
1treat,.; ARG2 caty.1)

tags help to address the issue of feature sparse49
ness, compared to thousands of synsets. We show
the semantic files for nouns and verbs in Tables 120
and 2. In this paper, we only report on the parse 21
selection accuracy using semantic files to reduce22
ambiguity, as it gave the best results.

3.2 Semantic Dependency Features

In this section we introduce the baseline features
for parse ranking.

Table 3 shows example features extracted froni!"® tYPe
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O and. L-IND dog,.; R-IND cat,.1
with,, worm,.1 )

(1 and.with,, worm,,.;)

(2 and. wormy,.1)

(3 and, wormy,.1)

Table 3: Features for the DMRS in Fig 2.

Baseline features are those that directly reflect
the dependencies of the DMRS. In Table 3, fea-

(0) (0—2) shows predicates with all their

the DMRS depicted in Figure 2.Features 1-16 ar@'guments. Feature tye) (3-8) shows each ar-
gument individually. Feature typg@) shows all ar-

2Elementary predicates are shown in sans-serif foriyord-
Net senses in bold italic, Wor dNet semantic fil es
are shown in bold typewriter.

guments without the argument types. Feature type
(3) is the least specified, showing individual argu-

3Semantic Files are also sometimes referred to as Sematments without the labels. These types are the same

tic Fields, Lexical Fields or Supersenses.

as the MRS features of Toutanova et al. (2005) and



Sample Features
0 treat,.; ARG1 pron ARG2 and,.)
0 and. L-IND dogy:; R-IND caty,.1)
O treat,.; ARG2 dog,,:; ARG2 caty,.1)
1 treat,.; ARG1 pron)
1 treat,.; ARG2 and..)
1 treat,.; ARG2 dog,,.1)
1 treat,.; ARG2 caty.1)

(
(
(
(
(
(
(
(1 and, L-IND dogy,.1)
(
(
(
(
(
(
(

the seM-DEP features of Fujita et al. (2010).

3.2.1 Conjunctive Features

#
0
1
We further create two more features, called 2
Left/Right Handle Features (LR), to link directly 3
the two arguments of conjunctive relations with 4
their parent, independently from the other ar- 5
gument. In Table 1, for example, the feature 6
(treat,.; ARG2 and..), although valid, does notcon- 7
vey the meaning of the sentence. Instead, we add8
the two LR featureStreat,.; ARG2 dog,,.1) (fea- 9
ture 17) and(treat,.; ARG2 cat,,.;) (feature 18), 10

1 and. R-IND caty.1)
2 treat,.1 pron and,.)
2 treat,.1 dogy:1 Catn:1>

which better model the conjunction relation. 11 (3treat,.; pron)
" 12 (3treat,; and.)

3.2.2 Preposition Role Features 13 (3treaty; dogy1)
: mn:

As shown in Figure 2, the nodeith, has two 14
links: toand. (ARG1) and toworm,,.; (ARG2). The

two relations together indicate a noun-preposition- Table 4: Ancestor Features (AF).
noun relationship. Instead of breaking the rela-

tionship into the two separate features, we introdependencies between the predicate and the de-
duce it, as awhole, as a new type of feature, whergcendants. We name these features Ancestor Fea-
the two arguments of the preposition (e.gnd.,  tures (AF).
wormy,:1) Will have a direct relation via the preposi-  Table 4 has some sample AF features such as
tion (e.g.with,). We name these Preposition Rolethat linking fromtreat,.; t0 dog,.; andcat,.1 (i.e.
features (PR), as they are similar in spirit to sefeature 2). This is a one-level ancestor, involving
mantic roles. Some sample PR features are givefivo predicates, while multi-level ancestors deal
in Table 3, features 19-22. with more than two predicates linked in a se-
The new features explicitly convey, for exam- quence. Note that these are different from the LR
ple, noun-preposition-noun relations. Parses corfeatures (features 15, 16 in Table 1), in that AF
taining features likesomething at somewheoan  features include both arguments of a conjunction,
be further distinguished from parses containatg for example, connecting the predicatet,,.; to its
somewherandsomething aseparately. When the grandchildrendog,,.; andcat,.; via the argument
features become more representative, active pars@sie of and,. in the predicate (feature 2 in Table 4).
are more likely to be selected, though with the cost When a sentence has dependencies, our

of a larger feature set size. method generate@(@) = O(n?) AF fea-

As 4 types of features can be developed basefijres. In the corpus we use, the dependency struc-
on one relationShip, a PrepOSition Role link WOUldture of a sentence typ|ca||y has 4 levels. In prac-
have 4 separate features. While the Conjunctivgice the number of AF features is roughly triple
features mentioned in previous section give 2 t0 4he number of Baseline features. In the evaluation
additional features, Baseline-PR features normallgxperiments, we investigated all the eight combi-
give 4 more. ThUS, the feature size of Base"ne-nations of the three types of LR, PR, and AF fea-
PR model is larger than that of the Baseline-LRtyres, where each combination is combined with

model. the baseline features.

3 treat,.; caty.1)

3.2.3 Ancestor Features 3.2.4 Semantic File Features

While the semantic dependency features correln the features up until now, words have been rep-
spond to direct dependencies, we introduce a newesented as elementary predicate semantic depen-
type of features that represent indirect dependerdencies (SD). Because SemCor also has WordNet
cies between ancestors and their descendants s®nses, we experiment with replacing open class
the DMRS. For each predicate, we collect all itswords with their supertypes, in this case using
descendants linked through more than one depetthe WordNet semantic files (SF). If a word is not
dency and create features to represent the indirechatched to a WordNet synset we continue to use



# Sample Features Features Accuracy Features
0 (Obody, ARG1 pron ARG2 and_.) (%) (x1,000)
1 (Oand. L-IND ani mal ,, R-IND ani mal ,,) SD-Baseline 25.4 454
2 (Owith, ARGl and. ARG2 ani mal ,,) SD+LR 25.3 469
3 (1body, ARG pron) SD+PR 25.8 563
4 (1body, ARG2 and.) SD+LR+PR 25.6 582
5 (land.L-IND ani mal ,) SD+AF 24.8 1,430
6 (land.R-IND ani mal ,,) SD+AF+LR 27.1 1,497
7 (lwith, ARGl ani mal ,) SD+AF+PR 25.8 1,761
8 (Lwith, ARG2 ani mal ,,) SD+AF+LR+PR 26.3 1,842
9 (2body, pron and.) ] )
10 (2 withyand, animal,) Table 6: Parse selection results with SD.
11 (3body, pron) Features Accuracy Features
12 (3body, and.)
13 (3and. ani nal ,) . (%) (x1,000)
14 (3and, ani mal ,) SF-Baseline 25.0 223
15 (3with, and,) SF+LR 25.1 235
16 (3with, ani mal ,) SF+PR 26.3 306
¢ " SF+LR+PR 26.3 321
Table 5: Baseline features with Semantic Files SF+AF 282 1,051
(SF). SF+AF+LR 28.0 1,101
SF+AF+PR 28.1 1,310

_ _ ~ SF+AF+LR+PR 27.7 1,375
the elementary predicate. This SF representation

is also applied to the eight combinations of feature ~ Table 7: Parse selection results with SF.
types. A sample of the features in the SF represen-
tations are given in Table 5.

Sometimes two features, such as 13 and 14 i
Table 3, are replaced with the same feature, lik

We used TADM (Toolkit for Advanced Dis-
?@riminative Modeling; Malouf, 2002) for the train-
) ng and testing of our machine learning model, fol-
9 in Table 5, becauseogy,1 and cat,.; are both Iogving Fujita gt al. (2010). We carriedgout 10-fold
replaced W|th1_n| r_TaI n- There are about half as cross-validation for evaluation. We measured the
many Semantic File features as there are SD fe"%iarse selection accuracy at the sentence level. A
tres. parse was considered correct only when all the de-

pendencies of the parse are correct.

The results of parse selection based on SD and
We set up the evaluation task as reranking of th&F representations are shown in Tables 6 and 7.
top 500 Redwoods analyses, previously selectedhe addition of the ancestor features (AF) gives
by the syntactic MaxEnt ranker. The subset ofthe most increase in the parse selection accuracy.
SemCor introduced in Section 3.1 is trained andrhis result indicates that indirect dependencies as
tested with the features introduced in Section 3.2well as direct dependencies in a successful parse
We grouped the feature sets into two according tdrequently appear in other active parses. Second,
the two word representation of basic Semantic Dethe SF representation shows better results than the
pendencies (SD) and generalized Semantic File§D representation in most cases. The semantic ab-
(SF). Sometime two or more different parses of gtraction of the semantic files reduces the problem
sentence have the same set of features. That is, thé feature sparseness and is enough to effectively
features failed to distinguish between two parsestéerank parses, whose syntactic properties are al-
often because of spurious syntactic ambiguity thateady to some extent validated during parsing.
had no effect on the semantics. In this case we Third, the addition of the PR features also usu-
merged duplicate feature sets to reduce the ambally increases the parse selection accuracy. We
guity in machine learning. If an inactive parse hasplan to (semi-)automatically find more such multi-
the same set of features as that of the active onélependency structures whose combination shows
the resulting merged parse was treated as active.better performance than the individual dependen-

4 Results



cies. Fourth, the LR features do not improve the The overall accuracy is still quite low, due prin-
accuracy significantly in most cases, though thecipally to the lack of training data. We show
SD+AF+LR combination shows the best resultsthe learning curves for the SF+AF configuration
among the feature sets of the SD representationin Figure 3 (the other configurations are similar).
This is understandable since the number of the LR he curve is still clearly rising: the accuracy of
features in our corpus is much smaller than thos@arse selection on our corpus is far from saturated.
of the other features of SD, PR and AF. We needrhis observation gives us confidence that with a

to test it with a bigger corpus. larger corpus the accuracy of parse selection will
improve considerably. The learning curve in Fujita
5 Discussion et al. (2010) showed similar results for the same

h s sh h lidity of . amount of data, and increased rapidly with more
ese results show the validity of our assumptio they had a larger corpus for Japanese).

that long distance features and supertypes are both As there are so far still very few corpora with

useful for selecting the correct interpretation of aboth structural and lexical semantic annotation

sentence. Currently the SD+AF+LR model is the . L .
we are currently investigating the use of automatic

best for using the elementary predicates. How-

ord sense disambiguation to create the features,
ever the best overall results come from the SF+AﬁAI L g .
. — ..__inasimilar way to Agirre et al. (2008). Finally, we
model when we generalize to the semantic files

s , : would like to investigate even more features, such
In future work we will investigate on larger-sized

) as the dependency chains of Le Roux et al. (2012).
and more richly annotated corpora so that we can . oo o .
One exciting possibility is projecting ranking

discover more about the relation between featur o
?eatures across languages: wordnet semantic files

size and parse selection accuracy. In addition, we )
P y are the supertypes for all wordnets linked to

X hat increasing th r ize will | i- : .
expect that increasing the corpus size ead d he Princeton Wordnet, of which there are many

rectly to higher accuracy. Other avenues we woul )
ectly gher: Y . _(Bond and Foster, 2013). The predicates that are
like to explore is backing off not to the semantic . :

not in the wordnets are generally either named

files, but rather to WordNet hypernyms at various ... ) .
levels yperny entities or from smallish closed sets of function

words such as conjunctions, prepositions and pro-

These results show that generalizing to seman- . . .
nouns. We are currently investigating mapping

tic supertypes allows us to build semantic rankingthese between Japanese and English using trans-
models that are not only smaller, but more accus

. . fer rules from an existing machine translation sys-
rate. In general, learning time was roughly pro-

) tem (Bond et al., 2011). In principal, a small set
portional to the number of features, so a smaller .
(%f mappings for closed class words could allow us

model can pe Igarned faster. We_hypothe3|ze that {o quickly boot-strap a semantic ranking model for
is the combination of dependencies and supertypes

that makes the difference: approaches that used s%[]y language with a wordnet
mantic features on phrase structure trees (such -
Bikel (2000) and MacKinlay et al. (2012)) have in & Conclusion
general failed to get much improvement. In summary, we showed some features that help
parse selection. In the SD group, LR features
together with AF features achieved a 1.75% im-
provement in accuracy over the basic Baseline
model (25.36%— 27.12%). However, LR feature
alone and AF feature alone both decrease the accu-
racy (25.36%— 25.28% and 25.36%> 24.84%).
PR features and combination of PR and AF fea-
tures both achieved small improvements (0.416%
Baseline — Baseline+PR, 0.410% Baseline
Baseline-PR+AF). LR combined with PR features
did not improve the accuracy.

When features get generalized to supertypes, as
shown in the SF group, models with more fea-
Figure 3: Learning curve for SF+AF. tures achieved higher accuracies with the best be-

Learning Curves

Accuracy (%)

10% 30% 50% 70% 90%

Percentage



ing the model with ancestor features (AF) addedAnn Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pol-

This (SF+AF) achieved an improvement of 3.21%

absolute over the baseline model (24.97%

lard. 2005. Minimal Recursion Semantics. An introduc-
tion. Research on Language and Computatidt):281—
332.

28.18%). Adding more featur_eg to AF only qe' Dan Flickinger. 2000. On building a more efficient gram-
creases the accuracy. Generalizing to semantic su- mar by exploiting typesNatural Language Engineering
pertypes allows us to build dependency ranking © (1):15-28.

models that are not only smaller, but more accysSanae Fuijita, Francis Bond, Takaaki Tanaka, and Stephan

rate.
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