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ABSTRACT
This paper deals with multimodal turn management in an annotated Danish corpus of
video recorded dyadic conversations between young people who meet for the first time.
Conversation participants indicate whether they wish to give, take or keep the turn through
speech as well as body behaviours. In this study we present an analysis of turn manage-
ment body behaviours as well as classification experiments run on the annotated data in
order to investigate how far it is possible to distinguish between the different types of
turn management expressed by body behaviours using their shape and the co-occurring
speech expressions. Our study comprises body behaviours which have not been previously
investigated with respect to turn management, so that it not only confirms preceding studies
on turn management in English but also provides new insight on how speech and body
behaviours are used together in communication. The classification experiments indicate
that the shape annotations of all kinds of body behaviour together with information about
the gesturer’s co-occurring speech are useful to classify turn management types, and that
the various behaviours contribute to the expression of turn features in different ways. Thus,
knowledge of the different cues used by speakers in face-to-face communication to signal
different types of turn shift provides the basis for modelling turn management, which is in
turn key to implement natural conversation flow in multimodal dialogue systems.

KEYWORDS: Multimodal Communication, Turn Management, Multimodal Corpora, Ma-
chine Learning.
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1 Introduction
This article deals with turn management in the Danish NOMCO first encounters corpus. Turn
management concerns the regulation of the conversation flow (Allwood et al., 2007) and is
achieved through verbal and non verbal behaviours. Determining these cues is important
for implementing conversational systems which can interact with users in a natural way.

Since conversations are social activities, they are influenced by many factors including the
communicative situation, the cultural, physical and social setting, the number and role
of the participants, their age, gender, and relation. These factors also play a role in the
conversation flow, which turn management is an important part of (Du-Babcock, 2003;
Allwood et al., 2007; Tanaka, 2008).

According to the Conversation Analysis (CA) tradition, starting with (Sacks et al., 1974),
the conversation flow is regulated according to a set of so-called turn-taking rules consisting
of a turn-construction and a turn-allocation component. According to these rules, the
conversation participants alternate their speech smoothly. The turn-taking system has been
criticised because it presupposes that the interaction flow is determined by pre-defined rules,
thus it does not account for the fact that turn management as conversations also depend on
social and cultural factors, inter alia (O’Connell et al., 1990; Cowley, 1998). Furthermore,
more analyses of conversations indicate that the ideal smooth turn-taking system described
by (Sacks et al., 1974) does not occur: in conversations participants often speak at the
same time. Also long pauses occur and are acceptable in many conversations (O’Connell
et al., 1990; Cowley, 1998; Campbell, 2008, 2009a). Recognising that many speech overlaps
can occur in conversations, (Schegloff, 2000) defines rules describing how overlaps are
managed. Furthermore, he distinguishes between non problematic and problematic overlap
cases. Only in the latter, overlap management is needed. Differing from this CA-related
view, other researchers suggest that co-occurring speech, and co-occurring body behaviours,
are a natural aspect of conversations, signalling that people communicate in synchrony
(Campbell, 2009b).

Independently of the research tradition, however, most studies point out that the interaction,
flow, comprising both sequential and overlapping behaviours, is regulated by multimodal
cues, thus involving both speech and non-verbal behaviours, inter alia (Kendon, 1967; Yngve,
1970; Ford and Thompson, 1996; Duncan, 1972; Allwood et al., 2007; Hadar et al., 1984b).

In this paper we present an analysis of how head movements, hand movements, facial
expressions and body postures relate to turn management in a corpus of dyadic Danish first
encounter conversations, and we compare these findings to results from preceding studies
of the same topic.

Furthermore, we investigate the relation between body behaviours and turn management
types by applying supervised machine learning to the annotated corpus data to test how far
the shape of the body behaviours and the co-occurring speech can be used to carry out auto-
matic classification of the turn management type of the behaviours. The focus in the paper is
on the investigation of the contribution of each type of behaviour to turn management, thus
both in the analysis and classification each behaviour type is considered separately. Although
the expression of a turn management behaviour is probably a combination of speech and
different gestural cues, at this stage of our research we wanted to find out to what degree
and in what way each channel (head, face, body) contributed to the phenomenon of turn
management. For each channel, however, we consider the whole range of movement types
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available in the corpus. The rest of the paper is organised as follows. In section 2 we discuss
relevant background literature while in section 3 we describe our data. Section 4 contains
the analysis of turn management in the data and in section 5 we describe and discuss the
classification experiments conducted on the corpus annotations. Finally, we conclude and
present future work in section 6.

2 Background Literature
Many researchers (Kendon, 1967; Argyle and Cook, 1976; Duncan and Fiske, 1977; Goodwin,
1981) recognise the importance of body behaviours, especially gaze, head movements and
hand gestures in turn management. (Kendon, 1967) and (Argyle and Cook, 1976) focus
on the role of gaze direction and of mutual gaze, respectively, while turn management
multimodal cues comprising intonation, syntax and hand gesture are described in (Duncan,
1972). In (Duncan and Fiske, 1977), also the behaviours of the listener are analysed, and
backchannelling signals by the listeners are distinguished from regular turns. (Hadar et al.,
1984b) find that linear movements of the head ("postural shifts") tended to occur after
"grammatical" pauses (between clauses or sentences) and towards the initiation of speech,
both between speaking turns and between syntactic boundaries inside speaking turns. Their
analysis is based on the automatically collected head movements of four subjects engaged
in conversations. The authors conclude that head movements are involved in regulating
turn taking and marking syntactic boundaries inside speaking turns. Smaller and quicker
movements tended to occur after dysfluencies inside grammatical boundaries, especially
after short pauses (Hadar et al., 1984a).

(Gravano and Hirschberg, 2009) examine the relation between particular acoustic and
prosodic turn-yielding cues and turn taking in a large corpus of task-oriented dialogues.

Machine learning has been applied to annotated multimodal data in numerous studies. For
example, feedback nods and shakes are successfully predicted from speech, prosody and
eye gaze in a multimodal corpus of conversations (Morency et al., 2005, 2007, 2009), while
(Jokinen and Ragni, 2007) train machine learning algorithms on manually annotated multi-
modal data in order to recognise some of the communicative functions of head movements
and facial expressions. They achieve promising results although their data is small.

In the rest of the paper, we discuss to what extent body behavioural cues are also present in
our data in connection to turn management and, in line with preceding machine learning
experiments we train classifiers on speech and body behaviours to predict the communicative
function of these behaviours, in this case their turn management function.

3 The Corpus
The corpus which we have used in our analysis is a Danish corpus of first encounter con-
versations which is freely available for research. The corpus was collected and annotated
during the NOrdic Multimodal Corpora (NOMCO) project, and it is part of a Nordic cor-
pus of comparable recorded conversations in Danish, Finnish and Swedish (Paggio et al.,
2010; Navarretta et al., 2011, 2012). The Danish first encounter dialogues comprise 12
five-minutes conversations between two young people who did not know each other in
advance. The participants are 6 female and 6 male university students or university educated
young people, aged 19-36 years. They were instructed to talk in order to get acquainted,
as if they met at a party. The interactions were recorded by three cameras in a studio at
the University of Copenhagen. Each person participated in two conversations, one with a
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female and one with a male. The two conversations were recorded on two different days
(Paggio and Navarretta, 2011). In Figure 1 and 2 snapshots from one of the recordings are
given.

Figure 1: Snapshot from the corpus: frontal camera views

Figure 2: Snapshot from the corpus: side camera view

3.1 The Annotations

The corpus is orthographically transcribed with time stamps at the word level, and the body
behaviours are annotated with pre-defined shape and function features according to the
MUMIN annotation scheme (Allwood et al., 2007). Body behaviours can be assigned more
functions at the same time, and they can be linked to speech segments produced by the
gesturer or the interlocutor if the coders judge that they are semantically related.

The data were annotated by a coder and than corrected by a second coder. Disagreement
cases were resolved by a third coder. An agreed upon version of the data was created.
The coders were instructed to take into account the whole context when annotating. This
comprises the multimodal behaviours of both speakers. With respect to turn management,
the coders were instructed to annotate signals of turn management by the participants. Note
that an actual turn change is not considered a necessary prerequisite for the assignment of
a turn management feature. For instance, a turn elicit or a turn take signal can be coded
independently of its success. Likewise, a turn hold signal can be coded if the speaker is
attempting to keep the turn even though the interlocutor may take it from them.
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Inter-coder agreement tests on the annotations of facial expressions and head movements
resulted in kappa scores (Cohen, 1960) between 0.6-0.9 depending on the categories. The
scores comprise segmentation and classification. The lowest scores were due to differences
in the segmentation of facial expressions. The highest scores were achieved in the annotation
of head movements. Agreement on the classification of functional categories was 0.82. More
details about the corpus annotation and inter-coder agreement experiments are given in
(Paggio and Navarretta, 2011; Navarretta et al., 2011). In this study, we used the annotations
of head movements, facial expressions and body postures related to turn management.
The shape features describing these behaviours are in Table 1. Head movements are

Shape attribute Shape values
HeadMovement Nod, Jerk, HeadForward,

HeadBackward,Tilt, SideTurn,
Shake, Waggle, HeadOther

HeadRepetition Single, Repeated
General face Smile, Laugh, Scowl, FaceOther
Eyebrows Frown, Raise, BrowsOther
BodyDirection BodyForward,BodyBackward,

BodyUp, BodyDown, BodySide,
BodyTurn, BodyDirectionOther

BodyInterlocutor BodyToInterlocutor,
BodyAwayFromInterlocutor

Shoulders Shrug, ShouldersOther

Table 1: Shape attributes and values
annotated with features describing the form of the movement and an indication of whether
the movement is performed once or more times. A general face attribute is used to annotate
facial expressions together with the form of the eyebrows. Finally, body postures are
annotated with information on direction, whether the body is facing the interlocutor, and
what the movement of the shoulders is.

We distinguish six types of turn related behaviours:

• TurnTake: the speaker signals that she wants to take a turn that wasn’t offered, possibly
by interrupting;
• TurnHold: the speaker signals that she wishes to keep the turn;
• TurnAccept: the speaker signals that she is accepting a turn that is being offered;
• TurnYield: the speaker signals that she is releasing the turn under pressure;
• TurnElicit: the speaker signals that she is offering the turn to the interlocutor;
• TurnComplete: the speakers signals that she has completed the turn.

In the ANVIL tool, each modality is coded in a so called track, while links joining an annotation
from a track to the other indicate that the two annotations are semantically related.

4 The Analysis
The corpus consists of 18000 speech tokens, 3117 head movements, 1448 facial expressions
and 982 body postures. Out of these, 738 head movements, 247 facial expressions and
223 body postures have been labelled with a turn management function. Thus, 24% of the
head movements, 17% of the facial expressions and 23% of the body postures have a turn
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Figure 3: Most frequently occurring turn management behaviours

management function in the corpus. Table 2 shows, conversely, how the turn management
associated with body behaviours is distributed across the three different types.

Body behaviour %
Head movements 61
Facial expressions 20.5
Body postures 18.5

Table 2: Turn management distribution across body behaviours

Figure 3 shows the body behaviours which are most frequently related to a turn management
function in this corpus. It is interesting to notice that all three body parts are related to
turn management, and not only head movements, hand gestures and gaze which have
been studied in preceding studies. Furthermore, more types of head movement than those
indicated in the literature are relevant to turn management.

The most frequently assigned turn management categories are TurnHold, TurnAccept and
TurnElicit, while TurnYield is rare in the corpus. This is not surprising given the type of social
activity and the setting: people who meet for the first time and have to get acquainted are
in general both friendly and polite, and they avoid interrupting their interlocutor. Figure 4
shows the turn management categories which are assigned more frequently to the three
main types of body behaviour in the first encounter conversations.

The most common turn management functions of head movements are TurnHold, TurnAccept
and TurnElicit, while TurnElicit, TurnAccept and TurnTake are the most frequent turn
management functions of the facial expressions. Finally, TurnAccept, TurnElicit and TurnHold
are the functions must frequently assigned to body postures. It must be noted that here we
report each body part independently, but in conversations often several body behaviours
co-occur.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 138 of 474]



Figure 4: Turn management related types and body behaviours

4.1 Discussion

Our study of body behaviours and turn management indicates that not only head movements,
but also facial expressions and body postures are often used in turn management in the
Danish first encounter dialogues. The data show that the proportion of different turn
management features varies depending on the body part involved. Especially the proportion
of TurnHold changes a lot from being rather large in connection with head movements to
being low for face and body, whereas TurnElicit is the feature that has the largest proportion
only in connection with facial expressions. In the corpus, behaviours related to the three
body parts are not explicitly linked to each other. Therefore, in the present stage of our
research, we do not yet know whether the relations we see between body behaviours and
turn management are additive, as could be expected for features associated with all three
body parts, e.g. TurnAccept, or whether different body parts are associated with different
turn behaviours.

Another observation relates to the fact that various types of head movements are involved in
turn management. This finding is in line with other studies of Danish conversations which
have shown that the participants not only use nods and shakes to give or elicit feedback, but
also tilts, side movements and forward and backward movements (Paggio and Navarretta,
2011; Navarretta, 2011).

Approximately 20% of the communicative head movements, facial expressions and body
postures have a turn management function in the conversations. The frequency of the turn
management values assigned in the corpus, in particular the fact that very few occurrences of
turn release under pressure are found, reflect the type of social interaction. The participants
meet for the first time, thus they are kind and avoid interrupting each other.

5 Classification of Turn Management Types

In this section we describe classification experiments on the annotated corpus. We investigate
to which extent it is possible to carry out automatic classification of the turn management
types expressed by body behaviours on the basis of their shape, together with the co-occurring
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words. In these experiments we again consider each body part independently, thus the
features modelling the shape of each body behaviour and the words they are semantically
connected with were extracted and used as different datasets.

More specifically, we trained classifiers on datasets containing descriptions of the shape of
each body behaviour and its turn management function. Then we run the classifiers on
data where only shape values were considered, in order to predict the turn management
function of the behaviours. In succeeding experiments we also included the gesturer’s or
interlocutor’s words linked to each body behaviour with the purpose of investigating whether
the speech-related information improved the classification.

All experiments were run in WEKA (Witten and Frank, 2005). As baseline in each experiment,
we use the results from WEKA’s ZeroR algorithm which always chooses the most frequently
occurring nominal class in the dataset. The most frequently occurring nominal class is a
reasonable baseline for this data, given the fact that there are no other studies of multimodal
turn management involving the same types of behaviour which we could compare our
results with. An alternative possibility one could consider is taking actual turn change as
a baseline measure. However, since the assignment of turn management features, as was
explained earlier, does not necessarily imply a change of turn (or keeping the turn in the
case of a TurnHold feature), such a baseline would make little sense. The classifier run in all
experiments is WEKA’s SMO algorithm, which implements John Platt’s sequential minimal
optimization algorithm for training a support vector classifier. SMO was chosen because it
is the best performing algorithm on this type of data (Navarretta and Paggio, 2010)1. We
report the results of classification in term of Precision (P), Recall (R) and F-measure (F)
figures. The results were evaluated using ten-fold cross-validation.

Table 3 shows the results obtained for head movements, while Table 4 and Table 5 contain
the results for facial expressions and body postures, respectively. In all cases, the classifiers
are first trained on shape features for each body behaviours, then on shape features and the
related gesturer’s words (gest-words in the tables), on shape features and the related inter-
locutor’s words (interl-words) and, finally, on shape features and gesturer’s or interlocutor’s
words (all-words).

Algorithm Dataset P R F
ZeroR 0.09 0.29 0.13
SMO shape 0.36 0.43 0.39
SMO shape+gest-words 0.47 0.5 0.48
SMO shape+interl-words 0.36 0.43 0.39
SMO shape+all-words 0.46 0.5 0.46

Table 3: Identification and classification of turn management from head movements and
related speech
The shape features of the head movements, and especially shape information enriched with
the co-occurring gesturer’s words, considerably improve the identification of the relevant
turn management types of the head with respect to the baseline. In this case the improvement
in terms of F-score with respect to the baseline is of 0.35%.

1The performance of various algorithms on the data was tested according to the strategy proposed in (Daelemans
et al., 2003) and previously tested in (Navarretta, 2009). The other classifiers tested on these data are Naive Bayes,
KStar and BFTree.
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a b c d e f <-- classified as
123 74 7 13 0 0 | a = TurnHold
41 137 2 16 0 0 | b = TurnElicit
40 53 2 17 0 0 | c = TurnTake
45 49 5 103 0 0 | d = TurnAccept
4 6 0 0 0 0 | e = TurnYield
0 1 0 0 0 0 | f = TurnComplete

Figure 5: Confusion matrix for head movement

As can be seen in the confusion matrix relevant to the third dataset, and shown in (Fig. 5),
the best results are obtained by the classifier on the three features TurnHold, TurnElicit and
TurnAccept, which are also the most represented in the data. Performance drops dramatically
with TurnTake, which is the fourth most represented category with 202 tokens. TurnYield
and TurnComplete are almost not represented, so the results for these two features are not
interesting.

Algorithm Dataset P R F
ZeroR 0.18 0.43 0.25
SMO shape 0.41 0.51 0.45
SMO shape+gest-words 0.42 0.51 0.46
SMO shape+interl-words 0.41 0.51 0.45
SMO shape+all-words 0.42 0.50 0.45

Table 4: Identification and classification of turn management from face and related speech

Turning now to facial expressions, we see again an improvement with respect to the baseline,
this time of 0.21%. However, it makes very little difference whether words are added to
the training. As it was to be expected given the distribution of the classes shown earlier in
Figure 4, the classifier does best at identifying TurnElicit and TurnAccept, whilst it cannot
recognise the other three turn behaviours.

Algorithm Dataset P R F
ZeroR 0.16 0.4 0.22
SMO shape 0.42 0.4 0.35
SMO shape+gest-words 0.42 0.44 0.39
SMO shape+interl-words 0.38 0.41 0.35
SMO shape+all-words 0.43 0.45 0.4

Table 5: Identification and classification of turn management from body postures and
related speech

Finally, for body postures, using shape information and all words (both the gesturer’s and
the interlocutor’s) gives the best classification results (F-measure improves with 18% with
respect to the baseline), although the contribution of words is not as important as it is for
head movements. Once again, TurnElicit and TurnAccept are the features that the classifier
identifies with the highest accuracy (both are classified correctly 63% of the time).
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5.1 Discussion of experimental results

All our classification experiments show that the shape of body behaviours can be used for
the classification of the turn management type associated with the behaviours obtaining an
F-score of around 0.4. The best results are obtained for head movements and body postures
if also the gesturer’s co-occurring words are considered. The words of the interlocutor,
on the other hand, do not improve the results, but it must be noted that body behaviours
related to turn management are related to the gesturer’s own words more often than to the
interlocutor’s. As far as facial expressions are concerned, on the other hand, considering
the words that co-occur with the expression makes little difference to the results. This
is probably due to the fact that facial expressions are often quite long and may co-occur
with long stretches of speech, so that the word tokens provide rather diverse and therefore
potentially confusing information.

The best classification results are obtained using head movements. This is not uprising
since head movements provide for the largest number of body behaviours in the data.
However, not all classes are identified with the same accuracy. Whilst TurnHold, TurnElicit
and TurnAccept are classified with an accuracy in the 0.5-0.6 range, TurnTake, TakeYield
and TurnComplete seem very difficult to identify. It is somewhat puzzling that TurnTake
should perform so poorly, given its frequency. It remains to be seen whether turn taking
behaviour can be classified by means of different features, e.g. prosody patterns, or whether
more data are necessary to achieve higher accuracy.

Turning now to the results achieved with facial expressions and body posture, it is again not
surprising that TurnElicit and TurnAccept, the most frequent classes in this case, are those
for which the classification achieves reasonable accuracy. However, it is interesting to note
that TurnElicit performs a little better than TurnAccept in both sets of experiments, even
though it is less frequently represented in conjunction with body postures. Presumably, the
words associated with TurnElicit help optimise the classification.

In general, the results of these experiments are promising given the restricted size of the
corpus. However, the F-score we obtain is not really high enough to allow for automatic
annotation of the turn management of body behaviours. However, we believe there is scope
for improvement in that co-occurring body behaviours, as was explained earlier, were not
considered together in this study. Furthermore, additional cues, such as prosody patterns
or actual turn change, could be added to the datasets to improve classification accuracy
especially for the TurnTake class, which the classifiers we have trained in this study cannot
identify on the basis of body features and associated words.

6 Conclusions and Future Work

In this paper we have presented an analysis of turn management behaviours in the Danish
NOMCO first encounters corpus. Our study both confirms preceding studies on turn manage-
ment, and provides new insights. In particular, we found that all kinds of head movement,
facial expression and body posture are involved in turn management. Furthermore, the
turn management types frequently occurring in this corpus depend on the type of social
activity in which the participants are involved. Since a number of studies of multimodal
conversations have found that there is a relation between factors such as social activity,
cultural environment, number of participants and communicative body behaviours (Lu et al.,
2011; Maynard, 1987; Navarretta et al., 2012), we also plan to compare turn management
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behaviours in this corpus with corresponding behaviours in other types of corpora.
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