Using Topic Models in Content-Based News Recommender
Systems

Tapio Luostarinen®, Oskar Kohonen?

(1) Comtra Oy, Savonlinna, Finland
(2) Aalto University School of Science
Department of Information and Computer Science, Finland

tapio.luostarinen@comtra.fi, oskar.kohonen@aalto.fi

ABSTRACT

We study content-based recommendation of Finnish news in a system with a very small group
of users. We compare three standard methods, Naive Bayes (NB), K-Nearest Neighbor (kNN)
Regression and Regulairized Linear Regression in a novel online simulation setting and in a cold-
start simulation. We also apply Latent Dirichlet Allocation (LDA) on the large corpus of news
and compare the learned features to those found by Singular Value Decomposition (SVD). Our
results indicate that Naive Bayes is the worst of the three models. K-Nearest Neighbor performs
consistently well across input features. Regularized Linear Regression performs generally worse
than kNN, but reaches similar performance as kNN with some features. Regularized Linear
Regression gains statistically significant improvements over the word-features with LDA both
on the full data set and in the cold-start simulation. In the cold-start simulation we find that
LDA gives statistically significant improvements for all the methods.

KEYWORDS: Recommender Systems, Content-Based Recommendation, Topic Models, Latent
Dirichlet Allocation, Cold-start.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 239 of 474]

1 Introduction

With online news it is possible to read a large amount of different news sources on a large array
of topics, but since there are more articles available, finding interesting ones becomes more
difficult, as reading even just every headline becomes cumbersome. Consequently automatic
filtering with recommender systems, becomes attractive. We consider the specific problem of
how to build a news recommender system to find interesting news within a specific language
group, Finnish. We use content-based recommender systems, which is the less studied of the two
main paradigms of recommender systems (Adomavicius and Tuzhilin, 2005). The main benefit
of this content-based recommendation is that it allows others than large user communities and
their parent companies to build recommender systems for any material they want to, also any
niche content, be it by language, topic or anything else. By contrast, collaborative filtering
requires a large user community, since it bases its recommendation on how similar users have
rated the items. Another problem for news recommendation and collaborative filtering is that,
even if there is a sufficient number of similar users, the items need to have been rated by at
least some of these users, and in the case of news recommendation, it is the new items which
are most interesting, and these are the ones least likely to have been rated. Because of this,
news recommendation systems usually include content-based recommendation, where items
are recommended to users based on a profile of what kind of content the user has liked in the
past (Lang, 1995; Billsus and Pazzani, 2000).

Because our collected data is from a small community of users, we concentrate purely on
content-based recommendation. We consider the case where users provide explicit ratings
of how well they liked the content, rather than using the implicit feedback based on their
reading behavior. We compare three standard methods, Naive Bayes (NB), K-Nearest Neighbor
Regression (kNN) and Regularized Linear Regression (Lin), which have all been suggested
earlier in the literature, but no comparison seems to be available.

Since we have comparatively few ratings, but a large corpus of news, a natural extension is to
apply unsupervised learning to the unrated news and discover features that reflect the statistical
structure of news items. These discovered features can then be used to improve performance of
the supervised recommender system. While this is a common approach in machine learning,
it has not been applied to content-based recommender systems. We apply Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) and compare the learned features to those found by Latent
Semantic Indexing (Deerwester, 1988).

To motivate a user to keep using a recommender system, it needs to provide recommendations
already with very few rated items. This is known as the cold-start problem (see e.g. (Schein et al.,
2002; Rashid et al., 2008)), and we study how the amount of ratings affects recommendation
performance.

2 Related Work

Content-based news recommendation has been addressed in the literature by several authors.
Lang (1995) describes a method combining nearest neighbors and linear regression, using
a combination of TF-IDF features and features selected with Minimum Description Length
(MDL). Billsus and Pazzani (2000) used a combination of Nearest Neighbor Classification and
Naive Bayes classification for explicit feedback in an interesting/not interesting classification.
In contrast to this work, we use the methods as straightforward predictors, rather than in
combinations, and we use a rating on the scale 1-5. Naive Bayes has also been applied to

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 240 of 474]

content-based book recommendation (Mooney and Roy, 2000).

Topic models have not been used directly in content-based recommendation with explicit
feedback, but with implicit feedback, a method similar to probabilistic Latent Semantic Indexing
(Hofmann, 1999) has been applied by (Cleger-Tamayo et al., 2012). The topic model used
is adapted to user behavior. We don’t consider topic model adaptation, but rather use Latent
Dirichlet Allocation (Blei et al., 2003) as an unsupervised feature extraction procedure. We
argue, that while adaptation is likely to be useful for users with many rated items, lower
dimensional features from topic models are most interesting in the cold-start situation when it
is difficult for the methods to fit to a high-dimensional content vector.

Rashid et al. (2008) derive information theoretic strategies for how the first recommendations
for a new users should be made. In our work, we will merely measure the cold-start performance
of the methods, to assess how different methods work with very few rated items.

Recommender systems are increasingly seen as ranking problems, since we are trying to suggest
the most relevant items to the user (see e.g. (Takacs and Tikk, 2012)). However, the methods
that we consider, reduce the recommendation problem to predicting the user ratings, since
this allows simpler methods. We do agree that ranking performance is more important than
prediction performance, and therefore we evaluate also ranking accuracy.

3 Methods

We implement the recommender systems separately for each user. For each user we have
a training set of documents d; € 2 that the user has assigned ratings r(d;) € {1,2,3,4,5}.
The documents are represented by feature vectors, where the feature set is denoted ¥. We
implement the recommender methods in two ways. Firstly, as a five class classification task,
where the classes correspond to the ratings 1-5 or, secondly, as a regression task, where the
rating is seen as a continuous value to be predicted. The former is used in combination with
Naive Bayes, and the latter with K-Nearest Neighbors and Regularized Linear Regression. The
latter approach suffers from the problem that the method may assign scores outside the scale
1-5. This is however irrelevant when ranking documents.

3.1 Naive Bayes classification

We implement the Naive Bayes classifier following (McCallum and Nigam, 1998), where
documents are modeled as sequences of samples drawn from a multinomial distribution of
words, with as many independent draws as the number of words in the document, each class
having its own multinomial distribution. Here, as the class represents the rating, we denote it
r;, where j € C = {1,2,3,4,5}. The word probability parameters can then be calculated from
the labeled data:

leill di,kp(rjldi)
SIS d P(rld)

Here d, . are the word counts in document d; and P(r;|d;) are known for the training data.
While doing classification, we assign the rating to a new document d,,,,, by finding find the most
likely mixture component that could have generated the document, i.e. to find the mixture
component r’ that has the maximum a posteriori probability, which can be done by applying

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 241 of 474]

P(diylrj;0) = €))

Bayes’ rule.

P(r)P(d|r;
Pnp(dnew) = argmaéip(rj|d) = argmaXM
r'e

may) = argrrl}gé(P(rj)P(dhj) 2)

3.2 Nearest Neighbor Regression

Nearest neighbor methods are very simple to implement and they can be used for both classifica-
tion and regression. They simply store in memory all the training samples and the outcome for
a new sample is based solely on the nearest neighbor or k nearest neighbors in the training set.
The nearest neighbor is selected as the most similar sample:

d’ = argmaxsim(d;, d,,,,) (3
d;€2

where sim(d;, d;) is the similarity measure being used. The performance of the nearest neighbor
methods depends significantly on the similarity measure. We used cosine similarity as the
measure and it is defined as (Salton, 1989):

171
d.:
. J)—COS((X)— Z lk]k) 4

\/ZM a2 \/ZM a2,

sim(d;

Let d;,j = 1,...,k be the set of k nearest neighbors for the item d,,,,. We calculate the value for
a new item as a weighted average of the k nearest neighbors (Billsus and Pazzani, 2000):

) Y r(d) X 5im(dne,.»d;)
rkNN(dnew) = k B (5)
Zj:] stm(dnew,])

3.3 Regularized Linear Regression

The basic idea of linear models is to find in some sense optimal coefficients 3 for each variable
d; ;. in the linear equations:

4

Frn(di) = Bo+), Bedi ©)
k=1

The recommender system we are building should be able to present some recommendations
even with just a few rated items, so we used a regularized least squares formulation, which
can be applied with only a few samples. We used elastic net, a combination of lasso and ridge
regressions. This model still minimizes the squared errors, but the coefficients are regularized
by both L;-norm and L,-norm. The regularization part of the expression can be stated with

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 242 of 474]

a scale parameter A and a linear weight parameter a € [0, 1] to select between L;-norm and
L,-norm (Friedman et al., 2010):

| 1 7 2
ﬁ»elastlc —arg minz |:T(di) —(By+ Zﬁkdi,k):|
P k=1 7

|2]

ON RPN
i=1

Zou et al. (Zou and Hastie, 2005) have also shown that elastic net, in case of highly correlated
variables, tends to select all of them at once or leave them all out at once. Studies have shown
that this kind of grouping effect clearly improves the prediction accuracy of linear models
compared to lasso when there are correlated variables.

3.4 Topic models

Latent Dirichlet Allocation (LDA) is a fully generative probabilistic topic model initially intro-
duced by Blei et al. (Blei et al., 2003). It has been a widely applied method during the last few
years and there are several implemented variants of it. LDA assumes that the documents are
generated through the following process (Griffiths and Steyvers, 2004):

1. Generate topics by randomly choosing a word distribution ¢, ~ Dir(f) for each K topics
2. Choose a number of words for the document: N ~ Poisson(&)
3. Randomly choose a distribution of topics for the document 6 ~ Dir(a)
4. For each N words in the document:
(a) Randomly choose a topic index 2, ~ Multinomial(8) to indicate from which topic

the word w,, will be sampled

(b) Randomly choose a word w,, by sampling a conditioned multinomial probability
P(wplz,, @)

The distributions for the model parameters are very hard to compute directly, but different
approximate inference algorithms, such as variational inference (Blei et al., 2003) or Gibbs
sampling (Griffiths and Steyvers, 2004), solve the problem efficiently.

4 Experiments

The data we used in our experiments were gathered with a news aggregator during a 10 month
period and during which, end users could read and rate the news on their own. The experiments
were then conducted offline without user iteraction.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 243 of 474]

4.1 Data Set

The news content we used was gathered by the news aggregator by automatically reading
RSS-feeds from Finnish online newspapers. The data from the feeds contains at least timestamp,
link and title fields, but these were extended by parsing out the news content from the linked
web pages using a java version of Readability *. If Readability failed to find the content, the text
from the RSS-feed was used instead. In topic modeling we used all the pieces of news from the
time span of stored ratings yielding a set of 592 886 news articles.

The aggregator made it possible for the registered users to assign ratings for the news articles
on a scale from 1 to 5, where 5 means the user found it the most interesting. These ratings were
used in the experiment to express user preferences. The aggregator has only a few active users
and we selected from the database all users having more than 100 assigned ratings. There were
10 such users with a total of 10 401 ratings. The distribution of labels are shown in table 1.

4.2 Pre-processing

The preprocessing is illustrated in figure 1. The pieces of news were first concatenated into
a single string with the title joined to the content, and then tokenized into words. Then
morphological analysis was performed, using OmorFi?, a morphological analyzer for Finnish
(Lindén et al., 2011). If there were many possible lemmas, we used a simple heuristic to
select one, by preferring part of speech in the following order: numeral, adjective, verb, noun,
pronoun, adverb, conjunction, particle. When Omorfi recognized a word as a compound
word, we used as features both the whole compound and the separate components, to reduce
the sparsity of the data. This means, for example, that a compound word consisting of two
components will be used as three features: the first component, the second component and
their compound. After morphological analysis, we used a stop word list to remove the 100
most common words from the documents and also words occurring in only one document. This
process left us 395 343 distinctive words. Then the documents were transformed into vectors
of lemma counts. As Naive Bayes requires this representation, these vectors were stored, but
also their TE-IDF transformation was calculated.

4.3 Experiment Setup

We created a novel way of simulating the normal recommender system usage by predicting
the ratings for previously unseen items in a stream fashion. First we took 20 articles from the
beginning of a chronologically ordered list of ratings and used them as training samples for
the model. After the training, the methods predict ratings for the next 20 items. After this, the
reference ratings were then added to the training set for predicting the next batch of 20 ratings.
This process was repeated separately for each user and until the end of the list was reached.
This produced lists of predictions where each prediction was made using only ratings given
before the one being predicted.

We could have used the simple division into training and evaluation sets, but that would not
mimic the real situation as well. When a recommender system is implemented online, it faces a
situation similar to the one described above. This is a way of simulating online evaluation in an
offline environment.

Thttp: / /www.readability.com/
2http://www.ling.helsinki.fi/kieliteknologia/tutkimus/omor/ newest Java version as of 23 May 2011

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 244 of 474]

Read
RSS-feeds

N Read

HTML-file
v
y Filter w_ii?’h
Combine &~ Readability
content
v
Tokenize
v
Morphological T
analysis Rating
User 1 2 3 4 5 | Total
v 1 |629 393 783 912 1174|3891
Remove 2 |297 310 487 823 960 | 2877
stop words 3 [521 638 322 519 1872187
v 4 100 197 259 341 204 | 1101
Create word 5 54 84 107 162 147| 554
count matrix 6 33 69 81 100 44| 327
v \ 7 16 8 90 82 77| 273
— 8 30 20 37 18 41| 146
Topic modeling transfo-rmation 9 3 13 35 48 20| 119
10 1 3 27 29 45| 105

Figure 1: The data collection and preprocess- Table 1: The rating distributions
ing from each user.

We additionally simulated a simple cold-start situation where a new user starts to use the system.
We reserved the first 150 rated samples from each user to be used in the training phase and
the samples from indices 151 to 300 were used in the evaluation set. We evaluated the models
with different sizes of training sets by using only part of the training set at each iteration. In
other words, the evaluation set was kept fixed while the size of the training set was increased
in steps of 5. Since only users 1,2,3,4,5 and 6 had enough rated samples, the rest of the users
were excluded from this test.

The algorithms were trained on each training batch as explained above. For Naive Bayes we
used Laplace smoothing. Hyperparameters for K-Nearest Neighbors and Regularized Linear
Regression were found by splitting each training batch in half into a training and test set. A grid
search was then performed, and best parameters were, for K-Nearest Neighbors k = 25, and
Regularized Linear Regression a = 0.2 and A = 0.001. The parameters were then reestimated
for the full training batches with the selected hyperparameters. We also considered a random
baseline recommender that assigns the mean of the ratings from the training set for all the
evaluation items.

We computed four different topic models with LDA using Matlab Topic Modeling Toolbox (Griffiths
and Steyvers, 2004) and standard parameters recommended in the toolbox documentation:
a = 50/K,8 = 200/|V|. The models had 50, 100, 300 and 500 topics. When used as
input data for recommender models, the distributions @ = P(z|d) were used as features.
To assess how much the performance is affected by feature extraction and how much is
due to lower input dimension, we also tested the recommendation methods using SVD as a
dimensionality reduction method. Here the SVD is, in practice, the same as LSI (Deerwester,
1988). We projected the TF-IDF news data into three subspaces with 50, 100 and 300 dimensions
or features. The subspace with 500 dimensions was left out, because of its computational

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 245 of 474]

requirements. Because the SVD produces continuous values in the subspace, we did not find
any straightforward way to use them with the naive Bayes method, and hence it was left out
from the comparison.

We evaluated the recommender system by using two different evaluation metrics. As a prediction
accuracy metric we used the root mean squared error (RMSE):

1 B
RMSE = o Z(r(d,.) — #(d,))? (8)

i€9

In many cases it is not important to predict the actual ratings accurately, but rather ordering the
items correctly. Also, some learning methods are not bound to give values in the same interval
as the given ratings or do not necessarily use the interval efficiently, but they can still order
the items accurately. To measure ranking performance we used the normalized distance-based
performance measure (NDPM) (Yao, 1995). NDPM is suitable for measuring two weakly ordered
rankings, because it will not penalize the system for placing two items in different order when
the given ratings for these items are equal. It is calculated as a pairwise comparison of ratings
and the value is the ratio of incorrectly ranked pairs and pairs that have a defined order. NDPM
is defined as follows:

NDPM = 20 +¢)
- 2C

Here C is the maximum distance of two rankings, that is to say the total number of pairs where
the reference ranking defines an order. C™ is the number of incorrectly ordered pairs in system
rankings and C" is the number of pairs where the reference ranking defines an order but the
system does not. The NDPM is bounded between 0 and 1, where 0 means the list is ordered
perfectly and 1 means the list is ordered perfectly in reverse. When the ordering is completely
wrong, the NDPM is about 0.5.

We performed the experiments with all the three methods described above and with word
data and topic data. We ran the same test separately with each of the four topic models and
compared the results with our baseline settings, which was with the same methods, but with
word-based data.

The statistical significance of the results were estimated by using Wilcoxon signed-rank test
(Wilcoxon, 1945). The results from each user were considered as samples and we used the
significance level of 0.05. In the cold-start tests the significances were estimated when all the
150 training samples were used in training.

5 Results

The results for the full set are shown in Table 2. For the random baseline method, we can
see average NDPM value very close to 0.5, the expected value for a random ranking. It
can be seen that Naive Bayes performs worse than the two other methods. Its RMSE is
worse than the random baseline, but the NDPM is better, which implies that Naive Bayes is
performing very badly as a prediction algorithm, but is still ordering the items better than chance
levels. We verified that Naive Bayes assigns the majority rating to most items. For K-Nearest

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 246 of 474]

Accuracy Ranking

Model Features RMSE p-value num | NDPM p-value num
RANDOM | - 1.255 0.507

Words 1.430 0.413

LDA (50) 1.332 0.625 5/10 | 0.328 0.006 9/10
NB LDA (100) | 1.347 0.557 6/10 | 0.327 0.004 9/10

LDA (300) 1.398 0.922 5/10 | 0.329 0.002 10/10
LDA (500) 1.447 1.000 5/10 | 0.340 0.027 9/10
Words 1.087 0.307

LDA (50) 1.058 0.160 7/10 | 0.308 0.695 6/10
LDA (100) 1.058 0.131 7/10 | 0.308 0.922 5/10
LDA (300) 1.057 0.084 8/10 | 0.303 0.557 6/10

kNN 25 LDA (500) | 1.077 0625 5/10 | 0.314 0846 6/10
SVD (50) | 1.068 0.193 8/10 | 0315 0322 3/10
SVD (100) | 1.059 0.084 8/10 | 0.310 0695 4/10
SVD (300) | 1.053 0.006 9/10 | 0.304 0.131 8/10
Words 1.160 0.360
LDA (50) | 1.067 0.037 8/10 | 0311 0.014 8/10
LDA (100) | 1.072 0.048 7/10 | 0316 0.006 9/10

Lin LDA (300) | 1.096 0.006 9/10 | 0.333 0.065 9/10

LDA (500) | 1.118 0.027 8/10 | 0.344 0.084 6/10
SVD (50) | 1.161 0.922 4/10 | 0323 0.037 9/10
SVD (100) | 1.107 0322 5/10 | 0316 0.027 9/10
SVD (300) | 1.065 0.006 9/10 | 0.305 0.002 10/10

Table 2: Full data set performance results with random ordering (RANDOM), Naive Bayes (NB),
K-Nearest Neighbor with k = 25 (kNN 25) and Regularized Linear regression (Lin). The p-value
column shows the result of a Wilcoxon signed-rank test compared to the words model and
statistically significant results at 0.05 are emphasized, and the num column indicates for how
many users the performance improved with a topic model

Neighbors we can see consistently good performance, which is not affected by topic-modeling
or dimensionality reduction, as the small differences are not statistically significant. Regularized
Linear Regression generally performs worse than kNN, except with LDA 50 and SVD 300, in
which cases the results are very close to KNN. Surprisingly, for all algorithms, performance
drops for LDA of higher dimension, sometimes starting at 100, sometimes at 500 features, while
performance using SVD improves with higher dimension.

Figure 2 shows the cold-start performance for the different methods when increasing the
amount of labeled data, and Table 3 shows the performance with 150 rated items. At this small
amount of labeled data we can see that LDA50 gives statistically significant improvements for
all methods and measures except Naive Bayes and RMSE. We can see from figure 2, that LDAS0
improves results already at much fewer than 150 ratings. At 10-20 ratings performance is better
than the word-based model, being similar before that. For SVD and K-Nearest Neighbors we get
improvements, but they are significant only at 300 features. In contrast, with Regularized Linear
Regression SVD gives either statistically significant reductions in performance, or statistically
insignificant improvements.

6 Discussion

The bad performance of Naive Bayes may be partly due to our using the 1-5 rating as 5
separate classes, which leads to a higher number of parameters to estimate than for the
other methods. Better performance may be achieved if the ratings were converted into a
two-class interesting-uninteresting distinction, but doing so is not straightforward. The worse

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 247 of 474]

Naive Bayes (RMSE) Nearest Neighbor (RMSE) Linear model (RMSE)

19
18

RMSE

11 1.1
0

Naive Bayes (NDPM) Nearest Neighbor (NDPM) Linear model (NDPM)
0.5

0.45

\
\
= A =
% 0.4 \’-\a/\<\ %
= N o =
di~ =
0.35 = - ~
03
0 50 100 150 0 50 100 150 0 50 100 150

Size of the training set

—e— Words LDA (50) LDA (100) = = = LDA (300) LDA (500)‘

Figure 2: Performances of different methods in a simple cold-start situation. On each figure
the results with LDA-models along with the results with word data are shown. The upper row
shows the results with RMSE and the lower row with NDPM.

Accuracy Ranking
Model Features RMSE p-value num NDPM p-value num
Words 1.602 0.448
LDA (50) 1.386 0.438 4/6 0.337 0.031 6/6
NB LDA (100) 1.384 0.563 3/6 0.338 0.063 5/6
LDA (300) 1.389 0.438 4/6 0.338 0.031 6/6
LDA (500) 1.470 1.000 2/6 0.348 0.063 5/6
Words 1.257 0.325
LDA (50) 1.146 0.031 6/6 0.292 0.031 6/6
LDA (100) 1.143 0.031 6/6 0.299 0.094 5/6
KNN 25 LDA (300) 1.159 0.031 6/6 0.300 0.031 6/6
LDA (500) 1.199 0.156 4/6 0.326 1.000 3/6
SVD (50) 1.139 0.031 6/6 0.300 0.313 4/6
SVD (100) 1.147 0.031 6/6 0.302 0.094 5/6
SVD (300) 1.162 0.031 6/6 0.293 0.031 6/6
Words 1.239 0.332
LDA (50) 1.165 0.031 6/6 0.307 0.031 6/6
LDA (100) 1.186 0.438 4/6 0.332 0.688 2/6
Lin LDA (300) 1.229 0.313 4/6 0.328 0.688 4/6
LDA (500) 1.241 1.000 3/6 0.356 0.031 0/6
SVD (50) 1.248 1.000 3/6 0.339 0.563 3/6
SVD (100) 1.367 0.313 2/6 0.367 0.031 0/6
SVD (300) 1.158 0.031 6/6 0.302 0.094 5/6

Table 3: Cold-start data set performance results for, Naive Bayes (NB), K-Nearest Neighbor with
k =25 (kNN 25) and Regularizes Linear Regression (Lin). The p-value column shows the result
of a Wilcoxon signed-rank test compared to the words model and statistically significant results
at 0.05 are emphasized, and the num column indicates for how many users the performance
improved with a topic model

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 248 of 474]

performance of Regularized Linear Regression in the cold-start setting, may be because we
adjust the hyperparameters for the full set. However, this can be seen as a weakness in the
method, since it is very computationally demanding to optimize the hyperparameters for each
data size (and user) separately. The Linear Regressor is very fast at recommendation time,
requiring only one dot-product per user for each new item. The Nearest Neighbor method, in
comparison, requires one dot-product calculation for each item the user has rated. However,
when the number of ratings is small this is not a serious downside.

7 Conclusions

We evaluated three standard content-based recommender algorithms for a task of Finnish news
recommendation. We used word counts, TF-IDF weighted word features both directly and after
dimensionality reduction with SVD, and topics learned with Latent Dirichlet Allocation. We
evaluated both a full data set where 10 users had 105-3891 labels each, and a cold-start data
set where 6 users had 5-150 rated news items. We found that Naive Bayes was the worst of
the tested models, sometimes performing worse than a random baseline. Nearest Neighbors
worked consistently well regardless of input features. Regularized Linear Regression performed
well with some features, reaching similar performance as Nearest Neighbors on these features.

On the full data set LDA50 and SVD300 yielded statistically significant improvements over the
word features for Regularized Linear Regression, but for the other methods the improvements
were not statistically significant for both measures. In the cold start simulation, we found that
LDASO yielded statistically significant improvements over the word-features for all methods. The
LDA models with more than 50 topics seem to perform increasingly worse with growing amounts
of topics. In contrast SVD performance improves with growing dimension, but SVD50 is worse
than LDAS50. These results suggest that LDA can find good features with a smaller dimension
than what SVD requires, however LDA performance seems to decrease with additional topics,
which can be problematic. With the amount of rated samples we have in our experiments,
applying Nearest Neighbor regression is preferrable over applying Regularized Linear regression
for content-based recommendation, since Nearest Neighbors is more robust, and adjusting its
hyperparameter k is easier than adjusting the regularization parameters of Regularized Linear
Regression.

Acknowledgments

This paper is based on the Master’s Thesis work of the first author. The second author was
funded by the Academy of Finland project Multimodally grounded language technology. We are
grateful to Erkki Oja for valuable comments during the work.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 249 of 474]

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17(6):734-749.

Billsus, D. and Pazzani, M. J. (2000). User modeling for adaptive news access. User Modeling
and User-Adapted Interaction, 10:147-180.

Blei, D. M., Ng, A. Y., and Jordan, M. 1. (2003). Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993-1022.

Cleger-Tamayo, S., Fernandez-Luna, J. M., and Huete, J. E (2012). Top-n news recommenda-
tions in digital newspapers. Knowledge-Based Systems, 27(0):180 — 189.

Deerwester, S. (1988). Improving Information Retrieval with Latent Semantic Indexing. In
Borgman, C. L. and Pai, E. Y. H., editors, Proceedings of the 51st ASIS Annual Meeting (ASIS
’88), volume 25, Atlanta, Georgia. American Society for Information Science.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America, 101(Suppl 1):5228-5235.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics, 12(1):55-67.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information retrieval, SIGIR
’99, pages 50-57, New York, NY, USA. ACM.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the 12th Interna-
tional Machine Learning Conference (ML95.

Lindén, K., Silfverberg, M., Axelson, E., Hardwick, S., and Pirinen, T. A. (2011). Hfst-framework
for compiling and applying morphologies. In Communications in Computer and Information
Science, volume 100 of Systems and Frameworks for Computational Morphology, pages 67-85.
Springer.

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text
classification. In AAAI-98 Workshop on Learning for Text Categorization, pages 41-48. AAAI
Press.

Mooney, R. J. and Roy, L. (2000). Content-based book recommending using learning for text
categorization. In Proceedings of the Fifth ACM Conference on Digital Libraries, pages 195-204.
ACM Press.

Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learning preferences of new users in
recommender systems: an information theoretic approach. SIGKDD Explor. Newsl., 10(2):90—
100.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 250 of 474]

Salton, G. (1989). Automatic text processing: the transformation, analysis, and retrieval of
information by computer. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Schein, A. L., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics
for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’02, pages 253-260,
New York, NY, USA. ACM.

Takacs, G. and Tikk, D. (2012). Alternating least squares for personalized ranking. In
Proceedings of the sixth ACM conference on Recommender systems, RecSys '12, pages 83-90,
New York, NY, USA. ACM.

Wilcoxon, E (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin,
1(6):80-83.

Yao, Y. Y. (1995). Measuring retrieval effectiveness based on user preference of documents. J.
Am. Soc. Inf. Sci., 46(2):133-145.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the Elastic Net. Journal
of the Royal Statistical Society B, 67:301-320.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 251 of 474]

