Java Libraries for Accessing the Princeton Wordnet:
Comparison and Evaluation

Mark Alan Finlayson
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar Street, Room 32-258, Cambridge, Massachusetts, 02139
markaf@mit.edu

Abstract

Java is a popular programming language for
natural language processing. I compare and
evaluate 12 Java libraries designed to ac-
cess the information in the original Prince-
ton Wordnet databases. From this compari-
son emerges a set of decision criteria that will
enable a user to pick the library most suited
to their purposes. I identify five deciding fea-
tures: (1) availability of similarity metrics; (2)
support for editing; (3) availability via Maven;
(4) compatibility with retired Java versions;
and (5) support for Enterprise Java. I also pro-
vide a comparison of other features of each li-
brary, the information exposed by each API,
and the versions of Wordnet each library sup-
ports, and I evaluate each library for the speed
of various retrieval operations. In the case
that the user’s application does not require one
of the deciding features, I show that my li-
brary, JWI, the MIT Java Wordnet Interface,
is the highest-performance, widest-coverage,
easiest-to-use library available.

A Java developer seeking to access the Prince-
ton Wordnet is faced with a bewildering array
of choices: there are no fewer than 12 Java li-
braries that provide off-the-shelf access to Word-
net data, each with various combinations of fea-
tures and performance. In addition to these 12
libraries, there are also at least 12 additional li-
braries! that, while not providing direct access to
Wordnet data themselves, provide functions such
as similarity metrics and deployment of Wordnet
data to database servers. In this paper I compare,
contrast, and evaluate each of the 12 libraries”
that provide direct access to the Princeton Wordnet
data, so as to help Java developers find the library

'See Table 6 for a list of all libraries and their URLS.

2 have made my best effort to be as complete as possi-
ble in identifying libraries that support access to Wordnet. It
is possible, however, that I have missed some more obscure
libraries, especially libraries whose primary purpose is not
Wordnet access but some other function.

that is right for their application. To my knowl-
edge this is the first paper to attempt a thorough
comparison of any of these libraries.

I proceed as follows. First I present the bottom
line, which is a set of five deciding features most
commonly encountered when using Wordnet in a
Java. I then discuss other features that distinguish
some libraries from the others. I present an assess-
ment of what Wordnet data is accessible via which
library, and which libraries are compatible with
which Princeton Wordnet versions. I also evalu-
ate the performance of each library on nine dif-
ferent retrieval metrics, as well as the time to ini-
tialize in-memory Wordnet dictionaries for those
libraries that suport that function.

The code for reproducing the evaluation (in-
cluding all required source code, copies of all the
described libraries, and the various versions of
Wordnet) is available online.?

While the software evaluated in this paper is ex-
clusively for Java, and is limited to libraries avail-
able at the time of writing that are designed for ac-
cessing the original Princeton Wordnet, this work
should be helpful to those who seek to evaluate
other application programming interfaces (APIs)
for interacting with Wordnet data. In particular
the set of features identified here and the set of
retrieval metrics should be of some use.

1 Deciding on a Library

Before discussing the feature and performance
evaluation in detail I will lay out the bottom line:
which library a developer should choose if your
application falls into one of the common situations
described below. First, I will outline which library
a developer should choose if there are no particu-
lar constraints. Next, I list five deciding features
that, if an application needs that feature, will de-

3Via the MIT DSpace repository as an MIT CSAIL Work
Product: http://hdl.handle.net/1721.1/81949

http://hdl.handle.net/1721.1/81949

termine which library the developer should choose
(or which libraries there are to choose from).
Note that an application may have additional
or alternate special requirements that are not ex-
plicitely discussed here. If this is the case the
developer should examine the tables and figures
in this paper, as well as the project websites (Ta-
ble 6), to determine what library provides the right
combination of features and performance.

1.1 No Special Requirements

If there have no special requirements, then the li-
brary a developer should choose is my own: JWI,
the MIT Java Wordnet Interface. JWI is a ma-
ture library, nearly five years old, and has demon-
strated its stability and utility, having been down-
loaded over 15,000 times in the past five years. It
has the following nine advantages: (1) JWI sup-
ports access to the widest array of information
in the widest selection of Princeton Wordnet ver-
sions (see Tables 2 and 3), plus has been tested on
a number of Wordnet variants; (2) JWI uses the
Wordnet files as they are distributed with no mod-
ifications; (3) JWI provides both file-based and
in-memory dictionary implementations, allowing
you to trade off speed and memory consumption;
(4) JWI sets no limit on the number of dictionaries
that may be instantiated in each JVM; (5) JWI is
high-performance, with top-ranked speeds on var-
ious retrieval metrics and in-memory dictionary
load time (see Tables 4 and 5 and Figure 1); (6)
JWI has a small on-disk footprint and requires no
additional Java libraries, no native dynamically-
loaded libraries (dlls), and no configuration files;
(7) JWI has extensive documentation, including
Javadoc and a User’s guide with code examples;
(8) JWI is open-source and distributed under a li-
cense which allows it to be used for any purpose;
and (9) JWI is being actively supported and devel-
oped by myself.

There are, however, at least five deciding fea-
tures that, if an application requires them, will po-
tentially lead to another library. These features are
listed below (and are included in Table 1).

1.2 Similarity Metrics

The availability of similarity metrics is the most
common deciding feature, as many developers
want to use Wordnet not per se, but so as to
measure the semantic similarity between words.
JWNL has the most similarity metrics to choose
from, with at least three different compatible li-

braries providing this function: RitaWN, WNSim,
and WordnetSim.

Choosing JWNL, however, entails a few penal-
ties: First, JWNL requires a notoriously confus-
ing and error-prone external configuration file;
second, JWNL depends on an external library,
Apache Commons Logging; third, JWNL follows
the singleton dictionary model, in that it only al-
lows one dictionary to be open at a time; finally,
JWNL has rather poor performance relative to
other libraries. If these factors outweigh the posi-
tives of having the widest array of similarity met-
rics, then there are four other libraries that have
some measure of similarity metric support: Java-
tools, Jawbone, JawJaw, and JWI.

1.3 Editing

If your application depends on being able to edit
the Wordnet data, there is only option: extJWNL.
This library is a re-implementation of JWNL for
Java 1.5, copying much of the same source code,
and so it suffers from the same problems as JWNL
as described above, with the additional caveat that
has an additional dependency: a custom Map im-
plementation.

1.4 Maven

If an application’s build process uses Maven, and
the project absolutely requires that dependent li-
braries be available in the Maven repository, then
ext)WNL is the only choice.* As noted above,
extIWNL suffers from a number of problems.

1.5 Retired Java Versions

Java is backward-compatible, meaning libraries
compiled on older Java versions will still run
under newer versions, but it is not forward-
compatible: libraries compiled with newer com-
pilance levels will not run in older JVMs. If an ap-
plication requires libraries that will run under Java
1.4, then the developer should choose JWNL?. If
an application requires Java 1.5, then the devel-
oper should choose JWI®,

“Some versions of JWNL and JWI are available in the
Maven repository. However, publishing artifacts to the repos-
itory is not currently a part of the JWI build process, and
therefore there is no guarantee that future versions will be
available there.

SJAWS will also run under 1.4, but lacks significantly in
features and performance.

8JawJaw also will run under 1.5, but is sorely lacking in
features, performance, and compatibility.

A
z 2 2 2 5 R
s =z £ 3 R 2 8 & £ %
& = g = = 3 = g g Zz Z g
Feature © 5 = = = i - - - = = =3
Version 1.0 1610 10-1-2012 2009-07-04 1.0.2 13 23.0 1412 1.0 1.0 1.0.1 1.0.0-beta
License cprL BSD CC-BY MIT Apache Custom! CC-BY BSD GPL GPL GPL GPL
Minimum Java 16 1.6 1.62 1.6 15 1.4 15 14 1.6 15 1.6 1.6
Binary Size 125mb 235kb 398kb 30kb 409mb 58kb 148kb 202kb 188kb 11kb 119kb 11.45mb
Standalone Yes? 4 Yes Yes Yes Yes Yes 5 Yes s 7 8
Last Release 2011 2013 2012 2009 2013 2009 2013 2008 2010 2006 2010 2010
Active - Yes - - Yes - Yes - - - - -
Maven - Yes? - - - - -10 Yes -
Editing - Yes 1 - - - - - - - - -
EJBs - - - - - - - - - - - Yes
Multiple Dicts - - Yes1?2 - 13 - Yes - Yes - Yes Yes
Normal Files Yes® Yes14 15 Yes 16 Yes Yes 17 Yes Yes 18 -
GUI - - - - - - - - Yes Yes - -
Similarity Metrics - - Yes Yes'® Yes?0 - Yes?! Yes?2
File-Based Dict - Yes - Yes Yes Yes Yes Yes Yes Yes - -
Database Dict - Yes - - - - - Yes - - Yes Yes
In-Memory Dict Yes Yes Yes - Yes - Yes Yes - - - -

Table 1: Information on and supported features of each library.

License
LJAWS license is similar to the MIT License.

Minimum Java
%Javatools requires a 64-bit JVM to load all supported pointers into memory.

Standalone

3CICWN requires Wordnet files to be placed in a particular sub-directory, plus a file containing a list of prepositions to use the
plain Wordnet functionality; it requires additional libraries and data files to use the full stemming functionality.

4extJWNL requires an external properties file, Apache Commons Logging, and a custom Map implementation.

SJWNL requires Apache Commons Logging.

SWNIN requires a native library that depends on the wordnet version in use. The native library is available in for Windows and
Linux 32-bit, but would have to be re-compiled using C++ for other platforms.

TWNPojo requires approximately 14 supporting libraries.

8WordnetEJB requires a Database server and a Java Application server deployed with the WordnetEJB implementation.

Maven
9extJWNL versions 1.5.0 to 1.5.3 and 1.6.0 to 1.6.10 are available in the Maven repository.
10FWI Versions 2.2.1, 2.2.2, and 2.2.3 are available in the Maven repository.

Editing
HTavatools allows you to remove synsets from the in-memory dictionary only.

Multiple Dictionaries

12 Javatools allows multiple dictionaries to be instantiated, but each dictionary only captures one relation.
13 JawJaw only allows single dictionary to be opened for the life of each JVM.

Normal Files
MextJWNL in-memory dictionary uses special files that must be compiled from the normal Wordnet files.
15 Javatools uses the Prolog-formatted Wordnet files.
16 JawJaw uses an sqlite3 file, generated from the Japanese Wordnet files.
17 FWNL’s in-memory dictionary implementation requires special files that must be compiled separately from the Wordnet files.
18WNPojo requires the normal Wordnet files to be processed and loaded into a relational database.
Similarity Metrics
19 Jawbone has similarity metrics via the RitaWN library.
20awJaw similarity metrics are provided by the WS4J library.

21 JWI similarity metrics are available via the Java Wordnet::Similarity library (JWS).
22JWNL similarity metrics are available via the RitaWN, WNSim, and WordnetSim libraries.

1.6 Enterprise Java

Finally, if an application absolutely requires that
Wordnet data be accessible via an Enterprise Java
Bean (EJB), the only out-of-the-box choice is
WordnetEJB, which provides all the tools to de-
ploy an EJB that provides access to Wordnet onto
a Java application server. Unfortunately, given
WordnetEJB’s dismal performance and difficulty
of use, one is probably better off implementing
one’s own EJB by wrapping another library.

2 Features and Information

I expand now on other features of the libraries
which, while not necessarily decisive, are worthy
of consideration when other factors do not compel
your choice.

2.1 Features

As noted, Table 1 shows the basic list of features,
which was constructed by taking the union of all
features’ for all libraries. I describe in this sec-
tion those not yet discussed. A dash in a particu-
lar cell means that I determined, either by reading
the documentation or the code, that the library did
not support that feature. It is important to under-
stand that I consider here only out-of-the-box fea-
tures and compatibility: because the source code
for each library is available, an enterprising devel-
oper could certainly modify any of these libraries
to provide any of the lacking features. Most devel-
opers, however, will not be willing or able to invest
the time required for this, and thus are restricted to
the features provided.

Binary Size This feature indicates the size of the
binary jar file on disk. This number does not in-
clude the size of any required dependencies or ex-
ternal files, and does not include the size of the
Wordnet data files. The size of the libraries ranges
dramatically: from a mere 11kb for WNIN to
40.9mb for JawJaw. JWI clocks in at a quite mod-
est 202kb, which is approximately the median of
the range.

Standalone Whether or not the library requires
additional Java libraries or external resources to
run (other than the Wordnet files themselves). In
certain cases, such as WNPojo, these external li-
braries are extensive: at least 14, comprising over
10mb of jar files.

"Note that due to space limitations I do not discuss in de-
tail the ease of use of the various APIs.

Perhaps the most pernicious requirements are
those for the JWNL/ext)WNL pair and WNIJIN.
Both JWNL and ext/'WNL require an external
configuration file (in XML format) that sets vari-
ous properites of the singleton dictionary. These
parameters cannot be set programmatically, and
the file is not well documented, which leads to
quite a bit of consternation in the use of these li-
braries.

WNIJN, on the other hand, is a JNI interface
to a native dll. Using WNJN thus means that
one looses the platform-independence so prized
in Java (unfortunately for not much gain: WNJIN
is impoverished both in features and performance
compared to other libraries).

JWI is especially easy to use: it requires no ex-
ternal libraries or files to run (other than the Word-
net files themselves), its out-of-the-box defaults
are suitable to most applications, and any configu-
ration required can be done programmatically.
Last Release The year when the most current
version was released. JWI is one of only three li-
braries that saw an update in 2013, the year this
paper was written.

Active Whether or not the project appears to be
under active development. The last release year,
along with indications of activity on the project’s
webpage or correspondence with the developer,
were used to determine this feature.

Multiple Dictionaries Here dictionary refers to
a Java object which manages access to the Word-
net data. This feature indicates whether or not
multiple dictionaries can be open at the same time.
This, for example, would be useful in a context
where you want simultaneous access to different
Wordnet versions. Many of the Wordnet libraries
have, unfortunately, adopted the singleton design
pattern, where only one Wordnet dictionary may
be instantiated at a time. Fortunately, most of these
libraries do allow the dictionary to be closed and
a new dictionary to be opened.® JWI allows any
number of dictionaries to be open simultaneously.
Normal Files Whether or not the library uses
the normal Wordnet files as distributed. Some li-
braries require an unusual format (e.g., the Prolog
versions of the files), or require the files to be pro-
cessed in some way before the library can be used
to access the data. JWI uses the Wordnet files as
provided.

8The exception to this is JawJaw, which does not allow

the dictionary to be disposed and thus only allows a single
dictionary to open for the life of the JVM.

GUI Whether or not the library provides a graph-
ical user interface (GUI) to interact with Wordnet
data. Only two libraries, URCS and WordnetEJB,
provide a GUI.

File-based Dictionary Whether or not the li-
brary provides a dictionary implementation that
reads Wordnet information directly from the files
when requested. Four libraries do not provide such
an implementation: CICWN and Javatools, which
provide in-memory implementations only; and
WNPojo and WordnetEJB, which use a database-
backed implementation.

Database-backed Dictionary Whether or not
the library provides a dictionary implementation
that retrieves Wordnet data from a database server.
JWI does not provide database-backed access, but
four libraries do: JWNL, ext)WNL, WNPojo, and
WordnetEJB.

In-Memory Dictionary Whether or not the li-
brary provides a dictionary implementation that
loads Wordnet information completely into mem-
ory. These implementations allow for extremely
fast data access speeds, at the price of initialization
time (see Figure 1). JWI provides an in-memory
dictionary implementation.

2.2 Accessible Data

Each library provides access to a different sub-
set of the information contained in Wordnet. In-
formation in Wordnet is stored across four differ-
ent types of files: index files, data files, exception
files, and the sense.index file. Each Wordnet li-
brary provides access to various subsets of the in-
formation contained in Wordnet, and this is cap-
tured in Table 2. The only library that provides
complete access to all the Wordnet data is JWI,
although JWNL, ext/IWNL, WNPojo, and Word-
netEJB all come close.

2.3 Supported Wordnet Versions

Table 3 shows which libraries are compatible with
which Wordnet versions. Most libraries support
Princeton Wordnet versions 1.6 and above. No li-
brary supports Wordnet 1.5, and no library sup-
ports access to the Wordnet 1.6 cousin files or 3.1
stand-off annotations.

The final row in Table 3 indicates known com-
patibility with other Princeton Wordnet variants.
JWI is the only library I know for sure that sup-
ports Wordnet variants, namely, the Stanford Aug-
mented Wordnets (Snow et al. 2006). Other li-
braries can probably support Princeton Wordnet

variants that conform to the Wordnet file specifi-
cations, and so the question mark only indicates
that, to my knowledge, compatibility has not been
demonstrated or documented.

3 Performance Evaluation

In addition to the features listed above, I also eval-
uated the performance of each library under nine
different retrieval metrics (as applicable). I wrote a
standard test harness that ran each library through
its paces in exactly the same environment.” For
those libraries that provide an in-memory dictio-
nary implementation, I also measured how long it
took for that implementation to load Wordnet into
memory.

3.1 Retrieval Times

I measured three different types of retrieval met-
rics. First, I measured the speed of iteration over
the four main object types (corresponding to the
four file types). For index files, for example, I
measured the average time for the dictionary to it-
erate over all index words in Wordnet. Second, I
measured the speed of retrieval for individual ob-
jects of the four different types, given the mini-
mally necessary identifying information. For in-
dex files, for example, I measured the average time
to retrieve an index word given a lemma and part
of speech. Third, I measured the time to iter-
ate across all index words and retrieve the synsets
listed in those index words.

Not every library supports all nine different
types of retrieval: Tables 4 and 5 show which li-
braries support which retrieval type. The only li-
braries that support every type of retrieval are JWI
and WNPojo. For retrieval of individual objects,
JWI outperforms WnPojo by a factor of 10. For
iteration over object types, JWI and WNPojo are
approximately equivalent, except for iteration over
synsets by index words, where JWI outperforms
WNPojo by a factor of 25.

A note on CICWN: I include CICWN’s retrieval
times even though the library does not provide

9The testing machine was a Windows 7 Enterprise 64-bit
server-class machine, with 2 Intel Xeon X5570 CPUs (4 cores
each, running at 2.9 GHz), 24 GB of RAM, and two 15krpm
high-performance Sata 3 drives in a RAID 0 configuration
(The machine was state-of-the-art in approximately 2010).
Tests were performed within Eclipse 3.8.0, using Sun Java
1.6 64-bit, revision 22. MySQL version 5.6 was used for the
database server, and JBoss 5.1.0 was used for the Java Ap-
plication Server. During testing the machine was unburdened
with other tasks.

3

= =) o o

s £ ¢ : E o S 5 2§ £

o 7 £ : £ = £ £ g Z z &

File type Data © 3 = = = ﬂ - - = = = =
Synsets Yes Yes - Yes Yes Yes Yes Yes Yes Yes Yes Yes'
Index Synset Counts Yes Yes - Yes Yes Yes Yes Yes - Yes Yes Yes'

Pointer Counts - - - Yes - - Yes - - Yes -
Pointer List - - - Yes - - Yes - - -
Tag Sense Count - - - Yes - Yes Yes Yes - Yes - -

Synonyms Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes'
Lexical Filenum - Yes - Yes - - Yes Yes Yes Yes Yes Yes!
WordCount Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes?
Data LexicallD - Yes - Yes Yes - Yes - Yes Yes Yes Yes'
Semantic Pointers Yes Yes Yes? Yes Yes Yes Yes Yes Yes Yes Yes Yes!
Lexical Pointers Yes Yes - Yes - Yes Yes Yes Yes Yes Yes Yes!
Verb Frames - Yes - Yes - Yes Yes Yes Yes Yes Yes Yes!
Adjective Marker - Yes - Yes - Yes Yes Yes - Yes Yes Yes!
Gloss Yes Yes - Yes Yes Yes Yes Yes Yes Yes Yes Yes?
Exception Inflected Form Yes Yes - - - - Yes Yes - - Yes Yesi
Base Forms Yes Yes - - - Yes Yes Yes - - Yes Yes
Sense Sense Key - Yes - - - - Yes Yes Yes - Yes Yes!
Tag Counts - Yes - - - - Yes Yes - - Yes Yes'

Table 2: Wordnet data accessible from each library.

'WordnetEJB returns all data as XML documents: it provides no Java API for accessing data within an index word, word,
synset, sense entry, or exception entry record.
2Javatools only supports some semantic pointer types.

= =2 @) ©

: £ : & oo > 3 & £ %

S 5 £ ¥ ¥ B Z g g Z Z 5

Version O 5 = = = ﬁ - — - = = =
1.6 Yes Yes - Yes - Yes Yes Yes Yes Yes Yes Yes
1.7 Yes Yes - Yes - Yes Yes Yes Yes Yes Yes Yes
1.7.1 Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes
20 Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes
21 Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes
30 Yes Yes -2 Yes Yes Yes Yes Yes Yes Yes Yes Yes
3.1 Yes Yes - Yes - Yes Yes Yes Yes Yes Yes Yes

Other ? ? ? ? - ? Yes ? ? ? ? ?

Table 3: Versions of the Princeton Wordnet supported by each library. No library supports version 1.5,
version 1.6 cousin files, or the 3.1 stand-off files.

1WNPojo/WordnetEJB do not provide pre-compiled Wordnet database images other than for Wordnet 3.1 for MySQL; other
Wordnet versions require the user to compile the Wordnet files into the database image (and load it into the appropriate
database server) using the WNSQLBuilder project.

2Javatools throws an exception when loading Wordnet 3.0 prolog files.

a file-based dictionary implementation. This is
not a completely direct comparison, however, as
CICWN requires all of WordNet be loaded into
memory (with associated memory footprint and
initialization time penalties). It is interesting to
note, however, that CICWN’s in-memory perfor-
mance is comparable to JWI’s file-based perfor-
mance, with retrieval times around the neighbor-
hood of 10 microseconds. JWI’s in-memory re-
trieval significantly outperforms CICWN (I do not
show those results here for lack of space).

3.2 In-Memory Dictionaries

Six libraries support in-memory dictionary imple-
mentations. Of them, JawJaw supports only Word-
net 3.0. JWNL, extIWNL and JawJaw all have av-
erage load times (the time to load the Wordnet data
fully into memory) in the 15-20 second range. Of
the remaining three, Javatools and CICWN do not
support access to the full range of Wordnet data.
Only JWI has a load time of a few seconds and
supplies complete access to all Wordnet data.

4 Conclusion

For an application without special constraints,
most Java developers should use JWI to access
Wordnet, for three reasons. First, it is among the
easiest to use: it has extensive documention, a
small disk footprint, requires no special configura-
tion or supporting libraries, and is completely con-
figurable programmatically. Second, it supports
the most Wordnet versions and variants, and its
API exposes all available Wordnet data. Third,
it has top-tier performance, often outperforming
other Java libraries by factors of 5 to 100.

Acknowledgments

The preparation of this article was supported by
DARPA under grant D12AP00210.

References

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2006.
Semantic taxonomy induction from heterogenous
evidence. In Proceedings of the 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, Sydney, Australia, pages 801-808.

2
= <
& § 2 £ 2 5 z
= =
f gz & = 3 & £ & _
. S z & ¥ = : £ £ & = E
Retrieval of... (us) = - = 5} - - = = - - &}
Index Word 506ms 4.1ms 2662.5 1.5ms 1.5ms - 2533 1845 674 123 229
Synset - - - 3.3ms 479.6 768 228.6 2266 619 7.1 4.1
Word-by-Sense-Key - - - 11.1ms - - - 176.1 - 172 -
Exception Entry - 2.1 - 545.3 5379 - - 1385 - 16.1 1.7

Table 4: Average time to retrieve an object of the named type (from Wordnet 3.0) using a file-backed
dictionary, for libraries that support this functionality. Times are in microseconds (ys), unless otherwise

noted (ms = milliseconds).

—) "‘c Al

E = s 2 §

= £ : Z z g

Iteration Over. .. (ms) 5 = = = = o
Index Words 16.4s 16.4s 192 393 296 -
Synsets 6.4m 56.1s - 273 798 1
Words via Sense Keys - - - 635 141 -

Exception Entries 271 274 - 10 4

Synsets by Index Words 15.7m 2.Im 5.6m 51.0s 1.8s -

Table 5: Average time to iterate over all objects of the named type (from Wordnet 3.0) using a file-backed
dictionary, for libraries that support this functionality. Times are in milliseconds, unless otherwise noted

(s = seconds, m = minutes).

1WNPojo uses a database-based dictionary implementation.

2CICWN only provides an in-memory dictionary implementation.

In-Memory Initialization Time (seconds)

N
o

18 17.40 o e
16 L 15.70°2
14 —+----
12 -
10 +---
8 J I—
6.10
6 J I—
3.60

4 J I—

1.30
27 0.50°
O m T T T T -

JWNL ext/WNL Jawlaw Javatools JWI CICWN

Figure 1: Times to load Wordnet into memory for the libraries that support in-memory dictionaries.

“JawJaw has a slightly lower load time when the data file is already present in the temporary directory.
®Javatools has a lower load time when loading only synsets, with no pointers.

Library URL
CICWN http://fviveros.gelbukh.com/wordnet.html
extJWNL http://extjwnl.sourceforge.net/
« Javatools http://www.mpi-inf.mpg.de/yago—naga/javatools/
-E Jawbone http://sites.google.com/site/mfwallace/jawbone/
g JawJaw http://www.cs.cmu.edu/~hideki/software/jawjaw/
E JAWS http://lyle.smu.edu/~tspell/jaws/
E JWI http://projects.csail.mit.edu/Jjwi/
E JWNL http://sourceforge.net/apps/mediawiki/jwordnet/
§ URCS http://www.cs.rochester.edu/research/cisd/wordnet/
WNIN http://wnjn.sourceforge.net/
WNPojo http://wnpojo.sourceforge.net/
WordnetEJB http://wnejb.sourceforge.net/
JWS http://www.sussex.ac.uk/Users/drh21/
_.;’ JWordnetSim http://nlp.shef.ac.uk/result/software.html
E Rita.WordNet http://rednoise.org/rita/wordnet/documentation/index.htm
g WNSim http://cogcomp.cs.illinois.edu/page/software view/36
7 WordnetSim http://nlp.shef.ac.uk/result/software.html
ws4j http://code.google.com/p/ws4dj/
Lucene Wordnet nttp://mvnrepository.com/artifact/org.apache.lucene/lucene-wordnet/
. WNSQL http://wnsgl.sourceforge.net/
& WNSQLBuilder nttp://wnsglbuilder.sourceforge.net/
5 WNTrans http://wntrans.sourceforge.net/
WNWA http://wnwa.sourceforge.net/
XSSM http://code.google.com/p/xssm/

Table 6: URLSs for each library. The libraries listed in the first section are evaluated in this paper. The
similarity libraries provide similarity metrics which use the wordnet libraries. The libraries listed in the
“Other” section are mentioned because they do not provide direct access to Wordnet data, but may be
confused for libraries that do.

http://fviveros.gelbukh.com/wordnet.html
http://extjwnl.sourceforge.net/
http://www.mpi-inf.mpg.de/yago-naga/javatools/
http://sites.google.com/site/mfwallace/jawbone/
http://www.cs.cmu.edu/~hideki/software/jawjaw/
http://lyle.smu.edu/~tspell/jaws/
http://projects.csail.mit.edu/jwi/
http://sourceforge.net/apps/mediawiki/jwordnet/
http://www.cs.rochester.edu/research/cisd/wordnet/
http://wnjn.sourceforge.net/
http://wnpojo.sourceforge.net/
http://wnejb.sourceforge.net/
http://www.sussex.ac.uk/Users/drh21/
http://nlp.shef.ac.uk/result/software.html
http://rednoise.org/rita/wordnet/documentation/index.htm
http://cogcomp.cs.illinois.edu/page/software_view/36
http://nlp.shef.ac.uk/result/software.html
http://code.google.com/p/ws4j/
http://mvnrepository.com/artifact/org.apache.lucene/lucene-wordnet/
http://wnsql.sourceforge.net/
http://wnsqlbuilder.sourceforge.net/
http://wntrans.sourceforge.net/
http://wnwa.sourceforge.net/
http://code.google.com/p/xssm/

	Deciding on a Library
	No Special Requirements
	Similarity Metrics
	Editing
	Maven
	Retired Java Versions
	Enterprise Java

	Features and Information
	Features
	Accessible Data
	Supported Wordnet Versions

	Performance Evaluation
	Retrieval Times
	In-Memory Dictionaries

	Conclusion

