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Abstract

In this paper we describe the construction of a paral-
lel corpus between the standard and a non-standard
language variety, specifically standard Austrian
German and Viennese dialect. The resulting par-
allel corpus is used for statistical machine transla-
tion (SMT) from the standard to the non-standard
variety. The main challenges to our task are data
scarcity and the lack of an authoritative orthogra-
phy. We started with the generation of a base corpus
of manually transcribed and translated data from
spoken text encoded in a specifically developed or-
thography. This data is used to train a first phrase-
based SMT. To deal with out-of-vocabulary items
we exploit the strong proximity between source
and target variety with a backoff strategy that uses
character-level models. To arrive at the necessary
size for a corpus to be used for SMT, we em-
ploy a boot-strapping approach. Integrating addi-
tional available sources (comparable corpora, such
as Wikipedia) necessitates to identify parallel sen-
tences out of substantially differing parallel docu-
ments. As an additional task, the spelling of the
texts has to be transformed into the above men-
tioned orthography of the target variety.

1 Introduction

Statistical machine translation between dialectal
varieties and their cognate standard variety is a
challenge quite different from translation between
major languages with large resources on both
sides. Instead of having huge corpora at hand
that offer themselves for machine learning tech-
niques, substantial written corpora of dialectal lan-
guage varieties are rare. In addition, there is no
authoritative orthography, which calls for methods
to normalize the spelling of existing written texts.
Parallel resources for a standard language and a
dialectal variety thereof are even less common.
But such parallel data is the workhorse of mod-
ern machine translation systems and key to pro-
ducing sufficiently natural utterances. On the posi-
tive side, the relative proximity between a standard
language and its varieties opens up new possibili-
ties to gather parallel data, despite data sparsity.
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In this paper we will outline methods to ac-
quire such data, developed for a specific pair of
varieties, Austrian German (AG), the standard va-
riety, and a dialectal variety spoken in the capi-
tal, Viennese dialect (VD) (Schikola, 1954), (Hor-
nung, 1998).! From a linguistic perspective, it has
to be noted that dialects generally are not really
homogenous. Lacking standardization initiatives,
reinforcement by education or public media and
predominantly being confined to oral usage, di-
alects most often form a dynamic continuum be-
tween different varieties and speaker groups. Be-
ing defined by social group rather than geograph-
ical regions, the Viennese variety is a sociolect in
the strict sense, where dialects in urban regions
are generally associated with lower social classes
(Labov, 2001). Also, speakers with native com-
petence usually adapt the register to the commu-
nicative situation as well as to the content of the
utterances in a very dynamic way. Switching be-
tween varieties and subtle gradual shifts are a very
natural phenomenon in such a linguistic situation.

While being aware that the linguistic conception
of a dialect is not uncontroversial, we still think
that it is feasible and appropriate to model a di-
alectal variety that conforms to a stereotype of that
dialect.

The paper focuses on the generation of the re-
sources necessary for statistical machine transla-
tion between a standard variety with rich resources
(AG) and a dialectal variety (VD) with almost no
resources. The strategy is to create a minimal base
corpus comprising bilingual data in a standardized
orthography for VD, and in a second step apply-
ing a bootstrapping strategy in order to gain a suf-
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ficient amount of bilingual lexical resources and
to increase the data on the basis of automatically
generated translations. As proximity between the
varieties works on our side, we give detailed de-
scriptions of how the linguistic closeness can be
exploited to bootstrap the required resources.

2 Background

Pairs of closely related languages (or language va-
rieties) offer themselves to exploit the linguistic
proximity in order to overcome the usual scarcity
of parallel data. Nakov and Tiedemann (2012)
take advantage of the great overlap in vocabu-
lary and the strong syntactic and lexical similar-
ity between Bulgarian and Macedonian. They de-
velop an SMT system for this language pair by
employing a combination of character and word
level translation models, outperforming a phrase-
based word-level baseline. Regarding MT of
dialects, Zbib et al. (2012) use crowdsourcing
to build Levantine-English and Egyptian-English
parallel corpora; while Sawaf (2010) normalizes
non-standard, spontaneous and dialect Arabic into
Modern Standard Arabic to achieve translations
into English.

A considerable amount of work has been done
on extracting parallel sentences from compara-
ble corpora, i.e. a set of documents in dif-
ferent languages that contains similar informa-
tion. Munteanu and Marcu (2005) use a Max-
imum Entropy classifier trained on parallel sen-
tences to determine if a sentence pair is parallel
or not. Based on techniques of Information Re-
trieval, Abdul-Rauf and Schwenk (2011) use the
translations of a SMT system in order to find the
corresponding parallel sentences from the target-
language side of the comparable corpus. Smith
et al. (2010) explore Wikipedia to extract paral-
lel sentences where, once they achieve an align-
ment at the document level by taking advantage
of the structure of this online encyclopedia, they
train Conditional Random Fields to tackle the task
of sentence alignment. Tillmann and Xu (2009)
extract sentence pairs by a model based on the
IBM Model-1 (Brown et al., 1993) and perform
training on parallel data. With the exception of
Munteanu and Marcu (2005), where bootstrapping
techniques find application, these methods require
(and presuppose the existence of) a certain amount
of resources (i.e. parallel data or lexicon coverage)
not available for some languages or varieties.

3 Constructing a Parallel Corpus

For Standard German to Viennese dialect, there
were no existing parallel data sets and, moreover,
most monolingual text sources that exist are writ-
ten in an inconsistent way, oscillating between
standard conventions and free attempts to encode
the phonetic realization in the dialect. The first
step was to design an orthographic standard for
the target language that would be consistent, un-
ambiguous and phonologically transparent. In the
light of applicability in language technology, accu-
racy towards phonological properties seemed the
most important criterion, on a par with the neces-
sity to minimize lexical ambiguities. This is dif-
ferent from producing literary texts, where read-
ability might be a more prominent issue, and the
orientation towards the standard orthography may
have a higher priority.

A second problem with initial data acquisition
is the fact that dialect speakers in Vienna very of-
ten switch between the dialect and the standard va-
riety, depending on the communicative situation,
but also on the content that may invite to use a
higher register. Text data with a bias towards the
standard by virtue of standard orthography quite
often also reflects such switching processes. In
order to circumvent such biases, we carefully se-
lected colloquial data of VD that are as authen-
tic to the dialect as possible. The basic material
consists of transcripts of TV documentaries and
free interview recordings of dialect speakers. The
transcripts were manually translated into both AG
and VD, the latter being vacuous in most cases.
This way we could ensure that (rarely occurring)
switchings into the standard would not end up in
the target model. A typical example looks as fol-
lows, where AG and VD refer to the standard and
the Viennese orthography of a sentence from our
corpus.

(1) AG: Ja,
VD: Ja,
‘yes, I know it anyway.’

ich weiBl es doch.
i waas s e.

In an early stage, we were interested in find-
ing a way to align these parallel sentences on a
word-by-word basis, in order to simultaneously
generate lexical resources comprising morphology
and morpho-syntactic features (PoS tags, gram-
matical features, such as gender, case, person,
number etc.). Given that usually the two transla-
tions are syntactically very similar, with little re-



ordering and/or n-to-n correspondences, and also
that many corresponding words are ’cognates’,
meaning that they are lexically (and morpholog-
ically) the same in both varieties, with differ-
ent phonology and spelling (e.g., AG ‘weif3’ cor-
responds to VD ‘waas’ ”(I) know”), we boot-
strapped a word-alignment routine that very soon
provided promising results.

The core idea was to use the string edit distance
(Levenshtein algorithm) to determine whether two
words should be aligned or not. Because it mat-
ters if one or more editing steps (errors) occur
in a short or in a long word, we normalized the
string edit distance by a factor consisting of the
logarithm of the average string length or a special
penalty factor for very short strings). However, the
orthographic forms may differ substantially while
referring to identical words. So, the second in-
gredient was to train a character based transla-
tion model between AG and VD, using the data-
driven grapheme-to-phoneme converter Sequitur
G2P (Bisani and Ney, 2008). These automatically
generated strings of dialect words (VD*) are then
compared to the words of the target (VD). Given
that the initial data is very limited, the results of
the G2P translation are not reliable as a transla-
tion, but still very useful to determine the distance
measure. Since the full set of extracted word pairs
(after validation) is used to re-train the models in
an iterative way, the word alignment gets better
the more data is added. In a way, over-fitting,
generally carefully avoided in statistical modeling,
works to our advantage.

The alignment algorithm in a first step linearly
searches for the best path of matches. If the score
provided by the string edit distance is above a
given threshold, insertions and deletions are the
less costly options, and the words will not be
aligned. By this method, we would only align cog-
nates and miss the more interesting cases where
words of AG are translated into different words
that may be typical for the dialect (e.g., VD has
a special word for AG ‘Polizist’ “policeman”: VD
‘kibara’). Therefore two more iterations over the
set of aligned pairs try to find these non-cognate
pairs. First, adjacent insertions and deletions are
aligned regardless of the distance measure. This
guarantees that word pairs that are not cognates
(with a high degree of similarity), but different lex-
ical items, are also captured by the word align-
ment, given that the syntactic structure of the

source and the target sentence are approximately
the same. Second, non-adjacent insertion-deletion
pairs with a distance measure below the threshold
are marked as valid alignments. That way the al-
gorithm that by itself provides only linear align-
ments is also capable to capture some non-local
alignments resulting from syntactic re-ordering.

With regard to SMT and contemplating the im-
manent problem of data sparsity, it seems obvi-
ous that a factorized translation model (Koehn and
Hoang, 2007) will have certain advantages over
a translation model that only considers full word
forms. This, however, requires the generation of
lexical resources for both language varieties. For
the source language (AG) such resources already
exist. The question is, if and how the lexical infor-
mation stemming from the source language can be
transferred onto the target language.

Our word alignment is capable of identifying
cognates. However, these cognates will only cover
certain word forms out of more complex morpho-
logical paradigms. Given that for AG, the lemma
and the information about the paradigm can be au-
tomatically retrieved from the word form, the task
is to identify lemma and the paradigm from the
VD word form. In many cases it will suffice to
strip off the inflectional endings and to transfer
the morphological information from the AG en-
try. However, there are many deviations (from AG
to VD) as well as exceptions, also only real cog-
nates can be treated that way, so there has to be
done some manual validation in order to create a
VD lexicon that in the end covers all word forms.

INPUT: haus NN Neut . -I-a
2) OUTPUT: haus  haus+NN+Neut+Sg+NDA
heisa  haus+NN-+Neut+Pl+NDA
sg./pl. forms of VD ‘haus’ (AG ’Haus’ ‘house’)

When the lemma, the major category and the
relevant morphological information are identified,
this is sufficient to generate all word forms to-
gether with morphological features in a given lan-
guage variety.

4 Machine Translation Experiments

In this section we report on some experiments us-
ing the data set described in the previous section to
build statistical machine translation systems, using
Moses (Koehn et al., 2007).

4.1 Corpus

The corpus was split into four sections, TRAIN,
DEV, DEVTEST and TEST, where the first was used



for estimation of phrase tables and language mod-
els, the second for tuning the MT system param-
eters and the third for testing during system de-
velopment. The last was reserved for final testing.
The relative sizes of the three section is shown in
Table 1.

Section Sentences Tokens
AG [ VD
TRAIN 4909 39108 | 40031
DEV 600 4775 | 4882
DEVTEST 600 4712 | 4803
TEST 600 4841 | 4943

Table 1: Corpus sizes (untokenised)

4.2 Word-level Models

The word-level models are standard phrase-based
models built using Moses. The parallel text is
tokenised using the Moses tokeniser for German,
then it is all lowercased. This parallel text is then
aligned in both directions using GIZA++ (Och and
Ney, 2000) and the alignments are symmetrised
using the “grow-diag-final-and” heuristic. The
aligned parallel text is then used to estimate a
translation table using the standard Moses heuris-
tics, and a 3-gram language model built on the
target side of the parallel text using SRILM with
Kneser-Ney smoothing. The translation and lan-
guage models are then combined with a distance-
based reordering model and their weights opti-
mised for BLEU using MERT on the DEV corpus.

4.3 Character-level Models

In earlier work on MT for closely-related lan-
guages (Vilar et al., 2007; Tiedemann, 2009;
Nakov and Tiedemann, 2012), it has been shown
that character-level translation models can be ef-
fective. These character-level models are also built
using phrase-based Moses, but allowing it to treat
single characters or groups of characters as ‘“to-
kens”. In the unigram character-level model, we
treat each character as a separate token by insert-
ing a space between each of them, and using a spe-
cial character (||) to indicate word boundaries. For
the bigram character-level model, the “tokens” are
pairs of adjacent characters, with the same word
boundary character as in the unigram model. Ta-
ble 1 shows examples of a German sentence con-
verted into suitable formats for the character-level
unigram and bigram models.

10

After decoding with one of the character-level
models, converting back to word-level text is
straightforward in the unigram case; it is just a
matter of removing spaces then replacing the spe-
cial word-boundary character with a space. For the
bigram-level model, we remove the first character
in each bigram then proceed as for the unigram-
level models.

Other than the word-to-character conversion of
all data, the character-based models are trained us-
ing the standard Moses training pipeline. We use
the default maximum phrase-length of 7, and a 7-
gram language model, parameters that were ob-
served to work best in early experiments. During
tuning, we maximise word-level BLEU with re-
spect to the reference.

4.4 Backoff Models

After observing the performance of word and
character-level models, we decided to try to com-
bine them into a backoff model, which would
use the word-level translation wherever possible,
but apply the character-level model for unknown
words. In (Nakov and Tiedemann, 2012), they
found that a similar model combination gave the
best results when translating between closely re-
lated languages.

Firstly, we experimented with different varia-
tions of the character-level model for the unknown
words (OOVs). Each of these models is trained
and tuned on the TRAIN and DEV sets, and we re-
port accuracies on the OOVs in DEVTEST (OOV
according to the phrase-table built on DEV). The
translations of the OOVs were extracted from the
word alignments of the base corpus, and out of 330
OOVs, 325 have gold translations.

The first two character-level models are just the
unigram and bigram baseline models from Sec-
tion 4.3. We then built further models by attempt-
ing to extract the cognates from the training set.
The idea here is that the character-level models are
built from “noisy” training data, containing many
German-Viennese word-pairs which either repre-
sent lexical differences, or are the result of bad
alignments. In order to extract the cognates we
ran GIZA++ alignment on the combined TRAIN
and DEV corpora, extracted all source-target token
pairs that were aligned, converted the pairs to the
BARSUBST representation (see section 5.1), and
filtered using the log-normalised Levenshtein dis-
tance.



word-level:
character-level (unigram):
character-level (bigram):

und fiir die tipps
lundl]] fir|]|]diel]ltipps]|
[[u un nd d|| ||f fu Ur || ||d di ie e|| ||t ti ip pp Pps s||

Figure 1: Conversion of a German sentence into forms suitable for training the character-level models

Model Correct | Accuracy (%)
Pass-through 21 6.5
Unigram 154 47.4
Bigram 150 46.2
Unigram cognate 154 47.4
Bigram cognate 150 46.2
Unigram cognate (freq) 160 49.2
Bigram cognate (freq) 145 44.6

Table 2: Comparison of accuracy of character-
level models on the OOVs in DEVTEST. The plain
unigram/bigram models are trained on complete
sentences, whereas the cognate models are trained
on cognate pairs (unique or frequency weighted)
extracted from these sentences.

With this list of cognate pairs, we trained both
unigram and bigram models, firstly from a list of
the unique cognate pairs and secondly from the
same list with frequencies adjusted to match their
corpus frequencies. These models were trained
using the usual Moses pipeline, estimating phrase
tables and language models from 90% of the cog-
nate pairs and tuning on the other 10%.

The OOV accuracies (on DEVTEST) of all 6
character-level models, as well as a pass-through
baseline are shown in Table 2. We can see that, in
general, the cognate models offer small improve-
ments on the models trained on the whole sen-
tences, and the unigram models are slightly better
than the bigram models.

Finally, we show a comparison of the word-
level and character-level systems, with the back-
off system (using the unigram cognate frequency
adjusted model) in Table 3. The backoff systems
are implemented by first examining the tuning and
test data for OOVs, then translating these using
the character-level model, and creating a second
phrase-table with the character-level model. This
second phrase table is used in Moses as a backoff
table.

For both test sets, the character-level transla-
tion outperforms the word-level translation, but
the backoff offers the best performance of all. The
BLEU scores are relatively high compared to the
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Model | DEVTEST | TEST
Word-level 63.28 60.04
Character-level (unigram) 65.00 63.17
Character-level (bigram) 64.98 63.43
Backoff to char-level 68.30 66.13

Table 3: BLEU scores for all translation systems

typical values reported in the MT literature, re-
flecting the restricted vocabulary of the data set.

5 Comparable Corpora

Wikipedia is a multilingual free online encyclope-
dia with currently 285 language versions. Adafre
and de Rijke (2006) investigated the potential of
this resource to generate parallel corpora by ap-
plying different methods for identifying similar
texts across multiple languages. We explore this
resource as it contains a relatively large bilingual
corpus of articles in (Standard) German (DE) and
Bavarian dialects (BAR). There are 5135 paral-
lel articles (status from July 2012), of which 219
are explicitly tagged as ”Viennese dialect”. It can
be assumed that the parallel articles refer to the
same content, but texts often differ substantially
in style and detail. Articles in Bavarian are gen-
erally shorter, containing less information than the
corresponding German ones, with an average ratio
of about 1:6. The challenge of finding correspond-
ing sentence pairs is met by a sentence alignment
method that crucially exploits the phonetic simi-
larity between the German standard and Bavarian
dialects, specifically Viennese.

5.1 Sentence Extraction

Our sentence alignment algorithm is primarily
based on string-edit distance measures. There
exist several open-source alignment tools for ex-
tracting parallel sentences from bilingual corpora.
However, none of them is applicable to our data
because they either require a substantial amount
of data to reliably estimate statistical models, i.e.
at least 10k sentence pairs, such as the Microsoft
Bilingual Aligner (Moore, 2002). But also the
number of sentences to be aligned must be almost



equal — with a ratio of 1:6 it was not possible to
achieve any reliable results at all. Additionally,
the sentences in the parallel texts are presupposed
to occur in the same order, which does not apply to
the Wikipedia articles under consideration. Simi-
lar requirements hold for the Hunalign tool (Varga
et al., 2005). Finally, LEXACC (Stefanescu et al.,
2012) is a parallel sentence extractor for compa-
rable corpora based on Information Retrieval, but
again, certain resources are required beforehand,
such as a GIZA++ dictionary created from existing
parallel documents. The main obstacle to using
any of these algorithms is that the texts in the BAR
Wikipedia obey widely differing and mostly ad-
hoc orthographic conventions, which are not con-
sistent for a given dialectal variety, even within a
single article. In our situation, we had to develop
an alignment method that relies only on the lin-
guistic proximity between the two varieties.

Comparing strings of DE that occur in stan-
dard orthography with strings of BAR in varying
non-standard orthography directly does not make
sense, unless both forms are transformed into a
phonetically based common form. Inspired by
Soundex and the Kolner Phonetik algorithm (Pos-
tel, 1969), we developed an algorithm (henceforth
BARSUBST) that takes into account some charac-
teristics of the Bavarian dialect family (liquid vo-
calization: i.e., DE ‘viel’ corresponds to VD: fii’;
vowels are retained as one class of characters; the
character for ’dark a’ <a> had to be included).
This ensures that cognate words will have a very
low string edit distance. Just to give an impres-
sion, we calculated the average values of Leven-
shtein string edit distance and the average ambigu-
ity of particular word forms of AG and VD from
the data of the word aligned base corpus. As am-
biguity we counted the number of occurrences of
a given word in a distinct word pair. The base-
line value of 1.26/1.27 relates to the fact that for
a given word there may be more than one valid
translations. When the ambiguity is much higher
this indicates that the distance measure is less re-
liable (words that should not relate turn out to be
identical).

The average LD significantly drops down from
3.47 of the baseline (lowercase word forms) to ap-
prox. 1.0 for both, Kolner Phonetik and BAR-
SUBST. The average ambiguity is almost equal for
both BAR and DE - slightly below a value of 2
with BARSUBST; the Kdlner Phonetik algorithm
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LD | amb.DE | amb.VD
Baseline (Icase) | 3.47 1.26 1.27
Soundex 1.35 4.53 5.69
Kolner Phonetik | 1.00 1.87 2.25
BARSUBST 0.99 1.94 1.96

Table 4: Average distance and ambiguity values

fares better with DE word forms, but worse with
BAR word forms, which shows that it is justified
to adapt the Kdlner Phonetik algorithm to our pur-
poses.

Applying this algorithm to words of both DE
and BAR, we defined a scoring function that eval-
uates possible word alignments against each other
in order to find the optimal sentence pairs from
related articles. The alignment algorithm works
as follows: after creating a matrix of all sentence
pairs, each potential alignment is evaluated by the
scoring function that takes into account the sum
of (positive and negative) scores resulting from
a non-linear word alignment based on the trans-
formed character sequences (best matches aligned
first), the number of not-aligned words (negative
scores) and a penalty for crossing alignments and
extra short word sequences. We selected a set of
approx. 50 sentences to manually test the effects
of the different parameters of the scoring func-
tion. After fine-tuning the parameters, a threshold
of above zero proved to be a good indicator for a
correct alignment between two sentences. From
this matrix, sentence pairs are extracted in the or-
der of their scores (best scores aligned first) until
a defined threshold is reached.

We used only articles that are explicitly tagged
as ‘Viennese’ (approx. 200). From these
we extracted and aligned 4414 sentences with
40.1k word tokens that correspond to 12.9k word
types. Unlike the texts extracted from sponta-
neous speech recordings, the Wikipedia texts seem
to contain many more word types, which is due
to the fact that Wikipedia texts tend to contain a
large number of named entities. Unfortunately,
these are not very useful for SMT by themselves,
but still the amount of parallel data can be signifi-
cantly increased.

5.2 Orthography Normalization

One problem still to be solved in a satisfactory
way is how to deal with non-standardized, incon-
sistent orthography in dialectal texts. The cor-



pus of parallel sentences from Wikipedia articles
can in principle provide ample training data for a
character-level translation algorithm between non-
standard orthography of BAR and our specifically
designed, standardized orthography for VD. Given
a 1-to-1 word alignment based on the Levenshtein
distance of BARSUBST transformed word forms of
sufficient quality, we can extract a list of BAR-DE
word pairs, but the target, words in VD orthogra-
phy, is missing.

To tackle this problem, we used the data from
our speech-based corpus of aligned AG-VD word
pairs. (We take Austrian German (AG) and Ger-
man Standard (DE) to refer to the same variety).
We filtered the list of word pairs gained from
BAR-DE word alignment for only those DE-BAR
pairs where we have an AG-VD word pair in our
base corpus. That way, the AG/DE standard is
used as an anchor to link non-standardized BAR
orthography to our standard of DE orthography.

BAR AG-VDpair resulting VD
easchde erste — easde

easte \
erschte ersten —easdn * easde

erste
easchte

easchdn ersten — casdn
easchtm

easchtn erste —easde  *
easten

eastn erstem — easdn
erschtn

Figure 2: Correspondences between BAR ortho-
graphic forms, AG-VD pairs and VD forms.

Erste — casde

J\

easdn

\

As can be seen in Figure 2, the correspondences
can be manifold. In order to decide which VD
form is the correct one to be associated with cer-
tain BAR variants, we apply a weighted Leven-
shtein distance measure, where the weights are
chosen in such a way that plausible and frequent
substitutions are assigned less costs than others.
When more data is available, these weights can be
re-estimated on a statistical basis, for a start we
just stipulated them based on the linguistic knowl-
edge about the two varieties. The matches are
not symmetrical under this approach, for example
BAR <m> matching with VD <n> (which often
occurs when dative endings in BAR are written ac-
cording to the standard of DE, while they are pro-
nounced and written as /n/ in VD) is assigned a
cost of 0.6, while the reverse match is not defined
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and receives the default cost value of 1.)

Having gathered some initial training data this
way, we experimented to train a character level
translation using again Sequitur G2P. Of all the
pairs, we spared 25% for testing and used the
rest for training, which proved to be very little —
approx. 1500 instances of BAR-VD pairs. To
increase this number in a sensible way, we cre-
ated two more sets by adding the set of AG-VD
pairs from the base corpus and adding the set of
VD-VD pairs, simulating a situation where the
BAR input is already in the correct orthography.
The results are not fully compelling (50 % cor-
rect spellings in the optimal case). This may be
due to the rather small amount of training data,
but also to the high degree of variance in the in-
put data. To enhance the quality of orthography
normalization we foresee a combination of mod-
elling character-level BAR-VD correspondences
with the character-level translation models of AG
to VD that hopefully will make it possible to
achieve a automatically normalized parallel cor-
pus from the Wikipedia data that conforms to the
same standards as the base corpus.

6 Discussion and Outlook

Starting from a base corpus of parallel AG and
VD sentences generated by manual transcription
of spoken text and translation into the two vari-
eties, we applied various methods to iteratively
enhance the word alignment and the generation
of lexical resources in the target variety. Using
this corpus for SMT provided good preliminary
results given that we employed a backoff strategy
for OOV words building on character level mod-
els. To enlarge the corpus with automatic meth-
ods, we extracted sentence pairs from correspond-
ing articles from the Bavarian and the German
Wikipedia, where the identification of correspond-
ing sentences was based on the similarity of the
two varieties. Still, the normalization of Bavar-
ian/Viennese dialectal spelling to our orthography
is work in progress. However, methods for nor-
malization of spelling are crucial for the acqui-
sition of monolingual data from texts in dialects,
generally. Another line will be the bootstrapping
of parallel data by generating automatic transla-
tions of sentences that are selected by an active
learning algorithm, in order to gain maximal in-
formation for the system.
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