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Abstract
This paper describes an effort to capture
the sense alternation of dot-type nominals
using Word Sense Induction (WSI). We
propose dot-type nominals generate more
semantically consistent groupings when
clustered into more than two clusters, ac-
counting for literal, metonymic and un-
derspecified senses. Using a class-based
approach, we replace individual lemmas
with a placeholder representing the en-
tire dot type, which also compensates for
data sparsity. Although the distributional
evidence does not motivate an individual
cluster for each sense, we discuss how our
results empirically support theoretical pro-
posals regarding dot types.

1 Introduction
In this article, we propose a Word Sense Induc-
tion (WSI) task to capture the sense alternation of
English dot types, as found in context. Dot type
is the Generative Lexicon (GL) term to account
for a noun that can denote at least two senses as a
complex semantic class (Pustejovsky, 1995). Con-
sider the noun England in the following example
from the American National Corpus (ANC) (Ide
and Macleod, 2001) as an illustration.

(1) (a) Manuel died in exile in 1932 in
England.

(b) England was being kept busy with
other concerns.

(c) England is conservative and rainy.

In this example, (1a) shows the literal sense of
England as a location, while (1b) demonstrates the
metonymic sense of England as an organization.
Dot types also allow for both senses to be simul-
taneously active in a predicate, as in example (1c).

All proper names representative of geopolitical en-
tities, for instance, demonstrate this type of class-
wide sense alternation, which is defined as regular
polysemy (Apresjan, 1974).

Copestake (2013) emphasizes the relevance of
distributional evidence in tasks regarding phenom-
ena characteristic to regular polysemy, such as un-
derspecification, because it incorporates frequency
effects and is theory-neutral, requiring only that
examples cluster in a way that mirrors their senses.

Thus far, underspecification in dot types has
been formalized in the linguistic theory of lexical
semantics, but has not been explicitly studied us-
ing WSI. Kilgariff (1997) claims that word senses
should be “construed as abstractions over clus-
ters of word usages”. Following this claim, our
strategy employs WSI, which aims to automati-
cally induce senses of words by clustering patterns
found in a corpus (Lau et al., 2012; Jurgens, 2012).
In this way, we hypothesize that dot-type nom-
inals will generate semantically more consistent
(i.e. more homogeneous, cf. Section 5) groupings
if clustered into more than two induced senses.

This paper is organized as follows: we discuss
related work (Section 2); elaborate upon our use
of WSI and methodology employed (Section 3 and
Section 4), as well as present results obtained; we
discuss our results (Section 5) and conclude with
final observations and future work (Sections 6 and
7).

2 Related Work
Natural Language Processing (NLP) tasks that ex-
ploit distributional information are based on the
Distributional Hypothesis (Harris, 1954). How-
ever, Pustejovsky and Jez̆ek (2008) claim that only
using distributional data cannot explain the vari-
ation of linguistic meaning in language, while
Markert and Nissim (2009) refer to the challenges
of dealing with regular polysemy as the differ-
ent senses of polysemous words present obstacles



due to varied use in context. Along this line, the
empirical work of Boleda et al. (2012) showed
that the skewed sense distribution of many words
makes it difficult to distinguish evidence of a class
from noise, presenting a challenge to model the
relations between senses. When their machine-
learning experiments reached the upper bound set
by the inter-encoder agreement in their gold stan-
dard, they concluded that in order to improve the
modelling of polysemy there is a need to shift from
a type to a token-based (word-in-context) model
(Schütze, 1998; Erk and Padó, 2008). Hence, we
employ a token-based model in our experiments.

In our approach, we propose an unsupervised
task using WSI to capture the sense alternation of
dot types, using distributional evidence from cor-
pus data. Our results will be noisier than super-
vised approaches, such as those of Markert and
Nissim (2009), Nissim and Markert (2005) and
Nastase et al. (2012), but we make use of a
much larger amount of data and thus should suf-
fer from less sparsity. The related experiment by
Rumshisky et al. (2007) uses verbal arguments
as features, while we use only a five-word context
window.

2.1 Word Sense Induction
As stated above, our main goal is to use WSI to
capture the sense alternation of dot types in con-
text. WSI methods, based on the distributional
information available in corpus data, employ un-
supervised means to induce senses using contexts
of indicated target words without relying on hand-
crafted resources (Manandhar et al., 2010).

Distributional Semantic Models (DSM) provide
the groundwork for WSI. A DSM, also known as a
Word Space Model (Turney and Pantel, 2010), at-
tempts to describe the meaning of words by char-
acterizing their usage over distributional patterns,
i.e. their context. Each word is represented by a
numeric vector positioned in a space where vec-
tors for words that appear in similar contexts are
closer to each other. Sense induction is achieved
by building a DSM over a large corpus and clus-
tering the contexts into induced senses.

In recent years, WSI has been used with success
for different tasks such as: novel sense detection
(Lau et al., 2012), community detection (Jurgens,
2011) and graded sense disambiguation (Jurgens,
2012), among others. Jurgens (2011) previously
employed WSI to discover overlaps in the distribu-

tional behavior of words in order to identify mul-
tiple senses with success. However, that work was
not inclusive to any specific phenomenon of pol-
ysemy. Our objective is to cluster dot-type nom-
inals according to their distributional evidence in
context, using WSI to characterize the behavior of
these nouns.

3 Method
We use WSI to computationally assess the predi-
cational behavior of dot types. To do this, we em-
ploy a WSI system to induce senses from a large
corpus (in our case UkWaC cf. Section 3.2). We
then cluster dot-type nominals into the different
induced k-solutions and evaluate the WSI model
using a dot-type sense-annotated corpus to mea-
sure how well the induced senses map to human-
annotated data.

3.1 Data
The dot-type sense-annotated corpus
(Martı́nez Alonso et al., 2013) provides ex-
amples for each of the following dot types:

1. Animal/Meat (ANIMEAT): The chicken ran
away vs. the chicken was delicious.

2. Artifact/Information (ARTINFO): The book
fell vs. the book was boring.

3. Container/Content (CONTCONT): The box
was red vs. I ate the whole box.

4. Location/Organization (LOCORG): England
is far vs. England starts a tax reform.

5. Process/Result (PROCRES): The building
took months to finish vs. the building is
sturdy.

To evaluate our clustering, we made use of the
aforementioned sense-annotated corpus as a gold
standard. The corpus provides senses that have
been obtained by majority voting with a theory-
compliant back-off strategy (see Martı́nez et al.,
2013 for a detailed description). Each section
of the sense-annotated corpus1 is a block of 500
sentences with one dot-type headword the anno-
tators had to disambiguate. The authors do not
make a distinction between sense alternations that
are based on physical contiguity (CONTCONT)
from temporal contiguity (PROCRES). We use
their data as provided.

The gold standard includes nouns annotated as
literal, metonymic or underspecified. Each dataset

1We obtained the data from MetaShare at
http://metashare.cst.dk/repository/search/?q=regular+polysemy



Dot type Ao α
ANIMEAT 0.86 0.69
ARTINFO 0.48 0.12
CONTCONT 0.65 0.31
LOCORG 0.72 0.46
PROCRES 0.50 0.10

Table 1: Averaged observed agreement (Ao) and
Krippendorf’s alpha (α)

has a different average observed agreement and
Krippendorf’s α coefficient (cf. Poesio and Art-
stein, 2008), as shown in Table 1.

The variation in agreement for each dataset was
strong, which is a sign of the difficulty of each
annotation task. For instance, LOCORG is eas-
ier to annotate than ARTINFO, which is reflected
in its higher agreement. Another relevant charac-
teristic of the gold standard is that there is also
an imbalance of frequency between the annotated
senses of each dot type. For instance, it resulted
that ANIMEAT was annotated with more literal
readings and PROCRES was annotated with more
metonymic readings. Figure 1 provides the distri-
bution of senses between each dot type studied in
this article.

literal
metonymic
underspecified

ARTINFO PROCRES ANIMEAT LOCORG CONTCONT

300

350

400

250

200

150

100

50

0

Figure 1: Distribution of senses between classes

3.2 Preprocessing
For our experiments we used the UkWaC corpus
(Baroni et al., 2009) to fit our WSI models. After
lemmatizing, lowercasing and removing all punc-
tuation from the corpus, we extracted a random
sample of 60 million words (2.8 million sen-
tences) where each sentence was at least five to-
kens long. We did not remove stop words from the
corpus as we expect the interaction between stop
words (e.g. articles, prepositions, etc.) and dot-

type nominals to represent strong distinguishing
features between different interpretations of a dot
type, along the lines of Rumshisky et al. (2007).

In our experiments, we assume that words of the
same class behave similarly. Thus, our intent is to
induce the same senses for all the words of a given
semantic class, making our approach class-based.

To group the occurrences of all words of a
given dot type, we replaced their occurrences with
a placeholder lemma that represents the entire
dot type (animeatdot, artinfodot, contcontdot, lo-
corgdot, procresdot). For instance, the lemma-
tized examples (2a) and (2b) with the words paris
and london become the sentences in the examples
(2c) and (2d).

(2) (a) whilst i be in paris in august i decide to
visit the catacomb

(b) you can get to both london station on
the london underground

(c) whilst i be in locorgdot in august i
decide to visit the catacomb

(d) you can get to both locorgdot station
on the locorgdot underground

Replacing individual lemmas by a placeholder
for the overall class yields results similar to those
obtained by building prototype distributional vec-
tors for a set of words once the DSM has been cal-
culated (cf. Turney and Pantel (2010) for more on
prototype vectors of a semantic class). Our take,
however, is a preprocessing of the corpus to assure
we infer senses directly for the placeholder lem-
mas. In this way, we avoid having to reconstruct
overall class-wise senses from the inferred senses
for each individual lemma.

Regular polysemy is a class-wide phenomenon
(cf. Section 1), hence we expect that all lem-
mas in a dot type will predicate their senses in a
similar manner—in similar contexts, e.g. headed
or followed by the same prepositions. Thus, the
placeholders represent the entire dot type as well
as provide the added benefit of circumventing the
effects of data sparseness, especially for evalua-
tion purposes. For instance, in our data there are
some lemmas (eg. in ANIMEAT: anchovy, yak,
crayfish) that only appear once in the gold stan-
dard, limiting evaluation power. The placeholder
reduces the impact this may have on evaluation by
considering each individual lemma as a member of
the entire dot type that its placeholder represents.

This replacement method is not exhaustive be-
cause we strictly replace the words from the test



dataset by their dot-type placeholder and, for in-
stance, plenty of country and city names are not
replaced by locorgdot as they were not considered
target nouns in the annotation task.

3.3 Applying WSI
Our WSI models were built using the Random In-
dexing Word Sense Induction module in the S-
Spaces package for DSMs (Jurgens and Stevens,
2010) employing the UkWaC corpus, as described
in Section 3.2. Random Indexing (RI) is a fast
method to calculate DSMs, which has proven to
be as reliable as other word-to-word DSMs, like
COALS (Rohde et al., 2009). In DSMs, words are
represented by numeric vectors calculated from
the occurrence of words in a n-word window
around a target word. The similarity between
words is measured by means of the cosine of the
vectors that represent them.

We induced the senses for the placeholder dot-
type lemmas (locorgdot, animeatdot, and so on),
using the following k values to see how the senses
are clustered when considering a coarse (k=2;
literal and metonymic), a medium (k=3; literal,
metonymic, underspecified) and a finer-grained
amount of induced senses (k=6), along the lines
of Markert and Nissim (2009).

In WSI, instead of generating one vector for
each word, each word is assigned k vectors, one
for each induced sense. These induced vectors
are obtained by clustering the occurrences of a se-
lected word into k senses. The features used to
cluster the contexts into senses were the words
found in a window of five, both to the left and the
right of the target word. For each of the three val-
ues of k, we fit a model using K-means clustering
and a model using Spectral Clustering (Cheng et
al., 2006), for a total of 6 models. The output of
the system is a DSM where each vector is one of
the k-induced senses for the placeholder dot-type
lemmas.

3.4 Assigning word senses
The S-Spaces API permits the calculation of a
vector in a DSM for a new, unobserved exam-
ple. For each sentence in the test data, we isolated
the placeholder to disambiguate and we calculated
the representation of the sentence within the cor-
responding WSI model using the specified 5-word
context window.

Once the vector for the sentence was obtained,
we assigned the sentence to the induced sense rep-

resenting the highest cosine similarity for each
model (cf. Table 2 in Section 4 for evaluation).

4 Results
To determine the success of our task for each
class, sense representation and k value, we con-
sider the information-theoretic measures of ho-
mogeneity, completeness and V-measure (Rosen-
berg and Hirschberg, 2007). These three measures
compare the output of the clustering with a gold
standard (as described in Section 3.1) and provide
a score that can be interpreted in a manner similar
to precision, recall and F1, respectively.

Homogeneity determines to which extent each
cluster only contains members of a single class,
while completeness determines if all members of
a given class are assigned to the same cluster.
Both the homogeneity and completeness scores
are bounded by 0.0 and 1.0, with 1.0 correspond-
ing to the most homogeneous or complete solu-
tion, and can be interpreted in a manner similar to
precision and recall.

V-measure is the harmonic mean of homogene-
ity and completeness, used to evaluate the agree-
ment of two independent assignments on the same
dataset. Values close to zero indicate two label as-
signments that are largely inconsistent, while val-
ues close to one indicate consistency. Much like
F1, the V-score indicates the best trade-off be-
tween homogeneity and completeness.

DATASET HOM COM V-ME

k=2

ANIMEAT 0.0031 0.0030 0.0030
ARTINFO* 0.0097 0.0128 0.0110
CONTCONT* 0.0067 0.0075 0.0071
LOCORG* 0.0013 0.0016 0.0015
PROCRES 0.0005 0.0007 0.0006

k=3

ANIMEAT 0.0055 0.0033 0.0041
ARTINFO* 0.0214 0.0191 0.0201
CONTCONT* 0.0291 0.0197 0.0235
LOCORG* 0.1070 0.0788 0.0908
PROCRES* 0.0051 0.0044 0.0047

k=6

ANIMEAT* 0.0379 0.0139 0.0204
ARTINFO* 0.0253 0.0140 0.0180
CONTCONT* 0.1008 0.0442 0.0615
LOCORG* 0.1096 0.0540 0.0724
PROCRES* 0.0166 0.0085 0.0112

Table 2: Results of clustering solutions for each
class in terms of homogeneity (HOM), complete-
ness (COM) and V-measure (V-ME)

Table 2 presents the results for each clustering
solution (k=2, k=3 and k=6) using K-means clus-
tering. The highest values are shown in bold. It is
to be expected that the higher-agreement datasets



provide higher homogeneity results because their
annotations are more consistent. However, we can
see that the performance does not necessarily cor-
relate with agreement as ARTINFO is the dataset
that fares best in the k=2 solution, yet it has a very
low alpha (α=0.12). In this way, we can say that
the homogeneity score for low-agreement datasets
will be lower because low-agreement annotations
are less reliable due to their lower internal consis-
tency.

In addition, performance (measured in V-
measure) improves as k increases. For instance,
CONTCONT has the 2nd highest V-measure in the
k=3 solution and in the k=6 solution. LOCORG
yielded the 4th highest V-measure in k=2 and the
highest V-measure in both the k=3 and the k=6 so-
lutions.

We compare our system against a random base-
line. This is because the customary one-in-all and
all-in-one baselines are not useful in our scenario
as they are meant to evaluate adaptative clustering
and we use fixed values of K. We do not report
the baseline scores because they are not informa-
tive. However, we mark the datasets that surpassed
those scores with a star (*) in Table 2.

Although our system is unable to beat the ran-
dom baseline for PROCRES in k=2 and ANI-
MEAT for k=2 and k=3, we do beat the baseline
for each dot type in k=6.

The low performance in ANIMEAT is due to
the lower proportion of underspecified senses in
the dataset (cf. Figure 1). We attribute the low
performance of PROCRES to the complexity of
the sense distinction of this dot type. Thereby,
we doubt the validity of this particular dataset for
WSI.

k k k

Figure 2: Homogeneity scores for each clustering
solution

Figure 2 demonstrates the difference of homo-

geneity between the clusters, depending on the
number of induced senses (k-value). LOCORG
and ANIMEAT, on one hand, demonstrate a higher
homogeneity score in k=3 while they demonstrate
a lower homogeneity score for k=6. CONTCONT,
ARTINFO, PROCRES, on the other hand, gain
homogeneity with the increase of k.

5 Discussion
The main objective of this experiment is to cap-
ture the sense alternation of dot types by com-
putational means. We hypothesize that dot types
will generate semantically more consistent group-
ings if clustered into more than two clusters. To
test this, we employ a WSI system to induce the
senses and subsequently cluster dot-type nominals
into three different k solutions (k=2, k=3, k=6), as
detailed in 3.3.

5.1 Inducing two senses
The k=2 solution attempts to mirror a literal vs.
metonymic partition between the senses of each
dot type. The classes ANIMEAT, CONTCONT
and LOCORG are composed of more literal senses
while the other two are mostly metonymic (cf.
Figure 1). Although there is an a priori difference
in the proportion of literal, metonymic and un-
derspecified senses for each class, we assume the
UkWaC and test data to have similar distributions
of literal and metonymic senses for each dot type.
This assumption is congruent with Rumshisky et
al. (2007), who claim an asymmetry in the way
dot types are used in general.

Overall, the clusters produced in k=2, on one
hand, are representative of the asymmetry of the
gold standard, i.e. the classes that contain more
literal senses, according to our gold standard,
yield clusters composed of a higher ratio of lit-
eral senses. On the other hand, the underspecified
senses tend to spread between both clusters for
each class. In this way, the underspecified sense
does not represent a homogeneous group, rather
it clusters with both the literal and metonymic
senses, thereby exhibiting properties of each of the
two induced senses.

We observed, for instance, the underspecified
senses of ARTINFO occurred often with an “of”
PP-phrase, a strong feature for the clustering of ex-
amples into a metonymy-dominated sense cluster
while the underspecified examples that were ob-
jects of verbs such as keep or see were clustered
alongside the literal examples. In this way and



along the lines of Pustejovsky and Jez̆ek (2008),
we can concur that these verbs tend to trigger a lit-
eral (artifactual) reading as they typically describe
actions that require some sort of physical entity.

We next increase the K to k=3, a solution that
also considers the underspecified sense.

5.2 Inducing three senses
The goal of the k=3 clustering solutions is to clus-
ter each of the three proposed senses of the dot
type (literal, metonymic and underspecified) into
clusters representative of their respective senses.

The middle row in Table 2 presents the results
obtained in the k=3 solution. Our expectation for
this solution would have had each gold-standard
annotated sense assigned to its corresponding in-
duced sense cluster (literal, metonymic or under-
specified). However, we noticed a tendency for the
underspecified sense to cluster with the induced
sense that contains a higher ratio of the most fre-
quent annotated sense of a given class, either lit-
eral or metonymic. Despite the fact that the distri-
butional information for the underspecified sense
was not strong enough to spawn a separate cluster,
it demonstrates behavior characteristic of the more
frequent sense for each dot type, as indicated by
the gold standard (cf. Figure 1).

The k=3 solution for the dot types ANI-
MEAT and LOCORG separates the literal and the
metonymic senses, yet the underspecified senses
are distributed between all three clusters. In this
case, the more frequent sense of the gold standard
is split between two clusters, while the remain-
ing cluster is composed of the less frequent sense.
The underspecified sense is spread among all three
clusters, as illustrated in the confusion matrices
provided in Table 3.

ANIMEAT LOCORG
L M U L M U

c=0 110 51 3 62 69 8
c=1 127 43 1 151 17 5
c=2 121 41 3 94 85 9

Table 3: k=3 solutions for ANIMEAT and LO-
CORG dot types

In Table 4, we observed that the articles the and
a were the most frequent components of the con-
texts that contributed to the clustering of clusters
c=1 and c=2, respectively, for ANIMEAT. On one
hand, the importance of the article as a feature re-
flects that the mass/count distinction is a key com-

ponent in the sense alternation of some instances
of regular polysemy (such as ANIMEAT). In this
way, these very formalized constructs that are re-
quired for a certain interpretation can help to more
easily partition the clusters as they represent gram-
matical criteria for interpretation. On the other
hand, we can also see the importance of a given
token in context in the case of LOCORG. For LO-
CORG, in c=1 and c=2, the most frequent com-
ponents that contribute to each cluster are preposi-
tions (in and to, respectively).

ANIMEAT LOCORG

c=0 and, animeatdot, of, a,
for,with, the, fish, in, to

the, of, and, to, a,
in, that, time, it, for

c=1 the, of, and, in, a, to, is,
that, animeatdot, with

in, the, and, to, a,
of, that, is, it, for

c=2 a, of, to, in, that, or, is,
with, for, from

to, and, from, a, locorgdot,
the, that, with, for, is

Table 4: Top 10 most frequent words per c used in
k=3 for ANIMEAT and LOCORG dot types

The very frequent preposition in seems to fa-
vor the literal (location) reading for LOCORG that
appears in c=1. In c=2, the most important prepo-
sition is to, which indicates a directionality that
can be both topological or more abstract, giving
to the introduced noun the role of experiencer or
beneficiary in the predicate, for instance. How-
ever, this preposition does not necessarily coerce a
metonymic or a literal sense, which becomes ap-
parent in the balanced composition of the senses
of LOCORG in c=2.

The placeholders also appear as important fea-
tures for their respective dot type among all the
grammatical words. We observed that other an-
imals are mentioned when predicating the ANI-
MEAT dot type (see Table 4). The noun fish was
not replaced by its placeholder as it does not ap-
pear in the gold standard data but is one of the few
nouns in the top 10 words for each cluster. We
comment upon the effect of our use of a limited
selection of lemmas in this task in Section 7.

Overall, the distributional evidence used in the
k=3 solution is again not strong enough to mo-
tivate an individual cluster for each sense, indi-
cating the underspecified senses may not be as
lexically homogeneous as the other two. This is
because they have properties of both senses of
a given dot type, supporting the assumption that
the underspecified sense is formed by the union
of both the literal and metonymic senses (Puste-
jovsky, 1995). However, under the assumption



that more fine-grained patterns may indicate un-
derspecified reading, we attempted a k=6 solution
to differentiate between senses with a larger K.

5.3 Inducing six senses
The k=6 solution was proposed to uncover fine-
grained sense distinctions between a given dot
type (Markert and Nissim, 2009). We observed,
namely in CONTCONT, ANIMEAT and PRO-
CRES, that the resulting clusters demonstrate a
higher V-measure than their k=2 and k=3 counter-
parts, but this is a consequence of a higher homo-
geneity expected from an increased k-value. On
one hand, the less homogeneous clusters in k=3
are more prone to be split into at least two smaller
yet more homogeneous clusters in k=6. On the
other hand, the more homogeneous clusters in k=3
were mostly preserved in k=6, as the senses that
pertain to it remained identifiable in its own sep-
arate cluster. This demonstrates that, although
disperse, the resulting clusters contain stable el-
ements that are representative of a given sense.

The k=6 solution is thus a further refinement of
k=3 into more fine-grained induced senses. The
results for k=6 still reflect the challenges of the
task and the variation of the sense composition of
dot-type nominals, i.e. they occur predominantly
in one sense and the distributions of their under-
specified senses largely overlap with the distribu-
tion of the literal and metonymic senses.

6 Conclusions
In this work, our objective was to use WSI to
capture the sense alternation of dot types. Al-
though our system surpassed the random baseline
for all dot types in k=6, the V-measure of the
induced-sense clustering solutions demonstrates
that our method was not able to isolate the literal,
metonymic and underspecified senses. Our results
do not imply an absolute distinction between the
senses of a dot type.

The skewedness in sense distributions of the dot
types in the gold standard (cf. Figure 1) has an
impact on the quality of our results. This can be
attributed to a preference of a dot type to be se-
lected for more often as one sense over the other
in a given context, along the lines of Rumshisky et
al. (2007).

The lower-agreement datasets (cf. Table 1;
CONTCONT, PROCRES) increase in homogene-
ity with the increase of K (see Table 2), suggest-
ing that more difficult-to-annotate dot types have

more variation and thus cluster better in a higher
K.

The differences between the contexts of the
senses were still not strong enough to motivate
separate clusters for each individual sense. This is
in line with Markert and Nissim (2009) and Boleda
et al. (2012) which refer to the difficulty of dealing
with different forms of regular polysemy as a fac-
tor that limits conclusion power. It is also in line
with Pustejovksy and Jez̆ek (2008), as our anal-
ysis provided distributional evidence considering
only 5-word window contexts, which do not re-
flect modulations that a given dot type may un-
dergo due to its occurrence in context. We leave
the refinement of features for future work (see Sec-
tion 7).

7 Future Work
In many cases the clustering solutions appear to
be governed by a particular syntactic or lexical
context (i.e. a dependent PP in the case of the
metonymic-dominated cluster of ARTINFO), de-
noting its resulting sense through a specific con-
text. Moreover, our DSM only calculated rela-
tions between lemmas. However, we are aware,
for instance, that the plural number is an informa-
tive feature for the count/mass alternation (Gillon,
1992), which is parallel to many instances of reg-
ular polysemy (Copestake, 2013).

As we use 5-word contexts to induce and sub-
sequently cluster our senses, we do not capture all
the contextually complex phrases or gating predi-
cates, coordinated co-predications, and vague con-
texts that can cause underspecified predications.
However, our results depend not only on an ac-
curate induction of the senses in context, but also
on the reliability of the test set (see Table 1).

We also consider that we now have a base-
line which provides information with regard to the
sense relations of a given dot type, as per our anal-
ysis based on the results of our WSI task. Thereby,
we can use a DSM for a WSI that takes into ac-
count syntactic role of each token to compare re-
sults.

Finally, the placeholder lemmas replace all the
lemmas in the gold standard, as indicated in Sec-
tion 3.2. The selection of lemmas that we replace
restricts the class-based WSI because of its small
sample size. We should expand these lists with
more lemmas, so the distribution of the semantic
class can be less biased by the choice of lemmas.
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