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ABSTRACT 

Despite the existence of effective methods that solve named entity recognition tasks for such 

widely used languages as English, there is no clear answer which methods are the most suitable 

for languages that are substantially different. In this paper we attempt to solve a named entity 

recognition task for Lithuanian, using a supervised machine learning approach and exploring 

different sets of features in terms of orthographic and grammatical information, different 

windows, etc. Although the performance is significantly higher when language dependent 

features based on gazetteer lookup and automatic grammatical tools (part-of-speech tagger, 

lemmatizer or stemmer) are taken into account; we demonstrate that the performance does not 

degrade when features based on grammatical tools are replaced with affix information only. The 

best results (micro-averaged F-score=0.895) were obtained using all available features, but the 

results decreased by only 0.002 when features based on grammatical tools were omitted. 

KEYWORDS: Named entity recognition and classification, supervised machine learning, 

Lithuanian. 
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1 Introduction 

The objective of Named Entity Recognition (NER) is to allocate and classify tokens in texts into 

predefined categories, such as person names, location names, organizations, etc. NER is a subtask 

of many natural language processing applications, i.e. in information extraction, machine 

translation, question answering, etc.  

The methods used to solve NER task fall into three main categories: hand-crafted, machine 

learning and hybrid. Hand-crafted approaches are based on an analysis of the application domain 

and the manual construction of gazetteers and sets of patterns capable of taking named entity 

recognition and classification decisions. Hand-crafted methods assure high accuracy, but at the 

same time they have low portability to new domains: i.e. changing domains require expert 

intervention and manual re-creation of rules. Thus, very often machine learning methods are 

selected instead of the rule-based ones. For machine learning approaches NER is usually 

interpreted as classification task, where tokens are classified into categories with non-named and 

different named entity types. Rules (defined as the model) by these methods are built 

automatically after observation and generalization over the characteristics extracted from the text. 

Supervised machine learning methods for model creation use texts prepared by the domain 

experts with manually assigned classes (identifying particular named entity type or not a named 

entity) to all tokens. Semi-supervised machine learning methods for NER are usually based on a 

bootstrapping learning scheme: an initial small set of tokens with predefined categories (types of 

named entities) is used as the seed to build initial model, then all tokens in the texts are classified 

using that seed model and the most confident classifications (recognized named entities) are 

added to the training data and the process is iterated. Supervised machine learning methods 

outperform semi-supervised methods in terms of accuracy, but the strongest point of semi-

supervised methods is that they do not require large annotated corpora. Hybrid methods usually 

combine the strongest points of both hand-crafted and machine learning methods. 

In this paper we are solving the named entity recognition task using a supervised machine 

learning technique. Our focus is to find the most informative features for the Standard Lithuanian 

language yielding the best named entity classification results for person, location and 

organization names. Our experiments include different sets of language independent and 

dependent features based on orthographic and grammatical information, different windows 

(tokens before and after a current one), etc. We also assess whether it is possible to perform 

named entity classification effectively without resorting to external grammatical tools such as 

part-of-speech taggers, lemmatizers or stemmers, because they have limited availability, and are 

slow and unreliable when identifying proper names in Lithuanian texts.  

Section 2 contains an overview of related work. In Section 3, we describe the Lithuanian 

language and its properties. We outline the methodology of our named entity classification 

experiments in Section 4 and present the results in Section 5. We discuss these results in 

Section 6 and conclude in Section 7. 

2 Related work 

The NER research for English started in early 1990s and this task was successfully solved (for a 

review see Nadeu & Sekine, 2007), because NER achieved human annotation performance 

(Sundheim, 1995) in terms of accuracy. Thus current works for English mostly focus on the 
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improvement of other important metrics, e.g. speed: i.e. Al-Rfou’ & Skiena (2012) demonstrated 

that the speed of a NER tagger can be increased after improvement of tokenizer and part-of-

speech tagger that are used as the sub-modules in NER pipeline. 

The reason why methods achieve very high accuracy on English texts is because they are based 

on rich external resources (such as wide range of annotated corpora and gazetteers, accurate part-

of-speech taggers, etc.) that are not always available for the other languages. Besides, the English 

language is not as complex as highly inflective, morphologically rich and ambiguous languages; 

moreover it does not suffer from lack of capitalization problems for proper nouns. Thus, it can be 

concluded that NER task for each language requires its detailed analysis and adaptation.  

However, some generalizations can be made, e.g. language dependent features (based on 

gazetteers or morphological information) always increase NER accuracy; morphological 

information is inevitable for morphologically rich languages in order for the NER method to be 

comparable to the state-of-the-art methods for English. The importance of accurate 

morphological analyzers in NER task was revealed by Hasan et al. (2009): NER results for 

Bengali were significantly improved by simple refining non-accurate part-of-speech tagger (the 

part-of-speech tagger was improved during extraction of information from Wikipedia that in turn 

improved recognizer). Morphological information in NER methods can be either incorporated 

into rules or used as features (part-of-speech tags, lemmas). Examples of such methods are: rule-

based methods for Arabic (Elsebai et al., 2009), Danish and Norwegian (Johannessen et al., 

2005), Russian (Popov et al., 2004), and Urdu (Singh et al., 2012); supervised machine learning 

methods for Bulgarian (Georgiev et al., 2009), Dutch (Desmet & Hoste, 2010), Norwegian 

(Haaland, 2008; Nøklestad, 2009), and Polish (Marcinczuk et al., 2011; Marcinczuk & Janicki, 

2012); hybrid method for Arabic (Mai & Khaled, 2012). Hasan et al. (2009) also proved that 

affixes are very important in solving NER task for morphologically rich languages. Affixes 

helped to increase NER results for Bengali, Bulgarian, Polish, etc.  

NER task for Lithuanian was previously solved using two different methods: rule-based (for 

person and location names, abbreviations, date and time) (Kapočiūtė & Raškinis, 2005) and semi-

supervised machine learning (bootstrapping) (for person, location and organization names, 

product, date, time and money) (Pinnis, 2012). Unfortunately, we cannot give any examples of 

experiments based on supervised machine learning techniques for NER. Consequently, this paper 

will be the first attempt at finding an accurate supervised machine learning method (in terms of 

the most informative features) for NER in Lithuanian texts.  

3 Lithuanian language challenges 

Of all living Indo-European languages, Lithuanian has the richest inflectional morphology, 

making it more complex than even Latvian or Slavic languages (Savickienė et al., 2009). 

Lithuanian nominal words (nouns or adjectives that are used as person, location or organization 

names) can be inflected by 7 cases, 2 genders, and 2 numbers. Various inflection forms are 

expressed by different endings. Person names can have either masculine or feminine gender and 

are inflected by case and number. To exemplify: the possible inflection forms of masculine 

person name Jonas (John) are: Jonas (singular nominative), Jono (singular genitive), Jonui 

(singular dative), Joną (singular accusative), Jonu (singular ablative), Jone (singular locative), 

Jonai (singular and plural vocative; plural nominative), Jonų (plural genitive), Jonams (plural 

dative), Jonus (plural accusative), Jonais (plural ablative), Jonuose (plural locative). The location 
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names or organizations can have either masculine or feminine gender and singular or plural 

number, and are inflected by case. E.g. Lietuva (Lithuania) is singular feminine noun; Aukštieji 

Tatrai (High Tatres) is composed of plural masculine adjective Aukštieji (High) and plural 

masculine noun Tatrai (Tatres), where all words are inflected only by 7 cases. In the Lithuanian 

language there are 12 inflection paradigms for nouns, and 9 inflection paradigms for adjectives.  

The same inflection rules are used to inflect foreign person names in Standard Lithuanian texts. 

Endings can either be directly attached to the end of the noun e.g. Tonis Blairas (Tony Blair) or 

can be added after an apostrophe e.g. Tony’is Blair’as (Tony Blair).  

In Lithuanian, male and female surnames are different; moreover, in the surnames of married and 

unmarried women the suffixes are also different. For example, given the male surname Karalius, 

the appropriate female surname of an unmarried woman is Karaliūtė, and of a married woman – 

Karalienė. Besides, women can have surnames that do not reveal their marital status, e.g. Karalė, 

or keep both surnames – typically written with a hyphen, e.g. Petraitytė-Karalienė or Petraitytė-

Karalė.  

In Lithuanian organization names only the first word is capitalized in organization names (the 

other words are capitalized only if they happen to be a person or location name). E.g. Lietuvos 

mokslo taryba (Research Council of Lithuania), Kauno Maironio gimnazija (Kaunas Maironis 

Gymnasium) Maironio is a person name that is capitalized. The names of the companies in 

Lithuanian texts are written in quotation-marks. Despite the fact that the words in organization 

names are written in lower case (starting from the second word); acronyms are written in upper 

case, e.g. the acronym for Kauno technologijos universitetas (Kaunas University of Technology) 

is abbreviated to KTU.  

Lithuanian is a synthetic language; and the word order in the sentence is absolutely free. As in 

ancient Indo-European languages, in Lithuanian the word order does not perform a grammatical, 

but a notional, function: i.e., the same sentence will be grammatically correct regardless of word 

order, but the meaning (things that have to be highlighted) will be a bit different. Thus, any 

named entity can appear in any place of the sentence. Despite this, the words that act as triggers 

(words that directly signal a named entity) or modifiers (words that limit or qualify the sense of 

named entity) are located close to the named entity they describe. E.g. in dr. Jonas Basanavičius 

(dr. Jonas Basanavičius) dr. is the trigger that identifies the following word as the person name; 

in gyventi Lietuvoje or Lietuvoje gyventi (to live in Lithuania) gyventi (to live in) is the modifier 

that qualifies the named entity Lietuvoje as a location name.  

47% of Lithuanian words or word forms are ambiguous (Zinkevičius et al., 2005); named entities 

are no exception. Ambiguities are often between common nouns/adjectives written at the 

beginning of a sentence and person/location/organization names, e.g. Raudonoji (Red) can be 

either a common word in Raudonoji arbata (Red tea) or a location name in Raudonoji jūra (Red 

sea); Rūta can be either the name of the person or the common word “rue”. Ambiguities can also 

emerge between person names and location names, e.g. Roma is the name of the person or 

location name “Rome”). Depending on the meaning, named entities can change their type, e.g. 

Maironis is a person name, but in Maironio gatvė (Maironis street) the word is treated as a 

location; Vilnius is a location name, but in Vilniaus universitetas (Vilnius University) it is treated 

as part of an organization name. This analysis reflects what is called “Function over Form” in 

Johannessen et al. (2005). 
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4 Methodology 

4.1 Feature extraction 

Supervised machine learning systems cannot be directly trained on a corpus annotated with 

named entities. The corpus has to be transformed into a collection of instances. Usually instances 

are generated for consecutive tokens excluding punctuation marks (e.g. from string J. Petraitytė-

Karalienė would be generated three instances “J”, “Petraitytė”, and “Karalienė”), sometimes 

punctuation marks are stored as part of tokens (e.g. from string J. Petraitytė-Karalienė would be 

generated: “J.”, “Petraitytė-”, and “Karalienė”). Since punctuation marks carry a lot of 

information about named entities in Lithuanian language and their loss would be harmful (e.g. 

when recognizing classified named entities in plain text) in our experiments we treat punctuation 

marks as tokens, too – i.e. as separate instances (thus, e.g. from string J. Petraitytė-Karalienė 

would be generated five instances: “J”, “.”, “Petraitytė”, “-”, and “Karalienė”). During such 

transformation the order of tokens and punctuation marks in the collection is not changed.  

All instances that are used in the classification process are represented as vectors, each composed 

of the class label (identifying none or a particular type of named entity) and the list of features 

(where the first one describes original token – “J”, “Petraitytė”, “Karalė” or punctuation mark – 

“.”, “-”). Considering Lithuanian language properties and available resources, we have made the 

list of features that should be effective in solving named entity classification task. All features 

can be grouped into two main categories: language independent and language dependent. 

Language independent features are very general, based only on the orthographic information 

directly available in the corpus; language dependent features resort to external resources such as 

special purpose grammatical tools (part-of-speech tagger, lemmatizer, stemmer) or gazetteers 

(gazetteer of person names, gazetteer of location names).  

Below we present a list of all the features that were used in our experiments.   

Language independent (basic and orthographic) features:  

 t – the original token or punctuation mark. 

 Lowercase (t) – t in lower case letters (e.g. Lowercase (Lietuva) = lietuva). The usage of this 

feature decreases the number of tokens that can be treated differently because of case 

sensitivity (especially relevant for common words at the beginning of the sentence).  

 IsFirstUpper(t) – Boolean indicator that determines if the first character of t is capitalized 

(e.g. IsFirstUpper(Lietuva) = true).  

 Acronym(t) – Boolean indicator that determines if all characters in t are capitalized (e.g. 

Acronym(KTU) = true). This feature should help to identify organizations abbreviated as 

acronyms.  

 Number(t) – Boolean indicator that determines if t is a number (e.g. Number(Sk1) = false). 

 Length (t) – numeral indicator that determines the length of t.  

 Prefix-n(t) – affix that determines the first n (in our experiments 3  n  5) characters of t in 

lower case (e.g. Prefix-5(Šiauliai) = šiaul). This feature should help to extract stable parts 

of tokens and thus get rid of inflectional Lithuanian endings.  

 Suffix-n(t) – affix that determines the last n (in our experiments 3  n  5) characters of t in 

lower case (e.g. Suffix-5(Šiauliuose) = iuose; Suffix-5(Šakiuose) = iuose). This feature 

should help to extract inflectional Lithuanian endings. E.g. the roots in “Šiauliuose” and 

“Šakiuose” are different, but they share the same ending in locative case “iuose”.  
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Language dependent features:  

 Lemma(t) – the lemma of t (e.g. Lemma(Lietuvoje) = Lietuva). The lemmatizer transforms 

recognized words into their major form (by replacing appropriate endings, but not 

touching affixes); the common words also are transformed into lower-case letters.  

 POS(t) – the part-of-speech tag of t (e.g. POS(Lietuvoje) = noun).  

 Stem(t) – the stem of t (e.g. Stem(Lietuvoje) = Lietuv). The stemmer eliminates inflectional 

ending (and some other suffixes) of the input word.  

 IsPERGaz(t) – A Boolean indicator that determines if t is in the gazetteer of person names.  

 IsLOCGaz(t) – A string indicator that determines if t is in the gazetteer of location names, 

and if so, then if it is the beginning or any other word in the location name (e.g. for gyvenu 

Didžiojoje Britanijoje (I live in Great Britain), IsLOCGaz(gyvenu) = no; 

IsLOCGaz(Didžiojoje) = yesB; IsLOCGaz(Britanijoje) = yesI).  

Class labels:  

The corpus contains three types of named entities for person names, location names and 

organizations. Class labels are represented in BIO notation, thus B-PER, B-LOC, B-ORG 

indicate the first token in person, location, organization named entity, respectively; I-PER, I-

LOC, I-ORG indicate any other token (except the first one) in person, location, organization 

named entity, respectively; O indicates any other token (not in named entities).  

4.2 Dataset 

All the texts for the NER task were taken from the Vytautas Magnus University corpus 

(Marcinkevičienė, 2000). We aimed to avoid domain adaptation problem, thus texts were taken 

from several domains (as it was done by Kitoogo et al. (2008)). The created dataset in total 

contained ~ 0.5 million running words and was composed from the texts representing Standard 

Lithuanian and taken from 5 different domains: popular periodic, local newspapers, republican 

newspapers, parliamentary transcripts and legislative texts (the distribution of running words over 

different domains is presented in FIGURE 1). 

 

 
FIGURE 1 – The distribution of words (used in our NER experiments) over 5 different domains.  

All texts used in our named entity classification experiments were manually annotated with 

person, location and organization names (the distribution of words into named entities over 

different domains is presented in FIGURE 2.). Named entities were annotated considering 

“Function over Form” annotation manner, thus the same named entity could be tagged differently 
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in different context, e.g. in Maironis skaito savo poeziją (Maironis reads his poetry) Maironis is 

annotated as person name; in gyvenu Maironio gatvėje (live in Maironis street) Maironio is 

annotated as location name; in Skaitau knygą “Apie Maironį” (I read the book “About Maironis”) 

Maironį is not annotated as named entity because it is neither person, nor location, nor 

organization name, but it is the title of the book. Besides, inner named entities were not annotated. 

E.g. in Vilniaus universitetas (Vilnius University) inner location name Vilniaus was ignored; 

instead of it both words were annotated as single organization name.  

 
FIGURE 2 – The distribution of words into named entities (person names – in PER, location 

names – in LOC, organization names – in ORG) over 5 different domains. 

 

Annotated texts were transformed into collection of instances. Statistics about number of 

instances (tokens/punctuation marks) belonging to their appropriate classes is presented in 

TABLE 1. 

Class label Number of instances  

B-PER 10902 

I-PER 13861 

B-LOC 12152 

I-LOC 1322 

B-ORG 5937 

I-ORG 10482 

All NEs 54656 

O 577771 

Total 632427 

TABLE 1 – Number of instances for all classes in the dataset used in our NER experiments. 
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Let D be our dataset containing instances I, where ID. 

Let C be a finite set of classes: C = {c1, c2, …, cN}. In our case 2 < N <<  – i.e. we have a multi-

class classification problem, because C = {B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG, O} 

and N=7.  

Let I be the instance described by feature vector v with the appropriate class label c, thus all 

instances in the dataset are represented as I=v, c. We do not consider inner named entities; 

therefore our dataset contains single-labeled instances only: i.e. any instance cannot be attached 

to more than one class c.  

Let function   be a classification function mapping instances to classes,  : I  C. Function  

determines how I was labeled with c. In our dataset annotation of named entities was performed 

by the domain expert.  

Let  denote a supervised learning method which given D as the input, could return a learned 

classification function ’ (defined as a model) as the output: (D)’.  

4.4 Experimental setup 

In order to find the most informative features for the NER task on Lithuanian texts, we performed 

experiments based on:  

 Different windows [tx-m, tx+m]. E.g. window [tx=0] contains only one element – current 

instance tx=0; window [tx-1, tx=0] contains current instance tx=0 and instance tx-1 that is before 

tx=0; window [tx=0, tx+1] contains current instance tx=0 and instance tx+1 that is after tx=0, etc. 

We restricted m to 3 and thus experimented with 12 different windows in total.  

 9 different sets of features (see TABLE 2). The sets of features No. 1 and No. 5 contain only 

language independent features; all other sets of features contain both language 

independent and language dependent features.  

Sets No. 2 and No. 6 – No. 9 also contain gazetteer lookup features. These feature values 

were generated considering information stored in the gazetteers. To avoid redundancy 

when storing named entities in all their inflectional forms as separate instances, distinct 

named entities were represented by stem and their appropriate inflectional paradigm 

identifier. Thus, the gazetteer of person names consists of ~7 thousand individual person 

names (e.g. Jon:1 retains named entity in all its inflectional forms: Jonas, Jono, Jonui, 

etc.); the gazetteer of location names consists of ~2.2 thousand location names: individual 

(the same as for person names) or compound (e.g. Didži:2 Britanij: 3 retains this named 

entity in all its inflectional forms: Didžioji Britanija, Didžiosios Britanijos, Didžiajai 

Britanijai, etc.).  

Sets No. 3, No. 6, and No. 9 also contain part-of-speech tags and lemmas as features. The 

tokens were part-of-speech tagged and lemmatized using the dictionary-based 

morphological analyzer-lemmatizer “Lemuoklis” (Zinkevičius, 2000; Daudaravičius et al., 

2007). “Lemuoklis” also solves morphological disambiguation problems and achieves 

~95% accuracy on standard texts. Despite “Lemuoklis” being very accurate on common 

words; its weakness is unknown proper names (Zinkevičius et al., 2005). In our 

experiments “Lemuoklis” was unable to recognize 30.6% of the words as either named 

entities or common words, and classified them as “unknown”; it recognized only 34.4% of 

words as proper names, the rest 35% words it recognized as common words (for the 

detailed statistics see FIGURE 3).  
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FIGURE 3 – The percentage distribution of words in named entities (person names – in PER, 

location names – in LOC, organization names – in ORG) that were recognized by “Lemuoklis” 

as proper names (proper), common words (common) or not recognized at all (unknown). 
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No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 

F
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t         

Lowercase(t)         

IsFirstUpper(t)         

Acronym(t)         

Number(t)         

Length(t)         

Prefix-3-5(t)                 

Suffix-3-5(t)               

Lemma(t)                 

POS(t)               

Stem(t)                 

IsPERGaz(t) 

 
    

 
        

IsLOCGaz(t) 

 
          

TABLE 2 – Different sets of features used in our NER experiments. 

 

Sets No. 4, No. 7, and No. 9 also contain stems of tokens as features. The tokens were 

stemmed using a Lithuanian stemmer (Krilavičius & Medelis, 2010) based on the Porter 

stemming algorithm (Willet, 2006). The Lithuanian stemmer eliminates all endings and 

also some suffixes (but do not touch prefixes). The stemmer is rule-based, thus it can cope 

with proper names as well as with the other words. But in some cases stemming can cause 

the loss of meaning and ambiguity, e.g. Lietuva (Lithuania), Lietuvis (Lithuanian) will 

both be stemmed to the same Lietuv.  

Sets No. 5, No. 8, and No. 9 contain affix features: the first and the last 3, 4 and 5 

characters of each token.  

As previously described, in our experiments we used 9 sets of features and 12 windows, that is 

912=108 different experiments in total.  

59,5% 

13,2% 7,4% 

20,7% 

72,5% 

17,4% 

19,9% 14,3% 

75,2% 

0,0 

10,0 

20,0 

30,0 

40,0 

50,0 

60,0 

70,0 

80,0 

90,0 

100,0 

in PER in LOC in ORG 

common 

proper 

unknown 

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 81 of 474]



Before the experiments we made two hypotheses.  

Our first hypothesis is that language dependent features (morphological and gazetteer lookup) 

should increase the accuracy of NER on Lithuanian texts (the same as for Bengali ((Hasan et al., 

2009), Polish (Marcinczuk & Janicki, 2012), and other languages). We expect that gazetteers 

should solve the disambiguation problems between named entities and not named entities or 

between different types of named entities; and grammatical tools (part-of-speech 

tagger/lemmatizer and stemmer) will cope with the inflections of the Lithuanian language (that in 

turn should reduce the sparseness of feature space and should lead to the construction of more 

reliable model). 

The grammatical tools seem necessary due to the importance of inflection in Lithuanian, but they 

are unreliable when identifying proper names (Zinkevičius et al., 2005). Therefore, our second 

hypothesis is that the stable parts of the words and the influence of inflection can be captured in a 

different way – i.e. by affix information. We expect that with affix features (Prefix-3-5(t) and 

Suffix-3-5(t)), the NER method will achieve similar accuracy as with features based on part-of-

speech information, lemmas or stems.  

4.5 Classification  

Our attempt was to find a method  which could create the model ’ the best approximating . 

Since a NER task using supervised machine learning approach has never been undertaken for 

Lithuanian, we had no knowledge which method is the most appropriate. Therefore we selected 

Conditional Random Fields (CRFs) method (a detailed description of CRFs is presented in 

Lafferty et al., 2001) as , because it is one of the popular techniques utilized for the NER task 

(Nadeau & Sekine, 2007) outperforming many other popular methods, such as Hidden Markov 

Models (HMMs), Maximum Entropy Markov Models (MEMMs), and etc. 

The implementation of CRFs we used in our experiments is CRF++ version 0.57
1
, which requires 

a template file (with the determined features that are considered) and datasets for training and 

testing.  

5 Results 

All results reported below are based on 10 fold cross-validation (the biggest class O for non-

named entities is treated as the negative class in all calculations). 

The experiments with different windows revealed that the best results are obtained with window 

[tx-2; tx+1], except for the feature sets No. 2 and No. 3, where the best results were obtained with 

[tx-1; tx+1]. Despite that, the improvement on micro-averaged F-scores was less than 0.0006. 

FIGURE 4 reports the results obtained using different windows with the feature set No. 1. 

We experimented with different n values of Prefix-n(t) and Suffix-n(t) also, but the best results 

were reported with 3  n  5: with feature set No. 5 micro-averaged F-score using n=3 was 

0.8556, with 3  n  4 – 0.8614, the peak 0.8645 was with 3  n  5, the higher n values 

degraded the results. Besides, using only Prefix-3-5(t) or only Suffix-3-5(t) was not effective also: 

e.g. with the feature set No. 5 micro-averaged F-score when using only Prefix-3-5(t) was 0.8549, 

when using only Suffix-3-5(t) – 0.8517, when using both – 0.8645.  

                                                           
1
 http://crfpp.sourceforge.net 
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FIGURE 4 – Micro-averaged F-scores obtained with different windows when feature set No. 1.  

 

The results obtained using window [tx-2; tx+1] and 3  n  5 for all 9 feature sets are reported in 

TABLE 3.  

  
Precision Recall F-score 

  
micro avg macro avg micro avg macro avg micro avg macro avg 

F
ea

tu
re

 s
et

s 

No.1 0.8655 0.8648 0.8043 0.8061 0.8338 0.8342 

No.2 0.9159 0.9174 0.8587 0.8643 0.8864 0.8897 

No.3 0.8738 0.8745 0.8353 0.8380 0.8541 0.8556 

No.4 0.8748 0.8744 0.8122 0.8141 0.8424 0.8429 

No.5 0.8933 0.8923 0.8375 0.8391 0.8645 0.8647 

No.6 0.9141 0.9169 0.8732 0.8785 0.8932 0.8970 

No.7 0.9177 0.9195 0.8636 0.8691 0.8899 0.8933 

No.8 0.9168 0.9176 0.8708 0.8754 0.8932 0.8957 

No.9 0.9140 0.9161 0.8773 0.8817 0.8953 0.8984 

TABLE 3 – Micro/macro averaged precision/recall/f-scores for all sets of features with window 

[tx-2; tx+1] and 3  n  5.  

 

To determine whether the performances of the classifier trained on different feature sets were 

significantly different from each other, we performed approximate randomization testing (Yeh, 

2000). In all approximate randomization testing experiments we used 1000 shuffles.  

The differences between many experiments are statistically significant to a very high degree 

(p = 0.00099) with some exceptions, presented in FIGURE 5: i.e. differences are statistically 

significant to a high degree when 0.00099 < p  0.01; statistically significant when 

0.01 < p  0.05; and not significant when p > 0.05.  
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FIGURE 5 – p scores indicating statistical differences between the results (micro/macro 

precision (Pr)/recall (R)/F-score (F)) obtained on different feature sets. 

6 Discussion 

A glance at TABLE 3 in Section 5 shows that our first hypothesis is confirmed: language 

independent features are easily beaten with language dependent features. These findings agree 

with the findings obtained for other languages: Bengali (Hasan et al., 2009), Bulgarian (Georgiev 

et al., 2009), etc.  

As it is presented in TABLE 3, the usage of gazetteer lookup features in No. 2 increased the results 

of No. 1 by 0.0526 in micro-averaged F-score, despite the fact that a gazetteer of organization 

names is not available for Lithuanian (only of person and location names). The features obtained 

using grammatical tools also increased NER results (compared with No. 1 which is based on 

orthographic information only): the increment in  micro-averaged F-score using part-of-speech 

tagger/lemmatizer in No. 3 is 0.0203; whereas stemmer in No. 4 caused only a small boost in 

performance – increment in micro-average F-score is only 0.0086. The lemmatizer and stemmer 

cope with inflectional endings of Lithuanian language by reducing the number of distinct tokens. 

Thus a reduced number of feature values leads to the construction of more reliable and, as it can 

be concluded from the results, to more accurate models. The reason why part-of-speech 

tagging/lemmatization improves performance over stemming is that the part-of-speech 

tagger/lemmatizer is more accurate compared with stemmer, besides it preserves inflectional 

information that is important in Lithuanian language (the ending is not lost during lemmatization, 

only changed into the major form). The results obtained in No. 3 (with the part-of-speech 

tagger/lemmatizer) are worse than in No. 2 (with the gazetteer lookup), because the part-of-

speech tagger/lemmatizer is not robust in recognizing proper names, as well as not being capable 

of determining types of named entities.  

Experiments with gazetteer lookup + part-of-speech tagging/lemmatizing in No. 6, or gazetteer 

lookup + stemming in No. 7, yielded even better results compared with the results when they 
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were used separately (as in No. 2, No. 3, No. 4). Despite the result in No. 6 exceeded No. 7 by 

0.0033 in micro-average F-score, the difference was proved to be statistically significant.  

More interestingly, the results also support our second hypothesis: grammatical tools (part-of-

speech tagger/lemmatizer and stemmer) can be replaced with affix information. The same effect 

can be achieved by automatically slicing n characters from the beginning and the end of the token 

as it is done with Prefix-3-5(t) and Suffix-3-5(t). Experiments with Prefix-3-5(t) and Suffix-3-5(t) 

in No. 5 outperformed No. 4 (with stemming) by 0.0221 in micro-average F-score (the difference 

was proved to be statistically significant to a very high degree for all measures). No. 5 yielded 

similar results as No. 3 (with part-of-speech taggering/lemmatization): despite the increment in 

No. 5 was by 0.0102 in micro-average F-score, but the difference was proved to be statistically 

significant in terms of micro-precision and macro-recall only and not statistically significant for 

all the other measures.  

Experiments with gazetteer lookup + affixes as it is in No. 8 yielded even better results compared 

with the results obtained separately (as in No. 2, No. 5) (all differences were proved to be 

statistically significant to a very high degree), besides No. 8 outperformed gazetteer lookup + 

stemming in No. 7 (the differences were proved to be statistically significant) and No. 8 
yielded the same micro-average F-score as with gazetteer lookup + part-of-speech 

tagging/lemmatization in No. 6 (the differences were proved to be statistically significant for all 

measures, except for micro-recall). The best results were obtained using all available features in 

No. 9. Despite that the difference between sets of features No. 8 and No. 9 was proved to be 

statistically significant, the increment is only by 0.0021 in micro-averaged F-score. 

The observations obtained from the experiments allow us to conclude that simple automatic 

prefix and suffix information capture enough of the Lithuanian language inflection information; 

therefore it can replace features generated by part-of-speech taggers, lemmatizers, and stemmers. 

It is indeed very good news, because the Lithuanian part-of-speech tagger/lemmatizer has limited 

availability, is not very convenient and slow to use; the Lithuanian stemmer is low in accuracy.  

If we take a close look at the confusion matrix (see TABLE 4) obtained with feature set No. 9 and 

window [tx-2; tx+1], we would notice the main errors made by named entity classifier. Below we 

discuss main named entity classification error types (summarized by Nadeu & Sekine, 2007). 

  
Predicted class 

 

  B-PER I-PER B-LOC I-LOC B-ORG I-ORG O 

A
ct

u
a

l 
c
la

ss
 

B-PER 8,719 155 789 4 25 7 1,203 

I-PER 63 13,354 14 15 17 25 373 

B-LOC 263 169 10,192 23 234 36 1,235 

I-LOC 8 138 24 939 17 97 99 

B-ORG 82 31 557 6 3,762 157 1,342 

I-ORG 29 171 33 48 54 6,674 3,473 

O 449 709 547 47 475 1,551 57,3993 

TABLE 4 – Confusion matrix obtained with the feature set No. 9 and window [tx-2; tx+1]. 

The amount of correct predictions (see TABLE 4) is presented in diagonal where the actual class 

label is equal to predicted, thus from 632,427 instances, only 14,794 were predicted incorrectly: 

3,788 times the classifier hypothesized as named entities where there was none; 7,725 times a 

named entity was completely missed by the classifier; 2,444 times classifier correctly recognized 
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the boundary of named entity, but got the wrong type; 476 times the classifier recognized the 

type of named entity, but got its boundary wrong; 371 times the classifier recognized that it is a 

named entity, but got wrong type and boundary. 

The major problem is the 25.54% of all errors where the classifier determined named entity 

where there was none and 52.22% of all errors where named entity was completely missed. 

These problems arose because of different ambiguities in Lithuanian texts between proper and 

common words: i.e. a lot of person and location names are ambiguous with common words 

(especially at the beginning of the sentence), but the major problem is ambiguity between 

organization names and common words (typically only the first word in an organization name is 

capitalized and all other words are written in lower-case), because in our experiments we could 

not use a gazetteer for organization names, because such gazetteer is not yet available.  

The experiments with different windows revealed, that the best results for Lithuanian were 

obtained using a rather small window [tx-2; tx+1] (compared with the results obtained e.g. for 

Polish [tx-2, tx+2] (Marcinczuk & Janicki, 2012) or Turkish – [tx-3, tx+3] (Gokhan & Gulsen, 2012)): 

i.e. two instances before and one after the current. Thus, we can conclude, that even if the word 

order in the sentence in Lithuanian is free, the nearest information is more useful in NER process.  

7 Conclusion and Outlook 

In this paper we were solving NER task for Lithuanian language using supervised machine 

learning approach: i.e. we explored different sets of features in terms of orthographic and 

grammatical information, different windows, etc.  

We have formulated and experimentally confirmed two hypotheses:   

 The language dependent features (based on dictionaries, part-of-speech tagger, lemmatizer, 

and stemmer) increase the NER results, especially due to the importance of inflection 

information in Lithuanian language. 

 The features based on external grammatical tools (part-of-speech tagger, lemmatizer, and 

stemmer) can be replaced with affixes that can capture relevant patterns intrinsically.  

 

The best results were obtained using all available features and the window [tx-2; tx+1]. The 

decrease of micro-average F-score was only 0.0021 when features generated by the grammatical 

tools were eliminated. This result should be promising for other resource-scarce languages with 

similar properties as Lithuanian.  

In future research, it would be interesting to experiment with different named entity types and 

classification methods.  

Acknowledgments 

This research was funded by European Union Structural Funds project “Postdoctoral Fellowship 

Implementation in Lithuania” (No. VP1-3.1-ŠMM-01) and initiated when the first author was 

visiting the Department of Linguistics and Nordic Studies at the University of Oslo, Norway. 

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 86 of 474]



References 

Al-Rfou’, R.  and  Skiena, S. (2012). SpeedRead: A Fast Named Entity Recognition Pipeline. In 

Proceedings of the 24th International Conference on Computational Linguistics (COLING 

2012), pages 51–66.  

Daudaravičius, V., Rimkutė, E. and Utka, A. (2007). Morphological annotation of the 

Lithuanian corpus. In Proceedings of the Workshop on Balto-Slavonic Natural Language 

Processing: Information Extraction and Enabling Technologies (ACL’07), pages 94–99.  

Desmet, B. and Hoste, V. (2010). Dutch named entity recognition using ensemble classifiers. In 

Computational Linguistics in the Netherlands 2010: selected papers from the twentieth CLIN 

meeting (CLIN 2010), pages 29–41.  

Elsebai, A., Meziane, F. and Belkredim, F. Z. (2009). A Rule Based Persons Names Arabic 

Extraction System. In Proceedings of the 11th International Conference on Innovation and 

Business Management (IBIMA), pages 53–59. 

Georgiev, G.,  Nakov, P.,  Ganchev, K., Osenova, P.  and  Simov, K. (2009). Feature-Rich 

Named Entity Recognition for Bulgarian Using Conditional Random Fields. In Proceedings of 

the International Conference on Recent Advances in Natural Language Processing (RANLP-

2009), pages 113–117.  

Gokhan, A. S. and Gulsen, E. (2012). Initial Explorations on using CRFs for Turkish Named 

Entity Recognition. In Proceedings of the 24th International Conference on Computational 

Linguistics (COLING 2012), pages 2459–2474.  

Haaland, Å. (2008). A Maximum Entropy Approach to Proper Name Classification for 

Norwegian. PhD thesis, University of Oslo.  

Hasan, K. S., Rahman, A., and Ng, V. (2009). Learning-based named entity recognition for 

morphologically-rich, resource-scarce languages. In Proceedings of the 12th Conference of the 

European Chapter of the Association for Computational Linguistics, pages 354–262.  

Johannessen, J. B., Hagen, K., Haaland, Å., Nøklestad, A., Jónsdottir, A. B., Kokkinakis, D., 

Meurer, P., Bick, E. and Haltrup, D. (2005). Named Entity Recognition for the Mainland 

Scandinavian Languages. Literary & Linguistic Computing, 20(1): 91–102. 

Kapočiūtė, J. and Raškinis, G. (2005). Rule-based annotation of Lithuanian text corpora. 

Information technology and control, Kaunas, Technologija, 34 (3): 290–296. 

Kitoogo F. E., Baryamureeba, V, and De Pauw, G. (2008). Towards Domain Independent 

Named Entity Recognition. International Journal of Computing and ICT Research, 2 (2): 84–

95.  

Krilavičius, T. and Medelis, Ž. Lithuanian stemmer. (2010). May, 2012. 

<https://github.com/tokenmill/ltlangpack/tree/master/snowball/>. 

Lafferty, J. D., McCallum, A. and Pereira, F. (2001). Conditional Random Fields: Probabilistic 

Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth 

International Conference on Machine Learning (ICML’01), pages 282–289.  

Mai, M. O. and Khaled, S. (2012). A Pipeline Arabic Named Entity Recognition Using a Hybrid 

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 87 of 474]



Approach. In Proceedings of the 24th International Conference on Computational Linguistics 

(COLING 2012), pages 2159–2176.  

Marcinczuk, M. and Janicki, M. (2012). Optimizing CRF-Based Model for Proper Name 

Recognition in Polish Texts. In Proceedings of the 13th international conference on 

Computational Linguistics and Intelligent Text Processing (CICLing’12), (1): 258–269.  

Marcinczuk, M., Stanek, M., Piasecki, M. and Musial, A. (2011). Rich Set of Features for 

Proper Name Recognition in Polish Texts. SIIS, Lecture Notes in Computer Science, 7053: 

332–344. 

Marcinkevičienė, R. (2000). Tekstynų lingvistika (teorija ir paktika) [Corpus linguistics (theory 

and practice)]. Darbai ir dienos, 24: 7–63. (in Lithuanian).  

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification. 

Linguisticae Investigationes, 30 (1): 3–26. 

Nøklestad A. (2009). A Machine Learning Approach to Anaphora Resolution Including Named 

Entity Recognition, PP Attachment Disambiguation, and Animacy Detection. PhD Thesis, 

University of Oslo.  

Pinnis, M. (2012). Latvian and Lithuanian Named Entity Recognition with TildeNER. In 

Proceedings of the Eight International Conference on Language Resources and Evaluation 

(LREC’12), pages 1258–1265. 

Popov, B., Kirilov, A., Maynard, D. and Manov, D. (2004). Creation of Reusable Components 

and Language Resources for Named Entity Recognition in Russian. In Proceedings of the 4th  

International Conference on Language Resources and Evaluation (LREC 2004), pages 309–

312. 

Savickienė, I., Kempe, V. and Brooks, P. J. (2009). Acquisition of gender agreement in 

Lithuanian: exploring the effect of diminutive usage in an elicited production task. Journal of 

Child Language, 36: 477–494. 

Singh, U., Goyal, V.  and  Lehal, G. S. (2012). Named Entity Recognition System for Urdu. In 

Proceedings of the 24th International Conference on Computational Linguistics (COLING 

2012), pages 2507–2518. 

Sundheim, B. (1995). Overview of results of the muc-6 evaluation. In Proceedings of the 6th 

Conference on Message Understanding (MUC-6), pages 13–31. 

Willett, P. (2006). The Porter stemming algorithm: then and now. Program: electronic library 

and information systems, 40 (3): 219–223. 

Yeh, A. (2000). More Accurate Tests for the Statistical Significance of Result Differences. In 

Proceedings of the 18th International Conference on Computational Linguistics (COLING’00), 

2, pages 947–953. 

Zinkevičius, V. (2000). Lemuoklis – morfologinei analizei [Morphological analysis with 

Lemuoklis]. In: Gudaitis, L. (ed.) Darbai ir Dienos, 24: 246–273. (in Lithuanian). 

Zinkevičius, V., Daudaravičius, V. and Rimkutė, E. (2005). The Morphologically annotated 

Lithuanian Corpus. In Proceedings of the Second Baltic Conference on Human Language 

Technologies, pages 365–370. 

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 88 of 474]


